
On the integration of domain-specific and scientific
bodies of knowledge in Model Driven Engineering

Eric Miotto, Tullio Vardanega
University of Padua

Dept. of Pure and Applied Mathematics
via Trieste 63, 35121 Padua, Italy

ermiotto@studenti.math.unipd.it, tullio.vardanega@math.unipd.it

Abstract—With the adoption of Domain Specific Languages
(DSL), Model Driven Engineering (MDE) recognizes that ap-
plication domains influence the way we specify and construct
software systems. Notwithstanding their domain-specific nature,
application systems often share common transversal concerns –
for example, automotive, railway and aerospace domains alike
require checking that critical temporal deadlines are met. It is
not very wise therefore that every application domain should
resolve transversal issues on its own: wherever possible instead,
recourse should be made to the common body of knowledge that
addresses the problem and solves it in a manner sanctioned by
the scientific community.

An effective MDE development environment should therefore
subsume two distinct bodies of knowledge: the domain-specific
one and its scientific complement. We are interested in devising a
provably correct and affordable way to implement such an MDE
environment. Two important questions however stand before us
in that endeavor:
1. What language should we employ to enable the modeling

of both bodies of knowledge: should we go for either UML
profiles or metamodeling techniques?

2. What factors most impact the complexity and cost of proving
model transformations correct?
In this short paper we limit ourselves to elaborating on these

problems, underpinning them with some background reasoning
on their fundamental role to the very heart of MDE.

Index Terms—model-driven engineering, metamodel, model,
transformation, composability, compositionality, UML profile,
Platform Specific Model, Platform Independent Model, applica-
tion domain, scientific body of knowledge, semantics, correctness,
Unified Modeling Language 2, Meta Object Facility, Domain
Specific Language, language

I. INTRODUCTION

In the quest for increased quality and productivity, Model
Driven Engineering (MDE) promotes [1], [2]:
1. the use of models at various levels of abstraction as a

vehicle for system specification, in the place of source
code artifacts and informal diagrams that do not qualify
as models;

2. the use of automated transformations to progressively turn
the user model into a software product ready for final
compilation, binding and deployment.
In this paper we borrow concepts and terminology from

a particular MDE initiative, the Model Driven Architecture
(MDA) standard [3], [4] endorsed by OMG, that for in-
stance was adopted in the ASSERT project (http://www.

assert-project.net/). MDA uses models to abstract away from
technological choices and to facilitate the port to the specific
target. To this end, MDA advocates the following approach
(figure 1):
1. we first construct a Platform Independent Model (PIM) that

specifies the solution in a way that does not depend on any
particular implementation;

2. we then transform this model into a Platform Specific
Model (PSM), by feeding the transformation with informa-
tion about the chosen execution platform and its character-
izing parameters; we assume that the PSM is automatically
generated and users are not allowed to directly modify it;

3. we perform a range of analyses on the PSM to validate
its feasibility and adequacy against a range of criteria and,
when satisfied, we launch the final stage of transformation
from PSM to code, otherwise we return to the PIM.

MDE acknowledges the centrality of application domains to
software development. As a corollary of this observation, mod-
els might well be expressed using Domain Specific Languages
(DSL): those languages in fact may be specifically tailored to
the expressive needs of the application domain of interest.

In this particular respect, DSL seem to have some advan-
tages over General Purpose Languages (GPL) like UML and,
even more so, mainstream programming languages:

• a DSL contains concepts apt for the target domain and
domain specific tools can better understand the intended
semantics, thereby permitting to detect behaviour that
does not fit the domain. Conversely, GPL contain general
concepts, usually related to computation. We can obvi-
ously express domain specific concepts with them, but the
semantics of the domain – the one we are ultimately inter-
ested in – is buried under the semantics of computation.
Hence program comprehension and verification become
more problematic.

• DSL can be used directly by domain experts, while GPL
can be used only by software developers and the two job
descriptions may vastly differ.

Application domain knowledge alone however is not suffi-
cient. Let us consider for example the construction of software
for automotive, railway and aerospace domains. We are clearly
considering three different application domains. Yet, these
application domains face common concerns, (for instance) in

http://www.assert-project.net/
http://www.assert-project.net/

!"#$%&'()

*+,-./+,/+$)

0&,/"

1'#+2%&'(#$-&+

!"#$%&'()

3./4-%-4)

0&,/"

*(."/(/+$#$-&+

,/$#-"2

1'#+2%&'(#$-&+

5&,/

Figure 1. In MDA the system is specified using a Platform Indipendent
Model (PIM), which abstracts away from implementation details. In order to
obtain a system that can be turned into a deployable executable, we have to
transform the PIM into a Platform Specific Model (PSM). This transformation
requires guidance information on what implementation choices to make. A
final stage of transformation is required to turn the PSM into source code.

that parts of their software must demonstrably meet temporal
deadlines. It does not seem especially wise that each appli-
cation domain should develop their own custom solutions to
common transversal problems, known to science and equipped
with standard solutions:

• effort is surely wasted in insisting to confront over and
over again problems that have been solved before;

• recognizing common transversal problems requires
knowledge that is more scientific than domain specific;
the former should be leveraged if the solution needs to
be sound, solid and cost effective.

When we for example consider timeliness and predictability
problems, we ought to know that the real-time scientific
community has long known those problems and devised a
range of analytic and engineering techniques to best cope
with them. Such techniques may be regarded as best practices
that form a so called scientific body of knowledge. Our two
main contentions in this paper are that: (i) the domain specific
knowledge should be complemented with adequate doses of
scientific body of knowledge; and (ii) the MDE paradigm is
best suited for leveraging that knowledge (figure 2).

!""#$%&'$()*

+(,&$)

-%$.)'$/$%*0(+1*(/*2)(3#.+4.

!""#$%&'$()*

+(,&$)

!""#$%&'$()*

+(,&$)
555

Figure 2. A scientific body of knowledge contains common concepts that
are employed by several application domains.

To summarize, both application domain knowledge and sci-
entific bodies of knowledge are crucial to effective MDE and
they should both guide and steer the application development.

In the MDA approach in particular, those two complements
of knowledge have the role and impact illustrated in figure 3:

• they determine how the DSL to use for PIM and PSM are
defined. At PIM level we must be able to conveniently
express concepts that pertain to the application domain.
Conversely, at PSM level we must be capable of con-
structing the system using methods that have a scientific
pedigree and background;

• the application domain often requires to deploy applica-
tions in accord with some estabilished reference architec-
ture, which may be physical as well as logical;

• the transformation of the PIM to PSM is guided by both
application domain and scientific knowledge. The former
retains design choices favored by the user (or the domain
culture), while the latter permits to implement them in a
scientifically based manner.

• the allowable range of analyses to be performed on the
PSM and the practices of code generation from it must
be rooted in the scientific body of knowledge.

We want to be able to build an MDE environment and
infrastructure that equally leverages on application domain
knowledge and scientific knowledge in supporting effective
and economic construction of correct-by-construction software
systems.

Two problems stand before us in the attainment of this goal;
in the remainder of this paper we want to elaborate on their
essence, background and trade offs:
1. DSL seem to be important vehicles for the expression of

both the application domain and the scientific bodies of
knowledge. Given the coverage that both elements have
in the deployment of MDA, DSL should serve for both
PIM and PSM. The DSL should be carefully designed, for
they determine the effectiveness at the user level and the
affordability of the implementation and the durability of the
infrastructure. DSL can be defined through UML profiles
or through a metamodel specified with some metamodeling
language (for example MOF). Which way to go here is
not clear, though. In section II we develop some reasoning

!"#

$%&'()*%+&,-*'

!.#

"+/01+1',&,-*'

21,&-0(

31)1%1'415

&%46-,14,7%1

8//0-4&,-*'5

2*+&-'

.4-1',-)-45

9*2:5*)5

;'*<012=1

$%&'()*%+&,-*'

>*21

Figure 3. The way application domain knowledge and scientific knowledge
fit in MDA. PIM and its languages are influenced by the application domain;
PSM and its languages are influenced by the scientific body of knowledge; the
application domain may impose a reference architecture; the transformation
from PIM to PSM is determined by both application domain and scientific
body of knowledge; analyses of and code generation from the PSM are
influenced by the scientific body of knowledge.

about this particular problem;
2. as we have already noted, the application domain and the

scientific body of knowledge influence the entire spectrum
of model transformations (from PIM to PSM and from PSM
to code). It is obviously imperative that the transformations
are proved correct for some definition of correctness. As
the proof of correctness may be considerably onerous we
are interested in taming its complexity to the maximum
possible extent. We must therefore understand what factors
most influence the relevant costs: in section III we single
out three such factors, which concern (i) the number of
views defined on the PIM, (ii) the incremental construction
of the PIM, and (iii) the number of metamodels used to
support views and models in both PIM and PSM.

II. PROBLEM ONE: WHICH DSL
DSL form an important foundation for MDE, because they

permit to express concepts rooted in application domains and
in scientific bodies of knowledge. Deciding how DSL are
defined is a difficult design decision, which effects the very
construction of MDE infrastructure. There are two main ways
to define a DSL:
1 to specialize the UML 2 metamodel through the definition

of a UML profile;
2 to create a new metamodel from scratch using MOF or other

metamodeling languages.

A thorough comparison between UML profiles and meta-
modeling can be found in [5], in which metamodeling is rated
more powerful but also less supported by tools than profiles.
We think that the answer is not so unequivocal and that there
are other considerations that are worth making:

• how UML profiles are defined in UML 2;
• whether the way MOF and UML are defined suggest

which is best for defining DSL;
• in which way tools allow to create DSL.
Let us discuss these issues in isolation.

A. Definition of UML profiles

The way profiles are defined in UML 2 seems a little fuzzy
to us. In our opinion, this fuzziness stems from the following
factors:

• profiles are described in both Infrastructure [6] and Su-
perstructure [7]. The respective descriptions are almost
the same (except for the graphical notation added in
Superstructure) and we see no value in the duplication;

• the description of profiles is poor. To us the specification
proved very difficult to parse, in that it is written in a
confused way and it is not well structured;

• at first glance, profile have mechanisms to target only a
subset of the UML metamodel – in particular the visi-
bility rules enforced by the metamodelReference and the
metaclassReference associations of the Profile metaclass.
In fact, it seems to us that they don’t accomplish that
goal:
– metamodelReference is limited to the compliance lev-

els and the packages defined in UML – we can still
import unwanted metaclasses;

– metaclassReference seems to address the latter con-
cern, but its use can be quite laborious, especially if
we want to leave out a few metaclasses;

– last but not the least, the entire visibility mechanism
seems a futile exercise, since in the specification after
its description we find the following clause: “The
filtering rules defined at the profile level are, in essence,
merely a suggestion to modeling tools on what to
do when a profile is applied to a model.” In our
opinion, this means that all the mechanism is optional
(for instance, we didn’t find any such mechanism in
Papyrus UML [8]) and in fact in the profile definition
we are referencing the entire UML metamodel, which
may well be an unwelcome burden.

In summary, we contend that the current definition of UML
profiles has flaws that hamper their comprehension and their
use.

B. MOF and UML

It is certainly worth investigating and clarifying the relation-
ship between MOF and UML, in order to understand which
is best at creating DSL.

This might at first seem an easy question. Indeed, there
has been a time when UML and its profile mechanism were

promoted as the sole standard way to define DSL. When the
MDA initiative proposed MOF as the standard base to specify
the metamodels for modeling software systems, however, the
opinions changed as some had reasons to prefer MOF to UML
for specifying DSL.

In fact the situation isn’t clear either way, unfortunately. To
begin with, MOF and UML were actually born together: both
the Request For Proposals (RFP) for MOF [9] and the one
for UML [10] were issued simultaneously in 1996, though in
different contexts – MOF for CORBA, UML for modeling.
OMG soon acknowledged that UML could be metamodeled
with MOF and it was wise to use the same core constructs for
both languages. Indeed the RFP for UML 1 required to furnish
a mapping between MOF and UML constructs and the UML
1.1 proposal [11] has it.

The specifications of both MOF 2 [12] and UML 2 Infras-
tructure [6] bring this integration to maturity. As required by
their RFP ([13] and [14] respectively), considerable effort has
been devoted to develop a core suitable for both languages,
which contains (i) basic data types, (ii) abstract concepts
needed in the definition of metamodels and (iii) concrete
constructs related to object oriented modeling. This approach
has at least two advantages according to [12]:

• it avoids the creation of another modeling language. UML
is widely known and moreover its base concepts are apt
to model modeling languages;

• it eases the creation of metamodeling tools through the
adaption of existing UML tools. In a broader sense, UML
tools are already capable of metamodeling because they
already got the necessary language core.

Put otherwise, MOF is a formal way to say that UML is
capable of metamodeling. MOF and UML are thus equally
important: UML provides the modeling notation and MOF
adds facilities useful for metamodel management. In some
sense, it can be seen as an incarnation of the UML 2 proposal
endorsed by the Distributed Systems Technology Center [15].

C. Tools for creating DSL

So far we have only considered methodological arguments,
but it is useful to also have a look at tools for creating DSL.
In theory the methodology should drive the technology: but it
often happens that tools favor some methodology and make
more expensive others. Thus we should look at what way the
existing tools let us create DSL, to gage which way they lean,
whether for UML profiles or for metamodels.

We first searched for tools suited for creating DSL in the
research literature, on Model-Driven Development Tool Imple-
menters Forum home page (http://www.dsmforum.org/events/
MDD-TIF07/) and on Johan den Haan’s microblog on MDE
(http://twitter.com/ModelDriven). The tools we found include:
Eclipse EMF [16]; MetaCase MetaEdit+ [17]; Vanderbilt Uni-
versity Generic Modeling Environment [18]; MOFLON [19],
JetBrains Meta Programming Systems [20]; Microsoft DSL
Tools [21] and Microsoft “Oslo” [22]. All these tools use
metamodeling in order to specify new languages.

On the other hand, OMG has defined several DSL using
profiles and these DSL are supported by industry. For example,
MARTE [23] is a UML profile for real-time and embedded
systems and SysML [24] is a UML profile designed for
systems engineering. Both profiles are endorsed by several
vendors and tools, for example Artisan Studio by Artisan
Software Tools [25] (support for MARTE is only planned)
and Papyrus UML [8].

In conclusion, both metamodeling and UML profiles feature
a range of supporting tools.

D. Personal considerations

At this point we would like to inject some personal obser-
vations:

• metamodeling gives the user complete freedom over mod-
eling concepts. Conversely, UML profiles only permit
additions to the UML metamodel (in the light of our
previous criticisms);

• as noted in [5], one distinct drawback of metamodeling is
the effort for producing tool support for the DSL, while
UML profiles leverage on existing UML tools;

• we must consider the longevity of standard and tools.
UML and MOF are clearly well endorsed and this sit-
uation is likely to continue. On the other hand, meta-
modeling tools typically don’t use MOF but employ
non standard meta-metamodels, the longevity of which
is difficult to assess.

III. PROBLEM TWO: PROVING THE CORRECTNESS OF
TRANSFORMATIONS

The transformations from PIM to PSM and from PSM
to code are obviously central to the essence of the MDE
paradigm. They turn the user model into a concrete imple-
mentation in accord with choices and directives that reflect
the application domain culture and legacy as well as methods
defined in the scientific body of knowledge. We must therefore
ensure that these trasformations are provably correct.

We say that a transformation from a model A to a model B
is correct if:
1. everything that holds in A holds also in B. In other words,

the semantics of B must contain the semantics of A;
2. things stated in B should not deny things stated in A.

In other words, the semantics we add in B should not
contradict the semantics contained in A. Note that the
trasformation from PSM to code does not add any seman-
tics.

Carrying out such a proof of correctness is a costly en-
deavor: we must therefore keep its complexity low and its
chances of success high. In this respect we wonder what
factors impact most on it. We focus our attention on three
specific factors, which we suspect to play a central role:

• the number of views used to specify PIM;
• the use of incremental PIM construction, which produces

multiple intermediate PSM representations;
• the number of metamodels that underlie PIM views and

intermediate PSM.

http://www.dsmforum.org/events/MDD-TIF07/
http://www.dsmforum.org/events/MDD-TIF07/
http://twitter.com/ModelDriven

!"#

$%&'%()*)%+

,,,

$%+-./+0('.-)1)-02).3(

Figure 4. PIM does not necessarily consist of a single view, but it may
be composed of several concern specific views, each of them represents a
particular concern of the system – for example functional units or deployment
of tasks on processors. When we compose the semantics of the views we
should obtain a single model representing the system under study.

We discuss each of these factors in isolation below.

A. Creating PIM from concern specific views

Most real-world software systems are too complex to be
specified with a single PIM – creation, comprehension and
evolution may become overwhelmingly difficult. We should
therefore rather describe it with several models. In this regard,
IEEE P42010/D6 [26] (descendant of IEEE 1471 [27]) advo-
cates that the description of the architecture of a system should
be made up of a series of views, each of which conforms
to a viewpoint that establishes the concerns of interest (e.g.
deployment or functionality) and the ways to address them
(e.g. languages and metamodels). This is further acknowledged
by SysML [24] that, with reference to IEEE 1471, supports
the concepts of views and viewpoints. The more views we
admit, the easier and the more accurate the modeling of the
overall system.

In order to ensure that the views form in effect a single and
coherent system, they should be:

• composable: their semantics should not superimpose, or
if this happens they should agree on the overlaps;

• compositional: there must exist a systematic way to as-
semble the semantics of concern specific views to obtain
the semantics of the PIM as a whole.

In order to trigger the transformation from PIM to PSM,
we should prove that the views are composable, carefully
minding any overlaps in their semantics. The more views
we have, however, the more proofs of correctness we must
produce in the PIM space and the more the effort we must
expend, which adds to the cost of proving the correctness of
the transformation from PIM to PSM.

The cost of determining whether the views are composable

!"#

!$# %%%

&'()

%%%

*+,)

-+(./)&)/0

1.)*'2'),
34,)51.)*'2'),

Figure 5. PIM can be constructed incrementally in several iterations; over
time we may therefore have a string of underspecified PIM. Under certain
preconditions an underspecified PIM may generate a PSM apt for some
analyses. PSM derived from underspecified PIM are throwaways and cannot
be thought of as increment of a single model – only the PSM generated from
completely specified PIM should be kept in order to generate the code for the
implementation.

in fact depends on the way these views are constructed. There
are two main approaches to it, as described in [26]:

• synthetic approach: each view is modeled separately with
one or more models and later composed with the others;

• projective approach: each view is extracted (without any
transformation) from a unique underlying model that
describes the entire system. Conversely, changes to a view
are propagated back to the model.

In the former approach the demonstration of composability
of the views implies to show that models underlying them
agree on their semantic overlaps. The cost of this activity
grows with the number of models – which can be greater than
the number of views – and the number of different metamodels
used to define them (more on this in section III-C).

Instead in the latter approach this demonstration is straight-
forward, since views are derived from a single model and this
model must be free of contradictions for it to be considered
valid. We have still to ensure that views are correctly derived
from the model and changes to views are correctly applied to
the model, but overall the effort is smaller.

B. Incremental PIM construction

Up to this point we have tacitly assumed that we should
have a completely specified PIM before we can instigate the
transformation of it into the PSM. This assumption sounds
reasonable of course, but it carries the implication that iterative
feedback cycles – that we may need to improve the goodness
of fit of the PIM – can only be triggered on full and complete
models. This prerequisite however may be frustrating, because
the best use of feedback cycles is to be had when they begin
as early as meaningful analysis can be carried out.

We contend that it is desirable to allow generation of PSM
from an underspecified PIM, in order that we can obtain
early feedback and permit to refine, change or commit design
decisions as early as possible (figure 5). While the PIM
may be underspecified, therefore, it may still be sufficiently
complete for some transformation to PSM to take place for
the specific purpose of some specialized analyses. Under this
assumption the construction of the PIM becomes incremental.
This requirement however has the following implications:

1) things we may leave unspecified in the PIM cannot be
arbitrary, but must be determined by the power of the
underpinning theory of analysis (which may do away with
some detail information) and/or by the analysis procedure
(which may permit the use of user estimates in the place
of actual values). In other words, it is the PSM and not the
PIM to determine what we can omit from the PIM;

2) all the PIM increments can be seen as additions or changes
to the same model – although the semantics of these
increments can disagree because of the corrections made
in response to analysis feedback. On the contrary, the
increments of PSM cannot be seen the same way but
they should considered as distinct models, since they are
generated separately and are tailored for the analyses we
run on them. Moreover, except for the PSM corresponding
to the completely specified PIM, we can say that all the
increments of PSM are “throwaways” – once we have
executed analyses on them, they have no further use;

3) the transformation from PIM to PSM becomes more com-
plex – we can in fact regard it as comprised of several
transformations, the one for the completely specified PIM
(that allows code generation) and the ones for each allowed
degree of PIM completeness.
One important property these transformations should all
have is that, given a piece of PIM semantics, all the
transformations that address it map it to a piece of PSM
that has the same semantics as the one generated by the
transformation that targets the completely specified PIM. In
other words, we must require that all transformations have
a congruent behavior when they operate on the same PIM
semantics; if we did not enforce this, then for the various
increments of the same PIM we could generate PSM that
in fact represent different systems, and the analysis results
would in fact be worthless.
To devise these transformations, it would be best to first
define the one that targets the completely specified PIM
and next use this as reference to construct the others.

Hence, when we allow incremental PIM construction, the
(composite) transformation from PIM to PSM becomes more
difficult to prove correct. In fact, to prove that the entire
transformation is correct we have to demonstrate that:

1) all the transformations are correct;
2) given a piece of PIM semantics, each transformation maps

it to elements in the PSM that have the same semantics as
the ones generated by the transformation that works on the
completely specified PIM;

3) the preconditions of the composite transformation are cor-
rect – that is, we must ensure that for each allowed degree
of PIM completeness we trigger the right transformation
and only for them.

C. Number of metamodels

We have seen that we may have to deal with a large number
of models. Having multiple models implies that we might use
more than one language for modeling them and thus we might
deal with more than one logical metamodel underneath them.
In particular we can have this extreme scenario:

• assuming we are employing the synthetic approach, every
model underlying the views in the PIM can have its own
metamodel;

• while it is reasonable to assume that every PIM increment
uses the same metamodels, we cannot expect this for the
generated PSM. Indeed, since in each increment we may
perform specialized analyses, we need to express different
concerns, for which we may need distinct metamodels.

We talk about logical metamodel to suggest that one and
the same (mega) physical metamodel may be constructed in a
manner that permits multiple logical metamodels to be realized
as a specific tailored view of it. For this reason in the following
by metamodel we mean logical metamodel.

We saw that the proof of correctness of trasformations
requires to handle models’ semantics, which is defined through
the semantics of their underlying metamodels. We maintain
that the number of metamodels to be supported may have
a considerable impact on the cost of the proof. If models
are specified with different logical metamodels, then before
being able to compare their semantics we should perform a
semantic integration by establishing correspondences between
their metamodels’ semantics (e.g., this piece of information
has the same meaning as that piece of information there; or
this relation here is the inverse of that relation there). The
cost of this integration seems to grow super linearly with the
number of metamodels: if we have n metamodels we have to
make a correspondence for each couple of metamodels and
then we have

(
n
2

)
= O(n2) correspondences to make.

Conversely, if models are specified with the same logical
metamodel, then the semantics is defined the same way for all
models and it is easier to check for overlaps and contradictions.
Moreover, if every piece of syntax is attached to precise
predefined semantics, the check becomes syntactic.

In fact, UML actually defines a single logical metamodel
with several views defined on top of it (the diagrams).

IV. CONCLUSIONS

This paper has discussed two problems that are to be faced
when we want to leverage application domains and scientific
bodies of knowledge in an MDE approach that aims to support
the development of correct-by-construction software systems.
The problems we posed were the following:
1. how to define modeling languages? Through UML profiles

or else through metamodeling? In discussing this question
we singled out elements that should guide the decision:

• we criticized the way UML profiles are defined and
singled out weak points that hamper the effective use
of profiles;

• we noted that the gain of importance of MOF in the
context of MDA didn’t undermine the importance of
UML as a vehicle for defining languages, but rather
recognized that UML is apt for metamodeling;

• from an informal survey of tools for creating DSL we
reported the observation that both approaches seem to be
equally supported.

2. what factors impact most on the complexity of proving
model transformations correct? We conjectured that three
such factors are:
• the number of views that make up the PIM. We argued

that it may be easier to construct the PIM out of multiple,
simpler, concern specific views; in that situation however
we must show that the views we use to form the PIM are
composable, and the cost of this proof is proportional to
the number of views. We also noted that it is desirable
to have a single model underlying these views;

• the incremental construction of PIM. We insisted that
we should enable the generation of PSM from under-
specified PIM, in order to facilitate specialized forms of
analyses useful for instigating (early) feedback cycles.
This approach however incurs a more costly proof of
correctness. Indeed the transformation becomes a com-
posite one, for which we have to prove that
1) the transformations inside it are correct;
2) given the same piece of PIM semantics, all the

transformations that may apply to it must behave
the same way as the one that targets the completely
specified PIM;

3) each specific transformation is deployed solely when
the degree of underspecification of the PIM allows it.

• the number of metamodels used to specify the views
of the PIM and the various increments of the PSM.
A proof of correctness requires to deal with semantics;
models’ semantics are established through metamodels’
semantics. Each metamodel defines its semantics in its
own way; hence to search for semantic overlaps and
spot contradictions we have to make semantic integration
between each pair of metamodels. The more metamodels
we have, the more semantic integration effort.

REFERENCES

[1] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven
Engineering,” Computer, vol. 39, no. 2, pp. 25–31, February
2006. [Online]. Available: http://dx.doi.org/10.1109/MC.2006.58

[2] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in Future of Software Engineering,
2007. FOSE ’07. IEEE Computer Society, 2007, pp. 37–54. [Online].
Available: http://dx.doi.org/10.1109/FOSE.2007.14

[3] J. Miller, J. Mukerji, and Others, “MDA Guide Version 1.0.1,” Object
Management Group, Tech. Rep., 2003.

[4] Object and Reference Model Subcommittee of the Architecture Board,
“A Proposal for an MDA Foundation Model, ormsc/05-04-01,” Object
Management Group, Tech. Rep., April 2005. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01

[5] I. Weisemoller and A. Schiirr, “A Comparison of Standard Compliant
Ways to Define Domain Specific Languages,” in Models in Software
Engineering: Workshops and Symposia at Models 2007 Nashville, Tn,
USA, September 30-October 5, 2007, Reports and Revised Selected
Papers, ser. Lecture Notes in Computer Science. Springer, 2008, pp. 47–
58. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-69073-3 6

[6] “Unified Modeling Language Infrastructure, version 2.2, formal/2009-
02-04,” standard, Object Management Group, 2009. [Online]. Available:
http://www.omg.org/spec/UML/2.2/Infrastructure

[7] “Unified Modeling Language Superstructure, version 2.2, formal/2009-
02-02,” standard, Object Management Group, 2009. [Online]. Available:
http://www.omg.org/spec/UML/2.2/Superstructure

[8] “Papyrus UML,” Software vendor tool. [Online]. Available: http:
//www.papyrusuml.org

[9] “Common Facilities RFP-5: Meta-Object Facility, cf/96-05-02,” Object
Management Group, June 1996. [Online]. Available: http://www.omg.
org/cgi-bin/doc?cf/96-05-02.pdf

[10] “Object Analysis & Design RFP-1, ad/96-05-01,” Object Management
Group, June 1996. [Online]. Available: http://www.omg.org/cgi-bin/
doc?ad/96-05-01.pdf

[11] “UML Proposal to the Object Management Group, version 1.1,
ad/97-08-02,” September 1997. [Online]. Available: http://www.omg.
org/cgi-bin/doc?ad/97-08-02.pdf

[12] “Meta Object Facility (MOF) Core Specification, Version 2.0,
formal/06-01-01,” standard, 2006. [Online]. Available: http://www.omg.
org/spec/MOF/2.0/PDF/

[13] “Request For Proposal: MOF 2.0 Core RFP, ad/2001-11-05,”
Object Management Group, November 2001. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ad/01-11-14.pdf

[14] “Request For Proposal: UML 2.0 Infrastructure, ad/2000-09-01,”
Object Management Group, September 2000. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ad/00-09-01.pdf

[15] K. Duddy, “UML2 must enable a family of languages,” Communications
of the ACM, vol. 45, no. 11, pp. 73–75, November 2002. [Online].
Available: http://dx.doi.org/10.1145/581571.581596

[16] The Eclipse Foundation, “Eclipse Modeling Framework,” Software
vendor tool. [Online]. Available: http://www.eclipse.org/modeling/emf/

[17] Metacase, “MetaEdit+,” Software vendor tool. [Online]. Available:
http://www.metacase.com

[18] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The Generic Modeling
Environment,” in Workshop on Intelligent Signal Processing. IEEE,
2001.

[19] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr, “MOFLON:
A Standard-Compliant Metamodeling Framework with Graph
Transformations,” in Model Driven Architecture – Foundations
and Applications. Second European Conference, ECMDA-FA 2006,
Bilbao, Spain, July 10-13, 2006. Proceedings, ser. Lecture Notes in
Computer Science. Springer, 2006, vol. 4066, pp. 361–375. [Online].
Available: http://dx.doi.org/10.1007/11787044 27

[20] Jetbrains, “Meta Programming Systems,” Software vendor tool.
[Online]. Available: http://www.jetbrains.com/mps/index.html

[21] Microsoft, “DSL Tools,” Software vendor tool. [Online]. Available:
http://msdn.microsoft.com/en-us/vsx/cc677256.aspx

[22] ——, “Oslo,” Software vendor tool. [Online]. Available: http:
//msdn.microsoft.com/en-us/oslo/default.aspx

[23] “A UML Profile for MARTE: Modeling and Analysis of Real-Time Em-
bedded systems, Beta 2, ptc/2008-06-09,” standard, Object Management
Group, June 2008.

[24] “OMG Systems Modeling Language, Version 1.1, formal/2008-11-02,”
Standard, November 2008. [Online]. Available: http://www.omg.org/
spec/SysML/1.1/PDF/

[25] Artisan Software Tools, “Artisan Studio,” Software vendor tool.
[Online]. Available: http://www.artisansoftwaretools.com

[26] “ISO/IEC WD4 42010, IEEE P42010/D6,” Standard draft, ISO/IEC,
IEEE, January 2009. [Online]. Available: http://www.iso-architecture.
org/ieee-1471/docs/IEEE-P42010-D6.pdf

[27] M. W. Maier, D. Emery, and R. Hilliard, “Software Architecture:
Introducing IEEE Standard 1471,” Computer, vol. 34, no. 4, pp.
107–109, April 2001. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=917550

http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/FOSE.2007.14
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01
http://dx.doi.org/10.1007/978-3-540-69073-3_6
http://www.omg.org/spec/UML/2.2/Infrastructure
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.papyrusuml.org
http://www.papyrusuml.org
http://www.omg.org/cgi-bin/doc?cf/96-05-02.pdf
http://www.omg.org/cgi-bin/doc?cf/96-05-02.pdf
http://www.omg.org/cgi-bin/doc?ad/96-05-01.pdf
http://www.omg.org/cgi-bin/doc?ad/96-05-01.pdf
http://www.omg.org/cgi-bin/doc?ad/97-08-02.pdf
http://www.omg.org/cgi-bin/doc?ad/97-08-02.pdf
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/cgi-bin/doc?ad/01-11-14.pdf
http://www.omg.org/cgi-bin/doc?ad/00-09-01.pdf
http://dx.doi.org/10.1145/581571.581596
http://www.eclipse.org/modeling/emf/
http://www.metacase.com
http://dx.doi.org/10.1007/11787044_27
http://www.jetbrains.com/mps/index.html
http://msdn.microsoft.com/en-us/vsx/cc677256.aspx
http://msdn.microsoft.com/en-us/oslo/default.aspx
http://msdn.microsoft.com/en-us/oslo/default.aspx
http://www.omg.org/spec/SysML/1.1/PDF/
http://www.omg.org/spec/SysML/1.1/PDF/
http://www.artisansoftwaretools.com
http://www.iso-architecture.org/ieee-1471/docs/IEEE-P42010-D6.pdf
http://www.iso-architecture.org/ieee-1471/docs/IEEE-P42010-D6.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=917550
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=917550

	Introduction
	Problem One: Which DSL
	Definition of UML profiles
	MOF and UML
	Tools for creating DSL
	Personal considerations

	Problem Two: Proving the Correctness of Transformations
	Creating PIM from concern specific views
	Incremental PIM construction
	Number of metamodels

	Conclusions
	References

