Lagrange Multipliers for Quadratic Forms With Linear Constraints

Kenneth H. Carpenter

October 5, 2005

When one requires an extremum of a quadratic form

$$
\begin{equation*}
W=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i j} V_{i} V_{j} \tag{1}
\end{equation*}
$$

subject to the linear constraints

$$
\begin{equation*}
L_{m}=\sum_{l=1}^{N} B_{m l} V_{l}-D_{m}=0, \quad m=1,2, \ldots P \tag{2}
\end{equation*}
$$

then the method of Lagrange multipliers[1] may be applied as follows. Let $W_{2}=W+\sum_{m=1}^{P} \lambda_{m} L_{m}$:

$$
\begin{equation*}
W_{2}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i j} V_{i} V_{j}+\sum_{m-1}^{P} \sum_{l=1}^{N} \lambda_{m} B_{m l} V_{l}-\sum_{m=1}^{P} \lambda_{m} D_{m} . \tag{3}
\end{equation*}
$$

Now, to find an extreme of W, set the partial derivatives of W_{2} with respect to the V_{l} 's to zero, and combine with eq.(2) to obtain a set of $N+P$ linear equations to solve for the N values of the V_{i} and the P values of the Lagrange multipliers λ_{m}.

$$
\begin{equation*}
\frac{\partial W_{2}}{\partial V_{k}}=\frac{1}{2} \sum_{i=1}^{N} A_{i k} V_{k}+\frac{1}{2} \sum_{j=1}^{N} A_{k j} V_{k}+\sum_{m=1}^{P} \lambda_{m} B_{m k}=0 . \tag{4}
\end{equation*}
$$

Since eqs.(2) and (4) are linear, they may be written in matrix form:
$A_{N \times N}=\left\{A_{i j}\right\}, \quad B_{P \times N}=\left\{B_{m l}\right\}, \quad V_{N \times 1}=\left\{V_{i}\right\}, \quad D_{P \times 1}=\left\{D_{m}\right\}, \quad \lambda_{P \times 1}=\left\{\lambda_{m}\right\}$.
Let

$$
\begin{equation*}
C_{N \times N}=\frac{1}{2}\left(A+A^{T}\right) . \tag{5}
\end{equation*}
$$

Then eq.(4) becomes

$$
\begin{equation*}
C V+B^{T} \lambda=0, \tag{7}
\end{equation*}
$$

and eq.(2) becomes

$$
\begin{equation*}
B V=D . \tag{8}
\end{equation*}
$$

Now eqs.(7) and (8) may be placed in a partitioned matrix equation as

$$
\left[\begin{array}{cc}
C & B^{T} \tag{9}\\
B & 0
\end{array}\right]\left[\begin{array}{l}
V \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
0 \\
D
\end{array}\right]
$$

Eq.(9) has the symbolic solution

$$
\left[\begin{array}{l}
V \tag{10}\\
\lambda
\end{array}\right]=\left[\begin{array}{cc}
C & B^{T} \\
B & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
D
\end{array}\right]
$$

References

[1] I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engineering, 2nd.ed.,McGraw-Hill, 1966, pp. 345-347.

