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by 
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Doctor of Philosophy.

Abstract
Modern cryptography relies on algorithmic one-way functions - numerical functions 
which are easy to compute but very difficult to invert. This dissertation introduces 
physical one-way functions and physical one-way hash functions as primitives for 
physical analogs of cryptosystems. 

Physical one-way functions are defined with respect to a physical probe and physical 
system in some unknown state. A function is called a physical one-way function if (a) 
there exists a deterministic physical interaction between the probe and the system 
which produces an output in constant time (b) inverting the function using either 
computational or physical means is difficult (c) simulating the physical interaction is 
computationally demanding and (d) the physical system is easy to make but difficult 
to clone. 

Physical one-way hash functions produce fixed-length output regardless of the size of 
the input. These hash functions can be obtained by sampling the output of physical 
one-way functions. For the system described below, it is shown that there is a strong 
correspondence between the properties of physical one-way hash functions and their 
algorithmic counterparts. In particular, it is demonstrated that they are collision-
resistant and that they exhibit the avalanche effect, i.e., a small change in the physical 
system causes a large change in the hash value. 

An inexpensive prototype authentication system based on physical one-way hash 
functions is designed, implemented, and analyzed. The prototype uses a disordered 
three-dimensional microstructure as the underlying physical system and coherent 
radiation as the probe. It is shown that the output of the interaction between the 
physical system and the probe can be used to robustly derive a unique tamper-
resistant identifier at a very low cost per bit. The explicit use of three-dimensional 
structures marks a departure from prior efforts. Two protocols, including a one-time 
pad protocol, that illustrate the utility of these hash functions are presented and 
potential attacks on the authentication system are considered.

Finally, the concept of fabrication complexity is introduced as a way of quantifying 
the difficulty of materially cloning physical systems with arbitrary internal states. 
Fabrication complexity is discussed in the context of an idealized machine - a 
Universal Turing Machine augmented with a fabrication head - which transforms 
algorithmically minimal descriptions of physical systems into the systems 
themselves. 

Thesis supervisor: Neil A. Gershenfeld
Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and 
Sciences
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I have often pondered over the roles of knowledge or experience, on the one 
hand, and imagination or intuition, on the other, in the process of discovery. I 
believe that there is a certain fundamental conflict between the two, and 
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Therefore, a certain naiveté, unburdened by conventional wisdom, can 
sometimes be a positive asset.
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1923-1983

Information is physical.

Rolf Landauer
1927-1999



8



ACKNOWLEDGEMENTS 9
Acknowledgements

Many extraordinary people contributed to this work in extraordinary ways.

I want to thank

Neil Gershenfeld, my thesis advisor, for his vision, energy, enthusiasm, and 
inspiration. It has been an absolute pleasure to work with him.

Nabil Amer, Dan Simon, and Joe Jacobson for being on my dissertation 
committee, and giving me some very useful suggestions and advice. I would 
especially like to thank Nabil for nominating me for an IBM research 
fellowship during the last two years of my tenure at the Media Lab.  

The people in the Bits and Atoms community at the Media Lab: Rehmi Post, 
Bernd Schoner, Yael Maguire, Matt Reynolds, Ben Vigoda, Josh Smith, Ben 
Recht, Isaac Chuang, Scott Manalis, Saul Griffith, Jason Taylor, John 
DeFrancesca, H. Shrikumar, Aggelos Bletsas, Rich Fletcher, Olufemi 
Omojola, John-Paul Strachan, Aram Harrow, Karen Robinson, Esa Masood, 
Peter Russo, and others. They are an an amazing group of people and I learn 
from them everyday.

Linda Peterson, Susan Bottari, and Liz Hennessey for keeping the MIT 
academic and administrative dragons at bay.

My friends: Raji, Sujal, Aakash, Anu, Rama, Shanti, Shami, Gaddam, Harish, 
Bindu, Sudhir, Kishan, Jayadev, Ravindran, Barrett....

Wendy Plesniak, for being my closest friend in the world, for really 
broadening my horizons, and for having the clearest perspective on the things 
in life that really matter. Thank you Wen!!!

Finally, I want to thank my family: my father Purushottama Rao, my mother 
Chayalaxmi, my brothers Vivek and Kartik, and my sister Gayatri for their 
encouragement, inspiration, good humour, and their undying faith in me. 

My parents made many sacrifices so all of us could have the best possible 
education. I am deeply grateful to them for putting our education ahead of 
their own comfort. I dedicate this work to them.



10 ACKNOWLEDGEMENTS



11
Contents    
 
     Physical One-Way Functions - Abstract 3

     Doctoral Dissertation Committee 5

     Acknowledgements 9

1   Introduction 15
1.1   Algorithmic one-way functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

1.1.1   The RSA function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.1.2   The Rabin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

1.2   The concept of physical one-way functions. . . . . . . . . . . . . . . . . . . . . . .16
1.3   Intellectual inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.4   Motivation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

1.4.1   Authenticating bits with monetary value  . . . . . . . . . . . . . . . . . .17
1.4.2   Silicon-based authentication is not inexpensive enough. . . . . . .18
1.4.3   Asymmetry between 2D and 3D microfabrication . . . . . . . . . . .19
1.4.4   Connection between physical systems and cryptography . . . . . .20

1.5   Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.6   Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

2   Preliminaries 25
2.1   One-way functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

2.1.1   The origin of OWFs and OWHFs . . . . . . . . . . . . . . . . . . . . . . . .25
2.1.2   Formal definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

2.2   Authentication and digital signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . .28
2.2.1   Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
2.2.2   How one-way hash functions are used in digital signatures . . . .28
2.2.3   Attacks on one-way hash functions. . . . . . . . . . . . . . . . . . . . . . .29

2.3   Quantum money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.3.1   Photon polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.3.2   Quantum measurement of photons . . . . . . . . . . . . . . . . . . . . . . .31
2.3.3   Preparing the quantum banknote. . . . . . . . . . . . . . . . . . . . . . . . .33
2.3.4   Forging a quantum banknote. . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.3.5   Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

2.4   Algorithmic and computational complexity. . . . . . . . . . . . . . . . . . . . . . .35
2.4.1   Problem size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.4.2   Asymptotic notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
2.4.3   Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

2.5   Complexity in physical systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.5.1   Candidate metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.5.2   Kolmogorov complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.5.3   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

3   Related work 43
3.1   Prior art in physical authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

3.1.1   Optically variable devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.1.2   Authentication using random features. . . . . . . . . . . . . . . . . . . . .44

3.2   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47



12
4   Concept, design choices, and problem formulation 49
4.1   System concept and data pipeline: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
4.2   Requirements of each system component  . . . . . . . . . . . . . . . . . . . . . . . .50

4.2.1   Physical system requirements . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.2.2   Requirements for the probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.2.3   Detector requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
4.2.4   Interaction between physical system and probe  . . . . . . . . . . . . .51

4.3   Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
4.4   Problem formulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

4.4.1   System concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
4.4.2   System theory and performance . . . . . . . . . . . . . . . . . . . . . . . . .52
4.4.3   Attacks and spoofing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.4.4   Cryptographic framework and future work. . . . . . . . . . . . . . . . .53

5   Light transport through disordered media 55
5.1   Assumptions and notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
5.2   Length scales and scattering regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . .56
5.3   Coherent multiple scattering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

5.3.1   Classical speckle theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
5.3.2   Born again: the memory effect . . . . . . . . . . . . . . . . . . . . . . . . . .58
5.3.3   Experimental observation of the memory effect . . . . . . . . . . . . .59
5.3.4   The C1, C2, and C3 correlations . . . . . . . . . . . . . . . . . . . . . . . . .60
5.3.5   C1, C2, and C3: an engineering view . . . . . . . . . . . . . . . . . . . . .65
5.3.6   Speckle sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
5.3.7   The random matrix formalism. . . . . . . . . . . . . . . . . . . . . . . . . . .68

5.4   Light transport through nonlinear media . . . . . . . . . . . . . . . . . . . . . . . . .71
5.4.1   The approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
5.4.2   Engineering issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

5.5   Optical localization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
5.6   A summary of key ideas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

6   Theory of physical one-way (hash) functions 75
6.1   Computational one-way functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
6.2   General definition of physical one-way functions . . . . . . . . . . . . . . . . . .76

6.2.1   Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
6.2.2   Discussion of the definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

6.3   Coherent multiple scattering implements a POWF . . . . . . . . . . . . . . . . .78
6.3.1   Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
6.3.2   POHFs as sampled speckle patterns . . . . . . . . . . . . . . . . . . . . . .79

6.4   Heuristic arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
6.4.1   Easy to “compute”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
6.4.2   Hard to invert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
6.4.3   Simulating the output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
6.4.4   High-sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
6.4.5   Cloning the structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

6.5   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

7   System design and engineering 85
7.1   What needs to be designed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
7.2   Token design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85



13
7.2.1   Creating the microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
7.2.2   Making the token. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

7.3   Probe design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
7.3.1   Optical coherence tomography (OCT) . . . . . . . . . . . . . . . . . . . .87
7.3.2   Magnetic resonance imaging (MRI) . . . . . . . . . . . . . . . . . . . . . .88
7.3.3   Laser beam  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

7.4   Reader design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
7.4.1   Mechanical requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
7.4.2   Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
7.4.3   Performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

7.5   The Gabor hash algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
7.5.1   Desired features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
7.5.2   Theory of Gabor Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5.3   Implementation to derive unique identifier . . . . . . . . . . . . . . . . 101
7.5.4   An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5.5   Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6   Final system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.7   Potential improvements of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8   Experiments and results 109
8.1   Proof-of-concept experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1.1   The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1.2   Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2   Statistics of Gabor Hash strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.1   The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.2   Statistical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3   Demonstration of tamper resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.1   The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.2   Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.4   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9   Protocols 123
9.1   A bit of history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.2   One-time pad protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.1   Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2.2   Augmenting the card and terminal  . . . . . . . . . . . . . . . . . . . . . . 125
9.2.3   Nonlinearity in the microstructure  . . . . . . . . . . . . . . . . . . . . . . 125
9.2.4   Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2.5   Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.2.6   The protocol for trusted terminals . . . . . . . . . . . . . . . . . . . . . . . 126
9.2.7   The one-time pad protocol for untrusted terminals . . . . . . . . . . 127

9.3   Bit commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.3.1   Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.3.2   The bit-commitment protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.4   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10   Scaling, attacks, and fabrication complexity 131
10.1   Scaling issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1.1   Scaling the size of the physical structure  . . . . . . . . . . . . . . . . 131
10.1.2   Scaling the number of tokens  . . . . . . . . . . . . . . . . . . . . . . . . . 132



14
10.2   Brute-force and birthday attacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.3   Replay attacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.4   Fabrication methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.4.1   Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.4.2   Electron beam lithography  . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.4.3   Scanned probe lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.4.4   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.5   Fabrication complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5.1   Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5.2   Problem definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5.3   A Universal Fabrication Machine (UFM). . . . . . . . . . . . . . . . 138
10.5.4   Kolmogorov complexity of disordered structures. . . . . . . . . . 139
10.5.5   Physical resources used in fabrication  . . . . . . . . . . . . . . . . . . 140

10.6   Parallel fabrication attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.7   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11   Contributions and future work 143
11.1   Summary and original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.2   Future work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

12   References 149



INTRODUCTION 15
1 Introduction

This dissertation introduces physical one-way functions and physical one-way 
hash functions as primitives for physical cryptography. 

Physical one-way functions are defined with respect to a physical probe and 
physical system in some unknown state. A function is called a physical one-
way function if (a) there exists a deterministic physical interaction between 
the probe and the system which produces an output in constant time (b) 
inverting the function using either computational or physical means is 
difficult (c) simulating the physical interaction is computationally demanding 
and (d) the physical system is easy to make but difficult to clone. Physical 
one-way hash functions produce a fixed-length output regardless of the size of 
the input. 

In this chapter, we briefly look at commonly used algorithmic one-way 
functions, namely the RSA and Rabin functions, before proceeding to present 
the concept of physical one-way functions in section 1.2. The intellectual 
inspiration for this work, Quantum Money, is briefly presented in section 1.3. 
The reasons for studying physical one-way functions are discussed in section 
1.4. Finally, in the concluding section, we provide a detailed roadmap of this 
document. 

1.1 Algorithmic one-
way functions

Modern asymmetric cryptography rests squarely on the shoulders of one-way 
functions — numerical functions which are easy to compute but difficult to 
invert. This asymmetry is naturally embodied in a real-world security 
concern: it should be easy for a legitimate user to operate a cryptosystem but 
infeasible for an adversary to foil it. This gap in complexity of effort between 
legitimate users and adversaries lies at the heart of cryptography. However, it 
is not known if one-way functions exist [11]. Despite this, however, there are 
several important results from the literature which are predicated on the 
existence of one-way functions. Examples of such results include: one-way 
functions are necessary and sufficient for secure signatures [15] and any one-
way function can be used to construct a pseudorandom generator [16]. 

Algorithmic one-way functions, as we currently know them, are mathematical 
objects which are based on (conjectured) intractable problems. Let us 
consider two examples which are based on the intractability of integer 
factorization: it is difficult to factorize a number which is the product of two 
prime numbers of comparable length. 

1.1.1 The RSA function
This is a family of one-way functions named after its inventors Rivest, 
Shamir, and Adleman. Let  and  be two prime numbers such that 

, , and let  be an integer smaller than  and relatively 
prime to . Then the RSA function is defined over the 
domain  as

P Q
Plog Qlog– 1≤ N PQ= e N

φ N( ) P 1–( ) Q 1–( )=
1 …… N, ,{ }
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1.1.1 

It is widely believed that inverting  is intractable given an  pair 
but not the factors  and .

1.1.2 The Rabin function
The Rabin function is defined in a very similar way except the function is 
defined by 

1.1.2 

It can be shown that inverting , i.e., finding square roots , is 
computationally equivalent to factoring , which is conjectured to be 
intractable.

1.2 The concept of 
physical one-way 
functions

We introduce physical one-way functions (POWFs) in this dissertation. 
Unlike algorithmic one-way functions, which are mathematical objects, 
physical one-way functions are defined as interactions between physical 
systems and physical probes. Specifically, a physical one-way function 
requires

• A physical system with some unknown internal state
• A physical probe 
• An interaction between the probe and the system

For physical one-way functions the hard problems are the difficulty of cloning 
a physical system with a specific internal state and efficiently simulating the 
interaction between the probe and the physical system.

There are two asymmetries present in our conceptual picture of a system that 
employs physical one-way functions.They are:

• The physical system is easy to make but difficult to clone.
• The interaction between the probe and the physical system produces an 

output quickly, but computationally simulating this interaction is difficult.

In this work, we use disordered three-dimensional microstructures as the 
physical system and coherent radiation as the probe. The output of the 
interaction between the probe and the 3D microstructure is called a speckle 
pattern and is a very complicated fingerprint of the structural details of the 
microstructure. The physical mechanism of speckle generation is called 
coherent multiple scattering. We use speckle patterns to generate unique and 
tamper-resistant identifiers for 3D structures. 

Algorithmic hash functions produce a fixed-length output regardless of the 

RSAN e, x( ) xemod N( )=

RSAN e, x( ) N e,( )
P Q

RABINN x( ) x2mod N( )=

RABINN x( ) mod N( )
N



INTRODUCTION 17
length of the input. We introduce physical one-way hash functions in this 
dissertation. We show that physical one-way hash functions can be obtained 
by sampling the output of a POWF, i.e., we sample the output speckle patterns 
on a regular grid to produce a fixed size output. For the system described 
above, it is shown that there is a strong correspondence between the properties 
of physical one-way hash functions and their algorithmic counterparts. In 
particular, it is demonstrated that they are collision-resistant and that they 
exhibit the avalanche effect, i.e., a small change in the physical system causes 
a large change in the hash value. 

In this dissertation, we use physical one-way hash functions to obtain unique, 
tamper-resistant, and unforgeable identifiers from 3D structures. Each of 
these three desired qualities has a corresponding mathematical/physical 
manifestation. 

• Unique: The number of independent degrees of freedom in the output 
space should be large.

• Tamper-resistant: The output of the physical system must be very 
sensitive to changes in the state of the probe or the system itself.

• Unforgeable: It must be very difficult to clone the physical system in such 
a way that the cloned version produces identical responses to all probe 
states.

In the rest of this dissertation we will use OW(H)F to denote either 
algorithmic one-way (hash) functions. We will use POW(H)Fs to denote their 
physical counterparts. 

1.3 Intellectual 
inspiration

Our work is philosophically inspired by the notion of Quantum Money, first 
proposed in 1983 by Wiesner [1] in a paper titled Conjugate Coding. In this 
paper, Wiesner presented two ideas. The first one was a verify-only memory, 
that, with high probability, cannot be read or copied by someone ignorant of 
its contents. The second idea was a scheme to multiplex two messages in such 
a way that, with high probability, either message could be recovered at the 
cost of irreversibly destroying the other. This works resulted in a follow-up 
paper [2] by Bennett, Brassard, Briedbart, and Wiesner entitled Quantum 
Cryptography, or Unforgeable Subway Tokens. 

The basic idea was to use quantum mechanical systems, primarily polarized 
photons, to produce subway tokens whose validity could be checked by 
anyone but which no one could counterfeit. The scheme they proposed rested 
on the impossibility of simultaneously determining rectilinear and diagonal 
polarization of photons. We will take a closer look at the ideas behind 
quantum money in the next chapter.

1.4 Motivation 1.4.1 Authenticating bits with monetary value
This work was motivated by a simple practical question. Is there an 
inexpensive way to authenticate bits with monetary value? 



18 INTRODUCTION
The very properties that make bits extremely useful for content representation 
make them unsuitable for value representation. Consider the electronic cash 
scenario. Using a set of bits to represent a sum of money engenders several 
problems—e.g., multiple spending and counterfeiting—and the solutions to 
these problems lead to lack of privacy, lack of anonymity, and make payment 
traceability possible. These problems occur largely due to the fact that the 
monetary value is not tied to a physical representation. One way of doing this 
is to make use of the physical structure of the card in the transaction 
authentication process. 

Consider another application where bits possess value. In the United States 
Postal Service’s Information Based Indicia Program (IBIP), postage stamps 
are allowed to be purchased and printed from a personal computer. The 
indicium (stamp) includes a two-dimensional (2D) barcode that is machine 
readable, along with human readable information. The indicium conveys mail 
processing and security related data. However, there is nothing that prevents a 
user from photocopying an indicium and reusing it several times. This 
problem may be mitigated by using an indicium derived not only from the 
user’s identifying data, but also from the physical structure of the envelope 
that carries the piece of mail.

The preceding example points at a broad class of emerging applications where 
there is an increasing need to be able to provide everyday objects with 
tamper-resistant and unforgeable serial numbers without significantly adding 
to their cost. 

Smart cards, credit-card-sized devices with a single embedded chip, are 
currently being proffered for, among other applications, electronic wallets, 
authentication, and storing medical records. A single smart card transaction 
usually takes place within several data systems owned by different parties: the 
cardholder, the terminal (merchant or service provider); and the bank. In one 
class of attacks that can be perpetrated—by the cardholder against the 
terminal—counterfeit or modified cards running modified software can be 
used to subvert the security of the protocol between the card and the terminal. 
According to Bruce Schneier [72], 

“Good protocol design mitigates the risk of these kinds of attacks, which can 
be made more difficult by hard-to-forge physical aspects of the card (e.g., the 
hologram on the Visa and MasterCard cards), which can be checked by the 
terminal owner manually. Note that digital signatures on the software are not 
effective since a rogue card can always lie about its signature, and there is no 
way for the terminal to peer inside the card.” [emphasis added]

The system proposed in this work relies literally on hard-to-forge physical 
aspects and gives the terminal the ability to peer inside the card. 

1.4.2 Silicon-based authentication is not inexpensive enough
What does it cost to provide an uncopiable silicon-based serial number to an 
object? Despite the relentless onslaught of Moore’s Law, it costs on the order 
of a dollar for Silicon Serial Number DS2401 chip from Dallas 
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Semiconductor [83]. This chip provides a 48-bit unique identifier which can 
be read in approximately 3 milliseconds with a minimal electronic interface, 
typically a single pin of a microcontroller. Uncopiability is a little more 
expensive to come by. Minimal crypto-processors, which implement one-way 
hash functions, cost on the order of a few dollars. Clearly, there are many 
situations where adding a few dollars to the cost of an object is both 
economically and practically unacceptable. Our primary purpose for studying 
POWFs is to build systems which enable the identification and authentication 
of everyday objects in these situations. 

1.4.3 Asymmetry between 2D and 3D microfabrication
Another interesting observation which motivates our work is the asymmetry 
between 2D and 3D microfabrication. The means to fabricate 2D structures 
have been steadily evolving over the past century culminating in a rather 
extreme example shown in figure 1.1. 

3D microfabrication, on the other hand, has been almost exclusively studied 

FIGURE 1.1 IRON ATOMS ON COPPER. THE KANJI TEXT READS ATOM. IMAGE BY DON 
EIGLER, IBM.
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in the context of Very Large Scale Integration (VLSI) and, more recently, 
Micro Electro-Mechanical Systems (MEMS). The standard fabrication 
method used to make essentially all microelectronic devices is photo-
lithography where feature sizes are approaching 0.1 micron. However, this 
process is extremely expensive and current 90% yield main-line fabrication 
plants cost on the order of two billion dollars [81][82]. Further, standard top-
down fabrication techniques are all geared toward producing regular 
structures at the submicron scale — producing arbitrarily random structures at 
these scales is still a very challenging problem.

1.4.4 Connection between physical systems and cryptography
During the course of this work, it became evident that there is a strong 
correspondence between physical one-way hash functions and algorithmic 
hash functions. As we look at physical one-way functions from a theoretical 
perspective, we are left wondering if there are any deeper connections to be 
found between (non-quantum) physical systems and cryptosystems. 
Specifically, since the same computational complexity theory is used to study 
both physical systems and cryptosystems, it would be very useful if the design 
and analysis of physical cryptosystems could be performed in the same 
(principled and rigorous) framework as algorithmic cryptosystems. In this 
spirit, we provide definitions of physical one-way functions that mirror the 
definitions for their algorithmic counterparts. Of course, we do not preclude 
the flow of concepts and ideas in the opposite direction: from physics to 
cryptography. This is certainly in keeping with Rolf Landauer’s exhortation: 
information is physical. By means of this work, we offer an avenue by which 
the connections between physics, information theory, computational 
complexity, and cryptography can be further explored.

1.5 Research goals In the service of coherence and cogency we defer discussion of our research 
goals to section 4.4.

1.6 Organization of the 
dissertation

This section provides a fairly detailed map of this dissertation. 

Chapters 2 and 3 present some background and discuss related work. 
Specifically, we discuss algorithmic one-way functions and provide formal 
definitions for them. We use these definitions as templates in defining 
physical one-way functions in a later chapter. We then discuss the role of one-
way (hash) functions in authentication and digital signatures and discuss 
common attacks on one-way hash functions. This is followed by a detailed 
exposition of Quantum Money where we look at how a quantum banknote is 
prepared and how a counterfeiter might approach the problem of cloning it. In 
the penultimate section of chapter 2, we provide a brief introduction to 
computational complexity theory and outline the various complexity classes. 
These classes make an appearance when we discuss the theory of physical 
one-way functions. Finally, we take a look at the various measures of physical 
complexity and focus on one such measure: the Kolmogorov complexity (also 
referred to as the algorithmic information content, algorithmic entropy, and 
algorithmic randomness) which we will use in a later chapter.
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Chapter 3, Related work, is devoted to exploring the landscape of biometric 
authentication and looking at prior work in physical authentication. We spend 
a fair amount of time on optically variable devices where the physical 
authentication token modulate incident light depending on the angle of 
incidence. Familiar examples include the holograms on credit cards. The 
common feature of all these optically variable devices is that they are regular 
and are exactly the same on each object to be authenticated. We also look at 
authentication using random features in this chapter.

In chapter 4, Concept, design choices, and problem formulation, we present a 
first look at a conceptual physical authentication system. We look at the 
components of a physical authentication system and the data pipeline in such 
a system. This leads into prescribing the ideal requirements for each 
component of the system. Specifically, we lay out the prerequisites for the 
physical system, the probe, and the detector. Crucially, we also specify the 
desired characteristics of the interaction between the probe and the physical 
system. We then present design choices which satisfy the requirement for an 
exemplary embodiment of a physical authentication system. The last section 
of this chapter outlines the problems tackled in this dissertation. 

Chapter 5, Light transport through disordered media, presents a detailed look 
at the physics of coherent multiple scattering. In the pre-quantum-mechanics 
era, the scattering of light by small particles occupied the minds of almost all 
the great masters of mathematical physics — Fresnel, Maxwell, Cauchy, 
Green, Poisson, Kirchoff, Stokes, and Lord Rayleigh. Of course, coherent 
multiple scattering in the visible region of the spectrum was not observed till 
the invention of the laser in 1962. Since then, however, there have been 
several important advances in the study of multiple scattering. 

We present an overview of classical speckle theory, primarily formulated by 
Goodman. We then look at a very interesting memory effect, which has 
theoretical implications for the study of multiple scattering as well 
engineering implications for physical authentication systems. It is worth 
noting that many of the key ideas about multiple scattering in the post-laser 
age actually came from the study of disordered electronic structures. The 
similarities between diffusion in electronic and optical disordered media have 
been the focus of a lot of recent theoretical and experimental activity, with 
many pioneering ideas introduced by Rolf Landauer. 

We then take a look at some very recent work involving coherent light 
transport through nonlinear disordered media. Although we do not explicitly 
use nonlinear disordered media in this dissertation, we make use of the 
theoretical development to strengthen the argument for physical one-way 
functions. We then look at optical localization, which is the cessation of light 
diffusion through the structure. It occurs when the mean free path between 
scatterers approaches the wavelength of light. Localization may be viewed as 
a phase transition in the medium. It is well known in complexity theory that 
dramatic changes in computational cost, analogous to physical phase 
transitions, occur at the boundary between under- and over-constrained 
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problems [73][74]. This connection between physical phase transitions and 
computational complexity suggests that physical one-way functions could 
become harder to invert as the regime of operation moves closer to 
localization.We conclude this chapter with a summary of key ideas.

Chapter 6, Theory of physical one-way (hash) functions, presents a more 
formal approach to defining POWFs where we broaden our vision and define 
physical one-way functions in terms of a general physical system. Our goal 
for this chapter is to define POWFS by augmenting definitions of OWFs with 
physical definitions. The advantage of looking at POWFs through this lens is 
that it enables (and indeed, motivates) structured and succinct mathematical 
descriptions. We can then look at POWFs as a physical layer encapsulating (in 
the ideal case, at least) an underlying OWF. We also partition POWFS into 
two classes, weak and strong, depending on the computational complexity of 
simulating the interaction between the probe and the physical system.In this 
chapter, we show that the combination of coherent multiple scattering and 
inhomogeneous 3D microstructures implements a collision-resistant physical 
one-way hash function. 

The next three chapters are concerned with implementation of an exemplary 
physical authentication system. 

In chapter 7, System design and engineering, we document the design and 
implementation of a prototype physical authentication system. We progress 
through the design of various system components described in chapter 4, 
taking care to document (briefly) some of the instantiations of each 
component that we experimented with along the way. Especially important to 
note is the fact that coherent multiple scattering was just one of a number of 
different probes we considered. The three others that we seriously scrutinized 
for our application were optical coherence tomography, confocal microscopy, 
and magnetic resonance imaging. The similarities between coherent multiple 
scattering and OWFs were too striking to ignore which is what led to our 
ultimate choice. We discuss the mechanical design of the token reader as well 
as the thresholding algorithm, the Gabor hash algorithm, in the remainder of 
this chapter. We conclude the chapter by listing a set of tradeoffs that different 
physical authentication systems must consider and potential improvements in 
future versions of the system. 

We discuss Experiments and results in chapter 8. The first experiment is a 
proof-of-principle experiment. We are primarily interested in showing that a 
unique identifier can be obtained from an inhomogeneous 3D microstructure 
repeatably by probing it with a laser beam. The second experiment asks 
questions related to the statistics of the identifiers. Here we deal with a large 
number of speckle patterns and look at how distinguishable they are from one 
another. In the final experiment, we focus on determining the effect of small 
change in the microstructure on the identifier. 

In chapter 9, Protocols, we consider how a physical authentication system 
might be used in practice. In existing cryptosystems, protocols are built by 
using cryptographic primitives such as OWFs. In this chapter, we devise two 
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protocols: a one-time pad protocol and a bit commitment protocol to 
demonstrate how POWFs might be used. We stress here that these protocols 
are very simple and are only intended to convey the flavor of how POWFs 
might be employed. 

Chapter 10, Scaling, attacks, and fabrication complexity, addresses three 
separate issues of importance. We discuss scaling of physical authentication 
systems including scaling the number of tokens, and scaling the size of the 
physical system encapsulated in a token. We then discuss several attacks an 
adversary might use to compromise a physical authentication system Finally, 
we address the question of how hard it is to clone a 3D microstructure. We 
briefly look at available methods of microfabrication and attempt to get a feel 
for the resources required to construct a physical structure of the kind we use 
in this dissertation. In the interest of strengthening our view that a POWF is an 
underlying OWF with a physical encapsulation, we propose an idealized 
physical system cloning machine which is simply a Universal Turing Machine 
augmented with a fabrication head. We then introduce the notion of 
fabrication complexity which is a simple way to calculate the total 
computational and physical resources required to clone an arbitrary physical 
system.

Finally, in Contributions and future work, we provide a summary original 
contributions of this dissertation, and consider how it might be extended.
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2 Preliminaries 

A project that seeks to extend the application domain of algorithmic 
cryptography and biometric authentication must necessarily draw on ideas 
from several areas of research. In this and a later chapter, we present a precis 
of the various concepts and results which are relevant to our work. First, we 
will present a detailed discussion of One-Way functions. The formalism 
developed by Goldreich (among others) [11] will be introduced in section 2.1 
with a view to defining physical one-way functions in a similar way. In 
section 2.2, we will look at authentication, digital signatures, and the concept 
of challenge-response protocols. 

In section 2.3, we will look at the notion of quantum money. Much of the 
discussion is drawn from Wiesner’s seminal 1983 paper [1] (written originally 
in 1970 but not published for over a decade) which introduced the concept of 
quantum money, and led to Bennett and Brassard [3] to quantum 
cryptography. 

Section 2.4 presents a catalog of computational complexity classes in 
preparation for a discussion one-way functions. The complexity of physical 
systems is the subject of section 2.5. Here we will look at different ways of 
defining complexity in physical systems. The field of physical complexity 
focuses on making connections between physical systems and computational 
complexity. The goal of researchers in the field of physical complexity is to 
prove statements like “predicting lattice gases is P-complete”. Such 
statements provide clear connections between physical phenomena and the 
computational complexity of simulating them. The reason for our interest in 
physical complexity will become evident when we define physical one-way 
functions in chapter 6.

2.1 One-way functions Our work on physical one-way functions constructs an analogy with 
algorithmic one-way functions. In this section, we will take a close look at the 
formal definitions and properties of cryptographic one-way functions, with a 
view to using a similar approach in the physical case. A few acronyms that we 
will use repeatedly in the rest of this dissertation are given below:

• OWFs - algorithmic one-way functions
• OWHFs - algorithmic one-way hash functions
• POWFs - physical one-way functions
• POWHFs - physical one-way hash functions

2.1.1 The origin of OWFs and OWHFs
One-way functions are central to modern public-key cryptography [9]. The 
notion of a one-way function first made its appearance in a very practical 
context. Consider the “login” procedure in a multiuser computer system (e.g. 
a network of Unix workstations). When an account is set up, the user chooses 
a password which is entered into the system’s password file. Upon each 
successive login, the user is asked for the password, which is compared to the 
stored password. The stored password must be kept secret, in order to prevent 
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impersonation of a user by an (perhaps malicious) adversary. The security of 
the user authentication system hinges on the security of the password file. 
Needham [10] realized that it would be possible to allow the system to judge 
the authenticity of a password without actually knowing it. His system 
worked as follows. When a user first enters a password , the computer 
system automatically calculates a function  and stores this, not , in 
the password file. When a user offers a password  on a successive login, the 
computer compares  with  and allows the login if they are equal. 
The crucial insight was that if  is a one-way function i.e., for any argument it 
is easy to compute but extremely hard to invert, then, even if  and  
were made public, it would be nearly impossible for a reasonable adversary to 
compute the password from . Here, a reasonable adversary is one that 
does not have access to exponential computing resources.

2.1.2 Formal definitions
In this section, we present definitions for cryptographic one-way functions. 
Our presentation draws heavily from Goldreich [11] [12] and Bellare [13]. 
Our goal will be to formalize the ideas represented by the statement:

“A one-way function is a function which is easy to compute but hard to 
invert.”

Saying that a function  is easy to compute means that there exists a P-time 
algorithm  which, given an input , outputs . The notion of difficulty of 
inversion requires a more elaborate explanation. Saying that a function  is 
hard to invert means that every probabilistic P-time algorithm  trying on 
input  to find an inverse of  under  will succeed with only negligible 
probability. A probabilistic P-time algorithm is one that is capable of making 
guesses. Negligible probability is a term that defines a robust notion of 
rareness. A rare event should occur rarely even if the experiment that 
generates the event is repeated a feasible number of times. Formally, a 
sequence  is negligible in  if for every polynomial  and all 
sufficiently large , it holds that

2.1.1 

Essentially, for some sufficiently large value of , the members of the 
sequence  are all smaller than . 

Finally, we recast the discussion above into a concise mathematical statement.

A function :  is called strongly one-way if the following two 
conditions hold.

• Easy to compute: There exists a deterministic P-time algorithm  such 
that on input ,  outputs  (that is, )

• Hard to invert: For every probabilistic P-time algorithm , every 
polynomial , and all sufficiently large 
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2.1.2 

Therefore, the probability that algorithm  will find an inverse of  under  
is negligible. The essence of the second condition above is that the hardness to 
invert is specified as an upper bound on the probability of success of efficient 
inverting algorithms. In the definition above, two cases are important. If the 
size of the output, i.e.,  is the same as that of the input , then the function 
is called a one-way permutation. If the size of the output is always fixed, 
regardless of the size of the input, then the function  is called a one-way hash 
function.

Strong one-way functions above required that any efficient inverting 
algorithm has negligible success probability. Weak one-way functions require 
only that all efficient algorithms fail with some non-negligible probability. We 
will use these definitions as templates when we define physical one-way 
functions.

A trapdoor one-way function is a one-way function which can be inverted 
using a specific piece of information called the trapdoor. One-way functions 
are hard for everyone (legitimate users and adversaries) to invert, whereas 
trapdoor one-way functions can be efficiently inverted by legitimate users 
who possess the secret trapdoor.

Another beast in the cryptographer’s zoo is the one-way hash function, also 
referred to as a Manipulation Detection Code (MDC). Formally, a hash 
function  is a transformation with the following properties:

(1) Variable input size:  can be applied to an argument of any size.
(2) Fixed output size: produces a fixed-size output.
(3) Ease of computation:  is easy to compute. 
(4) Preimage resistance: For any given , the probability of finding  with 

 is negligible.
(5) 2nd preimage resistance: For any fixed , the probability of finding  
with  is negligible.

Properties 3 and 4 are statements about the one-wayness of the transformation 
. Property 5 has some subtlety to it. As stated, it means it is computationally 

infeasible to find another message which hashes to the same value. This is a 
statement about collision resistance, and the associated function is termed a 
weak one-way hash function. Property 5 may be strengthened by saying:

(5’) Collision resistance: It is computationally infeasible to find any two 
messages  and , such that . 

Any transformation which satisfies the revised Property 5 is termed a strong 
one-way hash function. This distinction exists because the effort required to 
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invert is different in both cases, as will be demonstrated later.

(6) High sensitivity: A final interesting property of a one-way hash function is 
that if a single bit in the input is changed, approximately half the number of 
bits in the output are changed. This is sometimes referred to as the avalanche 
effect.

2.2 Authentication and 
digital signatures

2.2.1 Definitions
Authentication, as defined by Simmons [14], is the “determination by the 
authorized receiver(s) or perhaps arbiter(s) that a particular message was 
most probably sent by the authorized transmitter under the existing 
authentication protocol and that it hasn’t subsequently been altered or 
substituted for.” The authentication problem may be divided into the 
verification problem and the identification problem. Verification determines 
whether or not the message is altered or substituted, while identification 
determines whether the message originated at the transmitter. We point out 
that authentication per se has nothing to do with keeping the message secret. 
Secrecy and authentication are completely decoupled in the framework of 
modern cryptography. We note that authentication requires one-way 
functions, and secrecy requires trapdoor one-way functions in this framework.

Digital signatures are the electronic analog of written signatures. They are a 
pattern of bits that may be appended to the message or may be an integral part 
of it. In either case, the process of producing a digital signature is to input the 
message to an algorithm which produces the signed message. This is where 
one-way hash functions enter the picture. They form the heart of the algorithm 
that produces the digital signature. A key result from cryptographic literature 
is that one-way functions are necessary and sufficient for secure signatures 
[15]. 

2.2.2 How one-way hash functions are used in digital signatures
One-way hash functions play a critical role in information authentication and 
digital signature schemes. Two different protocols for message authentication 
are described here. 

Verifying authenticity but not sender’s identity: Alice sends a message  to 
Bob, and both of them want to be certain that the message is intact. in order to 
achieve this, Alice computes a one-way hash function  with the message  
as input to produce a hash value , i.e.,

2.2.1 

She sends both  and  to Bob. Bob computes the same functions on the 
received message and obtains his own hash value . If , Bob can be 
sure that the message was not altered in transit. In this case, one-way hash 
functions are used to create “message digests” which can authenticate 
messages. There are several well-known hashing algorithms available for use 
in signature schemes. Among them are the Secure Hash Algorithm (SHA1) 
and the Message Digest 5 (MD5).
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Verifying authenticity and sender’s identity: In the previous case, an adversary 
could intercept both the message and the hash, alter the message and rehash it, 
and send it to Bob, who would then verify that it was authentic. The problem 
is that the message he verified as authentic never originated from Alice. In 
order to circumvent such incidents, one-way hash functions can be used in 
conjunction with symmetric or asymmetric cryptosystems to verify that the 
message is intact, and that it came from the person who claims to have sent it. 
In general, the elements of a scheme for unforgeable signatures requires that:

• each user has an efficient algorithm to produce his or her own signature.

• every user can efficiently verify that a certain string is the signature of 
another specific user

• nobody can efficiently produce signatures of other users to documents 
that they did not sign.

Here is a simple protocol that uses a symmetric cryptosystem. Alice and Bob 
both have access to the same secret key.

Alice:
• Create a hash of the message 

• Create a digital signature by encrypting  with her secret key

• Append the digital signature to the message and send it to Bob

Bob:
• Create a hash  of the received message, i.e., 

• Decrypt  with the secret key

• If  does not decrypt, then the message was not sent by Alice. 

• If it decrypts, then compare the decrypted hash to the one created locally. 

• If they are equal, then the message is unaltered. If not, then it was altered.

There are several protocols available for digital signature schemes, with and 
without encryption, and using either symmetric or asymmetric cryptosystems. 
A good review of digital signatures and protocols may be found in [17]. 

2.2.3 Attacks on one-way hash functions
Brute force attack: Assume a transformation  is a hash function with an -
bit output. Let  be the first message which was hashed. We are looking for 
another message  which produces the same hash value. Assuming the 
output of the hash function is random, any random message we choose has a 

 chance of hashing to the same value. If we try  random messages, then 
the probability of a match is . This is equal to . 
Therefore, in order to find a match with unity probability, an adversary would 
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have to evaluate the hash function approximately  times. This is the 
brute-force approach to compromising one-way hash functions.

Birthday attack: The second attack, which is subtler, is so named because the 
problem of finding two random messages which hash to the same value is 
identical to finding two people in a group of people who share the same 
birthday with probability greater than a certain threshold. The analysis 
proceeds as follows.

Say we have one-way hash function which has  possible outputs. That is, if 
each output is  bits, then . We are interested in the probability of two 
random messages evaluating to the same value when we make  evaluations. 
The total number of ways in which  hash values can be distributed in  cells 
is , i.e., each of the  hash values can be obtained in  ways. Now, for 
there to be no collision, the first of  hash values can take  values, the 
second one can take  values, and so on. Therefore the probability  of no 
collisions is 

2.2.2 

Therefore, the probability of at least one collision is  which is

2.2.3 

which is 

2.2.4 

It is possible to show that 

2.2.5 
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2.2.6 

Therefore, if we require that the probability of a collision be greater than 0.5, 
all we have to do is find that value of  in terms of  which makes it happen. 
This value of  is

2.2.7 

This is a surprising result. For an 80-bit hash function, this value of  is on the 
order of , which is the square root of the number of evaluations required 
for the previous case. When , , which means that in a room of 
more than 23 people, the probability of two people sharing the same birthday 
is greater than 0.5. Any hash function which makes the birthday attack 
computationally infeasible is called a strong one-way hash function. 
Essentially, the output of a strong one-way hash function has double the 
number of bits than the output of a weak one-way hash function.

2.3 Quantum money In a classic paper entitled “Conjugate Coding”, Wiesner [1] introduced two 
important ideas. He showed how conjugate quantum variables could be used 
to produce banknotes that would be impossible to counterfeit and how to 
implement a “multiplexing channel”, wherein either but not both of two 
transmitted messages could be received. Our work is a direct intellectual 
descendant of the former idea, and quantum cryptography evolved from the 
later one

2.3.1 Photon polarization
Our discussion of quantum money requires the existence of a two-state 
quantum system. While several such systems are available, we use photon 
polarization in our example. The polarization states of a photon are 
represented as vectors in a two-dimensional Hilbert space .  has several 
orthonormal bases. Three important ones are: (a) the quantum mechanical 
states of left- and right-circularly polarized photons (b) horizontally and 
vertically polarized photons and (c) linearly polarized photons at  and 

 from the vertical. Any arbitrary polarization state may be 
represented as a linear combination of any of the above sets of states. These 
states are shown in figure 2.1. 

Clearly, since each of the above sets of states comprise an orthonormal basis 
of , all the sets may be represented in terms of each other, as shown below.

2.3.2 Quantum measurement of photons
Having seen how each set of photon polarization states may be represented in 
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terms of another set, we turn our attention to measuring polarization states. 
Assume that we have a photon which has been prepared in state , i.e., right-
circularly polarized. When this photon is passed through a vertical polarizer - 
one which lets  photons pass through with unity probability - the 
probability of seeing a photon is 0.5. This is an example of a quantum 
measurement and is shown in figure 2.2. This number is the squared 
magnitude of component of  in the direction of . The component is 
given by taking the inner-product 

2.3.1 

FIGURE 2.1 ORTHONORMAL BASES FOR PHOTON POLARIZATION. THE DIRAC 
NOTATION USED FOR EACH STATE IS ALSO INDICATED.

(a) left- and right-circular polarization

(b) horizontal and vertical polarization

(c) linear polarization
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which makes use of the fact that  and  are orthogonal. 

The key point to note is that we could just have easily obtained the probability 
of 0.5 using a horizontal polarizer  in the above experiment.Given a 0.5 
probability of seeing a photon at the output, there is no way of saying what the 
state of the input photon is. This observation plays a crucial role in the 
discussion of quantum money. We can make similar arguments for various 
other input photon states and measurement polarizers. 

2.3.3 Preparing the quantum banknote
A quantum banknote contains a number, say , of isolated two-state quantum 
systems such as spin 1/2 nuclei or photons with orthogonal polarizations. In 
the ensuing discussion, we use the photon polarization as our example. An 
important (but currently impractical) requirement is that the photons must be 
sufficiently isolated from the rest of the universe. Specifically, if a particular 
photon starts out in state  or , then probability that a polarization 
measurement made on it during the lifetime of the quantum banknote will find 
it in a state  or  should be negligible. In other words, the photons should 
have a very long decoherence time. 

In order to create a piece of quantum money, we need to encode the binary 
digits  and  using photon polarization states. This encoding is termed the 
quantum alphabet. Assume that the quantum banknote contains  photons. 
Generate two random binary sequences , ( ). Each 
of the  photons is placed in one of the four states  depending on 
the concatenated sequence . Photon state preparation is depicted in the 
table below.

FIGURE 2.2 QUANTUM MEASUREMENT ON A PHOTON PREPARED IN A SPECIFIC 
STATE. MEASUREMENT PROBABILITIES ARE INDICATED.
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The banknote is also given a serial number and the two sequences  are 
recorded along with the serial number. We now have a banknote with several 
isolated quantum systems whose state is determined by the two randomly 
generated binary sequences as shown in the table above. When the money 
returns to the bank, a measurement is made to see if the photons are still in 
their original state. Because the bank possesses the random sequences used to 
prepare the banknote, it also knows exactly how to carry out the measurement 
and obtain output photons with unity probability.

2.3.4 Forging a quantum banknote
We now consider how a potential forger would go about cloning the banknote. 
We assume that the quantum alphabets used in the encoding process are 
known. 

All the forger has to do is prepare a counterfeit banknote in the same quantum 
state as the original. First, she has to make measurements on the photons of 
the original banknote and prepare photons in the same states and deposit them 
on the counterfeit. The latter process is assumed to be tractable, which leaves 
the issue of cloning the polarization states on the original banknote. We now 
show (non-rigorously) that this is impossible. The formal proof of 
impossibility [4] is provided by an amazingly simple quantum no-cloning 
theorem.

If the original note contains an  photon, then the probabilities of seeing an 
output photon with each of  tuned polarizers are  
respectively. Therefore the forger has a (1/4) chance of measuring the original 
state. If the forger picks one of the resultant states and places it on the 
counterfeit banknote and repeats the experiment for each of the  states on the 
original, then the chance that the forgery will pass through undetected is 

. Therefore, the forger will have to prepare, on average, on 
the order of  counterfeits to produce one counterfeit which is 
indistinguishable from the original. For  this number of counterfeits is 
just a little over . 

2.3.5 Discussion
The above gedanken experiment raises some interesting issues, which we 
point out here.

• By using random coin tosses to determine the original polarization state 
of the photons on the banknote, each banknote is associated with a unique 
signature that is dependent on a physical structure. When the number of 
photons is large (e.g., ), the number of possible combinations of 
photon states is greater than the number of atoms in the universe, so we 
may assume that the probability that two randomly produced banknotes 
are identical is negligible. 
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• Unless one knows the original sequences ( ), the probability of 
cloning the physical structure is also very small, because cloning an 
unknown quantum state is impossible.

• In algorithmic cryptography, the attempts at forgery may be automated by 
using computer programs. A large number of combinations may be tried 
in a very short time. However, in systems based on physical structures, 
each attempt at forgery requires an experiment to be performed. 
Automating these experiments is much harder. 

Quantum money hinges on the difficulty of reproducing a set of unknown 
quantum states. Practically speaking, however, quantum decoherence 
prevents any useful realization of the concept. In our work, we use physical 
structures to provide the signature, without the associated decoherence 
problem. 

2.4 Algorithmic and 
computational 
complexity

We now turn our attention to the formal description of computational and 
algorithmic complexity. Modern cryptography is almost exclusively based on 
the gap between the difficulty of computation for legitimate users and 
adversaries. For example, in an encryption system, a legitimate user should 
easily be able to decipher the ciphertext by using some information known 
only to her. However, an adversary, who does not have access to the private 
deciphering key, should have a computationally infeasible task ahead of him. 
The formal study of algorithmic and computational complexity allow us to 
place notions of “easy”, “hard”, “infeasible” et cetera on a firm mathematical 
foundation. Excellent (and exhaustive) reviews of this material may be found 
in Papadimitriou [5], Greenlaw and Hoover [6], and Corman, Leiserson, and 
Rivest [7].

2.4.1 Problem size
An obvious question that arises is: how should we measure the size of a 
problem? Clearly, the time or resources used to perform a mathematical 
operation usually depends on the size of the inputs. How is the size of the 
input to be quantified? Because problem size depends heavily on the 
representation used in the problem, it is difficult, for example, to compare 
solutions to the same problem while using different representations (and 
hence, different size measures). Therefore, we seek a measure of problem size 
that is, for the most part, problem-independent.

One way to get around the problem-dependence is to assume a model of 
universal computation and declare the size problem to be the size of the input 
to this model. This is exactly what we choose to do. We use as our model of 
computation a Universal Turing Machine (UTM) and say that the size of our 
problem instance is the number of cells occupied by the input to the UTM [8]. 
So, for example, if we had a UTM that understood binary strings, and the 
input to the problem was the number 13, then the number of cells occupied by 
the input would be 4, which is the number of digits in the binary 
representation of 4 i.e., 1101.

Mi Ni,
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In the ensuing discussion, we represent the size of the input by .

2.4.2 Asymptotic notation
The lingua franca of algorithmic and computational complexity (hereafter 
ACC) is asymptotic notation. In general, asymptotics is a concept that has 
been developed to describe the growth rates of functions. Here, we are 
concerned with functions that measure the growth rates of computational 
resources such as time and memory. Asymptotic notation allows us to focus 
on the “big picture” of resource usage without getting bogged down by the 
messy details of a specific processor type or memory model. 
The most prevalent asymptotic notation is the big-O notation. The basic idea 
of the big-O notation is to indicate that one function  is eventually 
bounded from above by another function . The formal definition of the 
big-O notation follows:

The function  is big-O of , written , if and only if there exist 
constants  and  such that  for all natural numbers . 
The set of all functions of growth rate order  is denoted by . In 
other words,  defines a family of functions. 

As  takes on different characters, different names are given to . In the 
table below, we list the most common names given to .

2.4.3 Complexity classes
The above notation is usually used to quantify the time or memory (space) 
resources required by algorithms. The same theoretical framework can be 
used to classify the hardness of problems, not just the algorithms used to solve 
them. The theory looks at the minimum time and space required to solve the 
hardest instance of a problem on a UTM. Problems that can be solved in 
polynomial time are called tractable. Problems which require greater than 
polynomial time are intractable. Figure 2.3 depicts the various problem 
complexity classes and the presumed relationships between these classes. 
Some of the relationships have not yet been strictly proved, but are widely 
believed to be true. 

At the very bottom is the class P (hereafter, complexity classes will be 
denoted by a bold uppercase letter) of problems which are solvable in 
polynomial time. One level up from there are the class of NP problems, which 
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are solvable in polynomial time on a nondeterministic Turing Machine. A 
nondeterministic Turing Machine is capable of guessing a solution and 
checking, in P-time, whether or not the solution is correct. The complexity 
class NP has special relevance to cryptography. Many cryptosystems can be 
cracked in NP-time by an adversary who guesses a solution and checks it in 
P-time. Clearly, NP includes P, but whether or not P = NP is still an open 
question. 

There is a subset of problems in every complexity class which are the hardest 
possible problems in that class. Formally, a problem X is said to be NP-
complete if

• X is in NP, and
• every problem in NP can be transformed into an instance of X in P-time.

Notice that the second point embeds the notion of polynomial reducibility. 
Essentially, a problem’s complexity class doesn’t change if we are able to 
transform it into an instance of another problem in P-time. P-completeness is 
also amenable to polynomial reducibility.

Moving up the complexity food chain, we find the class of PSPACE 
problems, which are problems solvable in polynomial space, but not 
polynomial time. PSPACE-complete problems are problems with the 
property that if any one of them is in NP, then PSPACE = NP, and if any one 
of them is in P, then PSPACE = P. Finally, EXPTIME is the class of 
problems solvable in exponential time. 

Finally, we note that when we say feasible or tractable, we mean “solvable in 
P-time”. Similarly, infeasible or intractable implies “solvable in greater than 
P-time”. 

FIGURE 2.3 THE RELATIONSHIP BETWEEN COMPLEXITY CLASSES
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2.5 Complexity in 
physical systems 

2.5.1 Candidate metrics
Cryptography, as an intellectual endeavour, occurs at the confluence of 
several other disciplines: randomness, computation, information theory, 
communication theory, and computational complexity theory. Because 
cryptography draws from so many intellectual traditions, its study enables the 
discovery of interesting connections between them. 

While computational complexity theory is concerned with the complexity of 
mathematical functions and algorithms, physical complexity is concerned 
with quantifying the complexity of physical systems. Although there is a large 
body of literature on the computational complexity of simulating physical 
systems, it is, in the words of Bennett [66], “not immediately evident how a 
measure of the complexity of functions can be applied to states of physical 
models.” We offer the idea that building physical cryptosystems will allow us 
to view the complexity of physical systems in a different light and, we hope, 
enable us to make better connections between physical complexity and 
computational complexity theory.

There are several approaches to quantifying the complexity of physical 
systems. In general, we seek a physical complexity metric that captures our 
intuitive beliefs of what is complicated while being rigorous enough to be 
mathematically formalized. This allows complexity-related questions to be 
posed well enough to be amenable to proof or refutation. Here we take a brief 
look at various candidate measures of physical complexity. 

• Thermodynamic potential measures a physical system’s capacity for 
irreversible change but does not agree with our subjective notion of 
complexity. As an example, consider a supersaturated solution into which 
a seed crystal is introduced. The thermodynamic potential of the 
supersaturated solution is very high, but intuitively, its complexity is very 
low. On the other hand, the thermodynamic potential of the crystallized 
solution is low — there is no ability to change further irreversibly — but 
as viewed by an observer, its complexity is high. 

• Computational universality is the ability of a physical system, 
programmed through its initial conditions, to simulate any digital 
computation. It is not entirely clear whether computational universality 
alone is a useful measure of physical complexity. One reason is that this 
definition does not distinguish between a system that is capable of 
universal computation and one in which computation has actually 
occurred. 

• Computational space/time complexity is the asymptotic difficulty of 
simulating the physical system. However, defining physical complexity 
solely in terms of the complexity of simulating the underlying physical 
mechanism does not completely encapsulate the physical complexity of 
the system. To be more specific, it does not address the complexity of 
corporeally constructing the physical system.
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• Long-range order is the existence of appreciable correlations between 
arbitrarily remote parts of the system. There are several examples of why 
this definition falls short of the mark. For example, consider a perfect 
crystal, which consists of a specific molecular unit repeated endlessly in 
three dimensions. To our intuition, this is a simple structure. However, the 
long-range order measure of complexity defined above regards a crystal 
as being extremely complicated, because the correlation between 
arbitrarily remote parts of the system is unity. 

• Thermodynamic depth is the amount of entropy produced during the 
actual evolution of a physical system. It is easy to find physical systems 
that which arrive at very simple states through a large amount of 
dissipation and conversely, arrive at (subjectively) complicated states 
through very little dissipation. This definition of physical complexity is 
very system dependent.

Summarizing, each of the quantities described above captures one facet of a 
complicated physical system. However, it is easy to find physical systems 
which conform to the definitions above while violating our intuitive notions 
of complexity. In the next section we will look at a physical complexity metric 
which is avoiding this problem.

2.5.2 Kolmogorov complexity
Kolmogorov Complexity (also know variously as algorithmic information 
content, algorithmic randomness, and algorithmic entropy) is a definition of 
physical complexity which quantifies physical complexity in terms of the 
randomness in the physical system. It was introduced independently by 
Solomonoff [67][68], Kolmogorov [69], and Chaitin [70]in the early 1960s. 

Kolmogorov Complexity (KC) is defined as the size of the smallest computer 
program (in bits) required to generate the object in question to some degree of 
accuracy. 

To see what this means, let us consider this (often-used) example: we have 
two binary strings  and . 
We are required to write a computer program which prints out each of the 
strings. The algorithm for the program which generates the first string might 
be simply "Print 01 ten times." If the series were extended, by the same rule, 
the algorithm would have to be modified only slightly. It could, for example, 
now read "Print 01 one million times." The program length has increased only 
very slightly in the second case, but the length of the output has increased 
considerably. In essence, the rate at which the program size increases is much 
smaller than the rate of increase of output size.

For the second sequence, it is not immediately evident what the algorithm 
should be. A potential algorithm might just be "Print ". 
Notice here that the program has to essentially enumerate every bit in the 
string — there is no shortcut. Consequently, the size of the program is on the 
same order as that of the string. This example contains the definition of 
algorithmic randomness: a sequence is random if the smallest algorithm 

x 01010101010101010101= y 10011010010110110010=

10011010010110110010
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capable of specifying it to a computer has approximately the same number of 
bits as the series itself. We now proceed to formalize this definition.

The Kolmogorov complexity  of a binary string  is defined as the 
length, in the number of digits, of the shortest program  that will produce 
output  and halt when used as input of a Universal Turing Machine . 
Formally,

2.5.1 

Clearly, the length of the program depends on the choice of symbol encoding, 
and the machine. However, by the definition of a universal computer, any 
program executable on computer  will also be executable, and yield the 
same output, on another , provided that it is preceded by a prefix program 

 which allows the second computer to translate the first computer’s 
program. Therefore, the algorithmic information content of a sequence may 
be considered, up to an additive constant, independent of the actual computer 
used, as long as it is a universal computer. Therefore,

2.5.2 

The prefix program is, of course, independent of the string . In the ensuing 
discussion we will assume that the computer is always a universal computer 
and omit the subscripts  and .

It is instructive to reflect on what the definition of Kolmogorov complexity 
really means. One may think of the program as an explanation of the observed 
data which is the string. It is in this context, of treating programs as theories 
which explain strings, that Solomonoff discovered algorithmic complexity. 
The shortest program, he then declared, must represent the simplest 
explanation of the data — a statement very similar to Occam’s Razor. 

Another crucial point to note about KC is that, in contrast to the traditional 
Shannon entropy, it allows measurement of disorder without any need for 
probabilities. This is an important point and we will spend a little time 
discussing it here.

In general the entropy of a single state of a continuous system is not defined. 
Rather, one has to consider an ensemble of systems and define the entropy  
as

2.5.3 

where  is the number of possible macroscopically indistinguishable 
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microscopic configurations of the physical system. In quantum mechanics, 
the analog of entropy is given by von Neumann as

2.5.4 

where  is the density matrix of the system.

Shannon defined the entropy of a sequence of symbols  each occurring 
with probabilities , where , as

2.5.5 

Each of these definitions relies on the probability density function of the 
ensemble in order to calculate the entropy. The entropy of any specific, 
completely-known physical state is always zero. 

In stark contrast, KC does not require knowledge (or, indeed, the existence) of 
a probability density function for the ensemble of physical states. However, 
the two definitions are not all that dissimilar at least for thermodynamic 
ensembles. Bennett [71] has pointed out that, for a thermodynamic ensemble, 
the average Kolmogorov complexity is equal to the statistical ensemble 
entropy. 

We now briefly outline some of the properties, without proof, of Kolmogorov 
complexity, focusing on those which we will find useful later in this 
dissertation.

• The Kolmogorov complexity of a typical string  is approximately equal 
to its length in bits, i.e., 

2.5.6 

• If  is interpreted as a binary integer, then equation 2.5.6 implies that 

2.5.7 

• The joint Kolmogorov complexity of two strings  and  — the shortest 
program that generates each of the two strings in sequence — is given by 
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2.5.8 

where  is a constant. This may be also written as

2.5.9 

• The mutual Kolmogorov complexity is given by 

2.5.10 

This is a measure of the independence of the two strings. It measure how 
many more bits a program needs to calculate  and  separately rather 
than jointly. If, from equation 2.5.9, we determine that the joint 
Kolmogorov complexity is simply , then the mutual complexity 
is . In such a case, we declare the two strings to be independent.

• Almost all strings of a specific length require programs of that length to 
generate them. In other words, most strings are algorithmically random 
and, therefore, equally likely. In such a case, we refer to the strings as 
typical strings or typical sequences.

2.5.3 Summary
In this dissertation, we are interested in physical complexity for two reasons. 
We are interested in determining the effort required to simulate the interaction 
of a physical probe with a physical system. This effort is measured by the 
familiar space/time computational complexity. We are also interested in 
quantifying the randomness present in any given instance of a physical 
system. We use Kolmogorov complexity for this purpose.
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3 Related work

In this chapter, we will look at prior art and related work in the domain of 
optical document security. A comprehensive review of optical document 
security is too voluminous to include here, but we will review key techniques 
and patents. We also briefly look at recent work by Smith [24] who is using 
the texture of paper fibers to derive unique identity and at a patent issued to 
Amer, DiVincenzo, and Gershenfeld [25] that proposes tamper detection by 
bulk multiple scattering. These two pieces of work were starting points in our 
own investigation.

3.1 Prior art in 
physical 
authentication

We divide prior art into two categories. First, a representative selection of 
Optically Variable Devices (OVDs) is examined. OVDs may be thought of as 
physical structures which modulate incident light in a characteristic way that 
is dependent on the angle of incidence. The resulting light may be either 
human-readable or machine- readable. A search of the literature [18] has 
revealed that most OVDs are regular, 2D structures, with no variability from 
one device to another. An example is the hologram commonly found on all 
credit cards. The other category of prior art we will examine are systems 
which use random—as opposed to regular— 2D physical features to 
authenticate objects. These random features may either be an intrinsic part of 
the object being authenticated or may be externally introduced. The clear 
distinction between these systems and our work is the use of three-
dimensional, inhomogeneous microstructures and the use of coherent 
radiation to interrogate them.

3.1.1 Optically variable devices
In our visual world, the colors of objects are generally invariant to viewing 
position. Objects usually scatter light equally in all directions, a phenomenon 
called diffuse reflection. This homogeneous scatter of incident radiation is 
brought about by the highly irregular structure of matter on a microscopic 
scale. No wavelengths are preferred over others. In addition to this invariance 
with respect to angle of observation, the phenomenon of color constancy 
ensures that we perceive objects to be the same color almost independent of 
ambient light level. A piece of paper appears to be the same shade of white 
both in blazing sunlight and in a fluorescently illuminated laboratory. These 
two invariances collude to make objects appear invariable under normal 
illumination. The story changes dramatically when order is imposed on 
microscopic structures. The changing colors of an oil film on water (caused 
by interference) and the rainbow produced by a compact disc (caused by 
diffraction) are examples of microscopic order giving rise to optical 
variability.

The principal phenomena available for use in optical methods of 
authentication are: transmission, reflection, absorption, and scattering. These 
may be classified as shown in the figure 3.1.The two modes of operation of 
most optically variable devices (OVDs) are either reflection or transmission, 
as shown in the first and third quadrants of figure 3.1. A highly reflective 
structure is extremely conspicuous and lends itself easily to human 
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identification and verification. A transparent structure is useful for overlays 
and it is possible to construct them so that they exhibit iridescence. 
Absorption, in the fourth quadrant, is not a very useful optical phenomenon in 
the authentication business. 

Another useful axis of classification of OVDs is shown in figure 3.2. Regular 
structures are viable for machine-readable as well as human-readable 
authentication systems, but usually they don’t allow for unique identifiers. 
Random structures must necessarily form the basis of a machine-readable 
authentication system, and allow for the generation of unique identifiers. The 
gamut of iridescent OVDs is shown in figure 3.3 on the following page.

3.1.2 Authentication using random features
There are several patents in the literature that concern themselves with 
authentication and/or tamper resistance using two-dimensional random 
structures. We observe that in all cases, the authentication token is two-
dimensional and no attempt is made to use cryptographic concepts in the 
description and analysis of the systems. 

The first system [19] uses magnetic fibers randomly sprinkled and embedded 
in a thin substrate. To read the identity of the token, a magnetic read head is 
passed along the substrate and the return signal is logically combined, using 
the AND operator with a clock sequence. This produces a digital signal that is 
the identifier. The second patent [20] uses the variable translucency when a 
sheet of paper is illuminated with a light source. The data from the optical 

FIGURE 3.1 OPTICAL PHENOMENA AVAILABLE FOR USE IN OVDS
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reader is logically combined with a clock to produce the identifier. A third 
patent [21] uses small conducting particles embedded in an insulating 
substrate and uses microwaves to read the unique identifier. A fourth patent 
[22] uses a video microscope to view a small area of a painting at several 
magnifications and correlates these image with previously stored images. 

The system that is most interesting to us is the 3D structure authentication 
system (3DAS) proposed by van Renesse [23] and currently being 
commercialized by Unicate [86]. In this system, a piece of cloth made from 
nonwoven 40 micron diameter polymer fibers is illuminated by two infrared 
LEDs in transmission mode, as shown in figure 3.4 below. In the 
identification case, only one of the LEDs is on, and the shadow of the fibers is 
projected onto the detector. The intersection of fibers, when projected onto the 
detector, produces convex polygonal shapes. The ten largest shapes are 
detected and their centers of gravity - twenty coordinates in all - are used as a 
20 byte identifier. These identifiers are enrolled in a database and when a 
candidate token is presented, its identifier is computed and compared with all 
the members of the database. 

In addition to identification, if verification is also desired, both LEDs are 
switched on in sequence, and one image is subtracted from another to produce 
an image which is sensitive to the parallax between both images. The security 
assumption here is that it is hard to spoof the parallax image, since it is hard to 
reproduce the fiber pattern. This may be viewed as a simple challenge-
response protocol wherein the fiber structure is interrogated twice, and the 
interrogator knows what response to expect. 

In the same vein, Smith [24] has used the texture of paper to derive identity 
information. Specifically, the problem addressed by this work is to prevent 
double spending that occurs when a postage stamp that is downloaded is 
photocopied and used as actual postage. The approach is to use a "texture 
hash string" derived from a specific location on the envelope on which the 

FIGURE 3.2 CLASSIFICATION OF REGULAR AND RANDOM STRUCTURES
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FIGURE 3.3 THE GAMUT OF IRIDESCENT OVDS
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postage is to be printed. This string is printed on the envelope in machine 
readable form and concatenated with a digital signature of the string. This 
combined string is referred to as an indicium. The digital signature is 
performed by an authorized agent of the postal department. 

In order to validate a piece of postage, the two parts of the machine readable 
indicium are read. First, the signature is checked against the hash string. If 
there is a match, then a new texture hash string is obtained from the envelope 
and correlated against the texture hash string already printed on the envelope. 
The validating reader then makes an accept/reject decision based on whether 
or not the correlation score is below a threshold. 

Finally, we briefly look at the patent which was the starting point for our own 
investigation. The patent, titled Tamper detection using bulk multiple 
scattering [25], disclosed a method of detecting intrusion into a protected area 
or package. The area to be protected is enclosed by an inhomogeneous 
medium. The extreme sensitivity of scattered light to changes in the structure 
was used as a sign that the package has been intruded into. The authors of the 
patent suggest that the response of the medium can also be used to provide a 
unique identity key. However, no exemplary embodiment was constructed 
[26], which we took on as our initial goal.

3.2 Summary We conclude this chapter by presenting a few key points gleaned from our 
search of the literature in the various fields of inquiry discussed in the 
preceding sections and the previous chapter.

• Our work is inspired by the notion of Quantum Money - money which is 
tamper-evident and unforgeable.

• One-way functions are necessary and sufficient for secure signatures.

FIGURE 3.4 3DAS SETUP
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• The study of physically-based cryptosystems, in general, and physical 
authentication, in particular, are interesting ways to understand the 
complexity of physical systems. 

• Prior art in physical authentication has focused almost exclusively on 
two-dimensional structures as the source of authentication information.

 
• In all but one of the cases, incoherent radiation was used to probe the 

physical structure. 

• Previous work in physical authentication has not made an explicit 
connection with algorithmic cryptography.
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4 Concept, design choices, and problem formulation

In the introductory chapter, we demonstrated the need for non-silicon-based 
inexpensive authentication systems and looked at the available methods of 
physical authentication and verification in chapter 3. We concluded the 
literature and prior-art search by observing that almost all previous methods 
of physical authentication relied on using two-dimensional structures which 
were probed by incoherent radiation. We also observed that previous work in 
physical authentication has not made an explicit connection with algorithmic 
cryptography.

In this chapter, we present the general concept of a physical authentication 
system whose security properties may be examined in a cryptographic light. 
In section 4.1 we present the system concept and lay out the data pipeline 
from the physical system to the unique identifier derived from it. We then 
state the ideal requirements for each component of the system. In section 4.3, 
we declare the choices we make in order to implement an exemplary 
embodiment of the system. Finally, in section 4.4 we present a set of questions 
that must be asked of any physical authentication system, and that we 
endeavour to answer in later chapters.

4.1 System concept 
and data pipeline:

A general physical authentication system consists of a physical system  
encapsulated in a token . Physical probe  and detector  together 
comprise the reader . The probe  acts on the system  to produce an output 

 that is recorded by the detector . Then an algorithm  acts on the 
received signal to produce the unique identifier . This process is 
diagrammatically represented in figure 4.1.  

Clearly, the choice of each component of the system determines the 

FIGURE 4.1 CONCEPTUAL AUTHENTICATION SYSTEM

S
T P D

R P S
O D A

U

T
SP

D

A

U



50 CONCEPT, DESIGN CHOICES, AND PROBLEM FORMULATION
configuration and the performance of the authentication system. The physical 
system and desired performance together determine the probe, and the 
relationship between  and  determines electro-mechanical design of the 
token reader. The characteristics of the detector play an important role in 
determining the quality and robustness of the unique identifier . Given these 
interdependences, it is important to qualitatively prescribe the requirements of 
each component, which we do here.

4.2 Requirements of 
each system 
component

Our exposition of the characteristics of each component in the system is 
driven by the desirable properties of the resulting authentication system. We 
take up each requirement in turn.

4.2.1 Physical system requirements
(1) Easy to fabricate: Our prototypical physical system  must be easy and 
inexpensive to make. This is a requirement because we anticipate that a very 
large number of these systems will be deployed in the real world. For this 
reason, it must be possible to mass-produce the tokens used in the 
authentication system inexpensively. 

(2) Easy to probe: The system must be easy to probe. There must be a simple 
way to set up the probe and obtain the response of the physical system. If this 
phase were complicated, it would limit the practical utility of physical 
authentication by increasing the cost and complexity of the reader as well as 
make the identifier less robust to small changes. 

(3) Hard to clone: The physical system must be hard to refabricate. Another 
way of saying this would be: it is difficult to build a machine which, given one 
token, produces another token with exactly the same structural configuration. 
Note that this condition is independent of the interaction between the structure 
and the probe, it merely requires a certain amount of hardness in cloning the 
physical system.

(4) Structurally stable: Because we expect the token to have a long lifetime 
(on the scale of years) the physical system must remain dimensionally stable 
over time. We are interested in systems whose mechanical and 
electromagnetic properties remain stable over time.

4.2.2 Requirements for the probe
(5) Easy to generate: The physical system must be capable of being 
interrogated by a probe which must be easy and inexpensive to generate. This 
requirement originates from the fact that the probe must be replicated in every 
reader and we expect several readers to be deployed at any given time. 

(6) Easy to reproduce a specific state: The probe must be capable of 
presenting the same query to the physical system regardless of the specific 
instantiation of the reader. The readers might be in spatially disparate 
locations but the probes must be capable of being instantiated in a specific 
state. Specifically, every characteristic of the probe must be reproducible to an 
accuracy that depends on the interaction between the probe and the physical 
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system.

4.2.3 Detector requirements
(7) Identical response: Since each reader contains a detector, we require that 
the detector has an identical response to identical input incident on it. In other 
words, detectors must be interchangeable without any performance penalty.

In addition to the requirements specified above, interaction between various 
components of the system place further demands that must be met in an 
engineering implementation of a physical authentication system. We discuss 
these here.

4.2.4 Interaction between physical system and probe
(8) Impractical or infeasible to simulate: The interaction between the probe 
and the system must be computationally impractical or infeasible to simulate. 
We require this in order to circumvent the possibility of an adversary 
simulating the response of the system to a specific probe configuration. 
Ideally, we require the simulation of the response to be in complexity class 
greater than P. 

(9) Output very sensitive to changes in probe or system: We want the output  
to be extremely sensitive to changes in the system or the probe. This condition 
allows for tamper-resistance. Any changes in the system configuration are 
easily detectable. This is both a blessing and a curse because tamper-
resistance is obtained without cost, but requires careful engineering of the 
token reader  and has a bearing on the design of the algorithm . 

(10) Hard to invert: Finally, we require that it must be hard to infer the exact 
configuration of the system given knowledge of the probe and access to the 
output of the detector. In (3) above, we were concerned with the difficulty of 
cloning the physical system independent of the probe, while here we have 
access to the probe, and are interested in the difficulty of inferring the 
configuration of the physical system. 

Finally, we note that definition of “hard” in (3) and (10) is not (yet) a 
mathematically formal one. (3) is a statement about the intuitive notion of the 
difficulty of three-dimensional microfabrication of arbitrary structures and 
(10) is a statement about the computational difficulty of inverse problems and 
depends very intimately on the relationship between the probe and the system. 

4.3 Design choices Here we present our choices for a physical authentication system which 
fulfill, for the most part, the requirements outlined above. 

• Physical system: The physical system we used was a three-dimensional, 
inhomogeneous microstructure implemented by curing micron-scale glass 
spheres in optical-grade epoxy. These tokens are easy to make, very hard 
to clone, and dimensionally stable over the lifetime of the token. 

• Probe: A Helium-Neon laser beam at a wavelength of 632.8 nm. For our 
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purpose this beam may be treated as being at a single wavelength. Laser 
light is easy to generate, and the laser starts up in the same state each time.

 
• Detector: We use a garden-variety charge coupled device (CCD) detector 

which has 320x240 pixels. 

The physical phenomenon underlying the interaction between the system and 
probe to produce the output is termed coherent multiple scattering. We will 
have a lot more to say about this phenomenon in a later chapter. Thus far, we 
have avoided any reference to the algorithm which takes raw detector output 
and generates a unique identifier from it. Discussion of the algorithm is also 
deferred to a later chapter. 

4.4 Problem 
formulation

We are now in a position to formulate the problems that we tackle in this 
dissertation. We do this by asking a series of questions that lead us from the 
concept through the engineering and theory to future work.

4.4.1 System concept

• Given a physical system, probe, and detector, is it possible to design and 
implement a physical authentication system that allows the reliable and 
repeatable production of an identifier that uniquely distinguishes the 
physical system from other similarly produced systems? 

The engineering part of this dissertation, presented in chapter 7, tackles the 
above question, and answers it in the affirmative.

4.4.2 System theory and performance

• Given that we can build the physical authentication system, what are the 
parameters and tradeoffs which govern its performance? 

This question is related to:

• How robust is the identifier to changes in the token, probe, and 
environment?

• What are the probabilities of “false accept” and “false reject”? 

• How does the system performance scale with the size of the physical 
system? 

• How does it scale with the number of tokens in circulation?

• For a given token size, what is the maximum size of the identifier (in bits) 
possible?
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4.4.3 Attacks and spoofing

Another class of questions deals with attempts to spoof the physical 
authentication system. These are:

• What are possible attacks on a physical authentication system?

• How can they be baffled?

• How hard is it to clone an inhomogeneous 3D microstructure without 
access to the exact probe used?

• How hard is it if the probe is available?

4.4.4 Cryptographic framework and future work

Finally:

• Is it possible to view physical authentication systems in the same 
framework as algorithmic authentication systems?

• Is it possible to build full-fledged cryptosystems by using concepts 
presented in this dissertation? 

• If yes, what form would they take? 

• If not, how do the above concepts need to be changed?

The preceding questions take the basic notion of a physical authentication 
system and turn it into a well-posed research plan. The rest of this dissertation 
is devoted to executing this research plan. 
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5 Light transport through disordered media

The physical mechanism used to implement physical one-way functions is the 
transport of coherent radiation through disordered media. Coherent waves 
propagating through a disordered medium will emerge from that medium with 
a phase that varies randomly along the wavefront. The characterization of the 
complicated emerging wavefront — dubbed the speckle pattern — in terms of 
the physical parameters of the random medium and the incoming radiation is 
fascinating, and has led to several surprising conclusions recently. It is the 
purpose of this chapter to present key results related to speckle patterns. 
Section 5.1 presents the assumptions and notation used through out this 
dissertation. Section 5.2 looks at the various length scales and scattering 
regimes which are relevant to our work. Sections 5.3, 5.4, and 5.5 present 
relevant theory and results related to coherent multiple scattering, light 
transport through nonlinear media, and optical localization respectively. 
Finally, we present a summary of key ideas and results in section 5.6.

5.1 Assumptions and 
notation

Before we proceed, however, we briefly look at the notation used here (and in 
the rest of this work) and define key terms. The diagram in figure 5.1 depicts 
the standard geometry used in the study of transmission speckle patterns. A 

FIGURE 5.1 STANDARD GEOMETRY USED TO STUDY TRANSMISSION SPECKLE 
PATTERNS. A TYPICAL SPECKLE PATTERN IS ALSO SHOWN.
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coherent wave of wavelength  and wavenumber  is incident on 
the left side of the slab. The incident beam is assumed to have a spot size 

. The thickness of the slab is assumed to be . The slab is assumed to 
have random inhomogeneities so as to scatter the wave elastically, which 
means that the scattered wave has a definite phase relation with respect to the 
incident wave. Further, an elastic scattering event is entirely reversible. In 
contrast, an inelastic scattering event does not preserve phase the phase 
relation between the incident and scattered waves. Because the speckle 
pattern is an interference pattern, definite phase information improves the 
contrast of the pattern, and maximizes correlation effects (which are crucial to 
the systems discussed in this dissertation). We will restrict our analysis to 
elastic scattering and assume that absorption effects are negligible.

We will denote the elastic mean free path by . The mean free path is the 
average distance between scattering events. As the density of scatterers 
increases, the mean free path decreases.The mean free path may also be 
defined as the distance in the slab at which the coherent incident beam 
intensity has fallen to  of its value before entering the slab. We will also 
assume that the slab is dimensionally stable and the medium is static, i.e., the 
inhomogeneities which give rise to the speckle pattern do not fluctuate in 
time. 

5.2 Length scales and 
scattering regimes

There are generally four length scales we need to consider when we look at 
coherent scattering. The first is, of course, the wavelength  of the radiation 
being used to interrogate the structure. The second is the mean free path . 
Third, we have the thickness of the disordered structure , followed by the 
lesser of either the absorption length  or the coherence length of the 
radiation . We assume that the coherence length is much longer than the 
absorption length in our work, and will neglect it from consideration. As we 
will see below, the relationship between each of these lengths determines the 
regime in which the scattering occurs, and guides experiments.

If the slab thickness  is smaller than the mean free path , then, on average, 
the incident beam suffers only one or no scattering event before exiting the 
slab. This case is called the Born regime, since the well-known Born 
approximation [43] from quantum mechanics may be employed to study this 
regime. It is also generally referred to as the single scattering regime. If, 
however, , then the incident wave will suffer multiple scattering 
events before exiting the sample. Our work crucially depends on multiple 
scattering, and we will focus our attention on this regime throughout this 
dissertation. Our work will, therefore, be governed by the inequality 

. The first inequality ensures that localization effects (see below) 
are small, the second ensures that multiple scattering occurs, and the last one 
ensures that not all radiation is absorbed.

The propagation of light through a disordered medium may also be described 
as a diffusion process characterized by a diffusion coefficient . This leads to 
an Ohm’s Law description: the conductance of light through the sample 
decreases linearly with increasing sample thickness. However, the diffusion 
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approach completely neglects any interference effects inherent in wave 
propagation. It accounts only for the average intensity transmitted through the 
sample. However, under certain conditions, it is possible to completely stop 
diffusion through the slab and effectively trap or localize light in the medium. 

This phenomenon, aptly termed optical localization, was predicted by 
Anderson [44] while studying electron transport through disordered metals. 
Optical localization is governed by the Ioffe-Regel [45] criterion , i.e., 
the mean free path is on the same order as the wavelength of the radiation. 
The precursor to complete localization is termed optical weak localization, 
and is governed by . Optical weak localization is accompanied by 
enhanced backscattering of light [46] [47]. In the localized state, there is an 
exponential decrease in the conductance of light as the sample thickness 
increases [48]. Therefore, effectively, the medium undergoes a phase 
transition as it passes from the macroscopic diffusion regime to the localized 
regime. We summarize the governing equations and properties of the various 
regimes in the table below.

We point out that in all the cases above, the medium is linear. In a later section 
we will consider light transport through a disordered nonlinear medium i.e., 
one that is governed by a nonlinear differential equation. Although our work 
will not include any nonlinear media, we will look at linear media as a 
limiting case of nonlinear media. 

In our work, we are interested in the multiple scattering and optical weak 
localization regimes. Clearly, a localized system is of no use to us, since we 
rely on the scattered light to derive authentication information. Therefore, we 
will focus our attention on the characterization and properties of the former 
two regimes in the ensuing discussion. 

5.3 Coherent multiple 
scattering

5.3.1 Classical speckle theory
The classical theory of speckle patterns resulting from coherent multiple 
scattering was developed in a series of papers by Joseph Goodman and is 
summarized in [49] and [50]. The approach followed by Goodman is 
physically plausible and intuitive and proceeds as follows. Given an incident 
beam of unit amplitude in the direction , the complex scattered wave 
amplitude in the direction  is a coherent superposition of a great many 
Huygens’ wavelets, each coming from their last scattering event in the 
sample. Since the sample is assumed to be thick enough to permit multiple 
scattering, it is reasonable to assume that the phases of the emerging wavelets 
vary greatly (compared to ) and randomly. This may be mathematically 
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treated as a random walk of wavelet amplitudes on the complex plane. 
Specifically, we can write the total scattered complex amplitude in direction 

, after  scattering events, as 

5.3.1 

Since several scattering events occur, it is reasonable to assume that  and  
are uncorrelated random numbers. From this description, the density function 
of the transmitted intensity  may be obtained by using the random 
walk analysis in [49].

5.3.2 

where  refers to the ensemble averaged intensity in direction . This is a 
simple negative exponential density function. The variance of this density, 
defined by 

5.3.3 

can be shown to be 

5.3.4 

This implies that the standard deviation is equal to the mean value, which 
means that the typical variations of the intensity about the mean are equal to 
the value of the mean, i.e., the speckle contrast is unity. This is the origin of 
the extremely grainy look of a speckle pattern. 

This picture is perfectly valid and correctly predicts the first (and higher) 
order statistics of the speckle intensity. However, because of the assumption 
that all  and  are uncorrelated, the analysis is unable to account for any 
correlations of the speckle intensity variation. 

5.3.2 Born again: the memory effect
In the last sentence of the previous section, we claimed that the classical 
theory of speckle patterns is unable to account for any correlations of the 
speckle intensity pattern. This, of course, implies that there are correlations 
present in the speckle intensity pattern. In this section, we look at both a 
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gedanken experiment and experimental evidence to support this claim. 

Gedanken experiment: Suppose the slab is very thin ( )so that we are in 
the Born regime. Light comes in the  direction and we are looking at the 
speckle pattern from the  direction. If the incident beam is rotated up by an 
infinitesimal angle , then it seems plausible that the speckle pattern should 
shift downward by the same angle. This is illustrated in figure 5.2. If the 

phases  are indeed uncorrelated, then we would expect a completely 
different speckle pattern to be formed when the incident beam is rotated by a 
small angle. Instead, the exiting scattered light “remembers” that the incident 
beam has been rotated. This memory effect [52] suggests that the phases are 
not quite uncorrelated as we assumed in section 5.3.1. Rather, they appear to 
be complicated functions of the incident angle. 

One might argue, intuitively, that this effect might be observed in the Born 
regime, but would vanish in the multiple scattering regime. It might be 
supposed that as the thickness of the slab  becomes much greater than , the 
typical path followed by a scattered wave is so complicated that the resulting 
speckle pattern retains no knowledge of the incident direction . However, 
even in the multiple scattering case, the memory effect is still present, 
although it is weaker than in the Born regime.

5.3.3 Experimental observation of the memory effect
A simple experiment was carried out to verify the memory effect in the 
multiple scattering case. The memory effect is extremely useful to us as it 
allows us to relax the mechanical registration requirements on the 
authentication system. We will have a lot to say about this is a subsequent 

FIGURE 5.2 AS THE INCIDENT BEAM IS ROTATED BY A SMALL ANGLE, THE SPECKLE 
PATTERN ALSO SHIFTS BY THE SAME ANGLE.
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chapter. 

A disordered inhomogeneous structure was made by stirring 450 to 650 
micron glass microspheres into optically clear epoxy which was allowed to 
set into a cavity of size 10mm x 10mm x 2.54mm. When the epoxy set, it had 
a milky appearance, indicating that incident light was being multiply 
scattered. This token was mounted on a rotation stage and a Helium-Neon 
laser ( ) with a beam width of a few mm was set up so as to be 
normally incident on it. Speckle patterns were recorded at  incidence and at 
intervals of 1/100th of a degree.

Figure 5.3 shows the results of this experiment. The white line is a reference 
line and the white circles delineate a feature of the speckle pattern. Clearly, as 
the token is rotated, the speckle pattern does not instantly change into a 
completely different pattern. The structural changes appear after the token is 
rotated by more than three-hundredths of a degree. This experiment, 
performed in the multiple scattering domain, unambiguously verifies the 
memory effect and demonstrates the existence of correlations in the speckle 
intensity pattern. We now quantify these correlations.

5.3.4 The C1, C2, and C3 correlations
This section draws heavily on the work done by Feng, Kane, Lee, and Stone 
[52]. We omit the complete (and complicated) mathematical treatment in 
favor of intuitive understanding and working formulae. The complete 
derivations are available in [52]. We will use the waveguide geometry 
depicted in figure 5.4 as a reference geometry. The waveguide geometry is 
chosen for simplicity. In an open geometry, the incident wave from a laser is 
not a plane wave, but a Gaussian wave packet with a width . The cross-
section area of the slab is  in three dimensions. In a waveguide 
geometry, the incident and scattered beams are quantized (i.e., waveguide 
modes exist) and the correlations can be calculated precisely. The incoming 
beams are denoted by  and  and the exiting beams are denoted by  and 

. 

We begin by noting that there are three possible intensity transmission 
functions.

• The first, , is simply the angular transmission coefficient and measure 
the intensity exiting the medium in direction  as a result of incident light 
in direction . Its correlation function is called the  correlation and 
leads to the familiar high contrast speckle pattern.

• The second intensity transmission function is all the outgoing light as a 
result of incident light in direction . This is given by

5.3.5 
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FIGURE 5.3 FOUR SPECKLE PATTERNS. THE TOKEN WAS ROTATED BY 1/100TH 
DEGREE BETWEEN EACH RECORDING. THE WHITE CIRCLES DELINEATE A FEATURE 
THAT SHIFTS ACROSS THE RECORDING PLANE AS THE TOKEN IS ROTATED.
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Its correlation function is denoted by .
• Finally, we have the sum of speckle intensity over all the input and output 

angles, given by 

5.3.6 

Its correlation function is denoted by 

Thus, we are interested in three correlation functions. Specifically, we are 
interested in the functional form and orders of magnitude of the three 
functions.

The total number  of waveguide modes is related to the area and wavelength 
as follows. 

5.3.7 

We define the first correlation function  as 

5.3.8 

where . Therefore we need to compute the ensemble 
average and use it to compute . The easiest way to compute the 
ensemble average is to use the standard diagram technique [53]. This yields

FIGURE 5.4 WAVEGUIDE GEOMETRY OF LIGHT PROPAGATION THROUGH 
DISORDERED MEDIA. LIGHT TRAVELS FROM A TO B THROUGH THE STRUCTURE.
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5.3.9 

where  and  are the velocities in the  and  directions respectively. The 
prefactor  is of order unity, which leaves us with 

5.3.10 

Equation 5.3.14 makes intuitive sense and is a statement of the Ohm’s law for 
the slab. The average intensity is inversely proportional to the slab thickness, 
and the number of “channels” supported in the waveguide. 

The  correlation may then be written as 

5.3.11 

where , , , and . 

The shape of the correlation function is governed by the function 

5.3.12 

 is the Kronecker delta function and is equal to unity only when 
. 

A little reflection is sufficient to determine that our intuition about the 
memory effect developed in sections 5.3.2 and 5.3.3 is built into equation 
5.3.15. The Kronecker  ensures that  is non-zero only when , i.e., 
when the shift in incident and exit angles is identical. This is exactly what we 
observed in figure 5.3. Let us consider the case when the shift in angles is 
identical. We then have a correlation function governed by 

5.3.13 
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A plot of  reveals that it falls off exponentially as the argument 
increases. Further, the peak becomes sharper as the argument increases. This 
is shown in figure 5.5. When , i.e., there’s no change in the input 
angle, 

5.3.14 

which is identical to equation 5.3.4. Therefore,  reduces to the variance 
predicted by the classical theory of speckle when there is no change in the 
input and output angles, and has the memory effect built into it via the 
Kronecker  function. We also note that  decreases to zero much faster as 
the thickness  of the slab increases or as the incident angle changes. 

The effect of the  correlation decays exponentially for . The  
correlation may be written as 

5.3.15 

where  is given by

FIGURE 5.5 THE FUNCTIONS , , AND  RESPECTIVELY.
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5.3.16 

While  is non-zero only when ,  is non-zero when either 
 or . If we assume that , we obtain

5.3.17 

Thus, the intensities at different spots of a speckle pattern are uniformly and 
positively correlated by . Note that  is  times smaller than . 
Similarly,  is given by 

5.3.18 

This is smaller still, but it is a positive correlation. The intensity-intensity 
correlation of the speckle pattern may then be written as the sum of the three 
correlations as

5.3.19 

5.3.5 C1, C2, and C3: an engineering view
From an engineering viewpoint, the existence of  allows us to relax 
mechanical registration requirements on our token reader. To see why this is 
so, consider that we have an authentication token of thickness  and we have 
used a portion of its speckle pattern as its signature. When the token is 
presented to the reader again, we need to be able to match the new speckle 
pattern to the old one. If the  correlation were simply a  function, as 
predicted by the classical speckle theory, then the token would have to be 
presented to the interrogating light beam with a variation of no more than the 
wavelength of light in spatial position. Achieving this kind of repeatability in 
mechanical position is complicated and expensive, and translates directly into 
bulky and expensive readers. 

We can relax the mechanical registration requirements and use the fact that  
exists to do a search of nearby positions in software to match the new speckle 
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pattern to the old one. This allows the readers to be less complicated and 
expensive while achieving the same authentication performance. We will 
have more to say about this in a later chapter. The  correlation also dictates 
by how much the input angle must be rotated in order to obtain a new speckle 
pattern which is statistically uncorrelated with the old one. 

However, the  and the  correlations, which are uniform and positive 
guarantee that any amount of rotation of the input angle will not produce a 
new speckle pattern which is completely uncorrelated with the old one. In 
particular, the  is a long-range correlation which means that any two 
speckle patterns will be correlated by an amount equal to . The net effect of 
the latter two correlations is to reduce the total number of available identifiers. 

5.3.6 Speckle sensitivity
In this section, we discuss the question: how sensitive is the speckle pattern to 
a small change in the slab? The answer is surprising: in 1D and 2D even the 
motion of a single scatterer in the structure can cause a strong change in the 
conductance of light through the slab. In 3D, only a small fraction of the 
scatterers has to be moved before the sample can be treated as a completely 
new sample. 

The reasoning for these results is as follows. The conductance through the 
sample is proportional to the transmission probability through the sample, 
which can be understood in terms of the interference between light taking 
different paths through the structure. For a disordered structure, the paths are 
random walks of step-size . In a random-walk, the total number of steps 
required to travel a distance D, given a step size , is . Therefore, 
the number of scatterers that each path encounters is . Alternately, a 
finite fraction of all paths visit a specific scattering site. Assuming the total 
number of scatterers is on the order of , the fraction of scatterers visited 
by a given path is proportional to .

To probe a little deeper in to the sensitivity of the speckle pattern, assume 
there are  paths through the structure from A to B in figure 5.4. The total 
amplitude arriving at B in the output plane is given by summing the complex 
contributions arriving from all paths. This may be written as 

5.3.20 

where it is assumed that each path contributes  of the wave amplitude 
and  is a uniform random variable in . Clearly, this equation may be 
written as 
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5.3.21 

from which it is clear that the sum term may be viewed as a random walk of 
 steps in the complex plane. The sum is equal to  on average. This 

means that 

5.3.22 

independent of the number of paths. 

Now let us allow one scatterer in the volume to be moved. This means that 
 paths are affected. The change in the wave amplitude arriving at B is 

then given by the same equation as 5.3.22 except that the sum is now taken 
over just the affected paths. This may be written as 

5.3.23 

Therefore the fractional change in the arriving wave amplitude is 

5.3.24 

Therefore, since each site is visited by multiple paths, it is clear that the 
motion of a single scattering site is sufficient to affect a large change the 
speckle pattern. This is a key feature of coherent multiple scattering that is 
missing from other flavors of physical authentication: the extreme sensitivity 
of the speckle pattern to changes in the physical structure. In any system 
which does not rely on coherent interference between paths, the sensitivity is 
usually on the order of , which is much smaller. A more formal 
approach to determining sensitivity of speckle patterns due to the motion of a 
single scatterer was developed by Berkovits [57] in which he arrived at the 
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same conclusions.

Of course, the high sensitivity of the speckle pattern is both a blessing and a 
curse. High sensitivity makes tamper resistance possible while it also 
amplifies the effects of wear-and-tear on the authentication token. This trade-
off must be considered in the design of the features used to derive the unique 
identifier.

5.3.7 The random matrix formalism
There are several different approaches to determining the statistical properties 
of coherent radiation propagating through disordered media. The results in 
section 5.3.4 were obtained through the use of the Feynman diagram 
technique, which takes into account the sum of all possible paths light could 
take in getting from the input plane to the output plane of the disordered 
medium. An equivalent technique is the Green’s function formalism, which 
allows one to calculate the amplitude of the electric field at any point in space 
given the electric field at any other point. Of course, the form of the Green’s 
function is motivated by the physics of the problem at hand. Each of these 
techniques has a regime of applicability depending on the complexity of the 
problem or the presence of sources in the disordered medium. Suffice it to say 
that the Green’s function approach is the most general, and can be applied in 
any situation. Other equivalent formalisms, which we will not address here, 
are the Kubo formalism, based on fluctuation-dissipation concepts, and the 
more familiar Hamiltonian formalism. 

If, however, we are interested only in the relationship between incoming and 
outgoing radiation, the intervening disordered medium is linear and does not 
contain any sources of radiation, we can make use of a matrix formalism to 
describe radiation transport between input and output planes. The matrix 
formalism has several advantages. First, it is more intuitive that other 
formalisms. It is easier to think about light transport through the medium as a 
matrix multiplication. Second, the matrix approach allows us to easily 
calculate the computational complexity of simulating the passage of light 
through the structure. A complicated physical problem is now represented as a 
matrix multiplication.
 

Consider the familiar two-port network shown in figure 5.6.The ports are 
designated by uppercase letters. Incoming wave amplitudes are represented 
by two vectors  and , and outgoing waves are represented by  and . 

FIGURE 5.6 A STANDARD TWO-PORT NETWORK
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In the general case, we may represent the relationship between the incoming 
and outgoing waves by a scattering matrix  as follows.

5.3.25 

Each  is a (usually complex) scattering parameter and equation 5.3.25 is a 
set of linear equations relating the inputs and the outputs via the scattering 
parameters. If, instead of a single wave,  waves are incident on a particular 
port and  waves exit at a different port, then the s and s in equation 5.3.25 
are replaced by -vectors. We write this as follows.

5.3.26 

where  is, in general, a  matrix, representing  waves for each of the 
two input ports, and similarly for the two output ports. We are only concerned 
with the incoming and outgoing waves on ports  and , so our  will be 
an  matrix. After the diagram in figure 5.6 has been pruned to reflect this 
situation, we note that it bears a remarkable similarity to the diagram in figure 
5.4. 

In our case, the size of the matrix is determined by the number of modes  
defined in equation 5.3.11. Because energy must be conserved, we find that 
the  element matrix  has to be unitary.

5.3.27 

where  and  are the input and output mode amplitudes respectively. 
This is the same as

5.3.28 

where the  represents a conjugate-transpose operation. This leads to 
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5.3.29 
Therefore, 

5.3.30 

In terms of the elements of , we have

5.3.31 

That is, the sum of all elements in a single column of  must equal to one - 
because all the energy in an input mode must be distributed amongst all the 
other modes. The photon has to go somewhere. The second part of equation 
5.3.31 is less intuitive. It states that the sum of all energies entering a specific 
output mode must equal one. There is no simple reason why this should be 
true, other than the fact that this follows from the unitarity of the  matrix.

Finally, our  matrix must contain random elements because we know that 
the disordered medium mixes modes with no preference for any specific 
mode. This leads us to conclude that we are dealing with a special class of 
matrices usually referred to as random unitary matrices. 

The scattering matrix formalism can be used in the mathematical analysis of 
the propagation of light through a disordered medium. Kogan and Kaveh [58] 
describe how a random-matrix formalism may be applied to derive all the 
relevant quantities, such as distribution functions for the total transmission 
coefficient and the angular transmission coefficient, may be derived in a 
random-matrix framework. For our purpose, it suffices to recognize that the 
scattering matrix is of size , where  is as defined in equation 5.3.7. For 
example, for a mm slab and incident radiation of wavelength  
microns , which means the scattering matrix has  elements. 

The transmission probability , indicating the probability that a wave in 
input mode  ends up in output mode  is given by 

5.3.32 

We may also interpret this equation as saying the probability that light 
incident on the slab at angle  exits the slab at angle  is given by . Each 
input and output mode essentially corresponds to an input and output angle.
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5.4 Light transport 
through nonlinear 
media

In section 5.3, we looked at the transport of light through linear disordered 
media, and established that the sensitivity of the speckle pattern to small 
changes in the medium was very high, but finite. Here we will look at some 
very recent work by Spivak and Zyuzin [54] and Skipetrov and Maynard [55] 
that examines the sensitivity of speckle patterns to small structural changes in 
a nonlinear medium.

5.4.1 The approach
The approach to determining the sensitivity of the speckle pattern to structural 
changes is as follows: given an incident plane wave, and a disordered 
structure, [54] demonstrates that the number of possible speckle patterns 
increases exponentially with sample size. This implies that, given a speckle 
pattern, it is exponentially harder to determine the configuration of the 
structure which caused it as the size of the structure increases. Specifically, if 
we have a plane wave  incident on a disordered nonlinear medium with a 
scattering potential , then the propagation of light through this medium is 
governed by the nonlinear Schrodinger equation given by 

5.4.1 

where  is the incident wave energy,  is a constant,  is the electric field 
amplitude of the speckle pattern and  is its intensity. 

[54] shows that the number of solutions of equation 5.4.1 for a given 
scattering potential, wave energy, and  is given by 

5.4.2 

where  and 

5.4.3 

where  is the electric field amplitude of the incident plane wave.

Equations 5.4.2 and 5.4.3 may be interpreted as saying that given 
microstructure pattern and an incident plane wave, the sensitivity of the 
speckle pattern to infinitesimal changes in the structure or in the input wave 
increases exponentially with sample size. The exponent is proportional to the 
cube of the ratio of the sample size to the mean free path. 
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5.4.2 Engineering issues
The engineering ramifications a nonlinear medium are interesting. First, the 
sensitivity of the speckle pattern to incident angle increases exponentially. 
Thus, if the incident angle  changes by , the speckle pattern changes 
completely. This places extreme mechanical constraints on the token reader. 
Also, it is difficult to practically use a nonlinear medium in an authentication 
system of the kind we want to implement because the same structure produces 
(possibly) a different speckle pattern each time it is interrogated. This poses a 
problem in an authentication situation as we are interested in using the 
speckle pattern to derive a unique signature for the structure. The solution, 
then, is to use a very weak nonlinearity in the disordered structure to obtain 
the benefits, while keeping the complexity of the system unchanged. This 
weak nonlinearity may be achieved by mixing in a small amount of a 
nonlinear optical material into the structure. Such materials might be doped 
glasses, semiconductors, or organic materials. Recent work has demonstrated 
that glass doped with Cadmium Selenide nanoparticles has a large optical 
nonlinearity. It is conceivable that glass microspheres doped with CdSe might 
be used as scatterers in a physical authentication system.

The very strong complexity-theoretic analogy — the number of possible 
speckle patterns increases exponentially with increasing structure size — 
helps strengthen the case for physical one way functions. 

5.5 Optical localization We now turn our attention to the phenomena of optical localization (OL) and 
its precursor optical weak localization (OWL). Optical localization is the 
condition under which the diffusion of the wave through the inhomogeneous 
structure would grind to a halt — the diffusion constant vanishes. This 
condition was predicted for electrons being scattered through metals with 
inhomogeneous structures by Anderson [48] and later extended to the optical 
regime by Akkermans et al. [56]. When OL occurs, light is frozen in the 
structure, it does not escape. 

The physical picture behind localization is quite simple. Suppose a wave 
propagates in a random medium from A to B, as shown in figure 5.7. The total 
probability for arriving at B is given by summing all possible paths and 
squaring the result. The final result would contain the sum of the squares of 
each individual path — the incoherent contribution — and the interference 
terms. Given the random phases of the interference terms, it is reasonable to 
assume that, on average, the interference terms vanish leaving only the sum of 
the squares of each individual path. However, this analysis does not take into 
account the case when A and B are one and the same. In this case, regardless 
of how long a particular path is, it always has a mate which has travelled 
exactly the same distance in the opposite direction. The probability of a wave 
arriving at A is not simply the sum of the squares of the individual paths, but 
four times the probability associated with a path. This interference is always 
constructive, and must not be neglected. 

In the optical weak localization regime, there is a simply measurable effect 
that demonstrates this increased probability of return. The effect is called the 

θ e aγ3 4/–
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enhanced backscatter cone. If light is incident on a sample whose disorder is 
characterized by , the intensity of the backscattered light (measured as 
a function of angle) will show a peak in the direction of the incident light. The 
width of the enhanced backscatter cone is approximately . This enhanced 
backscatter is a precursor to strong localization or, simply, localization.

If the scattering is very strong, i.e. , the diffusion constant tends to zero, 
and the optical localization regime is reached. The same scattering process 
that causes the enhanced backscatter also contributes to a drastic reduction in 
the diffusion constant. As the scattering becomes stronger, the contribution of 
the loops becomes stronger, the return probability of intensity increases, the 
diffusion constant reduces, and eventually all light is trapped in the structure. 
The transition from a non-zero diffusion constant to a zero-diffusion constant 
is called Anderson Localization. 

In the diffusion regime, extended states are responsible for diffusion because 
they have infinite extent. In the Anderson localization regime, there exist only 
localized states: no extended states exist. the localized states decay 
exponentially to zero over one localization length. Thus, the diffusion regime 
and the localized regime are two distinct phases in which light behaves very 
differently. Interestingly, phase-transitions of this kind are associated with 
dramatic increases in the physical complexity of the system [73][74].

5.6 A summary of key 
ideas

Finally, we summarize some key ideas presented in this chapter
.

FIGURE 5.7 TWO RANDOMLY CHOSEN PATHS FROM A TO B IN A DISORDERED 
MEDIUM. A LOOP FROM A TO A IS SHOWN IN THE BOTTOM HALF OF THE FIGURE.
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• Speckle patterns are complicated fingerprints of the internal structure of 
disordered media. 

• Speckle patterns are extremely sensitive to extremely small structural 
changes in the medium. This is a consequence of the fact that there are a 
multitude of paths through the structure, and motion of a single scatterer 
affects a significant fraction of them.

• Classical speckle theory predicts that the mean intensity of a speckle 
pattern is equal to its variance, which results in extremely high contrast 
speckle patterns. However, classical theory completely neglects any 
correlation effects.

• Speckle patterns can be characterized by three correlation functions: C1, 
C2, and C3. C1 is responsible for the memory effect, wherein a speckle 
pattern “remembers” the direction of the incident beam. C2 and C3 cause 
uniform positive correlations in intensity.

• In the case of a nonlinear medium (even with weak nonlinearity) each 
structure produces one of many speckle patterns when coherent light is 
incident on it. This is a consequence of the fact that the nonlinear 
Schrodinger equation has multiple solutions for the speckle pattern 
intensity. The number of solutions increases exponentially with increasing 
sample size. 

• Although a nonlinear medium is not very practical for authentication 
purposes, there is a very strong analogy with cryptographic one-way 
functions. Weak optical nonlinearities may be produced fairly easily.

• Optical weak localization is accompanied by enhanced backscattering, 
while optical localization causes the light to stop diffusing. There is a 
phase transition as the medium goes from the diffusion regime to a 
localized regime. Theses kinds of phase transitions are usually 
accompanied by a dramatic increase in the physical complexity of the 
system.
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6 Theory of physical one-way (hash) functions

The purpose of this chapter is to define physical one-way functions and 
physical one-way hash functions, present their properties, and compare them 
to their cryptographic counterparts. Like their cryptographic cousins, POWFs 
and POHFs have a strong asymmetry built into their definitions. However, 
unlike their cryptographic analogs, which convert strings of bits to other 
strings of bits, POWFs and POHFs operate on physical systems to produce 
strings of bits. 

In section 6.1, we recall the definition for computational one-way functions 
proposed by Goldreich. In section 6.2, we provide a more general definition 
of physical one-way functions independent of any specific realization. We 
then show that coherent multiple scattering implements a physical one-way 
(hash) function in sections 6.3 and 6.4.

6.1 Computational 
one-way functions

We recall Goldreich’s definition of one-way functions here (see section 2.1.2). 
A function :  is called strongly one-way if the following two 
conditions hold.

• Easy to compute: There exists a deterministic P-time algorithm  such 
that on input ,  outputs  (that is, )

• Hard to invert: For every probabilistic P-time algorithm , every 
positive polynomial , and all sufficiently large 

6.1.1 

where  is a uniformly drawn input and both occurrences of  refer to 
the same value. This condition is referred to as collision-resistance.

The principal elements of this definition are:

• an input , an output , and a P-time algorithm  that, given , outputs 
,

• an arbitrary algorithm  which has a negligible probability of success in 
finding the inverse of  when  is chosen from a uniform density and,

• a robust notion of rareness.

If the function  produces a fixed-length output regardless of the length of the 
input, it is called a one-way hash function (OWHF). A OWHF has the 
following additional properties.
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• Variable input size:  can be applied to an argument of any length.

• Fixed output size:  produces a fixed-length output.

• High sensitivity: Approximately half the bits in the output change when 
one bit changes in the input. This is the avalanche effect.

6.2 General definition 
of physical one-way 
functions

We provide general definitions of physical one way functions here. Our goal 
for this section is to define physical one-way functions without regard to any 
specific implementation. 

Let  be a physical system in an unknown state .  could also be 
some property of the physical system.  is a polynomial function of some 
physical resource such as volume, energy, space, matter et cetera. 

Let  be a specific state of a physical probe  such that  is a 
polynomial function of some physical resource. Henceforth, a probe  in 
state  will be denoted by . 

Let  be the output of the interaction between system  
containing unknown state  and probe .

6.2.1 Definitions
:  is a physical one-way function if

•  a deterministic physical interaction between  and  which outputs  
in , i.e. constant, time.

• Inverting  using either computational or physical means requires 
 queries to the system . 

This may be restated in the following way. The probability that any 
probabilistic polynomial time algorithm or physical procedure  acting 
on , where  is drawn from a uniform distribution, is 
able to output  or  is negligible. Mathematically, 

6.2.1 

where  is any positive polynomial. The probability is taken over 
several realizations of 

We also stipulate that for any physical one-way function 
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• Simulating , given  and , requires either  or in 
time/space resources depending on whether  is a weak or strong physical 
one-way function

• Materially constructing a distinct physical system  such that its 
unknown state  is hard.

6.2.2 Discussion of the definition
The above definition has two parts which closely parallels the two-part 
definition of algorithmic one-way functions. However, the meaning of the 
words “input”, “output”, and “function” should be carefully considered. To 
avoid any confusion, we specify what we mean by these words.

• Input: In the definition, “input” refers to the physical system and the 
probe which can be used to interrogate it. This is reflected in the two 
arguments of the function . The physical system is represented by the 
unknown state  and the probe is represented by .

• Output: The “output” is a set of measurements of the interaction between 
the physical system and the probe. 

• Function: The “function” is the procedure by which the interaction takes 
place and the arrangement of the input and output with respect to each 
other. 

Let us now look at each part of the definition. 

• The first part of the definition posits a deterministic physical interaction 
between the probe and the system which produces the output in constant 
time. Why do we require this? This is the same as “easy to compute” in 
the definition of an OWF. Further, we show later in our embodiment of a 
POWF-based authentication system that this is indeed possible. 

• The second component defines the “one-wayness” of POWFs. We require 
that there be no efficient algorithmic or physical procedure that, given the 
output of the function, is able to discover the unknown state  or probe 

. In principle, an adversary should not be able to discover these two 
inputs even after running the procedure  a feasible number of times. 

• We then partition POWFs into two classes, weak and strong, depending 
on the difficulty of computing  given both a description of  and . If 
simulating  is a polynomial time computation in the size of the unknown 
state, i.e., , then we say that the function  is a weak physical 
one-way function. If this effort is exponential in the size of the unknown 
state, i.e., , then we say that the function is a strong one-way 
function. 

We make this distinction because we would like an adversary neither to 
be able to discover  nor be able to discover any specific state of the 
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probe. If the simulation in the forward direction were , then the 
adversary could potentially mount a brute-force attack to discover the 
probe state by simulating the interaction between the all possible probes 
and the given system. A strong POWF avoids this possibility. 

• In part four, as in sections 4.2.1 and 4.2.4, we are faced with the problem 
of quantifying the difficulty of materially constructing a physical system 
which contains a specific unknown state. Henceforth, we will refer to this 
difficulty as fabrication complexity and will discuss it a subsequent 
chapter. 

6.3 Coherent multiple 
scattering implements 
a POWF

The purpose of this section is to show that the interaction between a 
inhomogeneous 3D microstructure and coherent radiation can implement a 
physical one-way (hash) function. 

6.3.1 Notation
Consider the schematic diagram in figure 6.1 which pertains to coherent 
multiple scattering from disordered microstructures. 

The shaded triangle represents the range of input angles, wavelengths, and 
any modulation of the incident coherent radiation. We notationally represent 
the set of input wavelengths as  and the set of three-dimensional input 
angles as . The set of complex spatial light modulation patterns, 
which we assume to be bitmaps, are denoted by , where each 
element of  is a bitmap  of size . 

Then, the sets of possible input angles, wavelengths, and spatial modulations 
may be represented by 

6.3.1 

Each element of the set  is a distinct angle, wavelength, and modulation 
triad. We also assume that the elements of  and  are chosen so as to 

O poly l( )( )

FIGURE 6.1 SCHEMATIC DIAGRAM USED TO DEFINE PHYSICAL ONE-WAY FUNCTIONS.
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produce uncorrelated speckle patterns. In other words, the elements of these 
two sets are spaced far enough apart from each other such that the memory 
effect (see section 5.3.2) has no influence on the corresponding speckle 
patterns. 

The set of all inhomogeneous microstructures — of a given volume  
and mean free path between scatterers  — by . Henceforth, we will 
abbreviate this to unless there is a potential for confusion. 

The set of all speckle patterns produced by all possible interactions between 
the elements of  and  as , where . In the figure, we represent 
the set of speckle patterns by thick vertical lines.

We define:

• the input is the set of structures  and the set of probes 

• the output is the set of speckle patterns 

• the function is the interaction between  and , i.e., the physical 
processes of coherent multiple scattering and wave propagation.

6.3.2 POHFs as sampled speckle patterns
A simple route to physical one-way hash functions is to sample the speckle 
fields  on a regular grid. This is easily accomplished by recording the 
speckle patterns on a charge-coupled device (CCD) camera or a CMOS image 
sensor. It is important to ensure that the spatial frequency of the sampling grid 
is at least a factor of two greater than the maximum spatial frequency of the 
speckle patterns. This condition is necessary to ensure that no information is 
lost in the sampling process and no aliasing occurs. Assuming an ideal image 
sensor (no noise and large dynamic range), we now have several fixed size 
speckle patterns regardless of the size (in bits) of the 3D structure that gave 
rise to them. This reduction, from a variable sized 3D structure to a fixed size 
array of speckle intensities, may be regarded as a hash function. Hashing, 
therefore, is equivalent to sampling the speckle intensity patterns. 

6.4 Heuristic 
arguments

We now show that coherent multiple scattering implements physical one-way 
hash functions as defined in section 6.2.1.

6.4.1 Easy to “compute”
It is obvious that there exists a deterministic physical interaction between the 
system and probe which produces an output speckle pattern in (almost) 
constant time. In practice, for disordered media, the physical probe produces 
output in almost constant time. This is because the size of the structure is such 
a small fraction of the distance light travels in a given time. For example, for a 
structure whose longitudinal dimension is mm, the time taken to produce 
output is  seconds. As a matter of fact, given that we are working with 
length scales well below the absorption length (see section 5.2), we can 
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reasonably assume that the output is produced in constant time. 

6.4.2 Hard to invert
We are now interested in answering the question: how hard is it to invert a 
speckle pattern to determine either the unknown state  or the probe ? 

Let us consider a few factors which determine the difficulty of inversion.

First, the exiting wavefront is spread out over a large solid angle but our 
implementation samples only a small fraction of this angle. In our 
experimental setup, the angle subtended by the CCD detector at the 3D 
microstructure is approximately , but the speckle pattern is available over 
several tens of degrees. In sampling such a small solid angle we lose a lot of 
information about the wavefront, or, equivalently, about the structure. 

Second, when we detect the speckle pattern, all phase information is 
destroyed. Even if one were to record the entire wavefront, not having access 
to the phase information makes inversion non-unique.

Third, we know that the speckle pattern is extremely sensitive to the 
configuration of scatterers in the structure. Even the motion of a single 
scatterer affects the speckle pattern drastically. We can quantify this by 
determining the number of possible structures that can be distinguished by a 
probe of a given wavelength.

The input space is the product space of all possible probes and all possible 
structures. Let us begin by enumerating the size of the input probe space and 
the number of possible structures. 

Input probe space: The space of all possible probes depends on the number of 
probe angles, wavelengths, and complex amplitude modulations. We already 
know that, in the linear case, the sensitivity of the speckle pattern to changes 
in input angle is inversely proportional to the size of the structure and directly 
proportional to incident wavelength. In other words, the minimum angle that 
incident probe must be deviated by in order to produce an uncorrelated 
speckle pattern is inversely proportional to . This suggests that the space of 
all probes is some polynomial function of structure size and wavelength. 
Thus,

6.4.1 

Number of possible structures: How many different possible structures are 
there? We tackle this question here. 

Assumptions
Size of the structure = 

Mean free path = 
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Wavelength = 

Number of scatterers = .

This last statement assumes that the scatterers are uniformly distributed in the 
structure. 

Argument
We proceed as follows. 

(1) Determine the total number of possible structures 
(2) Determine the subset  of these which cannot be distinguished from each 
other by a probe

The probability that two structures produce the same speckle pattern is then 
given by 

We will show that  is negligible.

Total number of structures
First, let’s consider (1) above.

If the structure were truly inhomogeneous, then we would have to describe the 
structure at the scale of a voxel of volume . The total number of voxels is 
given by , and therefore the total number of structures is 

6.4.2 

where we have assumed that each voxel can be represented by one bit.

We can arrive at  for spherical particles by a different route.

Assume that the structure is divided up into cells of size  and, with high 
probability, each of these cells contains no more than one scatterer. For the 
(reasonable) geometric approximation , we may replace each sphere by 
a point scatterer located in a cubical box of volume . Pictorially, we have the 
situation described in figure 6.2.

In 3D, the number of ways of populating a cell with a point scatterer is  
and there are  such cells. Therefore the total number of possible 
structures is

6.4.3 
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Adopting the abbreviations  and , we have

6.4.4 

It may be easily shown that the value of  in equation 6.4.4 is smaller than 
the one from equation 6.4.2. We will use the latter value hereafter.

Number of structures which are not distinguishable by a given probe
According to Berkovits [57], if more than  scatterers are moved from their 
original locations, the resulting speckle pattern is almost uncorrelated with 
the original speckle pattern. Ideally, we would like the two resulting speckle 
patterns to be completely uncorrelated, but the long-range correlation  (see 
equation 5.3.18) precludes this situation. Even if we were to discretize the 
probes so as to make the  and  correlations irrelevant, the  correlation 
persists.

The number of ways of selecting less than  scatterers from a collection of 
 scatterers may be shown to be less than .

This is true because the total number of ways  is given by

6.4.5 

Therefore, the number of possible ways to move scatterers such that there is 
no change in the speckle pattern is . Equivalently, this is the number of 
structures that produce the same speckle patterns upon irradiation with the 
same probe. Therefore .

FIGURE 6.2 REPRESENTATION OF SCATTERERS IN 2D
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Therefore, the probability we are looking for is

6.4.6 

Therefore, 

6.4.7 

Since  is smaller than any polynomial in , it is negligible. 

For  this probability is  and for  it is . Thus, a 
microstructure of a given volume and containing a given density of scatterers 
can potentially “support” a number of structural configurations. This number 
of configurations is exponential in the size of the structure. Another way of 
looking at this is to say a given probe is able to distinguish a very large 
number of different configurations of scatterers in a given volume of material.

We can conclude from equation 6.4.7 that the probability  is exponentially 
small in the structural parameter . This parameter may be increased by 
increasing  or decreasing . This conclusion also satisfies the requirements 
of our intuition: as the size of the structure grows, the probability that two 
randomly produced structures produce the same speckle pattern decreases 
exponentially. 

The above calculations show that the size of the input space, including the 
space of probes and the space of possible structures, is exponential in the size 
of the structure. 

Another case for preimage resistance: We can also guess that the probability 
of finding two different structures  and with identical speckle patterns is 
low. We provide a heuristic argument here. We know that the number of 
scattering events per path in a structure is , and the number of paths 
through the structure increases exponentially as  increases. Further, an 
appreciable fraction  of all paths pass through a given scattering site. 

Assume that one such scatterer  is now moved by a small distance from its 
original location. This affects the accumulated phase on an a fraction  of 
all paths through the structure. We can imagine adjusting the position of a 
single scatterer along each of those affected paths to nullify the effect of 
changing the location of  and thereby producing an unchanged speckle 
pattern. However, since each of those scatterers also lies in the same  
fraction of (possibly distinct) paths through the structure, this adjustment 
would cause further changes in the speckle pattern. 
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From this argument, it is clear that creating a second structure by modifying 
the positions of the scatterers in a given structure to produce the same speckle 
pattern is a very difficult problem. We infer, therefore, that physical one-way 
hash functions exhibit 2nd preimage resistance.

The above three points lead us to conclude that this specific implementation 
of a physical one-way hash function is preimage-resistant and collision-
resistant. 

6.4.3 Simulating the output
Given the unknown state  and all the probes, how hard is it to simulate ? In 
the case of a linear structure, this is equivalent to a matrix multiplication 
where the  scattering matrix, the adversary’s computational complexity 
is , which is the number of elements in the scattering matrix and the 
number of multiply operations required to obtain the full output. We note in 
passing that , a large number. The computational complexity 
of producing a single response to a challenge is in time . 

Therefore, in our implementation, using a linear structure, we have built a 
weak POWF system. The complexity of simulation is a polynomial function 
of the size of the unknown state , not an exponential one.

6.4.4 High-sensitivity
Because each scattering event affects an appreciable number of paths through 
the structure, and because each path encounters a large number of scattering 
events, each scatterer in the structure has an influence on the speckle pattern 
which is much larger than its own spatial dimension. Consequently, moving a 
single scatterer causes a large change in the speckle pattern. This corresponds 
to the avalanche effect exhibited by cryptographic one-way hash functions.We 
will experimentally demonstrate this avalanche in section 8.3. 

6.4.5 Cloning the structure
We defer this discussion to a later chapter.

6.5 Summary As we delve deeper into the simple phenomenon of coherent multiple 
scattering from inhomogeneous 3D microstructures, we begin to see the 
remarkable similarities between this physical mechanism and algorithmic 
one-way functions.We have seen that the physical process of coherent 
multiple scattering from three-dimensional inhomogeneous microstructures 
implements a physical one-way function as defined above. Further, we have 
discovered very strong parallels between the properties of physical one-way 
hash functions and algorithmic one-way hash functions. 
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7 System design and engineering

In this chapter, we focus our attention on the design and engineering of the 
entire physical authentication system, starting with the tokens and ending with 
the unique identifier. 

7.1 What needs to be 
designed?

The following components of the physical authentication need to be designed.

• The token which encapsulates the physical system
• The physical probe 
• The reader which encapsulates the probe and the detector 
• The algorithm which converts raw data into the unique identifier

We recognize that each of these elements may take a significantly different 
form depending on the specific application context. In this dissertation, our 
archetypal token will assume the form of a credit-card. This is not a random 
choice. As we mentioned in the introductory chapter, we initiated the study of 
physical authentication systems based on the practical problem of providing 
unique, tamper-resistant, and unforgeable identifiers for smart cards. 

7.2 Token design 7.2.1 Creating the microstructure
The physical system we used is a three-dimensional, inhomogeneous 
microstructure. We made this microstructure by curing micron-scale glass 
spheres in optical-grade epoxy. Specifically, we used precision solid-glass 
spheres as the scatterers. The glass spheres, manufactured by Cataphote, 
ranged in size from 500 microns to 650 microns and have a refractive index of 
approximately 1.5. On average about 90% of the spheres were true spheres. 
The procedure by which we made the microstructures is fairly simple. A small 
batch of optical-grade, transparent epoxy was mixed up and a small quantity 
of glass sphere was carefully stirred into the epoxy. Care was taken not to 
cause any systematic patterns in the epoxy due to stirring. The appearance of 
the final composite was milky white, indicating that multiple scattering was 
indeed taking place. 

7.2.2 Making the token
The token was created from a sheet of plexiglass about 2.54 mm thick. We 
used a laser-cutter to produce a credit-card-sized form with a centered square 
aperture 10mm on a side. Thus the total volume of the aperture was 254 cubic 
mm. Additionally, three circular apertures of diameter 4.5mm were also cut 
out of the token. These apertures provide a means for registering the token in 
the reader. 

The epoxy mixture was poured into the central aperture of the token and was 
allowed to set for a few hours. The final result of this process is depicted in 
figure 7.1. We note that these tokens are very easy to make, and it is not hard 
to see how the production process might be automated, in the event that a 
large number of these tokens are needed. In figure 7.2, we depict an earlier 
version of the tokens.



86 SYSTEM DESIGN AND ENGINEERING
7.3 Probe design Obviously, there are a large number of candidate physical probes that may be 
used to probe the 3D microstructure. Each method of probing the structure has 
its own pros and cons. In this section we take a look at two such methods of 
peering inside the structure with a view to demonstrating their inadequacy for 
our purpose. Then we show how a simple laser beam can achieve the 

FIGURE 7.1 TOKENS USED IN THE PHYSICAL AUTHENTICATION SYSTEM. NOTE THE 
EPOXY SYSTEM IN THE CENTER AND THE REGISTRATION HOLES ARRANGED IN A 
TRIANGLE.

FIGURE 7.2 EARLIER TOKENS - NOTE THAT EACH ONE BEARS EVIDENCE OF A 
DIFFERENT REGISTRATION SYSTEM
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performance we desire. 

7.3.1 Optical coherence tomography (OCT)
The insight behind OCT is extremely simple: light with a very short 
coherence length that is sent down two distinct paths and later recombined 
will produce a strong interference signal if, and only if, the path lengths are 
identical. Consider the diagram in figure 7.3. 

Light from a source with a very short coherence length, e.g., a 
superluminescent diode, enters a standard Michelson Interferometer 
implemented with optical fibers. One beam reflects off a mirror on a 
longitudinal scanning platform and the other beam scatters off the sample and 
is modulated at some frequency determined by the piezoelectric transducer 
(PZT). As the mirror is scanned, different path lengths become equalized and 
scattered light from a specific depth in the sample adds coherently with the 
light from the mirror. Light from all other depths in the sample adds 
incoherently, producing an incoherent background. As the mirror is scanned, 
it is possible to acquire several 2D slices - hence the use of the word 
tomography - demodulate them, and computationally assemble them into a 
3D image.

Huang et al. [27][28] report a longitudinal spatial resolution in air of 17 
microns, a transverse spatial resolution of 10-30 microns, and for image 
acquisition time for 150 scans within a depth of 2mm to be approximately 190 
seconds. Current high-resolution OCT systems have a longitudinal spatial 
resolution between 4 and 20 microns. The depth limit of OCT is determined 
by the regime where scattering predominates absorption, and the image 
quality decreases as the amount of multiply scattered light increases. 
Essentially, each scattering event “uses up” phase coherence and limits the 

FIGURE 7.3 SETUP OF AN OPTICAL COHERENCE TOMOGRAPHY SYSTEM
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ability of the returned light to produce a strong interference pattern. Speckle 
limits the image quality as well. 

OCT was our earliest choice for an imaging method to look inside the 3D 
microstructure. It has several advantages: it is a simple, inexpensive method 
of collecting 3D structural information from translucent structures. The light 
source required is a superluminescent diode and, because the returned light is 
detected interferometrically, the diode does not need to have a high luminous 
output. A typical image obtained from an OCT scanner is shown in figure 7.4. 

However, as we examined OCT in the light of desired properties of the 
physical probe, it came up short in many respects. First, the longitudinal 
spatial resolution of OCT is on the 10 micron scale, and we were interested in 
exploiting smaller structural features. Next, each scattering center in the 
token, viewed in an OCT system, does not have any effect on the image 
beyond its own spatial dimension. This implies that changing a small volume 
of the token does not have an large effect on the image, and that the 
complexity class of simulating the effect of the OCT probe on the structure is 
P-time. Properties 8 and 9 of section 4.2.4 are not fulfilled when we employ 
OCT as the physical probe.

7.3.2 Magnetic resonance imaging (MRI)
MRI is an imaging technique used primarily in medical settings to produce 
high quality images of the inside of the human body. MRI is based on the 
principles of nuclear magnetic resonance (NMR), a spectroscopic technique 
used by scientists to obtain microscopic chemical and physical information 
about molecules [REF]. Because MRI images nuclear spin density, we assume 
that we have proton-filled glass spheres in the token instead of solid glass 
spheres. When a particle with net spin is placed in a magnetic field of strength 

, it aligns itself in the direction of the field. This is the lowest energy 
configuration. However, there is another possible configuration in which the 
particle is aligned in exactly the opposite direction. This is shown in the figure 
7.5. A particle may be knocked out from the lowest energy configuration into 
the higher-energy one by absorbing a photon at a precise frequency given by 

FIGURE 7.4 A TYPICAL OCT IMAGE. THIS IS AN INSIDE VIEW OF A HUMAN CORONARY 
ARTERY 

B
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, where  is the gyromagnetic ratio and has units of frequency per unit 
magnetic field strength. For hydrogen,  MHz/Tesla.

If the volume containing the particles is in the magnetic field, and irradiated 
with electromagnetic radiation of frequency , all spins of the same species 
respond identically regardless of their spatial location. If, however, a linear 
magnetic field gradient is imposed on the volume, the spatial location of a set 
of spins may be encoded in the irradiating frequency. To see why this is so, 
consider the volume of spins shown in figure 7.6. We assume the field in the 

FIGURE 7.5 PARTICLES WITH SPIN ALIGN THEMSELVES IN ONE OF TWO WAYS. N AND 
S REPRESENT AN EXTERNAL MAGNETIC FIELD, AND THE ARROWS REPRESENT 
NUCLEAR SPIN ALIGNED EITHER WITH OR AGAINST THE FIELD

FIGURE 7.6 FREQUENCY ENCODING OF SPATIAL LOCATION. DIFFERENT SLICES OF 
THE SAMPLE CAN BE IMAGED BY IRRADIATING THE SAMPLE WITH A SPECIFIC 
FREQUENCY.
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center of the magnet is  with a corresponding frequency . In 
addition, a linear gradient is imposed along the -axis as shown. This gradient 
may be represented as . Thus, the equation describing the response of 
the volume to incident radiation may be written as

7.3.1 

This gives us

7.3.2 

Thus, the spatial location of the set of spins is determined by the static 
magnetic field, the gradient field, and the gyromagnetic ratio of the particles. 
As in OCT, a 3D image is assembled from several 2D slices Although this 
explanation is pedagogically useful, imaging is almost never carried out in 
this way in the real world. We will not concern ourselves with the details of 
real-world MRI systems, but move on to point out why MRI is not an 
attractive option as far as physical authentication systems are concerned.

First, MRI machines are expensive, and although there is an active effort to 
make tabletop MRI machines, they are still likely to cost several hundred 
dollars. At this cost, it would be a tremendous expense to deploy them 
wherever transactions are carried out. Second, spatial resolution of MRI 
scanners depends linearly on the strength of the magnetic field. Existing high-
resolution MRI scanners, which use a static field of 4 Tesla, and a field 
gradient of 0.1 Tesla/meter, have a spatial resolution in the range 150-300 
microns and slice thicknesses in the range of 300-600 microns. However, 
achieving these resolutions is extremely time-consuming, with each scan 
lasting several hours. These resolution and time constraints rule out MRI as a 
candidate probe. Finally, each element of the volume has a one-to-one 
correspondence with the image. As we noted earlier, this means that a small 
change in the token leads to a corresponding small change in the image - a 
feature which violates requirements 8 and 9 of section 4.2.4. 

7.3.3 Laser beam
We now turn to the probe actually used in our physical authentication system - 
a collimated laser beam of diameter approximately 1 mm of wavelength 632.8 
nm. The beam originates from a commercially available 30mW Helium-Neon 
laser manufactured by Melles-Griot. All we do is shine the laser beam at the 
3D microstructure and detect the emerging wavefront, known as a speckle 
pattern. This is conceptually depicted in figure 5.1. 

We will spend the whole of chapter 5 discussing interaction between the laser 
beam and structure, so we will not dwell on the details here. However, we 
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walk through the desirable qualities of using a laser beam as the probe. First, 
lasers are extremely inexpensive, and start up in the same state each time. As 
we will see, we do not require the laser beam to have the same absolute phase 
each time it starts up, we merely require that the relative phase between a 
beam which is scattered along multiple paths in the structure be predictable. 
This is always true if the distance the scattered beams travel is always less 
than the coherence length of the laser, and we will impose this condition on 
our system. 

Lasers can be mass-produced with ease - indeed, every compact disc player 
has a semiconductor laser in it that was manufactured for less than a dollar. 
Lasers are now an indispensable part of everyday life, and the physical 
authentication systems we propose in this dissertation make use of garden-
variety lasers.

The speckle pattern is the result of coherent interference between light that 
has taken multiple paths through the inhomogeneous microstructure, and we 
show in the next chapter that it is extremely sensitive to infinitesimal changes 
in any single path. This is primarily because we are detecting output that is 
intimately dependent on phase coherence of the radiation. Any property not 
related to phase coherence (such as total capacitance) would be far less 
sensitive to changes in the structural configuration of the token. This notion is 
mathematically formalized in the next chapter. 

In summary, when compared to both OCT and MRI, a system wherein a 
simple laser beam probes the structure incorporates all the properties we 
require in a physical authentication system.

7.4 Reader design We now turn our attention to the reader, which is the object that encapsulates 
the laser and the detector and allows us to present the token for interrogation. 
We begin by prescribing the mechanical requirements of an ideal reader, and 
then describe the reader we implemented. Finally, we take a look at the 
performance of the reader.

7.4.1 Mechanical requirements
The reader has to accomplish three things. First, it has to allow for accurate 
and repeatable positioning of the laser beam. For reasons that will become 
clean later, we are also interested in interrogating the structure from multiple 
angles. The laser positioning requirements extend to this case as well. Next, 
the reader has to allow us to present the token to the laser beam with a 
minimum of misregistration. Finally, it has to provide a detector for the 
speckle pattern whose position is invariant with respect to the rest of the 
system. 

• Laser positioning: The limits on laser positioning performance are set by 
the laser itself and the hardware which controls the angular travel of the 
beam across the structure. The limits on the position of the structure with 
respect to the beam are set by the , , and  correlations discussed in 
the next chapter. Essentially, when the laser beam is rotated with respect 

C1 C2 C3
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to the token by more than  we obtain an 
independent speckle pattern. In our case, mm and 

mm, which means that radians. 
Therefore, in order to obtain the same speckle pattern each time, the laser 
beam has to be incident on the microstructure at an angle that never 
deviates from its previous value by more than . 

• Token registration: For the reasons discussed in the foregoing paragraph, 
the token must also be repeatably placed in the same position each time 
the token is presented to the system. Any changes in the spatial location 
of the token are tantamount to changes in the incident angle of the laser 
beam, and cause the same deleterious effect of producing an independent 
speckle pattern.

• Detector positioning: In our implementation, this is the easiest to achieve. 
The CCD camera is simply mounted in a fixed location with respect to the 
token. Because the detector is not a moving part this is a one-time 
alignment effort.

7.4.2 Implementation
The implementation of the reader is an extremely crucial determinant of 
system performance. We built several readers which led to sub-optimal 
performance. In each of these cases, it was the token registration system that 
did not perform as expected. We begin by providing pictorial evidence 
(figures 7.7 and 7.8) of these attempts and then discuss the final 
implementation in detail.

Laser positioning: Our choice of laser positioning hardware consisted of a 
front-surface mirror mounted on a precision gimbal mount which was driven 

FIGURE 7.7 THE EARLIEST PHYSICAL AUTHENTICATION SYSTEM
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by a two high-precision actuators. Essentially, a laser beam from a He.Ne 
laser reflects off the mirror and is incident on the token. As the actuators 
travel, the location of the laser beam on the token scans the area of the 
structure. An image is shown in figure 7.9. 

The Newport 850G actuators are capable of 1 micron bidirectional 
repeatability and are both driven by the Newport ESP300 motion controller, 
which is in turn controlled by a personal computer. The motion controllers 
have an extensive command set and can be directly controlled via an RS232 
serial port. We found that this setup has excellent repeatability, and all the data 
we present in this dissertation was obtained with it.

Token registration: As we said earlier, token registration was a thorny 
problem and several attempts were made to solve it. The early attempts are 
visible in figures 7.7 and 7.8. We reiterate the goal of the token registration 
here: each time the token is placed in the reader, it must be as close as 
possible to the same absolute position in 3D space. 

We achieved this goal by using ideas drawn from Thorlabs’ kinematic 

FIGURE 7.8 ANOTHER INSTANTIATION OF THE SYSTEM
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FIGURE 7.9 TWO VIEWS OF THE LASER POSITIONING SYSTEM
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mounts, which use the cone-groove-flat mechanism to constrain 3D position. 
Kinematic mounts consist of two plates: a top mounting plate and a bottom 
base plate which are coupled by an extremely strong magnet. When the 
bottom plate is fixed, the top plate can be removed and replaced, repositioning 
to the same exact position with the repeatability of a microradian. We used 
two such mounts, and mounted their bottom plates vertically at right angles to 
each other so that they formed a single unit. This is shown in figure 7.10. 

The two top plates were mounted on a token mount that was produced in-
house. The right-angle kinematic unit allows us to place the token at very 
precise height above the camera. It is the job of the token mount to provide 
very accurate and repeatable x-y positioning. This was achieved by making a 
steel mount with three spring-loaded titanium steel balls arranged in a 
triangle. In this arrangement, the token, which has circular apertures in 
exactly the same triangular arrangement, simply slides over the balls till the 
circular apertures are spatially co-located with the balls. At this point, the 
balls push the token up against two retaining brackets. This is seen in figure 
7.11. We used titanium-steel balls because of their very small deviation from 
sphericity, and used high force-constant springs with flat ends in order to 
support the balls perfectly. The channels in the token mounts were also drilled 
out using high-precision bits in order to ensure that there was no eccentricity 
as the balls moved up and down. 

7.4.3 Performance
The performance of the token-reader is best ascertained by performing an 
experiment wherein a token is placed in the reader and a reference speckle 
pattern is obtained. Then the token is removed and replaced in the reader 
several times - obtaining a new speckle pattern each time. The angle of 
illumination is kept constant during this process. All the subsequent speckle 
patterns are compared with the reference speckle pattern to see if there are any 

FIGURE 7.10 KINEMATIC MOUNTING UNIT
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systematic deviations. 

We performed the experiment with two different tokens and obtained six 
different speckle patterns for each token. In order to examine if there were any 
systematic misregistration problems, we plotted the intensity along a single 
row (row 120) and a single column (column 120) of all six related speckle 
patterns. These plots were overlaid on the same axis. The results of this 
experiment are shown in figures 7.12 and 7.13. 

Inspection of the four plots reveals that the general shape of each set of plots 

FIGURE 7.11 TOKEN MOUNT - WITH AND WITHOUT A TOKEN PRESENT.
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is the same, although there are local differences in speckle intensity. It is 
noteworthy that there does not appear to be any systematic offset of features 
between members of each set of plots. If there were such offsets, either in the 

FIGURE 7.12 INTENSITY PLOTS ALONG A SINGLE ROW AND COLUMN OF SIX 
SPECKLE PATTERNS OBTAINED FROM THE SAME MICROSTRUCTURE
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row plots or the column ones, this would be cause for concern. However, the 
plots indicate that the token registration system performs very well, given the 
sensitive dependence of the speckle pattern on the relative positions of the 
token and the laser beam. 

FIGURE 7.13 THE SAME PLOTS FOR A DIFFERENT MICROSTRUCTURE

50 100 150 200 250 300
0

50

100

150

Pixel #

S
pe

ck
le

 in
te

ns
ity

Speckle intensity along row 120

20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150

Pixel #

S
pe

ck
le

 in
te

ns
ity

Speckle intensity along column 160



SYSTEM DESIGN AND ENGINEERING 99
The local variations in speckle intensity are attributable to change in ambient 
illumination, fluctuations in laser power, photon noise, and noise in the CCD 
detector. Interposing a chopper in the beam path, using a light-tight enclosure 
for the entire system, and using a low-noise CCD detector will alleviate this 
problem.

7.5 The Gabor hash 
algorithm

We now focus on the hash algorithm  (see figure 4.1) whose function is to 
take the raw speckle data and boil it down to string of bits. Here we will first 
prescribe the desired qualifications of such an algorithm, present the 
theoretical background for our choice - the Gabor Transform - and show how 
we used it to produce a unique identifier from a speckle pattern. Hereafter, we 
refer to the algorithm as the Gabor Hash Algorithm and the unique identifier 
as the Gabor Hash. We end the section by presenting an inventory of the 
issues which must be considered in our implementation. 

7.5.1 Desired features 
What are the desired qualities of the hash algorithm? First we look at the 
qualities that any algorithm must possess regardless of the implementation, 
and then we look at the qualities specific to our implementation.

Implementation-independent qualities
• Efficiency: The algorithm must have a computationally efficient 

implementation. For reasons that will become clear later, we expect to run 
this algorithm several times during a single authentication session, and a 
fast algorithm that produces identifiers from speckle patterns is absolutely 
essential.

• Distinguishability: The algorithm must be able to distinguish two speckle 
patterns based on their features. In the ideal case, the algorithm is such 
that some distance metric between two identifiers is maximized when 
they are derived from two distinct speckle patterns and zero when they are 
from the same speckle pattern. 

• Analytic expression: The algorithm must be amenable to mathematical 
analysis. This allows us to explore it properties and characterize its 
performance analytically.

Implementation-dependent qualities
• Insensitive to changes in ambient light level: The algorithm should be 

insensitive to changes in global ambient illumination. Mathematically 
speaking, the algorithm should have no dc response. This is essential 
because there is no guarantee that the average light level in our system 
will remain constant over time. The algorithm must take this variation 
into account.

• Insensitive to token misregistration: Ideally, we would have a perfect 
token registration system which allows us to reproduce the same exact 
speckle pattern each time the same token is inserted into the system. 
However, given the sensitivity of the speckle pattern to changes in the 

A
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relative position of the laser beam and the token, it is likely that the 
speckle pattern suffers small spatial transformations (translations or 
rotations in the horizontal plane). We will require our algorithm to be 
insensitive to these small changes.

• Scale selection: Finally, we would like the algorithm to be flexible enough 
to accommodate changes in the position, size, and orientation of the 
features of the speckle pattern. The position, size, and orientation of the 
features depend intimately on the optical system that produces them, and 
clearly, depending on the application context, we will use very different 
optical systems to produce the speckle patterns. Our algorithm must allow 
us to make changes in the optical system without an attending 
performance penalty.

7.5.2 Theory of Gabor Transforms
In the light of the requirements above, and after trying out several other 
methods, we decided to use the Gabor Transform as the algorithm. Gabor 
functions have historically been used in a wide variety of applications: image 
enhancement, coding, and compression [29][30], texture analysis [31], and 
motion analysis [32] to name a few. Another big area of use has been in the 
field of multiscale image representation in the visual cortex, primarily 
because their basis functions bear a strong resemblance to the receptive fields 
of simple cortical cells [34].

In our work, we use the 2D Gabor Transform proposed by Daugman [35] 
which itself is an extension of the 1D transform proposed by Gabor [36]. The 
elemental Gabor Function (GF) has the functional form

7.5.1 

The first grouped term is simply an elliptical 2D Gaussian function located at 
 where  determines the effective width along the -axis and  

determines it along the -axis. The second grouped term is a complex 2D 
sinusoid of frequency  and an orientation defined by . Clearly, the GFs can 
be freely tuned to a continuum of spatial locations, spatial frequencies, and 
orientations by varying the parameters. This enables a GF to select features 
from an image at a specific location, scale, and orientation.

The GT is a specific case of a more general image processing technique 
usually referred to as multiresolution image decomposition or pyramidal 
decomposition [37][38]. In a pyramidal decomposition scheme local operators 
at several scales but with identical shape serve as the basis functions. Usually 
the operators (of which  in equation 7.5.1 above is an example) are 
localized both in space and spatial frequency. The basic method by which 
such a decomposition, in an image-encoding context, takes place is as 
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follows. 

Consider an image , and a low-pass filter . We apply  to the image o 
produce a low-pass filtered version of the image . We then have a residual 
defined by . Instead of encoding the raw image , it is much more 
efficient to encode the residual and the low-pass filtered image. The pixels of 
the residual have much smaller dynamic range and entropy than the raw 
image, while  may be encoded at a lower sample rate. This process may be 
iterated by applying the filter to a resampled  and storing the residual. As 
the process is iterated, we are left with a small image which represents the 
repeated low-passed and resampled image, and a set of residuals of decreasing 
size. This representation is called the multiresolution pyramid.

In practice, the same filters are applied to low-passed and downsampled 
images for reasons of computational efficacy. If the local basis functions are 
from an orthogonal family of wavelets, the decomposition and subsequent are 
computationally efficient. In our case, the Gabor Functions are non-
orthogonal, which leads to problems in reconstruction. However, we are not 
concerned with reconstituting the speckle from the unique identifier. All we 
are interested in is to go from the speckle pattern to the identifier. The 
coefficients of the GT are obtained by simply convolving the raw speckle 
pattern with filters which are obtained by translating the mother wavelet in 
equation 7.5.1 across all locations of the pattern.

Prior work [35] has determined that 2D quadrature filters, such as the one in 
equation 7.5.1, are jointly optimal in providing the maximum possible 
resolution for information about the orientation and spatial frequency content 
of local image structure (“what?”), simultaneously with 2D location 
(“where?”). This property is very useful when studying image texture, as we 
do in this dissertation.

7.5.3 Implementation to derive unique identifier
Because the mother wavelet is a complex function, the transform has both real 
and imaginary parts. In our work we focus exclusively on the imaginary part 
of the transform because the basis functions are odd functions, and therefore 
do not respond to changes on the ambient light level in the speckle image. 
This is a very useful property because the ambient light level is usually prone 
to small fluctuations due to either laser power variation or changes in the 
lighting of the environment.

Our implementation of the GT closely parallels the method proposed by 
Nestares et al. [39]. They developed an optimized spatial-domain 
representation using 1D masks which are reproduced in figure 7.14. The 2D 
transform is computed as the outer product of two fast 1D convolutions. 
Although the orientation parameter is continuously tunable, we chose to use 
four orientations given by . This lets us select structure in 
the horizontal and vertical directions and the two diagonal directions. We use 
the same pair of even-odd 1D masks for the horizontal and vertical directions, 
and a single pair for the diagonal directions. 

I0 L L
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R I1 LI0–= I0
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Our procedure for generating the bit string from the raw speckle pattern 
proceeds as follows. First, we compute the imaginary part of the GT for four 
orientations and several levels. This is accomplished by convolving the image 
with the kernel. The analytical expression for this convolution is:

7.5.2 

where  variation is done independently, and the variation in  comes from 
image subsampling. It is worth noting that although we talk of scaling the 
basis functions in the spatial frequency domain, in practice we scale the image 
instead. The results are identical but the latter case is computationally much 
more efficient.

We then choose the imaginary part of equation 7.5.2 and threshold at zero to 
produce a new binary image. We repeat this procedure for all orientations and 
levels.

7.5.3 

FIGURE 7.14 1D MASKS USED IN THE PYRAMIDAL GABOR DECOMPOSITION
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7.5.4 

Assume we start with a  speckle pattern. At the th level, we have 4 
images each of size . The total number of available bits after 
transforming and thresholding is given by 

7.5.5 

Two questions remain. First, what subset of these bits comprise the identifier? 
Second, how many orientations should be used?

In our implementation, only the two diagonal orientations are used. This is 
primarily because the values of the Gabor Transform along the diagonals is 
much less sensitive to small changes in the  positioning of the token. 
However, we point out that the performance of the registration system makes 
this choice unnecessary. 

We also use the coefficients only from the 4th level of the transform. At this 
level, each orientation has  bits, and since we use two orientations, we 
have a total of  bits available to contribute to the identifier. Our choice of 
the level is driven by two competing issues. At level 1, we have as many 
coefficients as there are pixels in the image. However, the coefficients are 
sensitive to intensity variations on the scale of a single pixel, which can be 
quite high, given that we are using a garden-variety CCD camera. At a high 
level, the single pixel variations get averaged out, and allow for a much more 
robust identifier. However, this limits the number of available bits. As we see 
from equation 7.5.5, the number of bits decreases as the square of the level. 
We will demonstrate this tradeoff presently. The entire data pipeline is 
depicted in figure 7.15.

7.5.4 An example
In this section we provide an example of the functionality of the data pipeline 
with a view to demonstrating the tradeoff between number of bits and 
robustness.

We start with a speckle pattern  obtained from a token (figure 7.16).
This pattern is Gabor transformed to level 4 and for 4 orientations, and the 
imaginary part of the transform is retained (figure 7.17). 

The images are then thresholded and only the two diagonal images at level 4 
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are retained (figure 7.18). These two  retained images are treated as a 
long string of  bits each and concatenated to produce a  bit identifier.

FIGURE 7.15 DATA PIPELINE: FROM SPECKLE PATTERN TO UNIQUE IDENTIFIER

FIGURE 7.16 RAW SPECKLE PATTERN
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7.5.5 Tradeoffs
We now proceed to demonstrate the tradeoff between level of analysis, 
number of bits in the identifier, and robustness. The experiment proceeds as 
follows. A reference speckle pattern is obtained and a bit string is derived 
from it at all four levels. Thus, we now have 4 strings of lengths 153600, 
38400, 9600, and 2400. Let us denote these strings by , , , and  
respectively. The token is removed from the reader and replaced on five 
subsequent occasions, and 4 identifiers are derived from each speckle pattern. 
We denote the set of five identifiers at a particular level by  where 

 denotes a new speckle pattern and  denotes the 
level.

We then determine the fraction of bits that disagree (the Hamming Distance) 
between a reference identifier (one of , where ) and all the 
identifiers of the same length from the set . In the ideal case, with a perfect 
token registration system and no changes in the illumination or environment, 
we expect the fraction of disagreeing bits to be identically zero. The table 
below summarizes the results of the experiment. At level 1, the Fractional 
Hamming Distance (FHD) is in the region of 0.5, which means that 
approximately 50% of the 153600 bits disagree between the reference 

FIGURE 7.17 THE GABOR TRANSFORM - FOUR LEVELS AND FOUR ORIENTATIONS, IMAGINARY PART ONLY
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identifier  and the set of five identifiers . In other words, the results of 
repeating the experiment are the same as populating the identifier with 
random bits obtained by a coin-flipping experiment. Clearly, there is no way 
to distinguish such a random bit string from the identifier derived from the 

FIGURE 7.18 THE TWO THRESHOLDED IMAGES SELECTED ARE SHOWN HERE

Level 4 (30x40) Level 3 (60x80) Level 2 (120x160) Level 1 (240x320) 

FRACTIONAL HAMMING DISTANCES AT FOUR LEVELS 

LEVEL1 LEVEL 2 LEVEL 3 LEVEL 4 

INSTANCE 1 0.4913 0.4518 0.1922 0.1008

INSTANCE 2 0.4361 0.4716 0.1919 0.0938

INSTANCE 3 0.4955 0.4410 0.2241 0.1300

INSTANCE 4 0.5136 0.4272 0.2309 0.1333

INSTANCE 5 0.5142 0.4094 0.2484 0.1833
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speckle pattern. 

We observe that the FHD steadily decreases as the level increases. At level 4, 
the FHD is, on average, about 0.1 for a 2400 bit string. This means that 
approximately 240 bits disagree between the reference identifier and 
identifiers derived from subsequent instances. We will see later that the 
average FHD between identifiers derived from distinct speckle patterns is 0.5. 

Clearly, there is a tradeoff here between the level of analysis, the number of 
bits in the identifier, and robustness of the identifier. For an increase in the 
analysis level by one, the number of bits in the identifier decreases by a factor 
of 4. However, the FHD decreases rapidly from a maximum value of about 
0.5 to 0.1. We also observe here that the benefits of increasing the level of 
analysis do not accrue indefinitely. As the level continues to increase, the 
number of bits decreases, and several speckle patterns map to the same 
configuration of bits. Thus, the level of analysis must be chosen so as to 
provide the maximum number of bits while maintaining statistical 
distinguishability. 

7.6 Final system In the preceding section, we have described each subsystem in detail. Here we 
briefly look at how they all fit together. In summary, we have a token which is 
mechanically positioned in a token reader. The token reader consists of an 
accurate laser positioning system, a token registration system and a CCD 
detector. The output of the token reader is a raw speckle pattern which is 
processed by an algorithm to derive a unique identifier. The algorithm is 
based on a multiresolution Gabor pyramid decomposition of the speckle 
pattern. This multiresolution decomposition is extremely flexible and allows 
complete control over the analysis of the speckle pattern. This flexibility is 
especially important if the optical configuration changes. The full system is 
shown in figure 7.19. 

We remind the readers of an important point: there are two levels of hashing 
going on. The first is from the 3D microstructure to the speckle pattern. 
Physics, or more specifically, coherent multiple scattering allows this to 
happen. The second level of hashing is from the speckle pattern to the Gabor 
Hash. This procedure is reversible and my be regarded as merely a 
thresholding scheme. All the hard work is done by nature in the first hash, and 
the second hash may be replaced by any other threshold scheme.

7.7 Potential 
improvements of the 
system

In this final section of the chapter, we look at improvements that could be 
made to the reader to render it more effective. 

One area where significant improvement is possible is to replace the rather 
slow motor controllers with a faster laser positioning system. One approach 
which immediately comes to mind is to use a digital micromirror device 
(DMD) produced by Texas Instruments. A DMD is a thumbnail-sized silicon 
chip that contains thousands of individual square mirrors, each about 10 
microns on a side, which can be switched digitally. It is accurately 
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characterized as a reflective array of fast digital light switches that are 
monolithically integrated onto a silicon address chip [40][41][42]. The basic 
mode of operation is binary. Light shining onto a DMD is either reflected into 
a particular direction or it is reflected out of the optical system. 

A DMD is interesting in our application for several reasons. First, it is an all-
digital device which is extremely fast. Second, it is a reflective device, and 
thus does not affect the coherence properties of the laser light. All it does is 
switch the direction of the incoming laser light.

The most important reason, however, is that a DMD provides a mechanism by 
which the space of challenges to the microstructure is extremely large. 
Assume we have an  array of mirrors. In practice,  and  are in the 
region of 1000. This implies that the number of distinct bitmaps displayable 
on the DMD is , an extremely large number. Thus, by replacing our 
actuated mirror with a DMD, we increase the challenge space significantly. 

FIGURE 7.19 IMAGE OF THE FINAL SYSTEM
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8 Experiments and results

This chapter is devoted to describing the experiments performed in order to 
determine that our intuition about physical one-way functions is justified, and 
to demonstrate that it is indeed possible to design and implement a physical 
authentication system based on inhomogeneous 3D microstructures that 
allows the reliable and repeatable derivation of an identifier that uniquely 
distinguishes the structure from other similarly produced structures.

The first experiment is a proof-of-principle experiment. We are primarily 
interested in showing that a unique identifier can be obtained from an 
inhomogeneous 3D microstructure repeatably by probing it with a laser beam. 
The second experiment asks questions related to the statistics of the 
identifiers. Here we deal with a large number of speckle patterns and look at 
how distinguishable they are from one another. In the final experiment, we 
focus on determining the effect of small change in the microstructure on the 
identifier. 

8.1 Proof-of-concept 
experiment

8.1.1 The setup
Our first experiment was geared towards demonstrating the proof of concept 
of physical authentication. We considered a system with a database in which a 
small number of tokens - four in this case - were initially enrolled. This was 
done by obtaining speckle patterns from the tokens by illuminating them from 
the same angle. Each of these patterns was reduced to a 2400 bit Gabor hash 
string via the Gabor Hash Algorithm (see section 7.5). 

The goal of the experiment is to determine that the Gabor Hash is indeed a 
statistically significant determinant of token identity, which in turn is 
intimately dependent upon the structural configuration of the 3D 
microstructure. We achieve this goal by presenting one of the tokens to the 
system and determining the Fractional Hamming Distance (FHD) between its 
Gabor hash and those of all the tokens stored in the database. We also present 
a token that was not enrolled in the database to the reader. 

We expect to see the following two results. The FHD between the Gabor Hash 
of a token and the value of the Gabor Hash of the same token stored in the 
database should be close to zero, while the FHD between the token and all 
other tokens should be closer to 0.5. Further, if we present a token that was 
not enrolled in the database, we expect to see a uniform FHD between the new 
token and the ones in the database of approximately 0.5.

8.1.2 Results
We implemented a simple graphical user interface in Matlab to demonstrate 
the results of this experiment. In figure 8.1, we depict a bar graph showing the 
fraction of bits which agree between the subsequent token and the tokens in 
the database. The -axis is the token number and the -axis is the percentage 
agreement, i.e., . From the graph, it is clear that the new token 
agrees most with the stored token 1 (~95%), while the agreement with all the 
other stored tokens hovers around 50%. In this case, the token that was 

x y
100 1 FHD–( )



110 EXPERIMENTS AND RESULTS
presented to the system can be declared to be token 1 We observed similar 
results for all the other tokens.One point to note: in order for one of the other 
tokens to be mistakenly identified as token 1, approximately 45% of its bits 
would have to be flipped. This is equal to 1080 bits. As we will see in the next 
section, the probability that this occurs by chance is very low. 

In the other part of the experiment, a token that was not initially enrolled in 
the database was presented to the system and the resulting FHDs were 
determined. As expected, the FHDs are all very close to 0.5. This is shown in 
figure 8.2.

All the resulting FHDs are presented in the table below. The columns 
represent the tokens stored in the database, and each row represents the FHD 
between the stored in the database and subsequently re-presented tokens. Of 
particular interest are the highlighted values, which are very close to zero, as 
expected. Also note that the FHD between a token (D7) not enrolled in the 
database and all the tokens is very close to 0.5, which is what we expect. 

Finally, we present the results of the two experiments above in pictorial form. 
In figure 8.3, the first column of images represent 1200 bits of the 2400 bit 

FIGURE 8.1 BAR GRAPH DEPICTING FRACTION OF BITS THAT AGREE BETWEEN NEW 
TOKEN AND STORED TOKENS. CLEARLY, THE NEW TOKEN MAY BE DECLARED TO BE 
TOKEN 1.

FIGURE 8.2 THIS GRAPH IS FOR A TOKEN NOT INITIALLY ENROLLED
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identifier of tokens stored in the database. The image in the second column is 
the corresponding set of 1200 bits from a candidate token. The third column 
represents the bitwise XOR between the image in the second column and one 
of the images in the first column. In this case, a black pixel represents no 
difference between the corresponding bit locations. Once again, the 
agreement with stored token 1 is very high, and we can clearly observe that 
there about an equal number of black and white pixels in the resulting images 
for all other stored tokens. In figure 8.4, we show the results for a token not 
enrolled in the database.

We conclude that it is indeed possible to identify inhomogeneous 3D 
microstructures by examining their speckle patterns. 

8.2 Statistics of Gabor 
Hash strings

8.2.1 The setup
In this experiment, we are interested in the statistics of a large number of 
Gabor hash strings. Our primary goal will be to gather sufficient data and use 
it to characterize the statistics of the hash strings. More specifically, we are 
interested in determining a threshold for the FHD below which we can declare 
a presented token to be one of many stored in the database. We are also 
seeking to gain some intuition into the scaling properties of the system - does 
the present method scale to a large number of tokens? 

We acquired 144 distinct speckle patterns from each of four tokens - a total of 
576 speckle patterns. Each token was interrogated from 144 different angles, 
taking care to ensure that the incident angle changed by greater that the 
minimum deviation required to remove significant correlations between 
speckle patterns. The 2400 bit Gabor hash string was computed for each 
speckle pattern.

8.2.2 Statistical results 
We look at the statistics of the 576 speckle patterns in two different ways. 
First, we plot the probability of a bit being set in a specific location. 
Procedurally, this is equivalent to bitwise mean of 576 hash strings. A 100 bit 
subset of this plot is shown in figure 8.5 below. The graph shows that the 
probability of a particular bit being set in the Gabor hash is very close to 0.5. 
In fact, the average value of the bitwise mean is 0.5002. This implies that, 

FHD BETWEEN TOKENS IN THE DATABASE AND SUBSEQUENT TOKENS

TOKEN 1 TOKEN 2 TOKEN 3 TOKEN 4

TOKEN 1 0.0540 0.5371 0.4854 0.5256

TOKEN 2 0.5154 0.1594 0.5152 0.5033

TOKEN 3 0.4783 0.5073 0.1698 0.4904

TOKEN 4 0.5317 0.5156 0.4894 0.1583

TOKEN D7 0.4981 0.4979 0.5029 0.4981
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across all bit locations, a bit is equally likely to be set. According to Shannon 
[61], the entropy of a code with  states is maximized if all the states are 
equally likely. The entropy, in bits, is

8.2.1 

where  is the probability of the th state. The probabilities must satisfy 

8.2.2 

FIGURE 8.3 VISUAL DEMONSTRATION OF EXPERIMENTAL RESULTS FOR PREVIOUSLY ENROLLED TOKEN
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The entropy is maximized if . In our case , which implies that 
entropy is maximized when . We therefore conclude that the Gabor 
hash is a bitwise maximum-entropy code. This conclusion is also borne out by 
the fact that there are no systematic deviations from 0.5 in the graph. This 
suggests that there is no predisposition in the system for any particular code 
bit to assume a specific value, which is a reflection of the randomness in the 
3D microstructure. 

We now turn our attention to the distributions of the Fractional Hamming 
Distances for “like” and “unlike” speckle patterns. For this we treat the 576 
acquired speckle patterns as the database. In order to plot the “like” HD 
distribution, we acquire 576 new speckle patterns from the same tokens 
interrogated with the same probe. We then determine the FHDs between the 
hash strings in the database and the corresponding strings from the newly 
acquired speckle patterns. The distribution is depicted in figure 8.6. The mean 
of this distribution is 0.2525, the median is 0.2456, and the variance is 0.0047. 
Of 576 hash strings, 327 have FHDs less than the mean FHD. 

The crucial point to note is that there is no FHD value of zero. In other words, 

FIGURE 8.4 VISUAL DEMONSTRATION OF EXPERIMENTAL RESULTS FOR PREVIOUSLY UN-ENROLLED TOKEN
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two speckle patterns obtained from the same structure by interrogating it from 

FIGURE 8.5 PROBABILITY OF A BIT BEING SET IN A SPECIFIC LOCATION

FIGURE 8.6 HISTOGRAM OF LIKE FRACTIONAL HAMMING DISTANCES
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the same angle and with the same wavelength never produce identical hash 
strings. This is due to several factors: sensitivity of the speckle pattern to 
changes in the environment, photon noise, and noise in the detector. 

The distribution for unalike hash strings is easier to obtain. For all the strings 
in the database, we determine the FHD between each of them taken two at a 
time, since by definition, they are all derived from distinct speckle patterns. 
This gives us 

8.2.3 

distinct FHDs. The histogram of these FHDs are plotted in figure 8.7.This 

distribution is more sharply peaked. The mean of this distribution is 0.4981, 
the media is 0.4979, and the variance is 0.0011. This distribution is clearly 
symmetric about the mean. 

If every bit in the 2400 bit string were independent of every other bit, then the 
expected distribution of the FHD between unlike strings would be a binomial 
distribution with  and . In other words, the distribution of 
FHDs would look exactly like that obtained by doing 2400 coin tosses a large 
number of times and counting the fraction of heads in each round of 2400 

FIGURE 8.7 HISTOGRAM OF UNLIKE FRACTIONAL HAMMING DISTANCES
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tosses. However, as we saw in section 5.3.4, the speckle pattern itself has a 
correlated structure. Even if the speckle pattern were random, running it 
through a set of Gabor filters at multiple scales introduces correlations that are 
approximately equal to the reciprocal of the bandwidth of the filters [62]. The 
effective number of independent bits in the Gabor hash string is, however, 
determined by looking at the experimental mean and variance.

8.2.4 

which, for  and , is 

 bits 8.2.5 

In summary, if all the bits were independent, we would expect a 
 binomial distribution, but in practice we observe an 

 binomial distribution. Both these distributions are plotted in 
figure 8.8. In figure 8.9, we superimpose the theoretical  on 

the histogram from figure 8.7 to demonstrate that the observed histogram is 

FIGURE 8.8 EXPECTED AND EMPIRICAL BINOMIAL DISTRIBUTIONS FOR A 2400 BIT 
STRING
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indeed capable of being fit by a binomial distribution with  and 
. This suggests that, given our specific implementation of the physical 

authentication system, there appear to be 228 independent binary degrees of 
freedom in the 2400 bit Gabor hash string. Therefore the total number of 
unique identifiers we can obtain from our physical authentication is on the 
order of . This also means that the likelihood of the hash strings 
obtained from two distinct speckle patterns agreeing by chance is .

We follow the same procedure outlined above to fit a binomial distribution to 
the like data and determine that the best binomial fit is given by a 

 binomial distribution. This is shown in figure 8.10 below.

The two distributions are unambiguously separable, a fact that is easily visible 
when both the like and unlike histograms are appropriately normalized and 
plotted on the same axes (figure 8.11) along with their respective fitted 
binomial distributions. Looking at the data from this perspective allows us to 
formulate a decision criterion based on the FHD. If the FHD between a 
candidate Gabor hash string and a string is greater than the criterion, we 
declare that the two strings did not originate from the same speckle pattern. If 
the FHD is less than the criterion, then we can say that they did originate from 
the same speckle pattern. In this case, the FHD at which the two binomial 
distributions cross-over is the criterion and is approximately equal to 0.41. 
This implies that a candidate Gabor hash string would have to differ from one 
stored in a database in at least 984 bit positions before we declare that the two 

FIGURE 8.9 SUPERPOSITION OF OBSERVED UNLIKE DATA AND FITTED BINOMIAL 
DISTRIBUTION
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FIGURE 8.10 SUPERPOSITION OF OBSERVED LIKE DATA AND FITTED BINOMIAL 
DISTRIBUTION

FIGURE 8.11 BOTH LIKE AND UNLIKE DISTRIBUTIONS ON THE SAME GRAPH
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strings do not originate from the same speckle pattern. 

8.3 Demonstration of 
tamper resistance

8.3.1 The setup
In this section we briefly take a look at the tamper-resistance properties of the 
token. We have claimed that the speckle pattern is extremely sensitive to 
changes in the structural configuration of the token. We have also likened this 
phenomenon to the avalanche effect exhibited by computational one-way 
hash functions (see section 6.4.4). Here we present experimental evidence to 
support this claim.

The experiment is quite simple. We acquired a speckle pattern and computed 
its Gabor Hash string. We then used a 1mm diameter drill to make a very 
shallow indentation in the token. The diameter of the indentation was smaller 
than the diameter of the laser beam used to interrogate the structure. The 
token was then re-interrogated and a new Gabor Hash string was obtained. 

8.3.2 Results
In figure 8.12, the top two images are the constituents of the unaltered gabor 
hash string and the lower two images are those of the Gabor Hash string 
obtained from the “tampered” token.

In the next figure (8.13), we show the pixel-wise XOR of corresponding 
images from figure 8.12. As before, a white pixel indicates that the 
corresponding pixels from the two images are distinct, while a black one 
reveals similarity. The salient point is that there are a very large number of 
white pixels, and a quick calculation shows that the FHD or 0.464 or, 

FIGURE 8.12 CONSTITUENTS OF THE GABOR HASH STRINGS OF UNALTERED (UPPER 
TWO IMAGES) AND TAMPERED TOKENS (LOWER ONES)

Original
token 

Tampered
token 
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equivalently, the number of differing bits is 1113. 

By way of comparison, we now take a look at equivalent performance of an 
oft-used computational one-way hash function called Message Digest 5 or 
MD5 [63]. As input to the function, we provided three text fragments which 
were different by a single character. They were

One-Way 
One Way
OneWay

We then determined the FHD between the outputs of MD5 when the above 
three fragments were inputs. We obtained an FHD of 0.5390 between the first 
and second fragment, 0.5078 between two and three, and 0.5938 between the 
first and the third fragment. This is an example of avalanche - a small change 
in the input causes approximately half the bits in the output to flip. Clearly, 
physical one-way functions behave in the same way.

8.4 Summary This chapter was devoted to experimental procedures and results. The first 
experiment was a proof of concept one. The goal of the experiment was to 
determine that the Gabor Hash is indeed a statistically significant determinant 
of token identity, which in turn is intimately dependent upon the structural 
configuration of the 3D microstructure. This was clearly demonstrated in 
section 8.1.2, where we showed that: physical one-way functions can 
determine identity and, more importantly, non-identity clearly. 

The second experiment was geared towards determining the statistics of a 
large number of speckle patterns. We showed first that our 2400 bit Gabor 
Hash string is a bitwise maximum-entropy code. Then we looked at the 
statistics of the FHD for like and unlike Gabor Hash strings. For unlike Gabor 
Hash strings, the average FHD was 0.5, and the distribution of FHDs was 
symmetric about the mean. We then determined the best fitting binomial 
distribution that explained the data. This turned out to be an  
binomial distribution. This led us to conclude that the number of independent 
binary degrees of freedom in our 2400 Gabor Hash is actually 228, primarily 
because each bit in the Gabor Hash is not statistically independent of its 

FIGURE 8.13 XOR OF CORRESPONDING PIXELS FROM THE PREVIOUS FIGURE
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neighbors. 

We also fit an  binomial distribution to the histogram of the 
like FHDs. The fit in this case was not very good partly because of the small 
amount of data. Better performance can certainly be expected when more data 
is collected. We then showed that the two fitted binomial distributions may be 
used to determine a threshold FHD, which is the decision boundary between 
accepting a Gabor Hash string as authentic or not.

Finally, we demonstrated the analog of the avalanche effect in a physical 
authentication system. We did this by acquiring two speckle patterns from the 
same token. The only difference between the two instances was that we 
intentionally made a small change to the structural configuration in the second 
case. We then showed that the FHD between the two resulting Gabor Hash 
strings was close to 0.5 as expected. 

N 41 p, 0.2525= =( )
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9 Protocols 

The last few chapters concentrated on formulating the principles of physical 
one-way hash functions and demonstrating their properties. Here we consider 
how a physical authentication system might be used in practice.

In the world of algorithmic cryptography, one-way functions and one-way 
hash functions are extremely useful primitives from which other, more 
complex, cryptographic functions are built up. For example, John Rompel 
[15] showed that one-way functions are necessary and sufficient for secure 
signatures. Halevi and Micali [64] demonstrated a practical bit commitment 
scheme based solely on collision-free hash functions. Public-key encryption 
of the Diffie-Hellman flavor [9] relies on trapdoor one-way functions, where 
inversion is efficient given the trapdoor, but intractable otherwise. Other 
applications of one-way (hash) functions are in coin-flipping, digital 
signatures, and authentication. All these cryptographic functions use one-way 
(hash) functions as primitives and are accomplished by protocols. 

A protocol is a series of steps, involving two or more parties, designed to 
accomplish a specific task [17]. Generally, everyone involved in the protocol 
must know the protocol and all the steps to be followed in advance. Everyone 
involved in the protocol must agree to follow it. Finally, the protocol must be 
unambiguous and complete - all the steps must be well defined and there must 
be a specified action for every possible situation. In this chapter, we will 
present two simple protocols employing physical one-way functions as 
primitives. 

First, we will present a protocol where a small number of all possible speckle 
patterns obtainable from a given 3D microstructure are used to authenticate a 
transaction, and never reused. This is reminiscent of the one-time pads used 
extensively before the invention of public-key cryptography. We then present 
an elementary bit-commitment protocol. The objective of this chapter is not to 
provide protocols which have practical utility. Rather, given the existence of 
physical one-way hash functions and their performance, we show how such 
protocols might be constructed. Our goal is to demonstrate that we can think 
about physical one-way hash functions in a cryptographic framework.

9.1 A bit of history Before we press ahead with our protocols, we take a small excursion into 
cryptographic history. In 1917, Gilbert Vernam was given the task of 
inventing an encryption system that could not be broken. His efforts yielded 
the one-time pad cryptosystem.

The security of the secret-key one-time pad cryptosystem rests on three 
principles. First, adding a random number to a known one produces a random 
number. Second, a secret key is never reused. Third, the message and the key 
must be the same length.

For ease of explanation, we use binary notation in the ensuing discussion. The 
one-time pad cryptosystem is implemented as follows. Two identical copies 
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of a large set of random numbers are created. They are then distributed to the 
sender and the receiver. When the sender wants to send, say, a 100 bit 
message, he XORs the first 100 bits of the pad with the message to produce a 
random 100 bit string. This randomized message is then sent to the receiver, 
who XORs the received message with the identical 100 bits of his copy of the 
pad. The result is the original message. A fascinating account of an innovative 
method of making and using one-time pads provided in [65].

A distinguishing feature of this cryptosystem is that exactly two copies of the 
pad exist, one with the sender and one with the receiver. An adversary without 
the pad would have to do a dictionary search of all  possible keys in order 
to decrypt an intercepted 100 bit message. Each additional bit in the message 
doubles the number of keys to be searched. 

9.2 One-time pad 
protocol

9.2.1 Motivation
We motivate our one-time pad (OTP) protocol with a simple application 
scenario. The application involves using a regular credit card to purchase 
goods or services. The basic protocol for the transaction is shown in figure 
9.1. The cardholder presents her card to the terminal, which reads the data on 
the magnetic stripe, transmits it via a network to the server in a different 
location which either authorizes or declines the transaction and transmits the 
binary decision back to the terminal. The problem with this system is that a 
magnetic stripe card can easily be cloned. Cloned cards can then be used to 
buy goods and services which are charged to the original owner of the card. A 
common method of cloning is dubbed skimming a card whereby a palm-sized 
device is used to gather all the data encoded in the magnetic strip without the 
knowledge of the legitimate user of the card. 

We look at two different scenarios.In the first case, the terminal, the network, 
and the server are completely trusted. This might correspond to the case 
where the terminal is an Automated Teller Machine (ATM), the network is a 
private network owned by the card-issuing bank, and the server is in a secure 
location. In the second case, the terminal might be situated at an insecure 
location, such as a department store, and hence is regarded as an untrusted 
terminal. The network between the terminal and the server is also treated as 
insecure. The server, however, is still in the same secure location and is 
trusted. We assert that in either of the two situations, a cloned card (CC) is 
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indistinguishable from an authentic card (AC).

9.2.2 Augmenting the card and terminal
We are interested in determining if the addition of a physical one-way 
function system to the card will make it much more difficult to clone the 
cards. Consider augmenting the credit card by adding a 3D inhomogeneous 
microstructure to it. This would cause the card to look very similar to the 
tokens we have been using for our experiments (see, for example, figure 7.1).

We also stipulate that the terminal, in addition to its magnetic stripe reader, is 
augmented with a modified physical one-way function reader, as described in 
section 7.7. With this modified reader in place, we are able to illuminate the 
3D microstructure with a coherent wavefront which has been modulated by a 
bitmap. Everything else about the terminal is kept constant. 

We also assume that the microstructure is at least as large as the image of the 
DMD and the DMD has  mirrors, where  and  are in the region of 

. The first assumption guarantees that each pixel of the DMD is imaged 
to a separate spot on the microstructure. The utility of this property will 
become clear very soon.

9.2.3 Nonlinearity in the microstructure
We also assume that the 3D inhomogeneous microstructure is weakly 
nonlinear, as described in section 5.4. The reason for this will become clear in 
due course.

9.2.4 Assertions
We now assert, based on results from previous chapters, that:

• It is impossible to clone a microstructure.

• It is impractical or infeasible to simulate the passage of coherent light 
through the microstructure, i.e., given the complete information about the 
scatterers in the structure, there is no practical or efficient algorithm, 
which, when provided with the state of the probe, will output the speckle 
pattern.

• A small change in the configuration of the 3D microstructure produces a 
very large change in the Gabor Hash string.

• The probability that two 3D microstructures produce an identical Gabor 
Hash is very small and decreases exponentially with the size of the 
microstructure.

• Each distinct state of the probe produces a speckle pattern whose Gabor 
Hash string has a Fractional Hammimg Distance of approximately 0.5 
from that of any other bitmap. Each probe state may be regarded as a 
challenge, and the resulting speckle pattern may be regarded as the 
response.

M N× M N
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9.2.5 Notation
For the remainder of this chapter, we use the following notation, developed in 
section 6.1. 

 is the set of all possible wavelengths of coherent radiation used to 
probe the structure.

 is the set of 3D angles of the radiation incident on the structure.

 is the set of complex bitmaps used to spatially modulate the 
wavefront before it impinges on the structure. Each  is a bitmap image of 
size . There are  possible bitmaps.

Each challenge is an element of the set .

The set of responses (speckle patterns) is denoted by  where 
. In this case, . 

For the reminder of this discussion, we will assume a single wavelength and 
angle of illumination and focus solely on the multiplicity of bitmaps which 
modulate the coherent radiation. That is, we assume . Therefore, 

.

We recall the assumption of weak nonlinearity of the 3D microstructure here. 
If the microstructure were linear, then the responses to each of the    
possible challenges may be predicted by knowing the response to each of the 

 probes obtained by illuminating the structure one DMD pixel at a time. 
These basis responses can be combined coherently to predict responses to 
illumination with combinations of pixels. A weak distributed nonlinearity in 
the 3D structure makes this prediction problem much harder by requiring 
knowledge of all  possible responses, which is an exponential increase 
in the number of stored responses. 

9.2.6 The protocol for trusted terminals
The set of challenges (and, therefore, possible speckle patterns) is . 

When the bank issues the card to a certain user, in addition to the magnetic 
stripe data, it also stores the challenges and resulting Gabor Hash strings for a 
subset of all possible challenges denoted by .The challenges as well as 
their number are chosen at random for each card. Therefore, each bitmap is 
uniformly chosen from  possible bitmaps, and the number of bitmaps is 
picked from the range . In practice, the number of bitmaps is kept 
small.

Here’s the protocol:

• The user presents her card to the terminal.

• The terminal verifies the identity of the card from the magnetic stripe and 
transmits it to the server. 
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• The server requests the terminal to generate  Gabor Hashes for a 
random subset of the stored challenges  for the card.

• Upon receiving the hashes, the server computes the FHD between them 
and the corresponding stored hashes, and makes a binary decision about 
the authenticity of the card.

With each “accept” decision, the server is more confident that the card 
presented to the terminal is authentic, because it is impossible to clone the 
physical microstructure, and it is infeasible to simulate the response of a 
microstructure to a specific pattern of radiation. Because the terminal is 
trusted, the cardholder is unable to discern what the challenges were or what 
their sequence was. Therefore, the challenges may be reused for subsequent 
transactions.

9.2.7 The one-time pad protocol for untrusted terminals
We now assume that the transactions in the system are primarily carried out at 
untrusted terminals. In this case, an adversary could observe the challenges 
and responses and create a look-up table that maps a challenge to a response. 
When the server issues a challenge, the adversary simply plays back a stored 
response. This is an example of a replay attack [17]. Replay attacks are 
possible because old responses still have value. We now present a protocol 
where replay attacks are not possible.

As before, when the card is issued, the bank acquires the Gabor Hash strings 
resulting from  challenges to the structure. Here  is a large number, 
substantially larger than in the previous section.

The protocol proceeds as follows:

• The cardholder presents the card to a potentially untrusted terminal.

• The terminal verifies the identity of the card from the magnetic stripe and 
transmits it to the server. 

• The server challenges the card with some randomly chosen subset of 
stored challenges. 

• Upon receiving the hashes, the server computes the FHD between them 
and the corresponding stored hashes, and makes a binary decision about 
the authenticity of the card.

Up to this point, the protocol is identical to the one described in the previous 
section. However, here is where we deviate from the old protocol.

• When the next transaction is initiated, the server queries the card with a 
disjoint subset of stored queries. No previous challenges are reused.

Pq
Ps
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• When the number of stored challenges diminishes, the server requires that 
the cardholder visit a trusted terminal where it re-acquires the speckle 
patterns corresponding to a new set of challenges.

If the protocol is carried out as specified, each challenge, and the 
corresponding response, is used exactly once during the lifetime of the card. 
An adversary with a cloned card does not know which set of challenges will 
be issued during a particular transaction, and given the assertions above, will 
not be able to either simulate the responses or replay old responses, since each 
response is used only once. Clearly, there is a tradeoff between the mean time 
between “refills” and the amount of data required to be stored per card in the 
bank’s database. The more data stored, the less frequent “refills” have to be. 

Classical one-time pads work because there exist exactly two copies of the 
pad, one with the sender and one with the receiver. In our case, the 3D 
microstructure is analogous to the pad, and interrogating it with a specific 
probe is tantamount to using one sheet from the pad. However, the difference 
between classical one-time pads and our protocol is that we can, by design, 
have only a single pad. In essence, we simulate the existence of the other pad 
with memory. In our protocol, the memory is in a secure location, and the 
unclonable “pad” resides with the cardholder. 

9.3 Bit commitment 9.3.1 Background
We now turn our attention to another primitive which plays a fundamental 
role in many other cryptographic protocols: bit commitment. This is a 
primitive which can implicitly be traced back to very early public-key papers. 
It is a basic component of coin-tossing protocols where two parties, 
historically Alice and Bob, who do not trust each other want to toss a coin 
over a telephone line. In zero-knowledge proofs, Alice wants to prove the 
validity of an assertion to Bob without revealing anything else to him other 
than the fact that the assertion is true. 

The basic idea of bit commitment is simple. Alice wants to follow a procedure 
by which she can commit a bit  to Bob. By this we mean that she has a bit in 
mind that she wants to commit in such a way that Bob has no information 
about what bit it is. However, once she commits the bit, she must not have the 
ability to change her mind. There are several protocols designed to 
accomplish this objective, including some quantum bit commitment 
protocols. Here we look at one such protocol which involves the use of 
algorithmic one-way functions.

We note that a bit commitment scheme has two important characteristics: 
concealing and binding. The it is concealed from the receiver, and it is 
binding on the sender. 

Assume that Alice has a secret  that she wants to commit. She simply sends 
Bob , where  is the output of a one-way function . To de-commit, 
she sends Bob the original secret  and he verifies that Alice was not lying 
during the commit phase. This simple protocol has some problems, which we 
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analyze here. First, if there are a limited number of secrets, then Bob could 
simply apply  to all secrets and compare the output to . One of the outputs 
matches  at which point Bob has divined the secret without going through 
the de-commit phase. Obviously, if the number of secrets is extremely large, 
Bob will spend a long time trying all of them. The other problem is that if that 
the one-way function is not one-to-one, then Alice has room to cheat. She 
sends  but claims her secret is  because . What is 
needed here is a collision-resistant hash function.

9.3.2 The bit-commitment protocol
We now discuss a rudimentary bit-commitment protocol which involves 
physical one-way hash functions. 

As before, Alice wants to commit a set of bits to Bob in such a way that she 
cannot change her mind later and that Bob cannot divine the set of bits. We 
assume that Alice and Bob are in the same location, and each possesses an 
identical modified reader as described in section 7.7. We also assume that 
there is a large supply of tokens which each encapsulate inhomogeneous 3D 
microstructures available and that both Alice and Bob are honest, i.e. they 
follow the protocol as stated and make no attempt to cheat.

The protocol proceeds as follows:

Commit phase:
• Bob draws a token at random from the large supply of available tokens.

• Alice presents this token to her reader.

• Alice then interrogates the token with a pattern of illumination that is a 
function of her set of bits. In other words, her bits are mapped into spatial 
coordinates of the DMD pixels. This mapping is part of the protocol and 
is available to both participants.

• She obtains a Gabor Hash string the resulting speckle pattern.

• She hands over the token as well as the resulting Gabor Hash to Bob.

De-Commit phase:
• Alice declares her bits to Bob.

• Bob maps the bits into spatial coordinates as prescribed in the protocol 
and interrogates the token in his reader.

• Bob derives the Gabor Hash string for his speckle pattern.

• Bob computes the FHD between his Gabor Hash and the one Alice gave 
him

• If the FHD is below the threshold prescribed by the protocol, he knows 
Alice was telling him the truth. 
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Does this protocol fulfill the two requirements of concealing and binding? If 
we indeed have collision-resistant has functions as primitives, then the 
probability that Bob will invert the committed Gabor Hash to derive the bits 
Alice had in mind is very low. In respect of binding - if each (of ) of the 
bitmaps produces a distinct pattern, the probability that Alice will be able to 
find two illumination bitmaps that produce an identical Gabor Hash is very 
small and falls exponentially with the size of the 3D microstructure.

9.4 Summary We conclude that physical one-way hash functions have the potential to be 
primitives in rudimentary cryptographic protocols. We point out once again 
that these simple protocols are not intended to have practical utility. Rather, 
we hope these protocols point the way for designing protocols which do 
indeed have such utility. 
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10 Scaling, attacks, and fabrication complexity

We address three different issues in this chapter. The first question we tackle 
is: how does a physical authentication system scale? Scaling might occur in 
two ways: the number of tokens could increase or the size of the physical 
system used in each of the tokens might increase. In either case, the scaling 
performance is determined by the specific choice of the physical system and 
is very system dependent. In the first section of this chapter, we discuss 
scaling issues with respect our implementation of a physical authentication 
system. 

Sections 10.2 and 10.3 present variety of possible attacks against a physical 
authentication system. The types of attacks we discuss are the brute-force 
attack, the birthday attack, and the replay attack, As before, we will only 
discuss these attacks in the context of our specific implementation of a 
physical authentication system. Specifically, we assume the model for a 
transaction system to be the same as in the previous chapter, and retain all the 
assumptions about the physical authentication system that we made in section 
9.2.

We then take a brief detour to discuss currently available methods of 
microfabrication with a view to gaining some insight into the cost, 
complexity, and limitations of these methods as applied to the problem of 
constructing inhomogeneous 3D microstructures. 

In section 10.5, we broaden our view to present the notion of fabrication 
complexity of any physical system. In this section we take a closer look at the 
question: how hard is it to clone a physical system? Fabrication complexity is 
a metric of the resources required it is to clone a physical system to some 
specified accuracy. 

Finally, we discuss how a 3D microstructure might be cloned using a parallel 
fabrication attack, and relate the parameters of a fabrication attack to the 
fabrication complexity. 

10.1 Scaling issues 10.1.1 Scaling the size of the physical structure
Here we discuss the implications of scaling the physical structure. Consider 
that we have in our possession an inhomogeneous 3D microstructure of 
dimensions  and contains  spherical scatterers of diameter  
uniformly distributed throughout its volume . We assume that the 
spheres are large enough so as to be in the geometrical optics regime, i.e., the 
wavelength of the probe .

We now assume that the linear dimensions of the structure are doubled, i.e., 
they are now , where , the absorption length. Let us see 
how this increase in scale affects the system parameters and performance.

• The new volume is  and in order to keep the density constant we have 
to add  more spheres to the volume. 
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• The mean free path remains unchanged.

• Each photon now undergoes, on average, four times as many scattering 
events as it travels through the structure, i.e., 

• The fraction of scatterers in a given path through the structure is now half 
its previous value, i.e., . 

• The angle at which the  correlation is effectively zero is now half its 
previous value, i.e., . The engineering implication 
of this scaling is that is that the performance of the angular positioning 
system must go up by the same factor. 

• The average transmitted intensity decreases by a factor of 2.

• Speckle sensitivity to the motion of a single scatterer increases by a factor 
of 2

• The total number of structures distinguishable by a probe increases 
exponentially with the size of the structure. 

Clearly, then, increasing the size of the structure has both advantages and 
disadvantages. The advantages are increased sensitivity to tampering and 
increased effort to simulate the output. The disadvantage is that the 
mechanical performance (token registration and laser positioning) must be 
more accurate, which translates to increased cost. However, the cost of the 
token itself remains almost constant with increase in size. 

10.1.2 Scaling the number of tokens
Now we are concerned with gaining some insight into the performance of the 
system as the number of tokens is increased. Specifically, we would like to 
know if there is any performance degradation as the number of tokens 
increases. 

Consider the histograms plotted in figure 10.1 (which are recalled from figure 
8.11). In an ideal world, the mean value of the like distribution (on the left in 
the figure) would be  and the that of the unlike distribution would be exactly 

. Both the distributions would be -functions. In practice, however, the 
mean value of the like distribution is closer to  and that of the unlike one 
is . Both these distributions have finite variances. There are two primary 
reasons why this is so. We list them in decreasing order of influence.

• The first reason for the large value of the mean of the like distribution is 
noise in the system. This noise has many origins, but the biggest source of 
noise is mechanical misregistration. We recall that speckle pattern is very 
sensitive to angle of incident radiation. Despite our best efforts at 
precision engineering, there is still some misregistration between 
successive instances of presenting the token to the system, as we have 
previously seen in figure 7.12. Further, the phase of the Gabor Transform 
scrolls as the token undergoes small rotations in the horizontal plane. 
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Because we threshold about zero, several pixels whose phase is close to 
zero to begin with flip in value because of small rotations. Thus, 
misregistration is a major reason why bits in the Gabor hash string tend to 
flip. There is no fundamental reason why the tokens have to be 
misregistered. Better engineering could easily eliminate (or at least 
diminish substantially) this source of noise.

• The second reason why bits tend to flip is that the speckle pattern is very 
sensitive to small changes in the structure. Minute scratches can cause 
substantial changes in the pattern. We address this issue by selecting 
features that are on the same scale as the lobes of speckle and ignoring 
changes at other scales. This is one of the big advantages of a multiscale 
thresholding scheme. The problem could be further diminished by 
encapsulating the microstructure with clear, scratch- and scuff-resistant 
film.

• Finally, photon noise is also a reason why bits flip. Although, we have 
used a complex-valued transform to negate the effects of changes in 
ambient levels of illumination, multiple scattering routinely affect a few 
pixels in the speckle pattern. This issue could be dealt with by enclosing 
the complete optical train in a light-tight enclosure. In our 
implementation, for ease of experimentation, we enclosed only the 
detector in a light tight enclosure. An optical chopper could also take care 
of this problem.

FIGURE 10.1 HISTOGRAMS FROM LIKE AND UNLIKE TOKENS PLOTTED ON THE SAME 
GRAPH
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If the token-reader were re-engineered with the suggestions above, a 
substantial reduction in the mean value of the like distribution can be 
expected. However, because of noise, it is unlikely that the mean will be zero. 

Even without these improvements, we have seen (section 8.2) that an average 
of 984 bits (from a total length of 2400 bits) have to be flipped before a false 
reject occurs. Also, the probability that two unrelated speckle patterns are 
called related (false accept) is in the region of . Let us also recall that the 
number of possible tokens for this example is in the region of . The 
number of tokens is almost the same as the total number of Gabor hash 
strings, and the average Fractional Hamming Distance between unrelated 
Gabor hashes is . This suggests that robustness of the system will not 
diminish significantly as the number of tokens is increased, as long as the total 
number of tokens is smaller than the number of possible tokens.

There is also a more principled, engineering-independent way to "move" the 
two distributions in figure 10.1 apart by using a privacy-amplification 
protocol. This protocol essentially, over several rounds, converts the two 
distributions into -functions located at  and  respectively. The interested 
reader is referred to [84] and [85] for more details.

10.2 Brute-force and 
birthday attacks

We now consider two common attacks on physical authentication 
systems.These two attacks, for algorithmic one-way functions, are described 
in section 2.2.3. The brute force attack is completely independent of the 
physical system used. Assume we have a POWF system whose output is  
bits long and that a specific token is required in order to authenticate a 
particular transaction. In the absence of the token, an adversary could 
compromise the system by simply trying all  possible strings. Following the 
analysis in section 2.2.3, the number of attempts  to break the system with 
unity probability is given by . In the specific case of our system,  
is effectively  (see equation 8.2.5). This gives us 

10.2.1 

This is the number of strings an adversary would have to try to compromise a 
POWF-based authentication system as implemented in chapter 7. 

If the adversary were to try the birthday attack instead, and try to find two 3D 
structures which hash down to the same value with probability at least , 
then she would have to try on the order of  tokens. This number increases 
to  in order to increase the probability of success to 0.99. 

These two attacks are not unique to POWF-based systems. They apply to all 
authentication systems which is why they are not of too much interest to us 
here.
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10.3 Replay attacks The replay attack is perpetrated when an adversary stores up old Gabor 
Hashes and plays them back as needed. There are many ways in which a 
replay attack could be made in a POWF authentication system. We discuss 
two of them here.

• Store up all possible challenges and responses: Here the adversary has 
access to a valid token and a token reader and wants to build a look-up 
table mapping each possible challenge to a response. Let us consider what 
this entails. Since we are using a  DMD, there are  possible 
bitmaps with a single pixel turned on. If the structure is linear, then the 
response of the structure to any bitmap illumination could be calculated 
by coherently superposing speckle patterns from these  basis bitmaps. 
This implies that an adversary would have to record the complex 
amplitudes of the speckle patterns resulting from each of these basis 
illuminations. While this number may not appear very large, it is still 
significant when we consider that recording complex amplitudes 
essentially entails making holograms. We note that recording the complex 
amplitude of any wavefront is a non-trivial problem. One possible 
approach would be to build an automated hologram recording machine 
which could produce and store all possible speckle patterns corresponding 
to a valid token digitally. Building such a machine entails a significant 
research and financial commitment. 

We note in passing that a weakly nonlinear structure would dramatically 
increase the number of stored holograms from  to on the order of . 
This is clear from the discussion in section 5.4. At the conclusion of that 
section we saw that the nonlinear speckle pattern is exponentially 
sensitive to the structural configuration of the token and the state of the 
probe. Inducing a weak nonlinearity in the structure would render the 
replay attack much harder by requiring the adversary to store an 
impractical number of holograms.

• Simulate the responses computationally: One approach which avoids 
recording a large number of holograms would be to determine (at least in 
the linear case) the scattering matrix of the 3D structure. Once the 
scattering matrix is at hand all responses to challenges may be 
computationally simulated. 

Determining the scattering matrix is a non-trivial task because of the very 
large number of scattering matrix elements (on the order of ) 
involved. We recall from section 5.3.7 that the squared magnitude of each 
complex scattering matrix element  determines the probability that 
radiation incident on the 3D microstructure at angle  exits at angle . 
Because we are using coherent radiation, it is essential to determine the 
complex value of each scattering matrix element. It is possible, in 
principle, to determine each  (but not ) by using a polar 
nephelometer, which sends light in to the slab at a specific angle and 
detects the amount of light scattered in all directions. The reader is 
referred to [59] and [60] for more details of the construction and use of 
nephelometers. 
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Even if all we wanted to discover were the , and not the , we would 
have to make  queries to the 3D structure with the 
nephelometer. Let us assume for a moment that we are able to determine 

 scattering matrix elements per second. Then it would take on the 
order of  seconds which is about  years. We also note that storing 
al the elements of the scattering matrix would require disk space well 
beyond the capabilities of modern storage devices. 

We conclude that it is impractical to attempt to discover the scattering 
matrix for such the inhomogeneous microstructure we are using. If, 
however, the scattering matrix were made available, determining a single 
response would require  operations, which is practical, given 
current computing speeds.

In summary, an adversary could either store up all the responses to all 
potential challenges, which requires determining the complex exiting 
wavefront for each challenge. Alternatively, she could try and determine the 
scattering matrix which completely determines the response of the structure to 
any challenge. We have just demonstrated that this is an impractical task.

10.4 Fabrication 
methods

The security of a POWF-based authentication system depends on the 
difficulty of fabrication of arbitrary three-dimensional microstructures with 
some predetermined accuracy. The demand on accuracy comes from the 
probe, whose wavelength determines the smallest length scales. In this 
section, we look at available methods of microfabrication in terms of their 
complexity and cost. Our goal will be gain some intuition into the resources 
required to clone an inhomogeneous 3D microstructure. Fabrication 
techniques may be divided into two classes: top-down and bottom-up. Top-
down approaches start by defining the required structure and proceed by 
engineering a method to fabricate it. Bottom-up approaches rely on chemical 
and statistical forces to create the structure. We will discuss only the former 
class of techniques here. 

10.4.1 Photolithography
The standard fabrication method used to make essentially all microelectronic 
devices is photolithography where 2D patterns are defined using masks and 
then transferred to a substrate. Thus, there are two distinct steps: pattern 
definition and pattern transfer. 3D structures are created by stacking 2D 
layers. 

The substrate is first coated with a polymeric photoresist whose chains break 
down on exposure to ultra-violet light. Then, the photoresist is exposed to UV 
light through a mask and some reduction optics. The exposed photoresist is 
then washed away using a developer to leave a pattern on the substrate. The 
entire substrate is then coated with the material to be deposited, usually an 
insulating or metallic layer, and the resist is then lifted by dissolving in a 
solvent. This leaves the deposited material in the regions where holes existed 
in the photoresist layer. In general, photolithography can be done with metals 
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or insulators. There are stringent requirements on alignment because the 
feature size in on the order of  micron. 

The primary barrier, however, to the use of microlithography in fabricating 
arbitrary 3D structures is cost. In the table below we present the current cost 
[81][82] of each of the key steps in a microlithography fabrication process. It 
is clear that the most expensive steps in the process are exposing the substrate 
and photoresist processing. We also note that these costs are provided for 
approximately  layers. In order to fabricate a mm thick 3D structure at a 
longitudinal resolution of  microns, we would need to expose  
layers. Finally, we note that this process is geared to the production of a large 
number of identical structures, as opposed to a distinct one each time.

Clearly, the cost and complexity of microlithography puts it out of the reach 
of casual attackers. This is a principal advantage of using physical one-way 
hash functions for authentication: there is a significant asymmetry between 
the cost of making a single token and cloning it.

10.4.2 Electron beam lithography
Photolithography can produce feature sizes on the micron scale. Smaller 
features are possible by using electron beam lithography, which brings us into 
the realm of nanofabrication. In this case, a computer-controlled electron 
beam alters the chemistry of a resist, usually poly-methyl methacrylate 
(PMMA). Although this technique can produce feature sizes on the order of 

 nanometers, it is a serial process and very slow. It is not a practical 
process if rapidity is a criterion. 

10.4.3 Scanned probe lithography 
This technique uses variations on a scanning probe microscope to either 
“plow” a groove through or cause local changes in the electrochemistry of a 
substrate. This technique can produce  nanometer features. Limitations 
of this process include: low temperature requirements, ultra high vacuum, 
and, usually, conducting substrates. 

10.4.4 Summary
It is clear from the foregoing discussion that the existing techniques of micro- 
and nanofabrication are expensive and are largely geared towards the 
production of regular structures. Ultimately, it might be possible to build a 

Process Cost (millions of dollars)

Exposure tools 816

Automated photoresist processing 288

Etching 280

Cleaning and stripping 30

Automation 30

Infrastructure 992
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machine to copy any arbitrarily random microstructures but this is likely to be 
a complicated and expensive process. We suggest that the asymmetry in cost, 
between producing an arbitrarily complicated 3D structure and cloning it, is a 
security resource and can be exploited to build authentication, and perhaps, 
cryptosystems.

10.5 Fabrication 
complexity

We are now ready to discuss fabrication complexity which we define as the 
minimal computational and physical resources required to clone a physical 
system. 

Let us recall why we are interested in determine fabrication complexity. When 
we defined physical one-way functions in section 6.2. one part of the 
definition stipulated that materially constructing a distinct physical system 
containing the same secret should be “hard”. We did not define what we 
meant by “hard”. Ideally, we would like cloning to be impossible in the same 
way that it is theoretically impossible to clone single quantum states. 
However, in general, it is not impossible to clone arbitrary classical physical 
systems. Here we ask what the difficulty is.

10.5.1 Notation
We use the same notation as before, recalled here for convenience. 

Let  be a physical system containing a secret .  is some property 
or microstate of the physical system and  is a polynomial function of some 
physical resource such as volume, energy, space, matter et cetera. 

Let  be a specific state of a physical probe  such that  is a 
polynomial function of some physical resource. Henceforth, a probe  in 
state  will be denoted by . 

Let  be the output of the interaction between system  
containing secret  and probe .

10.5.2 Problem definition 
We approach the problem of determining fabrication complexity as follows: 
let us assume that we already know the secret  of a given physical system  
to some predetermined accuracy. We would like to transmit a compact 
description this secret to a machine that produces a distinct physical system 

 containing an identical secret . We will be satisfied with the 
reproduction if, for every possible probe state, the outputs of  are 
indistinguishable from those of . That is:

10.5.1 

for all possible , where  is a randomly chosen probe state and  can be 
made as small as we like.

10.5.3 A Universal Fabrication Machine (UFM)
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Fabrication complexity may be thought of as having two separate parts: a 
compact description of  and a machine which transforms this description 
into a physical system. We will employ Kolmogorov Complexity (see section 
2.5.2) to develop an algorithmically minimal (i.e., compact) description of  
and a Universal Fabrication Machine (UFM) to construct the physical system.

A UFM is a simply a Universal Turing Machine augmented with a fabrication 
head. A conceptual diagram is shown below. 

In principle, the operation of a UFM is very simple. It receives as input an 
algorithmically minimal description of the secret and decodes this program to 
output a spatial description of the physical system. The fabrication head, 
which has access to a palette of raw materials, then transforms the spatial 
description into a physical object. In doing so, the fabrication head utilizes 
physical resources which have a finite cost associated with them. This cost is 
also a component of the fabrication complexity. Therefore: 

Fabrication complexity = (Computational Complexity + Physical Resources)
We note that the algorithmically minimal description of  is independent of 
any specific method of fabrication. However, the program which decodes the 
description must know about the method of fabrication in order to produce 
output that is compatible with the fabrication method. 

10.5.4 Kolmogorov complexity of disordered structures
Consider the case where we have a disordered structure of volume  and 
uniformly distributed scatterers located at a mean free path  from each other. 
For now, we assume that all the scatterers are spheres of the same radius. 
What is the Kolmogorov Complexity of this structure?

Let us divide up the volume into cubical cells of volume . Because we 
assumed that the scatterers are uniformly distributed in the volume, there is a 
high probability that each cell contains exactly one scatterer. Each of these 
scatterers requires  integers to describe its location in space. The number of 
bits required to describe the location of one scatterer is then 

FIGURE 10.2 A CONCEPTUAL DIAGRAM OF A UNIVERSAL FABRICATION MACHINE
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10.5.2 

We know that there are approximately  scatterers in the volume. 
Therefore the total number of bits  required to describe the locations of all 
the scatterers is

10.5.3 

Additionally, we need a few more bits to describe the radius and to make the 
program self-delimiting, i.e., the program contains all the information 
required to produce the spatial description and halt. This correction is usually 
a constant and we will implicitly add an  term to our Kolmogorov 
Complexity. 

Equation 10.5.3 is an estimate of the number of bits required to describe the 
structure as derived from first principles. We know that the minimal program 
contains approximately the same number of bits. This is the program that is 
provided as input to the UFM.

10.5.5 Physical resources used in fabrication
The fabrication head of the UFM receives as input a spatial description which 
it transforms into a physical object. The resources used in order to accomplish 
this will vary with the specific fabrication method used. Assuming there is a 
minimum cost per operation, however, we can reasonably expect that the cost 
increases polynomially as the size of the system to be fabricated increases. 
For example, we can estimate the physical resource cost of fabricating the 
structure in figure 1.1 by determining the energy it takes to place one atom on 
the substrate and multiplying by the number of atoms. In 3D we expect the 
number of atoms in a given volume to increase as the cube of the linear 
dimension. Hence, we conclude that the physical resource cost is a 
polynomial function in the size of the structure. 

We observe that a polynomial increase in the size of the structure results in an 
much larger exponential size in the number of possible structures as viewed 
by a probe. 

10.6 Parallel 
fabrication attack

Having discussed the various fabrication methods and the concept of 
fabrication complexity, we now briefly look at another kind of attack that 
might be perpetrated. We refer to this kind of attack as a parallel fabrication 
attack. 

Our version of a UFM is a serial machine. It is not difficult to imagine a 
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machine which copies 3D microstructures in parallel. Conceptually, such a 
machine could operate as follows. A tomographic technique, operating in a 
resolution regime below that of the physical probe, could image slices of the 
3D microstructure and use those images to create layers of the 3D 
microstructure. One way to do this might be to selectively cure epoxy using 
the tomographic images as masks. 

Let us consider the requirements on such a parallel fabrication machine. First, 
its lateral resolution must be greater than the wavelength  of the probe used 
to derive the unique identifier. This could be achieved by using illumination 
whose wavelength . This would enable the construction of features 
which are continuous with respect to probe radiation. Second, the longitudinal 
resolution wold also have to be substantially smaller than . Finally, the time 
take to construct each layer would have to be small because a large number of 
layers need to be built. For our example, with  mm and  
microns, we would require a lateral and logitudinal resolution of greater than 

 microns at which wavelength about  layers must be fabricated. 

A machine with these capabilities does not exist today. However, it is not 
inconceivable that it could be made in the near future. We believe that the 
greatest threat to the security of POWF-based authentication systems is posed 
by such parallel fabrication machines.

10.7 Summary In this chapter, we discussed a few issues that could not logically fit into any 
other chapter. First, we took a look at scaling issues of physical authentication 
systems. Scaling can occur in two ways: either the size of the 3D structure 
could increase, or the number of tokens could go up. The scaling performance 
with respect to increase in the size of the structure is well understood. 
Essentially, the number of structures distinguishable by a probe is exponential 
in the ratio , where  is a linear dimension of the structure and  is the 
mean free path between scatterers. 

We then considered the effects of scaling the number of tokens in circulation. 
We examined the reasons why the average Hamming Distance between like 
speckle patterns was as great as it is (0.2525) and suggested ways in which 
this could be reduced. Based on the facts that (a) the number of possible 
structures distinguishable by a probe is exponential in the size of the structure 
(b) the effective number of possible Gabor Hashes was almost the same as the 
number of structures and (c) the average Hamming Distance between two 
unrelated Gabor Hashes is , we concluded that increasing the number of 
tokens would not cause any significant degradation in robustness, as long as 
the number of tokens in circulation is smaller than the number of possible 
tokens.

We then considered three different kinds of attacks on a physical 
authentication system. The first two, brute-force attack and the birthday 
attack, are attacks on the Gabor Hash strings, and are completely independent 
of the physical system. We calculated that with a brute force attack, an 
adversary would have to try on the order of  strings in order to 
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compromise the system. If the adversary were to try the birthday attack 
instead, and try to find two 3D structures which hash down to the same value 
with probability at least , then she would have to try on the order of  
tokens. 

Replay attacks were then considered. There are two cases. The first is where 
an adversary stores up all possible responses and the second is when the 
response is computationally simulated. For each of these cases, we considered 
plausible ways in which the attack could be perpetrated, and concluded that 
these attacks, while feasible, were impractical. 

Then we briefly considered current-day microfabrication methods in order to 
gain some insight into their cost and complexity. It is clear that these methods 
are extremely expensive and are geared towards the production of large 
numbers of identical and regular structures, and are not, in general, applicable 
to the construction of arbitrary inhomogeneous microstructures. 

This led to a discussion of fabrication complexity, which we define as the 
minimal computational and physical resources required to clone a physical 
system. We discussed fabrication complexity in the context of an idealized 
Universal Fabrication Machine — a Universal Turing Machine augmented 
with a fabrication head. The purpose of this machine is to transform an 
algorithmically minimal (in the Kolmogorov sense) description of a physical 
structure into the structure itself. We calculated the size of an algorithmically 
minimal description of a disordered 3D structure and showed how the number 
of structures allowed by this description is on the same order as that derived 
from the physics of coherent multiple scattering.

Finally, we discussed a parallel fabrication attack, where the 3D structure is 
cloned a whole layer at a time, and came up with a potential structure for a 3D 
photocopying machine and some basic limits on its performance. 

0.5 1035



CONTRIBUTIONS AND FUTURE WORK 143
11 Contributions and future work

In this, the final chapter of the dissertation, I (as opposed to the scientific 
"we") summarize the original contributions and discuss work that should be 
undertaken in the future.

11.1 Summary and 
original contributions 

The early goal of this research project was simply to derive unique and 
tamper-resistant identifiers from three-dimensional structures at a very low 
cost-per-bit. This goal was motivated by several factors. Primary among them 
were the emergence of value-bearing tokens in large quantities (e.g. 
downloadable postage stamps, smart cards with monetary value) and the 
amazing increase in 2D imaging and fabrication capabilities. 

An extreme example of 2D fabrication is seen in figure 1.1. 2D scanning is 
not far behind - in fact, the HP Capshare freehand scanner assembles 
rectilinear images from different swaths by correlating paper texture features 
at swath boundaries. Another example is the Microsoft Intellimouse which 
captures images of the work surface at over  fps in order to accurately 
track mouse movement. The fact that such advanced 2D imaging is available 
in consumer-grade electronics costing on the order of a hundred dollars is a 
threat to physical authentication systems which rely solely on 2D features. 

Thus, I decided to focus solely on inhomogeneous 3D structures to derive 
identity information. Then, the first choice that had to be made was to decide 
on the 3D imaging technique. The contenders for subsurface imaging were 
optical coherence tomography (OCT), confocal microscopy (CM), and 
magnetic resonance imaging (MRI). OCT seemed to be the best choice, given 
that it could image whole slices of the structure at a time, and was based on 
very simple optical principles, which meant the token reader had the potential 
to be inexpensive. However, MRI was attractive as well because the quantum 
computing group were already engaged in building a table-top NMR 
spectrometer. However, all these techniques had one fatal flaw - modifying a 
small region of the structure had a correspondingly small effect on the images. 
Tamper detection in the face of noisy imaging seemed to be only remotely 
possible. 

Inspired by a patent application by Nabil Amer, David DiVincenzo, and Neil 
Gershenfeld, I noticed that coherent multiple scattering from inhomogeneous 
3D microstructures possessed many of the same properties and, more 
importantly, asymmetries, as algorithmic one-way functions. This observation 
led me to the concept of physical-one way functions and to pose the original 
problem in the framework of these functions. 

In the next few paragraphs, I will outline the contributions of this dissertation. 

• I believe that framing the present problem of generating unique tamper-
resistant identifiers (and any future work related to physical 
authentication and cryptography) in the language of algorithmic 
cryptography is in itself a useful contribution. Modern algorithmic 

1500
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cryptography is divided into two distinct activities: the definitional 
activity, which is the rigorous definition of cryptographic tasks that 
capture natural security concerns, and the constructional activity, which is 
the design and analysis of cryptographic schemes satisfying the 
definitions[11]. I believe that adopting the same approach in the physical 
domain is both fruitful and essential in order to examine the security 
properties of physically-based cryptosystems in a rigorous manner. 
Previous efforts in the field of physical authentication have, to the best of 
my knowledge, not made an explicit connection to algorithmic 
cryptography. 

• In this vein, the definition of physical-one way (hash) functions along the 
lines described above is a contribution. The definitions I proposed are 
preliminary, and will no doubt be subject to change. However, they are a 
good starting point for two reasons. First, they will allow us to clearly 
examine the security properties of physical authentication based on 
coherent multiple scattering and second, they will enable us to search for 
other (classical) physical systems which might be usable as authentication 
and cryptographic systems.

• Identifying a candidate physical system and showing, both theoretically 
and experimentally, that it satisfies the definition is a contribution. Indeed, 
the definition mentioned above emerged from the properties of coherent 
multiple scattering, not the other way round. Specifically, showing that 
POWFs are collision resistant and that they exhibit the avalanche effect 
are important pieces of the picture.

• The experimental verification of the fact that coherent multiple scattering 
allows us to derive unique tamper-resistant identifiers at a very low cost-
per-bit consumed a whole year. Simply looking at the final system used to 
gather data does not betray the vast amounts of time spent in building 
several (approximately ) candidate registration systems. Ultimately, 
however, the final system performed exceedingly well. I believe that 
demonstrating that our physical authentication system is both practical 
and useful is an essential contribution to the notion of physical one-way 
functions. 

• Another piece of the puzzle are the two protocols I presented. The one-
time pad protocol is needed because one of the inputs to the physical one-
way function is a 3D structure and is in possession of a, possibly 
malicious, user of the authentication system. Pre-acquiring speckle 
patterns and storing them up at a trusted site simulates the second copy of 
the pad required in a one-time pad protocol. Of course, there may be 
hidden flaws which are immediately obvious to a cryptographer, but my 
goal was to simply show that it is possible to construct protocols based on 
physical one-way hash functions. The bit-commitment protocol is also 
very rudimentary but it does demonstrate that, at least for honest users, it 
is possible to develop a scheme which fulfils all the requirements. 

10
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• The discussion of possible attacks on a physical authentication system, 
both digital and physical, is a useful contribution.

• Finally, I believe that the concept of fabrication complexity, which 
bounds the information, energy, and time required to fabricate a physical 
system in a specific internal state is generally a very useful concept. As 
far as I can tell, previous authors have not addressed the question of the 
total computational and physical resources required to construct a specific 
instance of a physical system. I suspect that this is partly due to the heavy 
reliance on statistical entropy as a measure of information which forces 
thought in the direction of ensembles of physical systems. Kolmogorov 
complexity allows the quantification of information in a specific state and 
is thus a very useful candidate of bounding the computational component 
of fabrication complexity. The second reason why fabrication complexity 
has not been discussed before is because there has not been any real need 
to do so. In our case, all security vanishes if a physical system is cloned. It 
is therefore important to know the minimum effort required to clone a 
given physical system. This effort is captured by the notion of fabrication 
complexity

11.2 Future work I view this dissertation as a starting point for the principled and rigorous study 
of physical cryptosystems. In this section, I want to offer suggestions for 
future efforts based on the general idea of physical one-way functions.

• On the theoretical front, some work needs to be done to sharpen the 
definitions of physical one-way functions and fabrication complexity to 
make them as general and physical-system-independent as possible. The 
influence of coherent multiple scattering is writ large on the existing 
definitions.

• In the context of the specific implementation of a physical authentication 
system, several improvements can be made. A version of the token-reader 
that is much more portable and compact needs to be built. This could 
incorporate a high-performance registration system and an isolated 
optical chain to diminish the amount of noise in the system. In the same 
vein, tokens whose 3D structure is also isolated from the environment 
need to be produced. Finally, a lossless compression scheme should be 
applied to the Gabor hash strings in order to reduce storage requirements 
and produce identifiers in which each bit is statistically independent of 
every other bit. 

• Some more work needs to be done to precisely classify the complexity 
class of simulating the passage of light through both linear and nonlinear 
disordered structures. I have a feeling that simulating the passage of light 
through nonlinear media is NP-complete and would like to verify it.

• I have already mentioned that the computational and physical complexity 
of the physical system increases as we approach the optical localization 
threshold, where the wavelength of incident radiation is on the same order 
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as the mean free path. A precursor to localization, optical weak 
localization, results in enhanced backscattering of light. One simple way 
to make the linear physical authentication system harder to simulate and 
spoof would be to derive two speckle patterns - one on the same side of 
the token and in the same direction as the incident radiation, and one on 
the opposite side, as we have always done. This would certainly ramp up 
the space/time computational complexity of simulation. Unfortunately, it 
might very well increase the cost and complexity of the token reader. As a 
scaling problem, however, it certainly merits investigation.

• An application that I would like to see implemented is an authenticated 
camera. Schneier et al. [75] describe develop protocols for an 
authenticated camera that allows people to verify that a given digital 
image was taken by a specific camera at a specific time and specific 
place. These protocols require interaction between the camera and base 
station both before and after a series of images are taken. It should be 
possible to implement an authenticated camera with a POWF-based 
system. One could imagine a small blob of epoxy with several scatterers 
in it permanently bonded to a portion of the CCD detector of a network-
enabled digital camera. The camera could then be augmented with a 
semiconductor laser to probe the structure. Once the camera is augmented 
in this way, a one-time pad protocol for untrusted readers can be executed 
each time the user takes a picture. I believe this general idea could be 
extended to many other network-enabled objects.

• I have suggested that the general framework of physical one-way 
functions could be used to search for other physical systems which could 
be used in authentication. One such system immediately comes to mind: 
the electronic analog of coherent multiple scattering. This field is usually 
referred to as electronic transport in mesoscopic systems [76][77]. A lot 
of the pioneering work in this field was done by Rolf Landauer. There are 
many similarities between the propagation of light through disordered 
microstructures and that of electrons through disordered wires. It has been 
shown, at very low temperatures, that the conductance of disordered 
wired fluctuates in much the same way as speckle, and the mathematical 
treatment of conductance fluctuations is identical to that of speckle 
[78][79][80]. Given this, I can imagine that it would be possible to use 
POWFs to generate unique identifiers using silicon microstructures. 
Specifically, I can imagine every silicon chip having its own unique 
tamper-resistant identifier. Admittedly, this is impractical now, but it 
might not be in the future.

• Finally, there is one connection to algorithmic cryptography that I have 
not addressed in this dissertation: trapdoor functions. It would be 
interesting to discover physical systems which can be fashioned into 
physical one-way trapdoor functions, in order to enable physically 
inverting the functions in constant time. Of course, we would still require 
that all simulation of the physical system be impractical or infeasible. It is 
not immediately clear to me whether physical one-way trapdoor functions 
will have any practical utility in implementing cryptosystems, given their 
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dependence on a specific instance of a physical system. However, 
discovering these physical systems is essential in order to fill out the 
space of cryptographically motivated physical functions. 
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