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Abstract

This  article  describes  an  algorithm  called  HyperLex that  is  capable  of  automatically
determining word uses in a textbase without recourse to a dictionary. The algorithm makes use of
the specific properties of word cooccurrence graphs, which are shown as having "small world"
properties.  Unlike earlier dictionary-free methods based on word vectors,  it  can isolate  highly
infrequent  uses  (as  rare  as  1%  of  all  occurrences)  by  detecting  "hubs"  and  high-density
components in the cooccurrence graphs. The algorithm is applied here to information retrieval on
the Web, using a set of highly ambiguous test words. An evaluation of the algorithm showed that it
only omitted a very small number of relevant uses. In addition, HyperLex offers automatic tagging
of word uses in context with excellent precision (97%, compared to 73% for baseline tagging, with
an 82% recall rate). Remarkably good precision (96%) was also achieved on a selection of the 25
most  relevant  pages  for  each  use  (including  highly  infrequent  ones).  Finally,  HyperLex is
combined with a graphic display technique that allows the user to navigate visually through the
lexicon and explore the various domains detected for each word use.
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1. Introduction

Keyword-based information retrieval on the Web, or any other large textbase, runs into the
problem of the multiple uses of most words. The inescapable homography and polysemy of human
languages generate considerable noise in the results. A query on the French word  barrage,  for
example, may return pages on dams, play-offs, barriers, roadblocks, police cordons, barricades,
etc.  depending on the global frequencies and the particular ranking techniques used by search
engines. Retrieving infrequent uses can prove quite tricky. 

Of course, users can usually narrow down their queries by combining keywords with Boolean
operators,  but  this  is  not  always  a  straightforward  task.  Continuing  with  the  above  example,
combining the word barrage with the word match does not necessarily produce all of the pages
about "matchs de barrage" (play-offs): many pages about this topic do not contain the word match.
1This article is an extended version of a  paper given at the TALN'2003 conference (Véronis, 2003).
2 E-mail address : Jean.Veronis@up.univ-mrs.fr



To get around this, one would have to list all lexical possibilities and write a query of the type
barrage AND (jouer OR jeu OR championnat OR rencontre OR football OR basket-ball OR ...)
(play  OR game OR championship  OR encounter  OR soccer  OR basketball  OR ...),  which  is
cumbersome and may still not produce the desired results. Besides, the general public is not very
skillful  when it  comes to formulating such complicated queries.  In  a large-scale study  on the
Excite search engine, Spink, Wolfram, Jansen and Saracevic (2001) showed that less than 5% of
the queries contained Boolean operators, and 50% were incorrect.3 Less than 1% of the queries
contained nested operators (as in the above example). Spink et al. even concluded:

“For an overwhelming number of Web users, the advanced search features do not exist. The low use
of advanced search features raises questions of their usability, functionality, and even desirability, as
currently presented in search engines.”

It  thus  seems  worthwhile  to  carefully  reconsider  the  applicability  of  word  sense
disambiguation methods to search engines. Within the past few years, an idea has been circulating
that word sense disambiguation, and more generally natural language processing techniques or
NLP, are useless in information retrieval (IR),  and may even lower performance.  I  will  show
below that this claim rests on an erroneous interpretation of repeatedly cited articles like Voorhees
(1999). The present study will hopefully demonstrate that this idea is false.

To  be  useful,  a  word  sense  disambiguation  technique  must  exhibit  sufficiently  high
performance.  Many  recent  studies  conducted  in  the  Senseval  competition  (Kilgarriff,  1998)
proposed substantial improvements in the available techniques and resources (see also Stevenson
& Wilks, 2001). However, in my mind, one of the main problems in word sense disambiguation
lies upstream, in the very sense lists used by systems. Conventional dictionaries are not suited to
this task; they usually contain definitions that are too general (in our barrage example, the "act of
blocking"), and there is no guarantee that they reflect the exact content of the particular textbase
being queried. I showed experimentally that linguists have trouble matching the "senses" found in
a  dictionary  and  the  occurrences  found  in  a  corpus  (Véronis,  1998).  What  is  more,  textbase
documents would still have to be automatically categorized on the basis of the dictionary "senses",
an extremely difficult task that has eluded half a century of ongoing research efforts, and for which
progress has been very recent (see Ide & Véronis, 1998, for a detailed description of the state of
the art, and Stevenson & Wilks, 2001, for recent developments).

Schütze (1998) proposed a method based on "word vectors" that automatically extracts the
list of "senses" (I prefer to speak of "uses") from a given corpus, while also offering a robust
categorization technique. However, vector-based techniques come up against a major and highly
crippling problem: large frequency differences between the uses of the same word cause most of
the useful distinctions below the model's noise threshold to be thrown out.

In  the  present  article,  I  propose  a  radically  different  algorithm,  HyperLex,  capable  of
automatically determining the uses of a word in a textbase without recourse to a dictionary. The
algorithm exploits  the specific properties  of  word cooccurrence graphs,  which,  as  I  will  show
below, turn out to be special graphs called "small worlds" (Watz & Strogatz, 1998; Barabási &
Albert, 1999). Unlike the earlier word-vector methods, this approach can isolate highly infrequent
uses (as rare as 1% of all occurrences) by detecting graph "hubs" and high-density components.
The algorithm is applied here to information retrieval on the Web, using a set of highly ambiguous
test words. An evaluation of the algorithm showed that it only omitted a very small number of
relevant uses. In addition,  HyperLex offers automatic tagging of word uses in context, with an
excellent precision level (97% compared to 73% for baseline tagging, with a 82% recall rate).
Remarkably  good  precision  (96%)  was also  achieved  when the  25  most  relevant  pages  were
selected  for  each use  (including the  highly  infrequent  ones).  Finally,  HyperLex comes with  a
graphic display technique that allows the user to visually  navigate throughout the lexicon and
explore the various domains detected for each use.

3 My calculations based on Jansen, Spink, and Saracevic's tables (2000).
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2. Past Research

Word sense disambiguation techniques were first applied to IR about thirty years ago, with
Weiss's work (1973), but it was not until the 1990's that this type of application was tested in full
scale (Krovetz & Croft, 1992; Voorhees, 1993; Wallis, 1993). The results obtained so far have
been modest, and some studies have even reported a decline in performance. As mentioned above
in the introduction, it was no doubt these studies -- especially the widely cited one by Voorhees
(1999) -- that contributed to propagating the preconceived idea that word sense disambiguation,
and NLP techniques in general, are useless or even detrimental in IR tasks. This idea is in fact a
distortion of the results of studies published on the subject.  If we read Voorhees (1999) more
carefully, for example, we can see that she stresses the fact that performance is degraded under
certain  conditions  by  imperfect  NLP  techniques,  and  she  is  far  from  drawing  the  definitive
conclusion that these techniques are of little interest to IR. Earlier, Sanderson (1994) had shown
experimentally that with a correct disambiguation rate of 75% (typical of the state of the art at the
time in matters of word sense disambiguation), performance in IR declined sharply, because the
errors  introduced  by  such  a  disambiguation  system  only  make  the  initial  ambiguity  worse.
Sanderson suggested that a 90% correct disambiguation rate would be necessary to improve IR
performance.  Not  much  later,  Schütze  and  Pedersen  (1995)  used  a  disambiguator  with  90%
precision and did indeed find a 7 to 14% improvement in their querying system's performance.4

It is not trivial that the Schütze & Pedersen study (1995) -- one of the rare studies where word
sense disambiguation was shown to have a positive effect in IR -- also happens to be one that did
not  make use  of  a dictionary  containing a predefined list  of  senses:  the "senses"  were drawn
directly from the corpus, using a method that will be described in detail below. In my mind, the
use of a dictionary is the principal stumbling block of current disambiguation methods. I showed
in a large-scale study conducted as part of the Senseval-1 evaluation exercise5 (Véronis, 1998,
2001) that human annotators find it very difficult to perform the disambiguation process required
of  machines.  Six  linguistics  students  had  to  use  the  sense  numbers  supplied  by  a  standard
dictionary  (Petit  Larousse)  to  independently  tag  about  3700  occurrences  of  sixty  polysemous
words (20 adjectives, 20 nouns, and 20 verbs) in a corpus. A statistical analysis of the results
showed  that  the  pairwise  interannotator  agreement  rate  was  mediocre:  41%  for  verbs  and
adjectives, and 46% for nouns (after factoring out the effect of chance). For certain words such as
correct, historique, utile, communication, degré, lancement, and station (correct, historical, useful,
communication, degree, launching, station), the tagging was virtually the same as it would have
been if the subjects had responded at random. A detailed analysis of the problems encountered
showed that in nearly every case, the dictionary entries did not contain enough surface cues to
allow the annotators to reliably assign the occurrences in the corpus to the senses in the dictionary.
To  make  things  worse,  the  very  division  of  dictionaries  entries  rarely  takes  into  account  the
distributional constraints of the different word senses (number and types of complements, kinds of
prepositions, selectional restrictions, etc.), and in many cases, it even contradicts these constraints.
The lack of distributional cues and properties in most dictionaries leads to many vague definitions,
particularly for abstract or highly polysemous words like  degré, économie, communication,  and
formation (degree,  economy/economics,  communication,  formation/training)  which  make  up  a
large part of many texts (for a more detailed analysis, see Véronis, 2001).

This  experimental finding is  in line with what  other researchers have continuously  noted
about dictionaries, although their studies have generally been more informal and less detailed (see
for example Ahlswede, 1993, 1995; Ahlswede & Lorand, 1993; Amsler & White, 1979; Bruce &
Wiebe,  1998;  Jorgensen,  1990).  This  also  applies  to  WordNet,  despite  its  availability  and
widespread use in word sense disambiguation (see Fellbaum, Grabowski, & Landes, 1998): while
offering a rich network of structured lexical information, the sense divisions it contains are in fact
quite similar to those of a standard dictionary and therefore suffer from the same imperfections.
4An anonymous reviewer brought to my attention two recent studies which also hold a more positive view
on the usefulness of WSD for IR (Gelbukh et al., 2003; Stokoe et al., 2003).
5 The French part (see Segond, 2000).
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As mentioned above, Schütze (1998) overcame this problem by automatically extracting the
list of "senses" from the corpus itself. "Senses" correspond to clusters of similar contexts for a
given word, and are thus defined in a distributional fashion. Although Schütze did not present
things as such, his work takes up on an old idea. Traces of this idea are found back in Meillet
(1926), for whom "the sense of a word can only be defined as an average of [its] linguistic uses."
Wittgenstein (1953) argued for an analogous view in his  Philosophische Untersuchungen, and
Harris (1954: 155-158) adopted it in his linguistic program by defining meaning as a function of
distribution. This idea also underlies Hornby's work (1942, 1954), which had a strong influence on
British  lexicography  (this  explains  that  British  dictionaries  are  somewhat  less  subject  to  the
criticisms I have outlined above). Whether the clusters thus identified actually constitute "senses"
can probably be debated, so the more cautious term "use" will be employed here.

Schütze's implementation was derived from the vector-space model so well known in IR (see
for  example  Salton  &  McGill,  1983).  Each  word  is  represented  by  a  vector  in  a  high-
dimensionality Euclidian space, as are documents and queries in IR. The dimensions of the space
are the different words that can occur in context with any word in the corpus, and the value of each
component of the vector is the number of cooccurrences in a given context window. Illustrating
again with the  barrage example and outrageously reducing the possible contexts to two words
only,  eau (water) and  match (match or game),  for the sake of the example, the corresponding
vector would be a representation in a two-dimensional space like the one shown in  Figure 1. 

EAU

MATCH

BARRAGEEAU

MATCH

BARRAGE EAU

MATCH

C1
C3

C4

C2

C5 C6

C8
C7

Sense 1

Sense 2

Figure 1. Vector of the word barrage Figure 2. Context-vector

The vector representation of a word merges its different uses. Schütze defines context vectors
in such a way that each one is the sum of the word vectors of words that occur in a given window
for each particular context (Figure 2). A clustering algorithm detects coherent groups of contexts,
each of which corresponds to a different sense of the concerned word. Obviously, such vector
spaces have thousands of dimensions in reality, and Schütze uses a singular value decomposition
technique that  considerably  reduces  the  dimensionality  of  the  space (to  only  a  hundred  or  so
dimensions) before the clustering algorithm is applied.

The results of Schütze's experiment on a set of test words were very good, and as stated
above, this technique significantly improves the performance of IR systems. However, in addition
to its high cost in terms of computational resources, it has a major shortcoming: in my attempts to
replicate the results, the clustering algorithm discriminated only uses that were few in number,
more or  less  equiprobable  and  highly individualized.  In  fact,  the  words  Schütze tested in  his
experiment  met  these  criteria,  that  is,  they  were  frequency-balanced  homographs  or  near-
homographs such as plant, train, vessel, and so on.

For most words, including the ones used in the present study like barrage, one or two main
uses show up, followed by a variable number of low-frequency uses, more or less in accordance
with  a  power  law linking  the  rank  of  a  use  and  its  frequency  (this  was  already  apparent  in
Thorndike and Lorge's counts, 1938; see also Krovetz & Croft, 1992):

p r ∝r− (1)

Figure 3 illustrates this for the various uses of the word  barrage, observed in a corpus of five
million words (based on data from Reymond, 2002).
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Figure 3. Corpus-based frequencies of the uses of barrage

But the low-frequency uses, like "match de barrage" (play-off) for example, are still not rare
ones for an average speaker and are thus likely to be included in queries. Only at extremely low
frequencies do the uses become uncommon -- e.g.,  barrage as  guitar  brace or  opening bid in
bridge, whose frequency cannot be precisely assessed. In fact, none of the uses of the test words
employed  in  the  present  study  can  be  considered  "rare",  even  though  many  of  them  had  a
frequency of about 1%. My attempts to replicate Schütze's technique on these words totally failed,
and this is what urged me to develop a method that would be less frequency-sensitive. It makes use
of the particular properties of word cooccurrence graphs.

3. Small Lexical Worlds

eau

rivière
production

électricité

irrigation

match
équipe

coupe football
fleuve

victoire
monde

eau

rivière
production

électricité

irrigation

match
équipe

coupe football
fleuve

victoire
monde

Figure 4. Graph of the cooccurrents of the French word barrage

One can construct a graph for each word to be disambiguated in a corpus (or target word --
details on how such a graph is generated will be presented later). The graph's nodes are the words
that cooccur with the target word (in a window of a given size, e.g., a sentence or a paragraph). An
edge connects two nodes, A and B, whenever the corresponding words are cooccurrent with each
other. For instance, in the graph of the target word barrage (Figure 4), the nodes corresponding to
production and électricité will be connected to each other because they occur together in contexts
such as:

Outre la production d'électricité, le BARRAGE permettra de réguler le cours du fleuve... (In addition
to the production of electricity, the DAM will help regulate the river flow ...)
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We shall see below that such graphs have the properties of the "small worlds" described by
Watts and Strogatz (1998), one of today's key areas of research in graph theory. While a large part
of  the  graph-theory  studies  have  dealt  with  regular  graphs  or  random graphs,  the  Watts  and
Strogatz study (1998), along with an ever-growing body of research, has shown that most real-
world graphs and networks do not fall into either of these categories, but are in an intermediate
state somewhere between order and chaos.

3.1. Properties of Small World Graphs

Watts  and  Strogatz  (1998)  defined  two  measures  for  characterizing  small  worlds:  the
characteristic  path  length (L)  and  the  clustering  coefficient (C).  L is  the  mean  length  of  the
shortest  path between two nodes of  the graph.  Let  dmin(i,  j)  be the length of  the shortest  path
between two nodes, i and j, and let N be the total number of nodes:

L= 1
N ∑

i=1

N

d min  i , j  (2)

For each node  i, one can define a local clustering coefficient  Ci equal to the proportion of
connections  E((i)) between the neighbors  (i) of that node. For a node i with 4 neighbors, for

instance, the maximum number of connections is ∣Γ  i ∣
2   = 6. If 5 of these connections actually

exist,  Ci  = 5/6 ~ 0.83. The global coefficient C is the mean of the local coefficients:

C= 1
N ∑

i=1

N ∣E  Γ  i ∣

∣Γ  i ∣
2  (3)

This  coefficient  ranges between 0 for  a  totally  disconnected graph and 1 for  a  complete
graph.

In the case of a random graph of N nodes whose mean degree is k (mean number of edges per
node or E/N, where E is the number of edges in the graph):

Lrand ~ log(N) / log(k) (4)

Crand ~ 2 k / N (5)

For example, a random graph of 1000 nodes and 10000 edges will have a mean degree k of
10, a characteristic path length  Lrand of about log(1000)/log(10) = 3 and a clustering coefficient
Crand of about 10/1000 = 0.01.

For Watts and Strogatz (1998), small world graphs are characterized by the relations:

L ~ Lrand (6)

C >> Crand (7)

Relation  (5)  means  that  at  a  constant  mean  degree,  the  number  of  nodes  can  increase
exponentially,  whereas  the  characteristic  path  length  will  only  increase  in  a  linear  way.  This
accounts for the phenomenon observed by Milgram (1967), who first proposed the term "small
world": any individual on the planet is only "six degrees away" from any other individual in the
graph of social relations, even though there are several billion inhabitants.

Equation (6) indicates the difference between a small world and a random graph: in a small
world, there will tend to be "bundles" or highly interconnected groups. Taking the social-relations
example again, the friends of a given individual will be much more likely to be acquainted with
each other than would be predicted if the edges of the graph were simply drawn at random.
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Following the Watts & Strogatz article (1998), small worlds became a widely studied topic,
and this type of structure was discovered in a large number of real networks including the Web,
the Internet, networks of mathematicians who had cosigned an article, or actors in the same film,
electrical distribution networks, protein interaction networks, and so on (see Newman, 2003). The
distribution of node degrees has also been thoroughly examined: while in a random graph, the
probability  p(k) that a node will be of degree  k decreases exponentially with  k (Poisson's law),
most observed small worlds abide by a power law (Barabási & Albert, 1999):

p k ∝k− (8)

with  close to one.
Graphs that obey this law are called scale-free.6 In a graph of this type, most nodes turn out to

have few connections, while a very small number of nodes (hubs) are highly connected to a very
large number of others. Deleting hubs can cause considerable damage to the network. The Internet
is a typical example of such a graph.

3.2. Building Cooccurrence Graphs

Ten highly polysemous words were selected from among the ones that had caused substantial
problems for the human annotators in Véronis (1998) (Table 1). For each word, a subcorpus of
Web pages was compiled using the meta-engine Copernic  Agent7,  and querying first  with the
singular form of the word and then with the plural form. Among the pages obtained, ones that
occurred twice and ones that did not contain the word in question (errors of the type "Page not
found", for example) were eliminated.

The  paragraphs  containing  each  target  word  were  extracted  and  tagged  using  Cordial
Analyseur8, supplemented with some post-processing programs. Only nouns and adjectives were
kept. At first, verbs were also retained, but they ended up causing a notable decline in performance
since too many verbs like  commencer (start),  pouvoir (can) have very general uses.  This  is a
temporary solution, of course, and this problem will be attacked in future research. The paragraphs
were then filtered to eliminate function words (determiners, prepositions, etc.) as well as a certain
number of general words found on a stoplist, especially words related to the Web itself, given this
particular application (menu, home, link, http,  etc.)9 Words with less than 10 occurrences in the
entire  subcorpus  were  also  discarded.  Finally,  contexts  containing  fewer  than  4  words  after
filtering were deleted.

The  cooccurrence  matrix  was  generated  from  this  filtered  set  of  contexts:  two  words
appearing  in  the  same  paragraph  were  said  to  cooccur.10 Only  those  cooccurrences  with  a
frequency of 5 or more were retained.

Table 1 gives the quantitative characteristics of the subcorpus collected for each word, and of
the cooccurrence graph generated from it.

6 By contrast, random graphs have a scale, their mean degree k, which is the peak of the degree distribution.
7 http://www.copernic.com
8 Developed by Synapse Développement : http://www.synapse-fr.com
9 It is extremely important that the lemmatization and filtering processes be of high quality. If the method is
robust as a whole, systematic lemmatization errors on the hubs of a graph can lead to disastrous results, as
can the presence of unfiltered words like menu or home, which create artificial hubs that are unrelated to the
domains of the subcorpus in question. The precision of the morphosyntactic tagging obtained here for the
major  grammatical categories (noun,  adjective,  verb)  was about  99% (the fact  that the main difficulties
concerned distinctions between minor categories like prepositions and adverbs was helpful).
10 Other possibilities could be explored, such as the utilization of a fixed-size window throughout the text.
However,  the paragraph seems to be a good contextual unit for use in real-world applications because a
single cooccurrence matrix can be constructed for the entire corpus. The same matrix would be valid for all
the words to be disambiguated, which would save a lot of processing time.

77



Target word Translation No. of Pages No. of Contexts
  Raw count Useful Raw count Useful
BARRAGE dam, blockade, barrage... 1702 1372 7256 6924
DETENTION detention, possession, holding,

custody…
2112 1270 8902 8728

FORMATION training, formation 5974 1590 5248 4885
LANCEMENT launching, starting up,

throwing...
2828 1231 3307 3174

ORGANE organ, instrument, medium,
representative…

2786 994 2953 2849

PASSAGE passage, way, crossing,
transition, coming by…

3512 1046 4210 3894

RESTAURATION restoration, rehabilitation,
catering, food industry…

5327 1227 3522 3287

SOLUTION solution, answer 6287 896 2085 1915
STATION station, halt, site… 7916 1093 3837 3671
VOL flight, gliding, theft, robbery… 5237 818 3001 2579

Table 1. Target words and quantitative characteristics of the subcorpora

3.3. Weighting

Each edge is  assigned a weight  that  decreases as the association frequency of the words
increases:

wA,B = 1 - max[ p (A | B), p(B | A) ] (9)

where p(A | B) is the conditional probability of observing A in a given context, knowing that that
context contains  B, and inversely,  p(B |  A) is the probability of observing  B in a given context,
knowing that it contains A. These probabilities are estimated from frequencies:

p(A | B) = fA.B / fB     et     p(B | A) = fA.B / fA (10)

In illustration, take the cooccurrences eau - ouvrage (water - work) and eau - potable (water -
drinkable).  Table 2 gives the number of contexts in which these word pairs appear together or
separately in the barrage subcorpus. We can see that all occurrences of the word potable appear in
conjunction with the word eau, whereas this is true of only some of the occurrences of the word
ouvrage.

EAU ~EAU Total EAU ~EAU Total
OUVRAGE 183 296 479 POTABLE 63 0 63
~OUVRAGE 874 5556 6430 ~POTABLE 994 5852 6846
Total 1057 5852 6909 Total 1057 5852 6909

Table 2. Number of cooccurrences of  eau-ouvrage (water - work) and eau - potable (water - drinkable)

This gives us:

p(eau | ouvrage) = 183/479 = 0.38 p(ouvrage | eau) = 183/1057 = 0.17 w =  1  -  0.38  =
0.62

p(eau | potable) = 63/63 =1 p(potable | eau) = 63/1057 = 0.06 w = 1 - 1 = 0

This measure thus reflects the magnitude of the semantic "distance"11 between words: when it
is equal to 0, the words are always associated (with its highest possible value being equal to the
frequency of  the  less  frequent  of  the two words);  when it  is  equal  to 1,  the words are never
associated.

Edges with a weight above 0.9 are arbitrarily eliminated. This thresholding process is critical
because it allows only those edges representing strong associations to be included in the graph.
11 w is not a distance in the mathematical sense of the term, but a dissimilarity, since the triangular inequality
does not hold.
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Without it, the graph would tend to become totally connected as the corpus grows in size, due to
the increasingly likely presence of accidental cooccurrences of any two word pairs.

Once the edges are weighted, a weighted clustering coefficient C ' can be defined:

C '= 1
N ∑

i=1

N ∑
j=1

∣E  i ∣

1 −wij 

∣ i ∣2 
(11)

This  coefficient  is  a  little  finer  than  the  one originally  proposed  by  Watts  and  Strogatz
(1998):  instead  of  merely  reflecting  the  presence  or  absence  of  an  edge,  it  also  takes  their
respective weights into account.

3.4. Properties of Cooccurrence Graphs

After these various operations, the graphs obtained had the features listed in Table 3.

Word N E k C L Crand Lrand

BARRAGE 1203 6138 5.1 0.47 3.5 0.008 4.4
DETENTION 1418 19007 13.4 0.55 3.3 0.019 2.8
FORMATION 542 1531 2.8 0.44 3.5 0.010 6.1
LANCEMENT 617 2521 4.1 0.52 3.6 0.013 4.6
ORGANE 531 1997 3.8 0.44 4.0 0.014 4.7
PASSAGE 797 2916 3.7 0.47 4.5 0.009 5.2
RESTAURATION 512 1398 2.7 0.46 4.0 0.011 6.2
SOLUTION 253 1704 6.7 0.57 2.1 0.053 2.9
STATION 487 971 2.0 0.43 3.7 0.008 9.0
VOL 259 719 2.8 0.48 2.7 0.021 5.4

Table 3. Graph features

One can see that relations (5) and (6) are both obeyed, which means that the cooccurrence
graphs are small world graphs. Also, the relation between p(k) and k is approximately governed by
a power law, as Figure 5 shows for the word barrage. The cooccurrence networks are scale-free,
so they contain a small number of highly connected hubs and a large number of weakly connected
nodes.

y = 0,28 x -1,15

0,001

0,01

0,1

1
1 10 100 1000

k

p(
k)

hubs

Figure 5. Power law on degrees, for the French word barrage

Finally, we find that a word's degree and frequency are highly correlated, in a nearly linear
fashion (Figure 6). This property will be put to use in simplifying certain calculations.
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y = 0,0003 x 2 + 0,42 x - 3,33
R2 = 0,94
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Figure 6. Correlation between degree and frequency (for barrage)

4. Detection of High-Density Components

The basic assumption underlying the method proposed here is that the different uses of a
target word form highly interconnected "bundles" in a small world of cooccurrences, or in terms of
graph theory,  high density components. Accordingly,  barrage (in the sense of a hydraulic dam)
must cooccur frequently with eau, ouvrage, rivière, crue, irrigation, production, électricité (water,
work, river, flood, irrigation, production, electricity), etc., and these words themselves are likely to
be interconnected (Figure 4). Similarly, in the play-off use, barrage must cooccur frequently with
match, équipe, coupe, monde, football,  victoire (match, team, cup, world, soccer, victory), etc.,
which again are highly interconnected. Given the complexity of the language (particularly the fact
that the cooccurrents are themselves ambiguous), there are also connections between components,
which prohibits the use of algorithms that detect highly connected components or cliques, but the
component interconnections must be few in number and have heavy weights.

Detecting the different uses of a word thus amounts to isolating the high-density components
in its cooccurrence graph. Unfortunately, most exact graph-partitioning techniques are NP-hard,
so,  given  that  the  graphs obtained have several  thousand nodes  and  edges,  only  approximate
heuristic-based methods can be employed. The detection of high-density components is a very
popular  area  of  research  now being applied  to  the  detection  of  "communities"  or  "authorized
sources" on the Web, and to parallel computing. A drawback of the techniques developed in these
areas is that they are not directly exploitable, because the heuristics are application-specific and
depend on the particular properties of the graphs being analyzed.

The present algorithm makes use of the properties of small worlds and the scale-free feature
demonstrated above. It consists of two steps. First, a certain number of hubs that will act as "roots"
for the different components are detected. Then, the nodes that belong to each of these components
are listed. The first step suffices to list the target word's uses in the corpus; the second is required
for disambiguation and display.

4.1. Detecting Root Hubs

The starting point here is the observation that in every high-density component, one of the
nodes has a higher degree than the others; it will be called the component's root hub. For example,
for the most frequent use of  barrage (hydraulic dam), the root hub is the word eau (water). It is
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easy to find, since it is the hub with the highest degree in the graph (and it is also the most frequent
word).

Then the root hub of the next component is identified. The graph's structure, which consists
of "bundles" with many internal connections but  few connections to each other,  enables us to
apply a simple strategy: if the root hub just isolated is deleted, along with all of its neighbors, the
chances  of  almost  entirely  eliminating  the  first  high-density  component  are  great.  The  very
organization of small worlds is such that if a word of a reasonably high degree is part of the first
component, it also has multiple connections to the nodes of which it is composed, and it is also
very likely to be connected to the root hub. If not, one can be reasonably sure that it is part of some
other component.

This strategy obviously deletes nodes that are not part of the first component. In the Figure 4
example, the monde node (world) will be deleted even though it is part of the match de barrage
component. The assumption here is that because these intercomponent links are scarce, there will
still be a sufficient number of nodes specific to the second component (in particular, its root hub)
to ensure its detection.

The algorithm continues to  iterate  this  process.  The next  hub  candidate  is  routier (road-
related),  itself  linked  to  véhicule (vehicle),  camion (truck),  etc.  It  is  deleted,  along  with  its
neighbors, and so on, until no graph nodes are left (Figure 7).

Figure 7. Step-by-step deletion of neighbors

When the graph's smallest components are reached, it becomes highly likely that too many
nodes have been deleted, and some corrective heuristics are needed to make sure the next node
examined is in fact a good candidate for the role of root hub. The node has to have (1) at least 6
specific neighbors (this threshold was determined experimentally), and (2) a weighted clustering
coefficient large enough for it to actually be a root hub of a bundle.

For the sake of rapidity, a rough approximation that turned out to be sufficient is used for
criterion 2: the mean of the weights between the candidate node and its 6 most frequent neighbors
must simply be below a given threshold (set at 0.8 based on experimentation). Likewise, instead of
going through the nodes in decreasing order of degree, which requires computations at the node
level, they are scanned in decreasing order of frequency (this information was already computed
during context preprocessing); given that these two values are highly correlated (see above), the
result is nearly identical.

Upon completion of the first step, we have the root hub of each component. Each use is now
characterized by its root hub and its most frequent specific neighbors.
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Taking  the  barrage example  once  again,  the  four  components  can  be  characterized  as
follows:

EAU construction ouvrage rivière projet retenue crue
(construction engineering-work river project reservoir flood)

ROUTIER véhicule camion membre conducteur policier groupement
(vehicle truck member driver policeman group)

FRONTIERE Algérie militaire efficacité armée Suisse poste
(Algeria military efficiency army Switzerland post)

MATCH vainqueur victoire rencontre qualification tir football
(winner victory encounter qualification shot soccer)

This information may be sufficient for helping users narrow down their queries. However, it
does not delineate the exact composition of the component (this is done in the second step of the
algorithm).

More formally, the algorithm can be written as follows:
RootHubs(G, Freq)  {

G : cooccurrence graph
Freq : array of  frequencies of nodes in G

V  array of nodes in G sorted in decreasing order of frequency
H  Ø

while V  Ø et Freq(V[0]) > threshold {
v  V[0]
if GoodCandidate(v)
then {

H   H  v
V  V  (v   (v))

}
}
return H

}

The algorithm is very fast, since once the nodes are sorted in decreasing order of frequency
(which is in fact performed during corpus preparation), it operates in O(N), where N is the number
of graph nodes (the number of neighbor-deletion operations is at most equal to N).

4.2. Delineating Components

Figure 8. Minimum spanning tree and high-density components

Delineating the high-density  components amounts to attaching each node to the root hub
closest to it. Because of the graph's small world structure, where all nodes are close to each other
in terms of the number of edges to cross, the edge weights can be put to good use: the distance
between two nodes will be measured by the smallest sum of the weights of the edges on the paths
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linking  them.  After  adding  the  target  word  (which  is  not  in  the  cooccurrence  graph  --  here,
barrage), a  minimum spanning tree (or MST) is computed over the graph by taking the target
word as the root and making its first level consist of the previously identified root hubs.12 The
components correspond to the main branches of the tree (Figure 8).

The algorithm is as follows:

Components(G, H, t) {
G : cooccurrence graph
H : set of root hubs
t : target word

G’  G  t
for each h in H {

add edge <t, h> with weight 0 to G’
}

T  MST(G’, t)

return T
}

The  algorithm's  complexity  is  no  greater  than  that  of  the  minimum  spanning  tree
computation, which can be efficiently  performed by Kruskal's (1956) algorithm, well suited to
sparse graphs. In the worst of all cases, its complexity is  O(E lg  E), where  E is the number of
edges in the graph. However, Kruskal's algorithm is known to behave in a quasi-linear fashion in
most concrete cases.

5. Disambiguation

The minimum spanning tree can be used to easily construct a disambiguator for tagging target
word occurrences in  the  corpus.  Each tree  node  v  is  assigned a  score  vector  s with  as many
dimensions as there are components:

si = 
1

1d hi , v   if  v  belongs to component i (12)

si = 0 otherwise. (13)

In (11), d(hi, v) is the distance between root hub  hi  and node v  in the tree.
Formula (11) assigns a score of 1 to root hubs, whose distance from themselves is 0. The

score gradually approaches 0 as the nodes move away from their root hub. For example,  pluie
(rain) belongs to the component EAU (water) and d(eau, pluie) = 0.82; its score vector is (0.55 0 0
0). Likewise, saison (season) belongs to the component MATCH and  d(match, saison) = 1.54; its
score vector is (0 0 0 0.39).

For  a  given  context,  the  score  vectors  of  all  words  in  that  context  are  added,  and  the
component that receives the heaviest weight is chosen. For example, the scores for the context:

Le barrage recueille l’eau à la saison des pluies.
(The dam collects water during the rainy season)

are shown in  Table 4.  EAU is  the component with the highest  total  score (1.55),  followed by
MATCH (0.39).

12 A minimum spanning tree is a tree that goes through all nodes of the initial graph while minimizing the
sum of the edge weights.  Various standard algorithms are available for  efficiently computing minimum
spanning trees.
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EAU ROUTIER FRONTIERE MATCH
seau 1.00 0.00 0.00 0.00

ssaison 0.00 0.00 0.00 0.39

spluie 0.55 0.00 0.00 0.00
Total 1.55 0.00 0.00 0.39

Table 4. Scores for the context "Le barrage recueille l'eau à la saison des pluies"

A reliability coefficient varying between 0 and 1 can be calculated from the difference,  ,
between the best score and the second best score:

=1 − 1
1

(14)

In the preceding example, the reliability coefficient  is 1 - (1 / (1 + 1.55 - 0.39) = 0.54.
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Figure 9. Graph expansion

It is interesting to take a closer look at what the algorithm is actually doing from the linguistic
standpoint. Let us take the real example shown in Figure 9. On the left side of the figure, one can
see that the words  eau, navigable, force, cours, moteur (water, navigable, power, course, motor)
are highly interconnected (5 connections out of a possible 6). Yet not all of these connections are
alike.  The  relations  eau - cours,  cours - navigable,  eau - force,  and force - moteur
(water - course, course - navigable, water - power, and power - motor) are primary relations, which
appear  in  expressions  like  cours  d'eau,  cours  navigable,  force  de  l'eau,  and force  motrice
(watercourse, navigable course, water power, motor power). The other relations are secondary,
which occur by means of transitivity following a principle of the type "The friends of my friends
also become my friends". There is no particular relation between water and motor except by way
of water power, which is motor-based. Computing the minimum spanning tree "de-clusters" the
graph by pointing out primary relations between words. The algorithm thus "expands" the small
lexical world by showing us which relations are preferential: among the 4 neighbors of eau in this
example, only two are still its neighbors in the final tree.

6. Viewing and Navigation

Difficult viewing problems arise for large graphs, given that most drawings are NP-hard. We
use  a  method  recently  devised  by  Munzner  (2000),  which  allows  a  very  fast  display  using
hyperbolic  trees.13 We feed  the  algorithm with  the  MST  previously  described,  adjusted  by  a
number or heuristics.

13 We use Munzner's graphic library H3Viewer: http://graphics.stanford.edu/~munzner/h3/
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Figure 10. Barrage : main view

Figure 11. Barrage : view centered on the root hub match
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Figure 10 shows the main view (top of the tree) for the word barrage. The user can navigate
from domain to domain inside the hyperbolic drawing using the mouse: a left click on a node
centers the display on that node; a left drag moves a node and changes the context; a right drag
rotates the tree.  Figure 11 shows the view obtained by clicking on the node match. An addition
will be made in future implementations so that the user can view the corpus contexts closest to
each node of the tree.

While navigating through the graph, one can also explore secondary domains within a given
component.  Figure 12 illustrates a subdomain of the hydraulic dam use of barrage, obtained by
clicking on construction (construction) and then coût (cost).

Figure 12. Barrage : construction  coût subdomain

Finally, the program can display all edges of the graph, i.e., its transversal links in addition to
the ones in the backbone tree. This type of display highlights the division into within-component
links and between-component links. In Figure 13, for example, which shows the transversal links
for the target word barrage, we can see that between-component edges are scarce, which means
that the uses are clearly distinct. Inversely,  Figure 14 for the word  vol (flight, gliding, theft, ...)
points  out  numerous  transversal  links  between  the  components  LIBRE (free)  and  AVION
(airplane). In navigating through the graph and looking more closely at the reasons behind these
relations, we find out that these two components share an important subdomain, that of vacation:
loisirs, soleil, ... (leisure, sun, ...). By contrast, the component (VOL A) VOILE (gliding) is weakly
connected to the vacation subdomain (at  least  in this  corpus):  the concerned pages are mostly
technical.

HyperLex thus seems to supply a useful tool for domain and lexicon navigation. It remains to
be seen whether its utilization by the general public is a realistic possibility, but it does indeed
appear to provide a valuable means of exploration for terminologists and lexicographers.
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Figure 13. Barrage : complete representation of the graph

Figure 14. Vol : links between components (vol libre  avion)
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7. Evaluation

The results of the HyperLex algorithm were evaluated on the Web page corpus, using the list
of ten test words described above.

The first step was to make sure that the algorithm correctly extracted most uses in the corpus,
irrespective  of  any  tagging  of  the  contexts.  This  subtask  is  interesting  in  its  own  right  (for
proposing query refinements to users, for example). 

The next step was to assess the quality of the context tagging by drawing a random sample
from  the  corpus  and  taking  the  standard  recall  and  precision  measures  used  in  word  sense
disambiguation. However, these measures cannot accurately assess an algorithm's efficiency on
infrequent uses; they can only reflect behaviour on the principal use. To make up for this, a third,
much more stringent measure was added: the precision level achieved on the 25 best contexts
returned by the algorithm for each use discriminated.

No attempt was made at evaluating the behaviour of the algorithm on query terms. Spink et
al. (2001) report that the average length of Web queries is 2.4 words, which deviates considerably
from traditionnal IR (TREC-like) searches. In addition, close examination of major search engine
information sites shows that the most popular queries are multi-token proper names or titles such
as  Britney Spears, Harry Potter, American Airlines, Sex and the City, or  Lord of the Ring. Real
multi-term queries (such as gay marriage or  Oscar nominations) do exists, but they are far less
common (we are not aware of studies reporting precise figures). The real query length is probably
much closer to  one word and disambiguation techniques are  probably  bound to  failure in the
general case. A more promising strategy seems to consists in a presentation of results categorised
according to word uses, or a "Refine your results" box as can be seen on the current versions of
Excite or Altavista.

7.1. List of Uses

Table 6 gives the list of uses extracted by HyperLex from the entire corpus. A total of 50 uses
were identified, making for an average of 5 per target word. To check for the completeness and
relevance of the list, 100 contexts were drawn at random for each test word, making 1000 contexts
in all.

The system made two kinds of omissions. Some pertained to general uses of the target word,
i.e., uses that are not related to a particular domain. For instance, for the word  barrage, the use
faire barrage à (stand in the way of) was not detected. Only four instances of this expression were
found in the context sample tested. In other words, it was about as frequent as match de barrage,
so  quantitatively  speaking,  it  could have been  detected.  It  just  so  happens,  though,  that  faire
barrage à is  a  general expression in French and is found in a wide variety  of  contexts:  faire
barrage à un projet, à quelqu'un (stand in the way of a plan, of someone), etc. Another typical
example is the word solution, for which the algorithm did not detect the general sense of "solution
to a problem", a very frequent use (16 occurrences here) but one that can appear in any domain.

All in all, 8 general uses were missing for the entire set of 10 target words, and only 3 of
them had a frequency above 5 (Table 5). These omissions are not very troublesome, since they do
not concern specific uses, and in my mind, would hardly ever be put in a query. Besides, they only
concerned 6.6% of the contexts.

All Frequency >5
Uses Contexts Uses Contexts

GENERAL 8 6,6% 3 5,1%
SPECIFIC 36 7,4% 1 1,9%
Total 44 14,0% 4 7,0%

Table 5. Omissions

Omissions of specific uses are more troublesome because they would automatically lead to
query failure. Note, however, that few such omissions were made here: although a total of 36
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specific uses were omitted (Table 5), 19 had a single occurrence in the test sample, and only one
had a frequency of 5 or more. The latter was one of the uses of the word lancement (launching),
"lancement d'un programme" (launching of a program), which occurred 19 times in the random
sample of 100 contexts, which is a high frequency. A closer look at the contexts showed that the
themes for this use were scattered (without its being a "general" use in the sense stated above). The
word  programme  itself  was  rarely  present  in  the  context,  and  it  was  usually  a  question  of
explanations about running (launching) such and such a command or application, in extremely
varied domains. It is not surprising, then, that the algorithm failed to isolate this use, despite its
importance in the language.

Target Root Most frequent neighbors Freq (%)14

BARRAGE EAU construction ouvrage rivière projet retenue crue 67-85
ROUTIER véhicule camion membre conducteur policier groupement 3-16
FRONTIERE Algérie militaire efficacité armée Suisse poste 5-19
MATCH vainqueur victoire rencontre qualification tir football 1-10

DETENTION PROVISOIRE juge liberté loi procédure prison instruction 78-93
DETENU police centre autorité arrestation torture arbitraire 4-18
ARME autorisation acquisition feu munition vente commerce 0-8
ANIMAL transport compagnie sauvage certificat annexe directive 0-6

FORMATION PROFESSIONNEL centre entreprise organisme stage service programme 96-100
LANCEMENT SATELLITE Ariane programme spatial lanceur orbite fusée 94-100

PRODUIT public entreprise événement convention presse affaire 0-6
ORGANE DON transplantation greffe donneur prélèvement tissu vie 30-51

DELIBERANT public établissement président demande attribution communauté 8-24
REGLEMENT pays appel différend OMC réunion autorité 12-30
TECHNIQUE scientifique convention économique conférence subsidiaire programme 0-8
CONSULTATIF matière civil tête supervision mémorandum PAB 1-12
MALADIE cœur traitement spécimen preuve sang intervention 0-4
REPRESENTANT délégué suprême concertation département personnel agent 0-9
PARTI presse chef journal Genève Allemagne rédacteur 0-9

PASSAGE EURO public travail entreprise système national monnaie 41-63
AN_2000 programme autorité installation réseau solution matériel 2-13
NIVEAU porte chemin ouverture salle route entrée 0-9
LIBRE cour prestation police assurance caisse prévoyance 3-16
CHEVAL main énergie équilibre trot dos foulée 0-4
PARAMETRE mode appel variable argument langage expression 2-14
GALERIE ville boutique bois panorama époque verrière 0-8
TERRE durée mouvement soleil Vénus Mercure nœud 4-18
MORT rite Dieu naissance Christ vivant Jésus 0-4

RESTAURATION HOTELLERIE formation durée centre professionnel entreprise alternance 23-43
CONSERVATION sauvegarde atelier monument technique historique oeuvre 34-55
HEBERGEMENT activité hôtel région loisir culture contact 0-8
RAPIDE restaurant vente établissement repas marche traiteur 1-10
FICHIER système information donnée client espace bande 7-23
PIERRE bâtiment chantier terre polychromie taille sec 0-4
MEUBLE bois table mobilier décoration fabrication antiquité 1-10

SOLUTION GESTION entreprise service logiciel client information système 75-91
JEU monde gratuit astuce joueur gain francophone 0-4
INJECTABLE perfusion glucose HOP commercialisation arrêt Fandre 7-23

STATION SKI hiver piste montagne sport village location 75-91
METEO température Oregon scientific WS professionnel capteur 0-6
SPATIAL international MIR système programme ISS projet 4-18
TRAVAIL réseau traitement donnée carte Sun environnement 1-10
RADIO navire région réception installation antenne communication 0-6
PRIMAGAZ Paris aire Esso province Marseille Dyneff 0-4
EAU épuration source mer plage Yves rivière 0-4
LIGNE métro quai terminus voyageur correspondance atelier 0-4

VOL AVION billet pilote club sec départ voyage 51-72
LIBRE école parapente loisir montagne formation Paris 23-43
VOILE centre photo vent pilotage forum compétition 0-4
VOLÉ service recherche numéro base donnée véhicule 2-13

Table 6. Main uses of the test words

14 95% confidence interval computed using the binomial law.

1919



In summary, the behavior of HyperLex in terms of its ability to detect IR-relevant uses can be
considered quite good from a quantitative point of view: one can legitimately claim that nearly all
uses whose frequency was above 5% were well detected.

Qualitatively speaking, the proposed use division was adequate in most cases. Certain use
divisions emerged that would probably not be proposed by a lexicographer and therefore might
seem surprising at first glance. A case in point is the distinction made between two of the uses of
the  word  detention,  identified  by  the  root  hubs  DETENU (prisoner)  and  PROVISOIRE
(provisional).  In  both  cases,  persons  were  in  prison,  as  opposed  to  the  other  uses  detected
(detention of arms, animals). However, a more careful look at the pages in question showed that
the subcorpus contained two clearly disjoint domains: one (the  DETENU hub) pertained to the
human  aspects  of  imprisonment  (conditions  of  detention,  torture,  visits,  etc.),  the  other  (the
PROVISOIRE hub), to its legal aspects (remand in custody, laws, etc.). In an information retrieval
perspective, it is not illogical to distinguish the two domains, even though it might be useful to
hierarchically group some of the uses. The extent of between-component linkage would perhaps be
a good index for doing so. This topic deserves further research.

Inversely, for the word  station, the algorithm merged public radio stations (FM, etc.) and
radio stations  on  ships,  two lexically  close  fields (radio,  communication,  MHz, etc.).  Yet  one
would certainly want to separate these two uses, since they would most likely be used in different
queries.  This  suggests  a  possible  enhancement  of  the  algorithm:  taking  the  distance  between
cooccurrents into account. For instance, the expression station de radio (radio station) is used only
for public radio stations, while the expression station de navire (ship station) is found in maritime
contexts, with the word radio itself usually being found farther away in the context as part of other
expressions like opérateur radio (radio operator) and équipement radio (radio equipment), etc.

Finally,  in  some  cases,  it  is  the  description  by  the  root  hub  and  its  neighbors  that  is
inadequate. There are various reasons for this. Take the example of one of the uses of  station,
which was identified by the hub PRIMAGAZ, a brand of LPG gas. The reason is that the Internet
contains many lists  of  gas stations that sell  LPG, apparently  because obtaining gas is  a major
concern for people with vehicles that run on this type of fuel. LPG would be a more appropriate
root  hub,  but  while  most  of  the  concerned  pages  had  LPG  in  the  heading,  the  paragraphs
containing the word station contained only the various brand names (Primagaz, Shell, Esso, etc.)
and addresses. A more global page analysis would perhaps be useful, at least for labelling uses.

7.2. Global Tagging

The disambiguator described in Section 5 was used on the 10 test-word subcorpora. When
several  contexts  contained  the  target  test  word  on  the  same Web page,  the  most  reliable  use
(assessed by the reliability coefficient ) was applied to all contexts on the page. This coefficient
can also serve as a control for tagging recall. The value chosen was    0.5, which corresponds to
a difference of 1 between the best two scores. This gave a recall rate of 82%, which is more than
sufficient for the application at hand.

For each target word, 100 contexts were drawn at random (1000 in all) from among those
with a    0.5, and the suitability of the use proposed by the algorithm was verified by hand.
Verification by several experts would have been preferable, but, given the cost of the task, we
relied  on  a  single  expert  judgement,  a  strategy  which  is  rather  standard  in  the  field.  The
appropriateness of word uses in a given context was judged on the basis of the list of frequent
neighbours provided by the algorithm, which can be seen as a sort of "dictionary definition". For
example, the use EAU of barrage is characterised by {eau, construction, ouvrage, rivière, projet,
retenue, crue} (water, construction, engineering work, river, project, reservoir, flood), whereas the
use  ROUTIER is  characterised  by  {routier,  véhicule,  camion,  membre,  conducteur,  policier,
groupement} (vehicle, truck, member, driver, policeman, group).

For  each subcorpus,  tagging precision was checked,  along with the baseline  obtained by
taking the most frequent word use and assigning it to each instance in the collection (Table 7).
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Keeping the 73% baseline precision rate in mind, one can see that the overall precision was 97%,15

which is excellent. An error reduction measure error, ER, can be used to judge exactly how good
the algorithm's work is:

ER= precision−baseline
1 −baseline

HyperLex  reduced  the  error  by  90.4%16  compared  to  what  one  would  obtain  by  trivial
tagging in terms of the most frequent use (this figure does not include the word formation, which
posed no problems because its subcorpus had only one use). The  ER measure clearly highlights
words that are more difficult than others, here, organe (organ) and passage (passage) and to some
extent,  solution (solution).  Except  for  these  three  words,  the  algorithm  performed  error-free
tagging.

Test word Precision Baseline Error
reduc.

BARRAGE 1.00 0.77 100.0%
DETENTION 1.00 0.87 100.0%
FORMATION 1.00 1.00 n/a
LANCEMENT 1.00 0.99 100.0%
ORGANE 0.88 0.40 80.0%
PASSAGE 0.88 0.52 75.0%
RESTAURATION 1.00 0.44 100.0%
SOLUTION 0.98 0.84 87.5%
STATION 1.00 0.84 100.0%
VOL 1.00 0.62 100.0%
Total 0.97 0.73 90.4%

Table 7. Tagging precision

The frequencies of  the different  uses  in  the  corpus were  estimated based on the  manual
tagging used as a reference. The estimates are reported in the Freq column of Table 6.

7.3. Most Relevant Pages

As mentioned at the beginning of this section, the conventional measure of precision mainly
reflects the algorithm's behavior on the principal use. Precision was therefore assessed for each
test-word use by looking at the best 25 contexts (in terms of the reliability coefficient  ). This
measure is much more severe than the preceding one because it weights each use equally, even the
rarest ones. It is nevertheless quite realistic, in that it corresponds to the behavior of search engines
that categorize the results before presenting them to the user. The choice of 25 pages was deemed
sufficient  based on  Silverstein,  Henzinger,  Marais,  and  Moricz's  (1999)  study  on  150 million
Altavista queries: in 85.2% of the queries, only the first screen page of 10 results was examined,
with an overall average of 1.39 screens.

Test word Contexts Precision
BARRAGE 100 1.00
DETENTION 100 1.00
FORMATION 25 1.00
LANCEMENT 50 1.00
ORGANE 195 0.86
PASSAGE 225 0.92
RESTAURATION 175 0.94
SOLUTION 75 1.00
STATION 200 1.00
VOL 100 1.00
Total 1245 0.96

Table 8. Precision on 25 first pages per use
15 95% confidence interval computed using the binomial law : CI95% = 96-98%.
16 CI95% = 86-94%
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The best 25 contexts were checked for each of the 50 uses in Table 7, that is, 1245 contexts in
all.17 The overall precision was 95.5% (Table 8).18 Once again, a few errors cropped up on three
words (organe and passage as before, and restauration). Apart from these three words, all contexts
returned  did  in  fact  pertain  to  the  proper  use,  which  is  appreciable,  since  quite  a  few of  the
detected uses had an estimated frequency under 5%.

8.  Conclusion

This  article  presented  an  efficient  algorithm for  disambiguating  the  senses  of  words  in
information retrieval  tasks.  The algorithm,  HyperLex,  makes  use  of  the  particular  structure  of
cooccurrence graphs, shown here to be "small worlds",  a topic of extensive research in recent
years. As in previously proposed methods (word vectors), the algorithm automatically extracts a
use list for the words in a corpus (here, the Web), a feature that sidesteps problems brought about
by recourse to a preestablished dictionary. However, unlike earlier methods, HyperLex can detect
low-frequency uses (as low as 1%). An evaluation on 10 highly polysemous test words showed
that  the  system detected  a  great  majority  of  the  relevant  uses.  The system's  in-context  word-
tagging method proved remarkably precise and therefore can offer high-quality categorization of
query output. Enhancements are of course possible, but this study already seems to cast doubt on
the idea that disambiguation techniques are useless if not detrimental in IR. The excellent results
obtained here seem to constitute an important step forward in word sense disambiguation, one that
goes beyond IR applications alone.

Finally, HyperLex is associated with a viewing and navigation technique that allows the user
to navigate in the lexicon and domains of a corpus. Its utilization by the general public has yet to
be tested, but the tool already appears to be a useful instrument for terminologists, lexicographers,
and other specialized users.

9. Epilogue

After this study was conducted, I discovered, owing to the (impressive) review by Albert and
Barabási (2002) that other researchers have been independently  investigating the possibility of
modelling  the  semantic  aspects  of  human  language  using  small  world  networks.  Albert  and
Barabási cite a study in their own group, by Yook, Jeong and Barabasi, which shows that the
network of synonyms extracted from the Merriam-Webster Dictionary exhibits a small-world and
scale-free structure (however  this  study has never been published,  and is  not  available on the
Web19). In another study,  Ferrer i Cancho and Solé (2001) have constructed a network of words
that co-occur in sentences in the British National Corpus (at a maximum distance of two), and they
again  found  a  similar  structure  for  the  resulting  network.  This  seems to  provide  independent
confirmation that  associative lexical  relations follow the power-law, scale-free  pattern that  we
have reported here. Associative networks have received a lot of attention from psychologists since
Collins  and  Quillian  (1969).  In  a  recent,  unpublished  paper,  Steyvers  and  Tenebaum (2004)
indicate that networks built from a large human free word-association database, Roget's thesaurus
and Wordnet all share the distinctive features of small-world and scale-free structures, a fact which
seems to open new avenues of research on semantic memory models. Interestingly, they arrive at
the same pessimistic conclusions about the capacity of Euclidian spaces to represent adequately
words senses and uses, whose frequency seem governed by power laws.

17 One of the uses of organe had only 20 contexts.
18 CI95% = 94.2 - 96.6%.
19Albert-László Barabási, personal communication (March 2004)
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