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Abstract— We begin with two axioms: that system behaviour
is an empirical phenomenon and that organization is a form of
behaviour. We derive laws and characterizations of behaviour for
generic systems.

In our view behaviour is not determined by internal mech-
anisms alone but also by environmental forces. Systems may
‘announce’ their internal expectations by making “promises”
about their intended behaviour. We formalize this idea using
promise theory to develop an reductionist understanding ofhow
system behaviour and organization emerges from basic rulesof
interaction.

Starting with the assumption that all system components are
autonomous entities, we derive basic laws of influence between
them. Organization is then understood as persistent patterns in
the trajectories of the system. We show how hierarchical structure
emerges from the need to offload the cost of observational
calibration: it is not a design requirement for control, rat her
it begins as an economic imperative which then throttles itself
through poor scalability and leads to clustered tree structures,
with a trade-off between depth and width.

Index Terms— Behaviour, organization, configuration manage-
ment, peer to peer, pervasive computing.

I. I NTRODUCTION

To manage originally meant ‘to cope’ or to handle1. Later
‘manage’ became a transitive verb, i.e. it became something
we do to people and systems, like the driving of a vehicle
or the running of a business. This is the usage that is most
prevalent in computer science today and it has gradually ledto
a doctrine of control in computer management. This transitive
interpretation ignores that fact that a system can only ‘be
managed’ or driven if it is both willing and able. The term
self-management brings us full circle back to the idea that
systems might again cope without external intervention. So
the question is again can human-computer systems manage
without managers? In this paper, we wish to set aside precon-
ceptions and examine the question in a scientific light.

The organization of functional entities within a system is a
key aspect of ‘management’ and is important in delegation and
specialization within the resulting phenomena. Organization is
therefore closely related to behaviour. In a system of interact-
ing agents, agents can differentiate themselves into different
functional roles which work together to extend the scope of
their collective behaviour. Regardless of whether such roles
and groupings emerge from a dialogue with environmental
conditions or are pre-programmed, it is important for an
engineer, scientist or analyst to be able to identify these

1The meaning originates in horsemanship

functional elements and understand their relationship to the
whole. The term organization is often used for this.

In the natural sciences one does not begin by assuming
that observable phenomena can be pre-decided to certain
effect. Rather behaviours and phenomena are studied using
their causal properties (development in time and space) within
the context of an environment (the boundary conditions) to
see predictions and outcomes can be discerned from some
starting point. This kind of modelling is facilitated by the
identification of general laws of behaviour that are stable over
time and whose themes recur, leading to a more fundamental
understanding of the mechanisms that underlie behaviour. One
would like to have such laws in the behaviour of computer
systems too.

This paper is about the formulation of such a view within
human-computer systems2. It is framed in the setting of a
theory of maintenance for systems[2] so that we shall take
the view that systems can have stable properties even in
uncertain environments by arranging for there to be corrective
forces maintaining an equilibrium with forces of environmen-
tal change.

Specifically this paper is about the relationship between
promises made by the parts of a system, i.e. the properties
claimed for them and the actions or changes that are re-
quired to keep these promises. It links the work of operator
maintenence[3], [4], [5], [6] (change management) with the
concept of stability and organization. We use promise theory to
describe properties and operator mechanics or state machines
to describe the kinds of singular and collective behaviour in
systems. System components are isolated and modelled as
autonomous entities that we call ‘agents’. These should not
be assumed to have any relation to the agents in Multi-Agent
Systemsa priori[7].

The structure of our paper is as follows. We begin by
mentioning some related attempts to describe organization
and behaviour in the literature. In section III we describe the
fundamentals of our theoretical framework involving promises
and operator algebra. Then we turn to the statement of laws
of behaviour in section IV which follow from fundamental
ingredients of causality and variation. In section V we sketch
the beginnings of an algebra of observation, sufficient to
discuss equivalent scenarios and rewriting rules that helpto
reveal the basis of clustering and cooperation in ensembles
of agents. Finally we turn to the existence of patterns of
behaviour and the meaning of organization, including its

2A shorter preliminary version of this work was presented in [1].
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hypothesized economic origin.

II. RELATED WORK

Descriptions of behaviour as an empirical phenomenon
are rare in computing. Computer science describes mainly
what we shall call programmed behaviour, i.e. that which
can be represented by the transitions of a state machine. In
software design and network management it is often assumed
that systems will behave more or less deterministically, orat
least in accordance with our assumptions and specifications.
Many unnecessary surprises result from such expectations.
In the Unified Modelling Language, for instance, behaviour
is represented as algorithms, flow diagrams and state charts.
However any system capable of basing its actions on input
events from its environment, or whose resources are governed
and modified by the same environmental conditions, are nec-
essarily unpredictable from a state machine viewpoint. The
situation for distributed systems is often more acute due to
the greater exposure to environment of the component parts.
Control theory is the paradigm that has come to be used to
discuss more advanced feedback behaviour in systems[8].

Policy based management[9] does little to improve on this.
The prevailing view is represented by the Event Condition Ac-
tion (ECA) paradigm which addresses responses to individual
environmental stimuli and makes no attempt to consider the
long-term consequences of these. Policy based management
further defaults to the notion of management by “obligation”
and enforcement which we believe is unrealistic[10]. Critics
of our views might say ‘what is wrong with enforcement?
It’s what we want’. We reply that wanting and having are
two different things. We have to confront all uncertaintiesthat
make systems hard to control, not ignore or suppress them.

Another difficulty that arises with logic approaches, es-
pecially deontic logic, is the confusion that arises between
the concepts of “obliged” (assumed to mean “enforced”)
and “desired”. In many instances the concept of distributed
coordinationis transformed intosubordinationwithout further
explanation. Promise theory requires this step has to be made
explicit, indeed to document how it is possible and whether it
is likely to succeed.

Finally, to move from behaviour to organization, one must
look hard to find any departure from the idea of hierarchical
management. For most researchers the word organization
is equated with a hierarchical chain of command. This is
true of theories of organization put forward in the business
arena, which has been both more innovative and has made
considerably more progress than IT management[11], [12].
Coase’s excellent essay took issue with the notion of hierarchy
already in the 1930s[11]. More recently the idea of semantic
web has been used to try to meld ECA thinking with typed
ontologies. Dietz’s view is a theory of actions, typed with the
use of formalized ontologies[13]. He introduces the notionof
coordination acts, or patterns of transactions. This theory falls
under the category of Event Condition Action (ECA) liberally
mixed in with some social science.

The work that seems to relate most closely to our comes
from the Multi-Agent System community[7], where authors

have discussed the concept of “commitment” for many
years[14]. It has been suggested that promises and commit-
ments are indeed the same, but there are both philosophical
and practical differences to these theories that we mention
below.

Ref. [15] discusses how agreement can be achieved through
an algorithmic approach to introduction, discharge and with-
drawal of commitments. This is somewhat akin to the
promise theory description in process algebra by Bergstra and
Bethke[16]. This paper, like promises, take pains to deempha-
size the role of sequential ordering implied in approaches like
UML and BPL.

Ref. [15] considers groups of agents with inhomogeneous
capabilities and considers how strategies for coordination can
be built. Rather surprisingly, the paper takes the view that
subordination is the key to coordination, i.e. the formation of
a hierarchy. This is a common view in computer science but
the necessity of hierarchy is only asserted, never shown. Ref.
[15] declares that commitments are obligations which we find
to open a number of semantic confusions. An obligation in
the intuitive sense need not be considered a outside directive
(with punitive force) or an implied subordination – it need
only be a voluntary feeling of motivation to make a voluntary
commitment (or a promise).

We find the term commitments difficult to parse due to
its duplicity of meanings. To commit to something is an
autonomousactionwhich implies a binding to some condition
or course of action which we do not expect to reverse. A
promise is only a declaration of best-effort intent. To commit
someone to a course of action (transitive) is to direct actions
of a subordinate, which is the opposite of autonomy. The
literature on commitments straddles these two meanings, thus
the notion of autonomy which is central to the present work
is often lost in the multi-agent literature, overshadowed by a
focus on programmes of execution. Ref. [17] makes at least
clear statements about the formal aspects of commitments to
more general ”propositions”; it also considers the matter of
conditional commitments which makes it interesting here as
conditionals in promise theory are of central importance toits
predictive power.

Finally, it has become common to speak ofvirtual organi-
zations, e.g. see [18]. These also define or impose organization
based on hierarchical ”management”. The concept of the grid
was introduced in the mid-1990s to describe a vision of virtual
organizations[19] which follow naturally from distributed re-
source organization. The Service Oriented Architecture (SOA)
has been proposed more recently to describe business moti-
vated sharing of services in a more market oriented framework.
These can also be considered as observable cases, but not as
theories or definitions.

Today hundreds of papers are written about these topics,
but there seems to be little attention to what distinguishes
the different terms. How shall we understand these concepts?
We base our approach here on promise theory[10], which is
well suited to describe the voluntary cooperation of distributed
components.
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III. PROMISES AND OPERATORS

Promises are a modelling framework (see [10], [20], [21])
which builds from an atomic and fully decentralized view
of behaviour in systems. Promise theory describes the per-
sistent features and coordination of “agents” (system com-
ponents) that are autonomous in the sense of being having
private knowledge, and being impervious to outside coercion.
Whereas the more traditional notion of obligation leads to dis-
tributed constraints[22], promise theory localizes constraints to
a single agent through the assumption of strong autonomy.

A promise is the announcement of a fact or a behaviour
(commonly expected in the future, but not necessarily) that
requires verification to confirm its actuality. Promises last for
finite time; they are not events but conditions that persist.A
promise is more than an intention, since an intention need
not be announced nor event specified to anyone. A promise is
different from a commitment, since a commitment is a moment
at which an agent breaks with one course of behaviour for
another discontinuously with sights on a goal, often through
some specific action or investment in the future outcome. In
some cases the act of committing can result in a persistent
promise as its outcome, but promising does not imply an action
that makes a discontinuous change.

Consequences, or results (terms used by other works) are
possible outcomes of promises. Indeed, agoal in the parlance
of many works is now definable as the desired end-point of a
promise (see the discussion below). The outcome of a promise
is what actually happened, whether a goal was announced or
not. We shall discuss outcomes below in terms of trajectories.
If one assumes that promises are necessarily kept (the default
assumption), this distinction is moot. However, in all realistic
systems promises are only kept with a certain probability. This
section is about the relationship between promises and and the
outcomes of those promise over time. To keep a promise we
might have to act or issue an event, maintain a state or prevent
change from occurring.

Promises are made by a promiser agent to a promisee agent
as a directed relationship labelled with a promisebodywhich
describes the substance of the promise. A promise with body
+b is understood to be a declaration to “give” behaviour from
one agent to another (possibly in the manner of a service),
while a promise with body−b is a specification of what
behaviour will be received, accepted or “used” by one agent
from another (see table I). A promisevaluationvi

(

aj
b
→ ak

)

is a subjective interpretation by agentai (in a currency of its
choice) of the value of the promise in the parentheses. The
value can be negative if it is pure cost. Usually an agent can
only evaluate promises in which it is involved.

A promise bodyb has atypewhich describes the nature or
subject of the promise, and aconstraintwhich explains what
restricted subset of the total possible degrees of freedom are
being promised. Since any dynamical, systematic behaviouris
a balance between degrees of freedom (avenues for change)
and constraints[23], this should be sufficient to describe a
wide variety of phenomena. For many purposes, and to avoid
extraneous concepts, the environment in which agents live and
act can itself be represented as an autonomous agent with

Symbol Interpretation

a
+b
→ a′ Promise with bodyb

a′
−b
→ a Promise to acceptb

va(a
b
→ a′) The value of promise toa

va′(a
b
→ a′) The value of promise toa′

TABLE I

SUMMARY OR PROMISE NOTATION

extensive internal resources. We denote this agentE.
Promise theory is mainly about the analysis of epochs in

which promises are essentially fixed. If basic promises change,
we enter a new epoch of the system in which basic behaviours
change. For a fixed static set of promises, behaviour continues
according to the same basic pattern of interactions between
agents and environment.

IV. L AWS OF BEHAVIOUR FOR AUTONOMOUS AGENTS

We expect to find laws of conservation and change in any
theory of behaviour. Intuitively one might easily expect the
following:

1) An autonomous agent continues with uniform behaviour,
unless it accepts an influence from outside.

2) The observable behaviour of an agent is changed when
promising to act on input from an outside source (see
section IV-B).

3) Every external influence+b = 〈+τ, χ1〉 promised by an
external agent must be met by an equal and opposite
promise−b = 〈−τ, χ2〉 in order to effect a change
on the agent. Ifχ1 6= χ2, then the interaction is of
magnitudeχ1 ∩ χ2.

We shall show that basic laws of this form do indeed apply.
In addition, one should expect behavioural properties of any
ensemble of agents to be guided by three things:

• The internal properties of the agents themselves.
• The nature of agents’ links or bonds (promises).
• The boundary conditions of the environment and location

in which the agents evolve.

A. Freedoms and constraints

Definition 1 (Exact and inexact promises):A promise is
exact if it allows no residual degrees of freedom. A promise
a1

b
→ a2 is inexact if the constraintχ(b) has residual degrees

of freedom. i.e. if it is not a complete and unambiguous
behavioural specification.
For exampleq = 5 is an exact specification, while1 < q < 5
is inexact. The same principle applies to the possible outcome
of a promise, however the actual outcome is naturally exact
in each measurement.

B. Behavioural trajectories

To discuss behaviour over time we need to notion of a
trajectory. This is the path taken by (i.e. the set of intermediate
states between the start and the current value of) an agent’s
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observables through a space of states that we may call con-
figuration space. It represents the past or future history ofan
agent’s state transitions. Let~q be a vector of state information
(which might include position, internal registers and other
details)[2]. Such a trajectory begins at a certain timet0 with
a certain coordinate value~q0, known as theinitial conditions.

The trajectory of a single agent is then a parameterized
function~q(t, ~σ), for some vector of parameters~σ arriving from
an outside source, and we identify the behaviour of an isolated
system as the triplet as the determined trajectory:

〈~q0, t0, Ô(~σ)〉, t > t0. (1)

The symbolÔ(~σ) is a constant transition matrix or operator
which takesq(ti) to q(ti+1) for integer time indexi, or
alternativelyq(t) to q(t + dt) in a differential form. We can
think of this operator as being the generator of time slices,
advancing by one time step on each operation;Ô(~σ) therefore
represents a steady state behaviour and any alteration to this
steady state behaviour must come about by a transformation
Ô → Ô′, which by the rules of algebraic invariance must have
the form Ô′ = T †ÔT for some matrixT and dual-transpose
representation†3.

In other words, any change in an agent’s state (called its
behaviour) is generated by

~q → ~q′ = ~q + δ~q = Ô(~σ)~q = (1 + Ĝ(~σ))~q. (2)

i.e. δ~q = Ĝ(~σ)~q. Ĝ(σ) is called the generator of the transition
Ô; δ~q plays the role of a generalized momentum or ‘velocity’,
so that the dynamics state is represented by the canonical pair
(~q, δ~q).

We now have a simple transition matrix (or state machine)
formalism for describing the steady state behaviour of an
agent, which results from keeping its promises through the
repeated action of a ‘promise keeping operator’Ô. An agent
whose observable properties do not depend on any external
circumstances hasexactor rigid rigid behaviour[24], [25]. It
is possible if and only if the agent has no use-promises that
pertain to its own behaviour (−b for someb), and all other
promises+b′ are exact promises. In this case the internal
change operator̂O cannot depend on any external information.

C. Outcomes and goals

The notion of a trajectory as a representation of behaviour
allows us to be more precise about the meanings of other
commonly used terms. We define thecollective behaviour
of several agents simply as the bundle (i.e. direct sum) of
trajectories of the ensemble of agents.

An outcome(which can equally well refer to the outcome
of a promise or of a transition taken to keep a promise) can be
described as a single pointq(tfinal) of the configuration space
reached at some ‘final’ time, along the trajectory of an agent.
In other words it is an identifiable end-point of an agent’s
behaviour.

3This is a linear transformation. It is not certain that all transformations of
the operator need be linear, but we make this assumption herefor later work
to extend. Ref. [3] shows examples satisfying such linearity, and our results
here are only for linear mechanics.

A goal is then a set of one or more desired or acceptable
outcomes within an agent’s own state space. In other words a
goal is a bounded space-time region that the agent would like
its trajectory to intersect (like the bull’s-eye of a target). A set
of {q(t)} possibly over some regiontmin ≤ t ≤ tmax. This
definition obeys the principle of autonomy, namely that an
agent may only promise its own behaviour; however it leaves
open the question of how an agent might desire to change
its environment (which is outside of its own state space). We
come back to this point in section IX since it requires the
notion of force.

We wish to point out that a goal cannot be an elementary
concept like the subject of a promise, since it requires a
feedback loop to achieve, which requires several promises.
A goal requires knowledge of the state to be reached and
therefore the ability to observe the state and its current state to
know when intersection has occurred. As long as the state is
internal to the agent we can assume it can simply make these
promises itself. However, the situation is much more complex
where multiple agents are involved. A collective goal requires
all agents to achieve a pre-arranged goal simultaneously. This
requires not merely private promises but coordination and
hence multiple two-way communication between the agents.

Notice also that the concept of a goal requires the notion of
a value-judgement about what is desirable or acceptable. This
is easily provided in the promise framework if we always refer
to the outcomes of promises, but again it is highly complex
where multiple agents are involved.

Finally we should at least mention the notion of non-
deterministic states, i.e. macro-states in which a goal is
achieved only on average over some interval of time. A
promise, after all, lasts for some time and is verified perhaps
several times. A promise therefore leads to a distribution of
outcomes in general, not merely a single state. One may
thus define anequilibrium as a goal that is satisfied by a
stable distribution over a ‘sufficiently persistent interval of
time’. As this raises many questions to be answered about the
statistical mechanics of agents, we shall defer a full discussion
of statistical behaviour for later work.

D. Changes to steady state

Now, consider how an agent might exhibit behaviour that
is based on input from another agent. To see how we might
affect a change in this behaviour generated byÔ we need
to follow the straightforward rules of matrix transformations.
Reactive or adaptive behaviour means that autonomous agents
make promises to accept input from an external agent. Thus
the operator must be made functionally dependent on the input
Ô → Ô(I). This requires a promise binding to accept input
conditionally on its provision, e.g.:

a
+O(I)/I

→ a′
ext (3)

a
−I
→ aext (4)

whereI represents a promise of input from an external agent,
andO(I) represents a promise of some observable output to
another external agent which is conditionally a function ofthe
input, and is kept via the operation of̂O(I).
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Let I → +Στ be the body of a promise to change the
generator of behaviour̂O from an external agent: i.e.aext

+Στ→
ai. The agent whose behavioural generatorĜ is being altered
promises to accept the change withai

.Στ→ aext and we denote
a linear realization of the operator which keeps the promise
to use this transformation by the external agent simply byΣτ

so that we have:

Ĝτ → Ĝ′ = Σ†
τ ĜτΣτ . (5)

The generator of this transformation matrix can, in the usual
way, be written asστ whereΣτ = I + στ , and

δĜτ = Ĝ′ − Ĝ = σ†
τ Ĝ + Ĝστ + σ†

τ Ĝστ (6)

What can we say about the transformation matrix? In order
to satisfy the principle of autonomy it must have the following
properties. Let us define a valuation of a promise known as the
outcomeby the notation:o(a1

b
→ a2). The outcome returns

a value in[0, 1] where 0 means not-kept and 1 means kept.
Intermediate values can be used for any purpose, such as
statistical compliance. Autonomy requires us to stipulate:

Στ ∝ o(a
−Σ
→ aext)

Σ†
τ ∝ o(a

+Σ
→ aext) (7)

so that

δG → 0

Στ → 1, Σ†
τ → 1

στ → 0, σ†
τ → 0, (8)

when one of the binding promises with the external agent is
not kept. This means that, unless the promises to deliver an
interaction influence are honoured by both parties, then steady
state behaviour persists.

The above boundary conditions are the only interpretation
of interaction that preserve the requirements of autonomy.

E. Laws of change

We now state the basic law of causation for behaviour in
terms of the autonomous promises of the agents, under the
condition of autonomy.

Law 1 (Law of Inertia): An agent’s observable properties
hold a constant, deterministic trajectory~q(t) unless it also
promises to use the value of an external source~σ to modify
its transition matrixÔ(~σ).

Proof: This follows from eqn. (6). Steady state trajecto-
ries imply thatδG = 0, which in turn requires that for small
changesσT = 0, which implies no promise of type−Σ.

Put another way, each agent has access only to information
promised to it, or already internal to it. A local promise

ai
f(~σ)
→ aj that depends on an externally promised parameter

σ is clearly a conditional promiseai
f(~σ)/~σ
→ aj , where~σ is

the value promised by another agent. In order to acquire the

value of~σ, we requireai
−~σ
→ aj and a corresponding promise

to provide~σ to ai either from the environment or from another

agent. Thus, if an agent does not promise to use any input~σ
from another agent, all of its internal variables and transition
matrices must be constant.

Note also that by the definitions in [20], a conditional
promise is only a promise when combined with a use-promise.
This fits naturally with the argument in the theorem.

Corollary 1 (A conditional promise is not exact):By
reversing the theorem we see that a conditional promise must,
by definition have a residual degree of freedom, which is the
value of the dependent condition.

We can now state the interaction mechanics using the
formulations of the previous laws, and in terms of clear
statements about state transitions:

Law 2 (Law of interaction):The accelerationδ2q of an

agent’s promise trajectory resulting from a promisea
O/I
→ a′

(i.e. the rate of change of its generalized momentumδq) is
proportional to the generalized forceF = δÔ = δĜ promised
by an external agent.

Proof: This now follows trivially from the transformation
properties and boundary conditions:

δτ~q = Ĝτ~q (9)

whereĜτ is the matrix valued generator of behaviours of type
τ , see eqn. (2). Under a change ofG

δ~q = Ĝ~q

δ~q′ = Ĝ′~q (10)

thus

δ2~q = δ~q′ − δ~q = (Ĝ′ − Ĝ)~q = δĜ ~q. (11)

Law 3 (Transmitted force - reaction to influence):The ef-
fective transmitted force due to a promise binding between
two agents is that which results from the outcome of the body-
intersection of equal but opposite (±) promises between the
agents.

Proof: By the assumption of autonomy, the influence
of agenta by aext is the conjunction of information sent and
information accepted:influence = offer∧acceptance. This
has an obvious set theoretic formulation[20]. From the rules
of promise composition, the binding

aext
+〈τ,χ1〉
→ a

a
−〈τ,χ2〉
→ aext (12)

has an outcome that satisfies:

o

(

aext
+〈τ,χ1〉
→ a, a

−〈τ,χ2〉
→ aext

)

=

o

(

aext
+〈τ,χ1∩χ2〉

→ a

)

o

(

a
−〈τ,χ1∩χ2〉

→ aext

)

, (13)

so that the interaction is the intersection of the agents’
promises to give and receive the influence.
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Thus we can say that the trajectory’s transformation must have
the form:

δÔ
︸ ︷︷ ︸

≃

Force

o(aext
+Σ
→ a)

︸ ︷︷ ︸

field

o(a
−Σ†

→ aext)
︸ ︷︷ ︸

charge (14)

There is a reassuring correspondence here with the physics
of force fields, which is a directly analogous construct, where
± charge also labels which particles promise to respond to
one another’s field. Promises appear like fields of influence
whose values are sampled by the action of measurement.
Promised behaviour is represented by the regular application
of operatorsÔ on a state vector that evolve the state and
keep the promise. The outcome is unknown until the act of
verification is initiated, somewhat analogous to the quantum
theory of matter.

We emphasize that these laws derive directly from the
assumptions of autonomy, operational change and transition
matrix formulation of the agents. They are therefore beyond
dispute and we would expect to find this kind of law in any
system of change with similar properties.

V. OBSERVATION AND MEASUREMENT

Measurement and observation are central to the discussion
of system behaviour. The concepts of calibration and coordi-
nation must therefore also feature. Promises define the only
observables in promise theory. No knowledge is predictably
exchanged without it being promised, so there is no measur-
able certainty without both promises to be observable and to
observe in a binding relationship. For instance, the location
and nature of an agent can only be observed if the agent
promises to make itself visible. This includes interactions
with an environment. The environment itself must promise
its secrets to agents. Although this is clearly a device, this
mode of description has the advantage of making explicit all
assumptions about individuals and their interactions, including
observations of environment and boundary conditions etc.

The strong assumption of autonomy in promise theory
underlines an essential limitation on such interactions between
agents. Agents observe according to their own private stan-
dards, thus each agent makes individual valuations of what
it observes. This might not be the same as other agents
(indeed no agent can know about another agent’s perception
of the world; at best they can try to communicate their own
experiences and seek consistency). Only relative comparisons
can therefore be expected to have meaning.

This limitation suggests a basic algebra of measurement
because it implies that all comparisons must be made through
a single adjudicator. Indeed this property explains how certain
agents attain a privileged position in an ensemble, by having
access to information and using a single scale of measurement
for coordination of all the information from observed agents.

We use the shorthand notationC(b) for a pattern of
promises that leads to the effective promise “exhibit the same
as”. The coordination promise is used for this (see fig. 1).
The reduction rule for coordination promises for the case in
which n1 promisesn2 that it will coordinate on the matter of

1

2

3

C(b) b

Fig. 1. Serial composition of a promise and a coordination promise. The
dashed arrow is implied by theC(b) promise.

b

C(b)

b

b

C(b)

bb

b

C(b)

Fig. 2. Observation indistinguishability implies an equivalence.

b, given thatn2 promisesn3 b follows. The symbol “⊗” is
used to signify the composition of these promises.

C(b)
n1 → n2
︸ ︷︷ ︸

‘Coordinate with′

⊗
b

n2 → n3
︸ ︷︷ ︸

Promise

⇒
b

n1 → n3 . (15)

The coordination promise is transitive.

n1
C(b)
→ n2 , n2

C(b)
→ n3 ⇒ n1

C(b)
→ n3. (16)

We use this below in the identification of observable proper-
ties, since it implies a basis forn3 to comparen1 andn2.

A. Distinguishability

It follows from the discussion surrounding the third law that
the outcome perceived by agentsa1 anda2 in their observation
of a third agenta3 need not agree. Their promises to receive
promised data could be different or even incorrectly calibrated.
This is not the only reason why perceived values might differ,
but it is a sufficient one. It follows that each agent has an
independent estimation of values observed. How then can any
third agent determine whether a pair of agents has the same
behaviour? To do this measurement must be with respect
to an arbitrary butsingular observer that can make relative
comparisons according to its own subjective apparati.

The coordination rewriting rule can be applied both for-
wards and backwards. Since an agent that observes behaviour
b has no knowledge of what might lie behind it, it cannot tell
the difference between the scenarios in fig 2.

Since agents cannot distinguish between these cases by
observation alone, they are entitled to consider the situations
equivalent.

Definition 2 (Equivalence under observation):A constel-
lation of two or more agents that promise identical observables
with equivalent behaviour to a given agent are considered
equivalent under observation if the observing agent cannot
distinguish the average behaviour of the agent with respect
to the promised observable.
Note that equivalence could be exact at any moment in time,
perfectly synchronized changes, or it could be defined as
an equivalence of averages over a sampling interval (e.g. a
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suitable time scale). This must be specified when reasoning
about the promises.

The notion of equivalent is not entirely clear however.

• Equivalent means identical.
• Equivalent only statistically, over a given sample scale,

with quantifiable bounds.

These judgements depend clearly on the abilities of the ob-
server to discern and distinguish behaviour, thus two different
agents’ findings should cannot be compared without prior
calibration.

B. Rewriting for cooperative behaviour

Based on the equivalences shown in fig. 2 a number of
rewriting rules can be formulated expressing equivalences
under our observation as modellers with complete information
about all agents (having a globally privileged insight thatno
single agent has). We shall describe them pictorially here to
avoid unnecessary formalism. From the symmetry of indis-
tinguishable agents, the implicit promises between the agents
must appear in both directions.

1) Inferring implicit coordination.Two agents that behave
in the same way to a real or fictitious external observer
over some defined timescale can be assumed to be coor-
dinated, and we may introduce symmetrical coordination
promises.

infers C(b)

b

b

b

b

C(b)

2) A corollary to this is that when all agents in an ensemble
make identical promises to each other in a complete
graph, we can add mutual coordination promises be-
tween all pairs. This is easily justified as it reflects
the observation that when a number of agents behaves
similarly with no labels that otherwise distinguish spe-
cial roles, an external observer can only say that all of
the agents are behaving in a coordinated way. Thus the
observer sees a coordinated group for all intents and
purposes, although it was not formally agreed by the
agents.

3) Inferring observational indistinguishability.Any two
agents that mutually coordinate their behaviour may be
considered to behave analogously over the sampling
interval to a hypothetical external observer. This can
be formulated by introducing a fictitious promise to the
fictitious observer.

infers C(b)
C(b)

b

b b

b

keep b

keep b

We have argued that these rules are the basis for understanding
swarm behaviour[26].

Coordination of agents could of course be arranged by
having each agent subordinate itself to the instructions ofa
third party, but in this case one must postulate the existence
of an additionalreal agent which does not seem justified
directly. However, by combining the rules above one can

0

0

Fig. 3. Patterns in agent space arise from irreducibility ofthe graph.

postulate the existence of such an agent entirely on the basis
of equivalences, which is preferable.

VI. PATTERNS OF BEHAVIOUR

To summarize the foregoing sections, behaviour is a pattern
of observed change in the observable measures of an agent.
When several agents are involved, we speak of collective
behaviour. Behaviour is governed by the interplay between
degrees of freedom and constraints[23]. In promise theory,
changes to observables are assumed to occur through the
action of operations[27]. Actions generate events whereas
promises are usually persistent claims about likely distribu-
tions of outcomes. Collective behaviour refers to a collection
of agents that together form a behavioural pattern.

In studying behaviour we are interested not only in singular
events but in their trends and classification. This is where
promises play a role: promises are long-term and change
only adiabatically compared to the events which test them. To
classify and analyze such events into a picture of behaviour
we must understand their variability.

A. Patterns

Patterns can arise in two dimensions:
• Serial patterns of events in time.
• Spatial patterns of relatedness arising from the agents’

promise ties. Clustering in the space of promise types
- agents with similar promises are expected to behave
similarly

Discrete patterns are described by the Chomsky hierarchy of
grammars[28]. We may consider each distinct promise, or
the operator that transmutes it into a persistent state to be
a symbol in an alphabetΣ. The strings formed from this
alphabet represent all possible behaviours in time, i.e. all
sequences. The matrix of all such strings whose rows and
columns represent the agents in an ensemble is also a matrix
(a matrix of matrices) of some dimension. Patterns formed
by reducible and irreducible blocks along the diagonal of this
matrix represent patterns in the space of the agents (see fig.
3).

B. Order and disorder

We can characterize the variability of the trajectories result-
ing from promises.

• Ordered behaviour:An agent whose observable prop-
erties change according to a deterministic algorithmic
pattern with a predictable grammar.
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• Disordered (“random”) behaviour:An agent whose be-
haviour changes in an unpredictable manner.

In general this is not a binary choice but a continuously
varying scale, which is most naturally defined in terms of
the entropy of the trajectory. We can define the order of an
ensemble by

Order =

(

1 −
S

Smax

)

(17)

whereS is the Shannon entropy of a trajectory defined by

S = −
∑

i

p(Ôi) log p(Ôi), (18)

andp(Ôi) is the probability or normalized frequency of oper-
ator typei occurring in the time evolution of the behaviour.

C. Roles

Roles are labels for agents derived from their observed
behaviour. The roles played by agents in an ensemble can
be assigned simply by looking for all repeated patterns of
promises. A role is then a pattern. Since similar promises will
lead to similar observed behaviour, so one defines roles for
each distinct combination of promises that occurs in a promise
graph. Thus one finds:

• Differentiated behaviour:
Agents that behave differently, e.g. perhaps partitioned
into a division of labour when cooperating, or simple
independent.

• Undifferentiated behaviour:
Agents play identical roles in the ensemble and require
no specific labels, since all promises are made by each
agent.

Undifferentiated behaviour can be coincidental i.e. un-
calibrated, like a disordered gaseous phase of matter (all the
component elements make identical unconditional promises
but never interact with one another) and it could imply agents
that have agreed to behave alike through interaction (like in a
solid phase of matter). Normally we are only interested in
the possibility of coordinated, collective phenomena, buta
phase transition from one to the other is possible and we shall
describe this elsewhere.

D. Formation of hierarchy

Hierarchy lies behind practically all visions of what con-
stitutes systematic and organized behaviour in the literature.
We propose in line with many previous authors’ thinking that
hierarchies emerge for microeconomic reasons. Each agent
pursues its own interests selfishly and the resulting collective
behaviour reflects an evolutionary process[29], [30]. We want
to resist theassumptionof hierarchy but we cannot deny its
widespread dominance empirically.

The characteristic of hierarchy is the existence of a root
node, or privileged agent at the top. the question is how this
node gets selected from a group of agents. A full understand-
ing of this phenomenon requires a discussion of symmetry-
breaking, which is beyond the scope of the present paper,

however we can discuss a simplified view. We suggest that this
emergence of privilege has a simple explanation in a processof
structural ‘crystallization’ which is seeded by a self-appointed
promiser of a collation service. The economic advantage to the
leaves for a privileged observer is that can make comparisons
within the initially flat ensemble more cheaply than having
each individual agent establish peer-to-peer communication
with every other agent in the ensemble. The cost benefit of
such centralization depends on how many promises need to
be set up and maintained.

There are two separate economic issues in ensembles: the
cost ofcalibration or the attainment of global measures allow-
ing consistency, and the cost ofcoordinationor differentiation
and delegation which requires only local consistency. Calibra-
tion requires complete bi-directional communication between
all agents. This is a familiar problem in security where it is
used for key distribution[31]. Coordination requires onlythat
we can pass a message to every agent on a need to know basis,
without the necessity for reply. Without calibration, agents
have only local concerns and global ones are considered to
‘emerge’ i.e. they are un-calibrated (we return to emergent
behaviour below).

The local economics of network relationships are quite
simple and depend mainly of the topology at a point. We need
to show how the cost of a particular topology impinges on the
cost of either coordination or calibration. We should recall that
promises are not about continuous network communications,
so the cost of making a promise is entirely in the establishment
of the promises. The maintenance of the promise depends
on its type however. Promises that require an exchange of
information between agents involve propagation of data, which
introduces measures of time-taken, latency etc.

Promise graphs form networks and the economics of coor-
dination thus have two facets (see fig 4): cost and efficiency.
The cost of establishing promises increases with the number
of promises since each promise generally requires some be-
haviour or work to be done by the agent. The efficiency of
coordination involves communication and therefore has to do
with propagation of effect over the coordination distance (this
is a network depth issue). We can divide the discussion into
what is good for the group and what is good for the individual
agent.

E. Global considerations

There are two extreme cases for topological connectivity in
a global region and a range of values in between. These are
the complete graph (all pairs nodes linked peer to peer with
N(N − 1) directed links) and that of centralized hub (with
(N−1) nodes linked directly to a single hub, making2(N−1)
directed links). If we assume that, to a first approximation,
agents are homogeneous and value promises from one another
equally then the cost and value of promises is proportional to
the number of promises.

If agents do not use route messages for each other (requiring
many coordination of promises), they have to coordinate with
every other agent individually in a complete graph ofN(N−1)
promises of each type of promise in the ensemble of sizeN .
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Fig. 4. Bilateral communication structures indicating “depth” and “width”
of promise bindings. A tree is something between the extremes of a chain
and a hub.

If they network their efforts however into a hub or chain then
they can reduce their promises to order2(N − 1) in total, but
now there is a new issue: depth or efficiency.

Depth versus width is a trade-off. Greater centralization
reduces depth and hence increases the coordination efficiency,
but it increases the cost burden of promises at the hub.
The costs are in-homogeneously distributed. In a chain (the
opposite of a hub), the cost of keeping promises is maximally
distributed but the depth is maximal too, meaning low coor-
dination efficiency and delays.

F. Local considerations

Agents do not generally see the global picture; they care
only about their own costs and benefits. This means that
the true picture of cooperative behaviour will necessarilybe
inhomogeneous in all cases but a complete graph, which
all agents will perceive to be expensive for largeN . The
difference between these must beN(N − 1) − 2(N − 1) =
(N − 1)(N − 2) ≫ 0 for justify appointment of a privileged
collator. As soon as the privileged collator has been chosen,
the cost to non-privileged agents is simply2. However, asN
grows, the cost for the appointed collator grows linearly like
2(N − 1). One solution is to look for a balanced tree, like a
Cayley tree[32] which allow constant scaling of promise cost
for all agents, however in this case the depth of the structure
increases, leading to a rapid fall-off in efficiency, thus there is
a trade-off.

Optimizing the structure is a simple matter of comparing
the relative economic merits of these two properties. Letk
be the average node degree for promises in a tree. The cost
associated with not getting data quickly is proportional tothe
effective depth of the network pattern(N − 1)/k, then we
have a cost function that is a balance between these two. All
cost functions contain arbitrary (subjective) parameters. In this
case we denote oursα:

Cost ∝ vi

(
⊕

i

(ai
−di→ ai−1)

)

= α
(

k
(−d)
i

)2

+
(N − 1)

k
(−d)
i

. (19)

A plot for this for the arbitrary policyα = 0.1 is shown
below. This shows the existence of an optimum aggregation
degree, in this examplek = 5. Such arguments should also
be taken into account in the scaling argument, as we see the
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Fig. 5. Cost considerations can plausibly lead to an optimumdepth of
network pattern when power considerations are taken into account. The
minimum cost here is given fork = 5. Such considerations require an
arbitrary choice to be made about relative importance of factors.

cost rise sharply with increasing centralization. This shows a
plausible explanation for why a hierarchy emerges. It seems
locally cheaper per agent than a full mesh and it can tune its
efficiency as long as the structure does not become fixed.

There is a paradox here: agents break symmetry to appoint
a leader in order to cheaply scale the number of interactions
required to compare and calibrate outcomes from multiple
agents for the “client” agents, however the appointed agent
ends up choking on this burden eventually. The solution that
generally emerges is a kind of lazy-evaluation: agents do not
make promises that they do not need to make. What then
emerges is often something like a small-worlds network or
power-law structure[33], [34], [35] which is seen in peer
to peer networks. This suggests that ordered management
is not something that scales without active abstention from
coordination.

VII. O RGANIZATION FROM DIFFERENTIATION

Let us now examine the word ‘organization’ and try to
provide a definition below that is unambiguous. How does
organizationdiffer from order, for instance? In natural science,
self-organization generally means spontaneous differentiation
or clustering, i.e. a reduction in local entropy of an open
system.

Is a tree considered organized, or merely ordered? The
now established term self-organization forces us to define
the meaning of organization clearly, since it implies that
organization may be something that is both identifieda priori
by design, ora postiori as a system property.

Intuitively we think of organization to mean the tidy de-
ployment of resources into a structural pattern. “Organization”
(from the Greek word for tool or instrument) implies to us
a tidy compartmentalization of functions. We know that all
discrete combinatoric patterns are classified by grammars of
the Chomsky hierarchy[28], [23], which may be formed from
the alphabet of such operators. This is consistent with the
concept of lowered entropy and differentiation. Organization
requires distinguishability.

Patterns may be formed over different degrees of freedom;
for instance:

• Spatial or role-based partitioning of operations between
parallel agents.
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• Temporal (schedule), i.e. serial ordering of operations at
an agent.

For some, an organization also imbues a conscious decision
amongst a number of agents to work together, with a hierarchi-
cal structure, and a leader, e.g. with aseparation of concerns,
or division of labour in the solution of atask. Many also
believe in the value ofre-usability (a subjective valuation of
implementation which could lead to an economic criterion for
selection of one structure over another).

We prefer to think that all of these can be understood
economically. Two agents trained to fight a fire could both
independently promise to grab the fire extinguisher or dial
911, but if they promise to divide the tasks then both tasks
will be started sooner and finished earlier costing less totally
and improving efficiency by parallelism.

Parallel efficiency gain is the seed fordifferentiation; its
survival is a matter of sustained advantage, which requires
sustained environmental conditions.

We define an organization as a discrete pattern that is formed
from interacting agents and which facilitates the achievement
of a desired trajectory or task, i.e. a change from an initial
state ~Qi to a final state~Qf over a certain span of time. We
refer to the discussion of systems in ref. [2] for the definition
of a task.

Definition 3 (Organization):A phenomenon in which a
pattern forms in the behaviour of an ensemble of differentiated
agents.

Let E be an ensemble of distinguishable agents. The observ-
ables ofE can formally be written by direct sum~Q = ~q1⊕~q2⊕
. . . ~qN , but we do not assume that these are public knowledge
to an actual agent. An organization over the ensemble consists
of the tupletZ = 〈E ,Q,A,S〉, where:E is a set of agents
with a promise graphAij . S is a string of matrix operators
for the whole ensemblêOA(ai

±∗
→ aj) which describes the

observable changes made by agents, for some sequence index
A, Diagonal elements ofS include the operationŝOA(t, ~σ).
S spans all the observables in the ensemble with column
dimension

∑

i∈E dim(~qi), and modifies the observables of
all agents:Ô ~Q = ~Q′.

Organization can now be understood as a discrete pattern
induced withZ. We discern orthogonal types of organization
(analogous to the longitudinal and transverse nature of wave
patterns in a continuum description):

• Serial organization is the syntax of operational changes
S, classified by a Chomsky grammar.

• Parallel organization: is the partitioning ofQ induced
by the irreducible modules of̂OA at each serial step. This
is a property of multiple agents and is characterized by
the eigenstructure of̂OA, which defines natural regions
in the graph[36].

What of ‘an organization’ as a noun (e.g. an institution or
company)? We normally think of this as a number of actors
who are organized under the umbrella of some architectural
edifice – like a building. Is it enough to simply collect agents
within a boundary to make them an organization? We think

not. Our definition above still works in this case, but it does
not quite fit the facts. An organization is clearly an ensemble
with collective behaviour, and it clearly forms a pattern (even
a trivial one); however, organizations or institutions as we
understand them always have boundaries (which one may or
may not consider artificial).

The only natural boundary for interaction is to limit our
understanding of organization to the point where no more
promises are made. However, this would mean that every
business had all of its clients as part of its organization, which
is not our common understanding of what an organization is.
Where is the edge of a pattern? The resolution lies in the
common usage of organization as a synonym for institution. If
an organization could have a boundary it would be completely
isolated from other agents, a breach in a boundary (a leaky
boundary in the parlance above) would demand that we extend
the boundary to include the part it is interacting with. This
in turn means that the boundary is not a boundary. Any ad
hoc definition of the edge of the organization (the edge of
the pattern) would be arbitrary and subjective, and no agent
would be able to know whether it were inside or outside the
organization itself. However, therein lies the clue. How would
an agent know? The boundary is not defined by interaction
but by a specific promise type, by a promise of membership.
The common meaning of an organization is as follows:

Definition 4 (‘An’ organization):A number of agents that
each promises to be identified as members of an organization.

Organization is thus more than a pattern that identifies
‘collective agents’ making promises that a single agent would
not be able to make alone. They are also self-appointedroles.

VIII. E QUILIBRIUM

When the outcome of one agent or organization is promised
to another agent or organization and vice versa, and the result
is a pair of persistent trajectories, we refer to the relationship
as economic trade. The phenomenon is called symbiosis in
biology. This mutual closure between promises is a basic
topological configuration that allows the persistence of an
operational relationship (an ecosystem). When the trade of
promises is stable over some time, the result is a dynamic
equilibrium.

Equilibrium does not imply static fixture. Dynamic or
statistical equilibria describe properties that are in balance on
average. This is the more normal state of affairs, since noise
from the environment can never be completely shielded.

A slow changes in the properties of the agents or the
environment can lead to a drift in the average values. If this
drift is slow enough to be distinguished from the fluctuations
themselves then we may call itadiabatic. This means simply
that there is weak enough coupling between the fluctuation
process and the process leading to average drift to lead to
a clean separation of scales. Systems that have exclusively
strong coupling do not exhibit this property and are much less
predictable as a result[37], [38]. The interaction of scales is a
vast topic that cannot be given a fair treatment here. Suffice
it to say that this is a crucial part of behavourial description
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in any system and the promise binding description allows us
to understand this in a classic interaction viewpoint.

Our formulation of agents interacting through persistent
promises reveals equilibria more clearly than a description
in terms of events and actions would be able to, because
it approaches the problem from the scale of the persistent
phenomenon.

IX. A GENTS, ENVIRONMENT AND EXTERNAL GOALS

By the first law, systems are most predictable when com-
pletely isolated from external forces. At the next level, their
changes can be predicted when coupling to external forces is
weak. The stronger the coupling between agents, the more
unknown information enters each agent. This can lead to
disordered behaviour which requires more information than
is practical or available to understand.

In promise theory all agents begin by default in a state of
isolation, impervious to outside influence. It is only through
their own promises that they can volunteer to be influenced.

Three questions remain in the discussion: i) how do we
explain irresistible forces such as weather, power-failures and
other ‘acts of god’? ii) How do we model the fact that an agent
can affect its environment, e.g. draw graffiti, move an object
etc? Finally, iii) how do we model the presence of boundary
conditions, or restrictions over which agents have no choice?
The concept of force is similar to that of an attack:

Definition 5 (Attack/Force):An attempt to alter an agent’s
trajectory without its consent (i.e. in the absence of a use-
promise). This is a breach of autonomy.

Let us consider these briefly for completeness, but defer
a full discussion for later work. There are two classical
approaches one might take to modelling environmental forces.
The first is to think of the environment as simply one or
more surrounding agents that distinguish themselves by the
magnitude of their influence. The alternative is to treat external
objects including the system boundary as being “something
else”, i.e. some kind of external object that is not an agent.
To justify the latter approach we would have to extend the
framework of this paper to say what we mean by such an
external force and thus we avoid this in the present work.
We wish instead to give a very simple view of environmental
interaction by treating the environment as a single “super-
agent” which promises to allow itself to be changed by any
agent and to which all agents have “voluntarily” promised to
be influenced. Although this is somewhat artificial4, it allows
us to continue our simply formalism without unnecessary
complications.

How can an agent move an object in promise theory? The
state of the object needs to be represented in a state space and
we must be able to discern its trajectory. If the object is of
sufficient importance we can model it as a separate agent that
promises to allow itself to be moved by another. Alternatively
we can consider all such objects to be mapped into the state

4In fact it is no more artificial than giving certain particles“charge” and
defining the notion of a field in physics.

space of an environmental super-agent. This super agent can
be influenced and can influence agents.

Definition 6 (Leaky agents):We define aleaky agentto be
an agent making any promise to receive information from the
environmentE, ai

−envi→ E.

The study of real systems is therefore a study of leaky
agents. The environment itself is also leaky in the sense that
it can be affected by other agents. This is how we account for
stigmergy for example.

With this view, we apply boundary conditions or coupling
to the environment by giving every agent a use-promise from
this environmental agent to allow some non-specified environ-
mental conditions to be explicitly modelled. The environment
agent is assumed to promise its information to all other agents.
This is also the way to understand how agents making non-
rigid promises can exhibit random behaviour. In order to
justify random behaviour we must explain how disordered
information enters the agents and selects values from within
the bounds of the inexact promises. This is the only mechanism
for exhibiting fluctuating behaviour.

By modelling forces using fictitious promises we can use
the three laws above to explain all changes in a system in a
common framework. Regardless of whether one finds this to
one’s taste, it is a rather practical step for simple modelling.
We add finally that the concept of a goal might now be
extended to allow agents to desire outcomes about states in
the environment, not only in their own state space. This is
reasonable for any agent as long as it has a use-promise from
another agent to accept changes of state. However, a goal is
still not an elementary concept that can be the subject of
a promise – it is an outcome that might emerge from the
behaviour.

X. EMERGENT BEHAVIOUR AND GOALS

When is behaviour designed and when does it emerge?
Promises are designed but outcomes emerge. Leaky agents
especially can be influenced by environment and we cannot
completely determine their trajectories. We speak of emer-
gence when we identify behaviour that appears organized, but
where no perceptible promises to account for this have been
made.

Many authors have fallen into the trap of using the ter-
minology of goals to describe emergence – goals which the
parts of the system are incapable of knowing individually.
This is a superfluous explanation which likely emerges from
the fictitious belief that programming determines real world
behaviour. We have shown that this is not the whole story and
now offer a simple explanation for emergent organization.

To understand emergence we must look to the spectrum of
observable outcomes of agents’ promises. Inexact promises
allow for unpredictability and the question is to understand
whether organized behaviour is likely, in spite of not being
an agreed cooperative goal of the agents. We have proposed
that promises must be inexact to allow for the possibility
of unpredictable behaviour[26] and that the following simple
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definition of emergent behaviour is plausible and captures the
popular views in the literature.

Definition 7 (Emergent behaviour):Emergent behaviour is
the set of trajectories belonging to leaky agents exhibiting non-
rigid, collective behaviour that is observationally indistinguish-
able from organized behaviour.

The important issue here is observational indistinguishabil-
ity. It is the end observer who looks for ‘meaning’ (i.e. a
goal) in the organized outcomes; the actual promises made by
the agents could in fact be anything that allows the observed
outcome to arise. In other words an outcome ‘emerges’ simply
because it arises.

There are many mysterious definitions of emergence in the
literature but emergent behaviour can be understood easilyby
looking for any promises that enable the observed outcome
and using algebraic reduction to account for behaviour as in
section V-B, keeping firmly in mind the notion of observational
indistinguishability. After all, if emergent behaviour isreal, it
should ultimately be measurable by the same standards as any
other kind of behaviour.

The key to emergence then is that the residual freedoms
in the agent promises (i.e. that are not constrained exactly),
are selected from by interaction with the environment, result-
ing in patterns of behaviour that are unexpected, but which
nevertheless lie within the bounds of the promises given.

An example of emergent behaviour often cited is the idea of
a swarm. Many definitions of swarms have been offered[39],
[40], [7], [41], [42], [43], [44], [45]. Ours is simply as follows:

Definition 8 (Emergent group or Swarm):A collection of
leaky agents that may be seen by any external observer as
exhibiting undifferentiated, collective behaviour.

XI. EMPIRICAL SUPPORT FOR PROMISES

There are ample studies to in the published literature in
which to seek validation of at least some of the foregoing
ideas. We propose to narrow our focus to just a few of these,
since a full treatment would warrant a major study that is
beyond the scope of the present paper.

The first part of our paper concerns laws of transmitted
influence. The three laws themselves are proven from axiom
and therefore the only validation required is of the assumptions
on which they are based. Since the assumption is of autonomy,
and one can always model a non-autonomous agent by an
autonomous one armed with promises of submission, there is
nothing worthy of verification. The laws are simply expres-
sions of necessity, and we may turn the argument around to
predict the existence of effective promises in all cases where
influence is transmitted between components. Such promises
are often represented as access control rules and network
services. We encourage readers to be on the look-out for such
promises in systems that seem to be under the control in a
master-slave relationship. We are satisfied that they are present.

The importance of promises as opposed to events is their
relative persistence, i.e. in allowing us to understand thestable

properties of behaviour rather than passing transitions. A
promise’s outcome is represented by a distribution of outcomes
rather than a single response to an event. Distributions have
greater stability than individual observations. This is where
the promise model differs from other works on the Event
Condition Action Model. We expect to find predictability only
at a statistical level, and have previously found this to be the
case[46].

Apart from these minor verifications, we find most support
from indirect studies of organization[47], [48], [49]. This is
no doubt a result of contemporary predominance of interest
in networks and their management. In this, two areas dis-
tinguish themselves for their clear dependence oncalibration
and autonomous promises: the Border Gateway Protocol and
encryption key verification. Both of these subjects have been
studied at length, especially the former. The data from these
works are most useful in supporting ideas about organization
and structural crystallization from peer-promises to centralized
or hierarchical structures.

BGP studies are particularly interesting not for their routing
at the level of packet events but because BGP behaviour
has long term trends that are based on policies given by
autonomous systems (AS). BGP policies are clearly promises
by our definition concerning the transit of packets. Two
phenomena are of interest: transit services and peering. Norton
was amongst the first to consider the habits of BGP users[50],
[51] and his result support the conclusion that the bindings
made between AS’s have little to do with packet traffic or
transit tariffs, but rather everything to do with the potential
value of their promises to peer with other powerful providers –
in terms of social capital. Only when the cost of keeping these
promises becomes debilitating do service providers waver
from these promises. This is an explicit example of the
importance of promises over events.

BGP also allows us to see delegated address spaces[49],
which in promise terms implies a growth of autonomous
agents and promises between them. The resulting structure of
collaboration for sharing of the environmental resource isan
organizational pattern. Sriraman et al. show that the structural
organization of this is hierarchical from the top down. This
kind of top-down phenomenon is not covered in our work
because it occurs when a single agent splits into several agents
with promises that link them to the residual of the original
agent. Thus inevitably leads to a local cluster attached to an
anchor point, but what is interesting is that the economics
again drive the formation of a basically homogeneous tree in
accordance with our predictions. The node degree of the graph
is remarkably homogeneous, suggesting that a fixed number
of promises is reached by a balance akin to that of eqn. (19).

Zhou et al.[48] make the point that this homogeneity is only
a local phenomenon. The actual degree distribution of the BGP
network follows a power-law behaviour with a long tail[34],
[35]. Its average node degree is about 6, but maxima of up
to 3000 are found. As we have pointed out, it makes sense
for all but the richest resource providers to keep their promise
counts low relative to their own capabilities – and these are
not homogeneous. The most convincing support for our model
comes from Norton’s interpretation of the value to providers



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. Y, MONTH 1999 13

in bilateral peering[51]. He shows that the perceived value
of outsourcing promises for major providers is a privately
measured value and grows with increased peering relationships
up to a maximum limit at which point it tails off, throttled
by the resource bottleneck of the hub. This is mirrored in
Dunbar’s theory of human peering in anthropology[52].

A second area of computing in which organization structure
is linked to economics of promises is in encryption key
management. Here there are two basic models: direct key
exchange, such as is used by tools like Secure Shell, and the
trusted third party broker used by Transmission Layer Security
SSL/TLS and Kerberos[31].

Dondeti et al. [53] provide some evidence to suggest that the
cost distribution of key verification promises is already quite
uniform, suggesting that the centralization bottleneck has been
outpaced by improvements in technology. Clearly affordance
can be sated either by a resource “arms race” or by diffusion
of load.

The body of literature from economic organization theory is
derived not only from economic game theory, but also from the
observations made about organizations throughout its rather
longer history, thus it brings a more complete and less artificial
verification of promise predictions. A compelling survey of
these ideas was found in the work of Fox [47], whose main
points bear a striking resemblance to our results and therefore
indirectly validate them: ours are based on simple axiomatic
theory with few assumptions but predictive power, whereas
his are based on experience of actual organizations. Human
influence is prevalent in computer behaviour, since behind
every computer system there lies a human decision-maker,
vying for the value and success of the system.

If ref. [54] the authors define organizations as collaborative
structures: “a group of persons who actions (decisions) agree
with certain rules that further their common interests”. Further
they define teams: “an organization whose members have only
common interests”. We find these definitions typical of thosein
economic theory, and motivated more by wishful thinking than
on the basis of an impartial model. To begin with, they are not
founded on elementary concepts. Promise theory shows that
cooperation is not an elementary concept but in fact requires
a plethora of promises to accomplish. We have uncovered a
deeper understanding based on simple arguments that both
confirms prior experience and enhances it with mainly the
assumption of autonomy at the heart.

There is much scope for future work in understanding the
empirical verification of promise theory. Empiricism lies at its
heart, so this is no small challenge. The magnitude of the task
is also an indication of its actual substance.

XII. C ONCLUSIONS AND FUTURE WORK

The term “behaviour” is wafted loosely in computer science
with often little clarification. It is not about what we plan
or desire, but about what actually happens when a system
operates in its environment. Many questions about behaviour
have been answered in the natural sciences. We have attempted
to offer a usable description of the organization and behaviour
based on the long scientific tradition of describing observable

characters, within the language of promises. This has (unsur-
prisingly) many parallels with the physics of systems.

We have showed that behaviour is a pattern of change
that can be partially predicted by reducing a system to an
ensemble of autonomous agents making promises. Three basic
laws of influence on behaviour follow from the property
of autonomy that underlies promise theory. These laws are
elementary expressions of change, explaining the promises
required to transmit influence between autonomous agents;
thus they describe the meaning of transmitted “force”.

Observation is the cornerstone to understanding agent be-
haviour because promises never imply guaranteed determin-
ism, only distributions of outcomes that can be observed in
experimental trials. Our ability to distinguish agents stems
from our ability to distinguish their behaviour, either in
advance (from promises) or after the fact (from their observed
trajectories). The ability to observe differences in behaviour is
not guaranteed: there are symmetries in ensembles of indistin-
guishable agents that require the calibration scale of a single
adjudicating observer to gauge. Once a scale of distinctions
can be made, the concept of organization can be explained
empirically, purely in terms of observable patterns of variation,
without the need to imagine that they are always the result of
complex human concepts like ‘designs’ or ‘goals’. The ‘self-
organization’ is a redundant terminology, as organizationis a
measurable property of any system.

A frequently emerging pattern is the hierarchy. We argue
that this does not emerge out of the need for control or
separation of concerns as do other authors, but rather from
the avoidance of economic cost associated with observing
and distinguishing system components on a single calibrated
scale of measurement: the comparison of capabilities. We cite
examples from BGP and key-signing in support of this.

We advise readers, having read this paper, to quell the urge
to think of promises as a network protocol, or even as message
passing. The promise graph is not a map of the network
but an abstract set of relationships whose message passing
medium is not necessarily known. Structural or organizational
relationships do not have to occur through regular interaction
as long as the agents can remember their promises. Once
established, promises persist like intrinsic properties.

The descriptions we offer here are a platform from which
to clarify many issues in autonomic systems. There are
unanswered questions about the subjective nature of agent
perceptions that motivate the need for a full theory of mea-
surement based on promise agents. This work is only the
beginning. From such a theory it should be possible to decide
whether peer to peer and centralized systems are comparable
organizations with interchangeable properties, or whether they
are two fundamentally different things. This is not clear today.

We believe that it is possible to go further and define
material properties for promise graphs, by analogy to how
physics describes the large scale properties of matter froman
atomic model. Why is wood strong and glass brittle? Why is
one computational structure robust and another fragile? These
are analogous questions that are about scale as well as the
underlying promises that bind the parts into a whole. We
must work towards suitable and useful definitions of these
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properties. We believe that this such definitions must follow
from promise theory or something like it. We return to these
issues in future work.

MB is grateful to Jan Bergstra, Matt Disney and Samah Bel
Haj Saad for helpful discussions. This work is supported by
the EC IST-EMANICS Network of Excellence (#26854)
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