
UNIK-4660/TMA-4235, Summary
day 1-2

Introduction and Basic computer graphics

Øyvind Andreassen and Anders Helgeland

oya@ffi.no and ahe@ffi.no

Forsvarets Forskningsinstitutt

UNIK-4660/TMA-4235, Summary day 1-2 – p.1/28

Why visualize?

Our eyes and brain have an amazing ability to identify
geometrical patterns and to efficiently extract key visual
information. This ability makes visualization to a powerful
tool.

Increasing computing capabilities/improved
sensor performance �

Generation of huge data sets �

A challenge to extract key information from the data sets

The primary goal of scientific visualization is to communicate

relevant physical information contained in a given dataset.

UNIK-4660/TMA-4235, Summary day 1-2 – p.2/28

A typical scenario

Situations where visualization is commonly used.

UNIK-4660/TMA-4235, Summary day 1-2 – p.3/28

How did we do it in the past?

The capacity and power of computers have increased
dramatically during the last years.

Until 30 years ago, simulations were mostly
one-dimensional

Output were printed on line printers or plotted on
graph paper

Until 15 years ago, simulations were mostly up to
two-dimensional

Visual output were given as contour plots or as color
coded images on CTRs

UNIK-4660/TMA-4235, Summary day 1-2 – p.4/28

How did we do it recently?

15 years ago, a turning point came with the Cray
X-MP/Cray Y-MP computer systems

Low resolution 3D simulations

� � �� ���

became now
feasible

“Plotting” of 3D data became requested and the field of
data visualization grew out of this need

The need of showing the temporal evolution of 3D data
became urgent

Some degree of interactivity was requested

Dedicated graphics hardware and software (OpenGL
from SGI) designed by the simulator/entertainment
industry became utilized for data visualization

UNIK-4660/TMA-4235, Summary day 1-2 – p.5/28

How we are doing it today?

Tflops computer systems are currently available
They have 1-Tbytes of memory and 500-Tbytes
mass stores
Presently the largest Navier-Stokes DNS simulations
ever done are for Reynolds number

��� � �� ��� � 	 �

We have still far to go before “useful” work can be done

For a cruising B747,

�� � 	 � �

The Number of grid points required for this case is at

least

� � � �
� �

There is a need of computer systems

	 �

times
larger than current supercomputers

UNIK-4660/TMA-4235, Summary day 1-2 – p.6/28

Do we need visualization systems?

Current supercomputers generate a vast amount of data.

Visualization systems must balance computing systems.

UNIK-4660/TMA-4235, Summary day 1-2 – p.7/28

What is needed in visualization

In the visualization process, numerical data are “turned”
into a suitable visual form. The process is multi disciplinary
and involves among others

“Physics” - system knowledge

Numerical mathematics

Computer graphics software

Dedicated computer graphics hardware

High degree of interactivity is a requirement for best utiliza-

tion of our short-time visual memory.

UNIK-4660/TMA-4235, Summary day 1-2 – p.8/28

The visualization process

Data
Visualization

CPU

� � � ��

Scene
Rendering
GPU (cpu)

� � � ��

Image

UNIK-4660/TMA-4235, Summary day 1-2 – p.9/28

Some components of visualization

Visualization pipeline
Computation of derived fields, vector magnitudes etc

Thresholding by data value, clipping in space, and many others

Color assignment

Scalar/vector/tensor visualization techniques

Rendering pipeline
Vertex transformations

Lighting

Rasterization

Depth sorting (Z-buffering), antialiazing

Texture mapping

UNIK-4660/TMA-4235, Summary day 1-2 – p.10/28

Rendering

Render means represent or portray. In computer graphics,
a render is the program that makes the scene objects
visible as an image. Common render techniques are:

Ray-tracing or ray casting

Radiosity

Texture based direct rendering

UNIK-4660/TMA-4235, Summary day 1-2 – p.11/28

Ray-tracing

Ray-tracing

UNIK-4660/TMA-4235, Summary day 1-2 – p.12/28

Ray-tracing

The rays are computed from an eye-point, through each
pixel on the screen, refracted/reflected around until a light
source or back plane of the scene is hit.

It gives a high degree of realism

It is unfortunately difficult to implement in hardware

It is presently not suited for interactive rendering

UNIK-4660/TMA-4235, Summary day 1-2 – p.13/28

Radiosity

For Radiosity, the following equations are solved for each
ray composing the image

��� �� � ��� �� � �� � �	��
 � � � � � � �

Here

�� is the energy per time of ray
�

passing through
area

� � .

�� is a diffuse reflection and scattering
cross-section.

� � is the fraction of energy in ray

�

that is
contributing to ray

�

.

� � is the incoming energy per time
through area

� � prior to scattering

Radiosity gives a high degree of realism

It is less compute-intensive compared to ray-tracing, but
as ray-tracing it is difficult to implement in hardware

Without hardware support, it is not suitable for
interactive rendering

UNIK-4660/TMA-4235, Summary day 1-2 – p.14/28

Texture based direct rendering

Texture based direct rendering is the simplest of the render
techniques discussed here.

It is supported in hardware

Direct rendering is carried out back to front or front to
back

It is suited for volume rendering

Its quality is less good compared to ray-tracing/radiosity
rendering but fully adequate for data visualization

Texture based direct rendering is used for what we call
volume rendering or voxel rendering (voxel is the 3D
equivalent of a pixel)

UNIK-4660/TMA-4235, Summary day 1-2 – p.15/28

Rasterization

Geometric transformations (rotation, translation and
scaling) projects the 3D scene into a 2D image (mapped to
screen). The image is composed of polygons in 2D which
vertices has a coordinate

��� � �� and a color/opacity� �
�

�
�

�
� �� . In rasterization, the polygons are converted

into a raster image (pixels). This process is made up of two
parts:

Computation of color and opacity

Computation of reflection of light
Three reflection models are used (flat, Goraud and
Phong)
Goraud is implemented in hardware. Some of the
platforms support Phong shading

UNIK-4660/TMA-4235, Summary day 1-2 – p.16/28

Shading

The figures below show the different shading techniques
and the results when applied to a sphere.

Concepts for flat, Goraud and Phong shading

Flat, Goraud and Phong shading of a sphere
UNIK-4660/TMA-4235, Summary day 1-2 – p.17/28

Colors

Several color models are available in computer graphics. In
visualization the most important are:

1. RGB (red, green, blue) which is an additive color model

2. CMY (cyan, magenta, yellow) is a subtractive model

3. HSV (hue, saturation, value) is most suitable for
visualization

R-C, G-M and B-Y are complementary colors. They are
related as

�

�
�

� � �

	
	

	
� � �

�
�

�
�

UNIK-4660/TMA-4235, Summary day 1-2 – p.18/28

The RGB, CMY and HSV models

The RGB model is additive The CMY model is subtractive

The RGB cube The HSV cone

UNIK-4660/TMA-4235, Summary day 1-2 – p.19/28

Computer graphics terms

Color, shading, blending, lighting

Transparency

�

and opacity � are complementary
quantities

� � � �
	

Hidden surface removal / Z-buffer

Anti aliasing

Frame buffer, multi sample anti-aliasing

Texture/image mapping

UNIK-4660/TMA-4235, Summary day 1-2 – p.20/28

Technical terms, figures

Antialiazing Z-buffer

2D Texture mapping

UNIK-4660/TMA-4235, Summary day 1-2 – p.21/28

Graphics hardware

Computer graphics hardware is designed as a pipeline with
three functional units:

Geometry engine

Raster manager

Display subsystem

Graphics hardware

UNIK-4660/TMA-4235, Summary day 1-2 – p.22/28

Graphics hardware, geometry engine

The geometry subsystem has the following functionality:

Vertex transformations

Lighting

Projection to screen

Convolutions

Histograms

Scaling

Lookup tables

UNIK-4660/TMA-4235, Summary day 1-2 – p.23/28

Graphics hardware, raster manager

The raster subsystem has the following functionality:

Converts triangles, lines and points into pixels

Z-buffering

Multi sample anti-aliasing

Texture mapping

3D textures for volume rendering

Tri-linear interpolation

HDW supported cut planes

Various image-processing functions

UNIK-4660/TMA-4235, Summary day 1-2 – p.24/28

Graphics hardware, display subsystem

The display subsystem has the following functionality:

Converting output from the raster subsystem to a
variety of video formats

Digital/analog

NTSC/PAL

VGA(640x480) to 1920x1200

Support multiple output devices

Multiple pipes can feed a single screen

UNIK-4660/TMA-4235, Summary day 1-2 – p.25/28

Graphics hardware, extension

In modern GPUs, the vertex and fragment processors can
be programmed by C syntax languages. The pipeline can
be as follows:

or Direct3D

3D API:
OpenGL

Primitive
Assembly

GPU
Front End

Vertex Processor
 Programmable

Transformed
 Vertices

 3D API
Commands

 GPU
Commands &
Data Stream

Pretransformed
 Vertices

Vertex Index
 Stream

Interpolation
Rasterization

 Pixel
Location
 Stream

Frame
Buffer

 Pixel
Updates

Raster
Operations

 Processor

Programmable
 Fragment

 Rasterized
Pretransformed
 Fragments Transformed

 Fragments

CPU − GPU boundary

3D application

 Assembled
Polygons, Lines
 & Points

UNIK-4660/TMA-4235, Summary day 1-2 – p.26/28

OpenGL, driver for graphics hardware

OpenGL is a “low” level graphics software library. Some
important functions are:

Geometry and raster primitives

RGBA or color index modes

Display list or instant mode control

Transformations

Lighting and shading

Z-buffer control

Anti-aliasing

Texture mapping

Feedback and selection

Stencil planes

UNIK-4660/TMA-4235, Summary day 1-2 – p.27/28

Texture mapping/volume visualization

Introduction of 3D texture hardware implied volume-rendering speedup of a factor of

� � �

compared to CPU rendering. Presently (2006), rendering on inexpensive GPUs including 3D
texture hardware offers great advantage compared to CPU rendering, Some numerical and
signal processing algorithms fit to the GPU hardware and are currently implemented. Very
high performance with up to 20 times the performance of the fastest CPUs is achieved.

Interactive rendering (rot, pan, zoom) and interactive cut planes

Color tables are attached to the raster hardware

Visualization of four fields can be done in the same spacial domain

Can “blend” geometrical objects and voxels in the same scene

User defined fragment programs can be used on texture data to achieve a flexible and
controlled blending of various datasets

UNIK-4660/TMA-4235, Summary day 1-2 – p.28/28

	Why visualize?
	A typical scenario
	How did we do it in the past?
	How did we do it recently?
	How we are doing it today?
	Do we need visualization systems?
	What is needed in visualization
	The visualization process
	Some components of visualization
	Rendering
	Ray-tracing
	Ray-tracing
	Radiosity
	Texture based direct rendering
	Rasterization
	Shading
	Colors
	The RGB, CMY and HSV models
	Computer graphics terms
	Technical terms, figures
	Graphics hardware
	Graphics hardware, geometry engine
	Graphics hardware, raster manager
	Graphics hardware, display subsystem
	Graphics hardware, extension
	OpenGL, driver for graphics hardware
	Texture mapping/volume visualization

