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CHAPTER 1

FORMALIZING THE TRANSITION FROM
REQUIREMENTS TO DESIGN

R.Geoff. Dromey

Software Quality Institute
Griffith University

Nathan, Brisbane, Qld. 4111, AUSTRALIA
E-mail: g.dromey@griffith.edu.au

Despite the advances in software engineering since 1968, current meth-
ods for going from a set of functional requirements to a design are not
as direct, formal, repeatable and constructive as we would like. Progress
with this fundamental problem is possible once we recognize that in-
dividual functional requirements represent fragments of behavior, while
a design that satisfies a set of functional requirements represents inte-
grated behavior. This perspective admits the prospect of constructing
a design out of its requirements. A formal representation for individ-
ual functional requirements, called behavior trees makes this possible.
Behavior trees of individual functional requirements may be composed,
one at a time, to create an integrated design behavior tree. From this
problem domain representation it is then possible to transition directly,
systematically, and repeatably to a solution domain representation of
the component architecture of the system and the behavior designs of
the individual components that make up the system both are emergent
properties of the integrated design behavior tree.

“I believe that failure is less frequently attributable to either insufficiency
of means or impatience of labour than to a confused understanding of the
thing actually to be done”.

John Ruskin

1. Introduction

A great challenge that continues to confront software engineering is how
to proceed in a systematic way from a set of functional requirements to
a design that will satisfy those requirements. In practice, the task is fur-
ther complicated by defects in the original requirements and, subsequent
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changes to the requirements. A first step towards taking up this challenge is
to ask what are functional requirements? Study of diverse sets of functional
requirements suggests that it is safe to conclude individual requirements ex-
press constrained behavior. By comparison, a system that satisfies a set of
functional requirements exhibits integrated constrained behavior. The lat-
ter behavior of systems is not inherently different. Therefore, we may ask,
can the same formal representation of behavior be used for requirements
and for a design? If it could, it may clarify the requirements-design relation-
ship. Functional requirements contain, and systems exhibit, the behavior
summarized below.

• Components realise states
• Components change states
• Components have sets of attributes/properties that are as-

signed and change values
• Components, by changing states, can cause other compo-

nents to change their states
• Conditions/decisions, and events are associated with com-

ponents and states.
• Interactions between components also play a key role in

describing behavior. They involve sequential, concurrent
and threaded control-flow and/or data-flow between com-
ponents.

Notations like sequence diagrams, class and activity diagrams from
UML1, data-flow diagrams, Petri-nets2, Statecharts6, and Message Se-
quence Charts (MSCs)7, accommodate some or all of the behavior we find
expressed in functional requirements and designs. Individually however,
none of these notations provide the level of constructive and integrated
support we need in a single representation. This forces us to contemplate
another representation for functional requirements and designs. As Jackson
wisely remarked8, such ventures are generally not enthusiastically received
a consensus is that new proposals just muddy the waters. Our justification
for ignoring this advice is that the Behavior Tree Notation solves a fun-
damental problem it provides a clear, simple, constructive and systematic
path for going from a set of functional requirements to a design that will
satisfy those requirements. In other words, it provides a systematic means
to transition from the microscopic behavior of functional requirements to
the integrated macroscopic behaviour of a system that satisfies those func-
tional requirements. In addition the component architecture and individual
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component behavior designs for the system are both emergent properties
of the integrated macroscopic behavior of a system.

2. Behavior Trees

The Behavior Tree Notation captures in a simple tree-like form of com-
posed component-states what usually needs to be expressed in a mix of
other notations. Behavior is expressed in terms of components realizing
states, augmented by the logic and graphic forms of conventions found in
programming languages to support composition, events, control-flow, data-
flow, and threads. Behavior trees are equally suited to capture behavior ex-
pressed in the natural language representation of functional requirements
as to provide an abstract graphical representation of behavior expressed
in a program. To use David Harels metaphor, Behavior Trees represent a
lifting up of behavior expressed in programming languages to a higher level
of abstraction.

Definition: A Behavior Tree is a formal, tree-like graphical form that
represents behavior of individual or networks of entities which realize or
change states, make decisions, respond-to/cause events, and interact by
exchanging information and/or passing control.

To support the implementation of software intensive systems we must
capture, first in a formal specification of the requirements, then in the de-
sign, and finally in the software; the actions, events, decisions, and/or logic
obligations, and constraints expressed in the original natural language re-
quirements for a system. Behavior trees do this. They provide a direct and
clearly traceable relationship between what is expressed in the natural lan-
guage representation and its formal specification. Translation is carried out
on a sentence-by-sentence, word-by-word basis. Figure 1 shows a sample
translation to a behavior tree. Components are in bold and states, condi-
tions and events are in italics.

The principal conventions of the notation for component-states are the
graphical forms for associating with a component [State],??Event??, ?De-
cision?, [Attribute := expression | State ] or output data-flow <Data-
Output> and input data-flow >Data-Input<. Exactly what can be an
event, a decision, a state, etc are built on the formal foundations of ex-
pressions, Boolean expressions and quantifier-free formulae (qff). To assist
with traceability to original requirements a simple convention is followed.
Tags (e.g. R1 and R2, etc, see below) are used to refer to the original
requirement in the document that is being translated. Record/data def-
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Fig. 1. Translation of natural language to a Behavior Tree

initions, other constraints, and relations are handled by state extension.
System states are used to model high-level (abstract) behavior, some pre-
conditions/postconditions and possibly other behavior that has not been
associated with particular components. They are represented by rectangles
with a double line (===) border. A brief summary of key elements of the
notation is given in Figure 2, (see web-site http://www.sqi.gu.edu.au/gse/
for details).

In practice, when translating functional requirements into behavior trees
we often find that there is a lot of behavior that is either missing or is only
implied by a requirement. We mark implied behavior with a + in the tag
(and/or the colour yellow if colour can be shown). Behavior that is missing
is marked with a - in the tag (and/or the colour red). Explicit behavior
in the original requirement that is translated and captured in the behav-
ior tree has no +/- marking, and the colour green is used - see Figure
4. These conventions maximize traceability to original requirements. The
Green-Yellow-Red traffic-light metaphor is intended to indicate the need
for caution (yellow) and danger (red) and to draw attention to deficiencies
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Fig. 2. Behavior Tree Notation, Key Elements

in the original requirements. Subsequent change to a working system re-
quirements/design is marked by a ++ in the tag and/or the colour blue.
These conventions are particularly useful when discussing requirements and
designs with stakeholders. It provides a clear record of the evolution of, and
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deficiencies in the original system. We can now explore the relationship be-
tween a set of functional requirements and their corresponding design. And
from this follows a systematic method for constructing a design from its
requirements.

3. Genetic Design

Conventional software engineering applies the underlying design strategy
of constructing a design, D that will satisfy its set of functional require-
ments F. F may be represented by a set of natural language statements
{R1, R2, . . . , Rm}. Representing this symbolically we have:

D sat F

In contrast to this, genetic design enables us to use the behavior tree
notation to construct a design out of its set of functional requirements.
We achieve this by first applying a translation relation T to the natural
language description of each functional requirement. A translation relation
T takes a natural language statement of a functional requirement as input
and produces a set of requirements behavior trees as output (in most cases
one natural language statement of a functional requirement translates to
one requirements behavior tree). In general, the requirement Ri yields one
or more (the set Fi) requirements behavior trees (RBTs). The matter is fur-
ther complicated because there may be more than one equivalent behavior
tree translation (the set Ei) for the original natural language requirement
Ri. So in each case, we have:

Ri T Fi for all i ∈ [1..m] and Fi =
{
Fi1, Fi2, , Fik(i)

}
and Fi ∈ Ei

A complete set of requirements behavior trees F is obtained from the
union of all the sets Fi. A design behavior tree D is constructed by integrat-
ing the behavior trees for all individual functional requirements (RBTs),
one-at-a-time, into an evolving design behavior tree (DBT). Applying the
behavior tree integration relation I to all the RBTs yields a design behavior
tree D (it may be possible to construct more than one DBT for a given set of
RBTs when this happens the resulting set of DBTs yield equivalent archi-
tectures and component behavior projections because integration does not
add any new direct component-state to the component-state relationship
of a set of RBTs). We have:

F I D where F = {F1 ∪ F2 ∪ . . . ∪ Fm}
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If we use a ≤ b to denote that the behavior tree a is a sub-structure of
the behavior tree b then:

Fi1 ≤ D ∧ Fi2 ≤ D ∧ . . . ∧ Fik(i) ≤ D for all i ∈ [1..m] and all k(i) ≥ 1

This tells us that each RBT is a substructure of the design behavior tree.
This very significantly reduces the complexity of a key part of the design

process and any subsequent change process. Any design, built out of its
requirements will conform to the weaker criterion of satisfying its set of
functional requirements.

What we are suggesting is that a set of functional requirements, repre-
sented as behavior trees, in principal at least (when they form a complete
and consistent set), contains enough information to allow their composi-
tion/integration. This property is the exact same property that a set of
pieces for a jigsaw puzzle possess. And, interestingly, it is the same property
possessed by a set of genes that create a living entity. Witness the remark by
geneticist Adrian Woolfson: in his recent book15(p.12), Life Without Genes,
“we may thus imagine a gene kit as a cardboard box filled with genes. On
the front and sides of the box is a brightly coloured picture of the creature
that might in principle be constructed if the information in the kit is used
to instruct a biological manufacturing process”

The obvious question that follows is: “what information is possessed
by a set of functional requirements that might allow their composition or
integration?” The answer follows from the observation that the behavior ex-
pressed in functional requirements does not “just happen”. There is always
a precondition that must be satisfied in order for the behavior encapsulated
in a functional requirement to be accessible or applicable or executable. In
practice, this precondition may be embodied in the behavior tree represen-
tation of a functional requirement (as a component-state or as a composed
set of component states) or it may be missing - the latter situation repre-
sents a defect that needs rectification. The point to be made here is that
this precondition is needed, in each case, in order to integrate the require-
ment with at least one other member of the set of functional requirements
for a system. (In practice, the root node of a behavior tree often embodies
the precondition we are seeking). We call this foundational requirement of
the genetic software engineering method, the precondition axiom.

Precondition Axiom

Every constructive, implementable, individual functional requirement of a
system, expressed as a behavior tree, has associated with it a precondition
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that needs to be satisfied in order for the behavior encapsulated in the
functional requirement to be applicable.

A second building block is needed to facilitate the composition of func-
tional requirements expressed as behavior trees. Jigsaw puzzles, together
with the precondition axiom, give us the clues as to what additional in-
formation is needed to achieve integration. With a jigsaw puzzle, what is
pivotal, is not the order in which we put the pieces together, but rather
the position where we put each piece. If we are to integrate behavior trees
in any order, one at a time, an analogous requirement is needed. We have
already said that a functional requirements precondition needs to be sat-
isfied in order for its behavior to be applicable. It follows that some other
requirement, as part of its behavior tree, must establish the precondition.
This rule for composing/integrating functional requirements expressed as
behavior trees is more formally expressed by the following axiom.

Interaction Axiom

For each individual functional requirement of a system, expressed as a be-
havior tree, the precondition it needs to have satisfied in order to exhibit
its encapsulated behavior, must be established by the behavior tree of at
least one other functional requirement that belongs to the set of functional
requirements of the system. (The functional requirement that forms the root
of the design behavior tree is excluded from this requirement. The external
environment makes its precondition applicable).

The precondition axiom and the interaction axiom play a central role
in defining the relationship between a set of functional requirements for a
system and the corresponding design. What they tell us is that the first
stage of the design process, in the problem domain, can proceed by first
translating each individual natural language representation of a functional
requirement into one or more behavior trees. We may then proceed to in-
tegrate those behavior trees just as we would with a set of jigsaw puzzle
pieces. What we find when we pursue this whole approach to software de-
sign is that the process can be reduced to the following four overarching
steps:

• Requirements translation (problem domain)
• Requirements integration (problem domain)
• Component architecture transformation
• Component behavior projection
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Fig. 3. Interaction Axiom-Graphic Form

Each overarching step needs to be augmented with a verification/defect
detection and refinement step designed specifically to isolate and correct
the class of defects that show up in the different work products generated
by the process.

Our intent now is to introduce the main ideas of genetic design. Study
of a simple example has proven to be a good way to provide an initial
understanding of the overall process. For our purposes, and for the purposes
of comparison, we will use a design example for a Microwave Oven that
has already been published in the literature11. The seven stated functional
requirements for the Microwave Oven problem11(p.36) are given in Table 1.
Shlaer, and Mellor have applied their state-based Object-Oriented Analysis
method to this set of functional requirements.

3.1. Requirements Translation

Requirements translation is the first formal step in the Genetic Design pro-
cess. Its purpose is to translate each natural language functional require-
ment, one at a time, into one or more behavior trees.
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Table 1. Functional Requirements for Microwave Oven

R1. There is a single control button available for the use of the oven. If the

oven is idle with the door closed and you push the button, the oven will

start cooking (that is, energize the power-tube for one minute).
R2. If the button is pushed while the oven is cooking, it will cause the oven

to cook for an extra minute.

R3. Pushing the button when the door is open has no effect (because it is
disabled).

R4. Whenever the oven is cooking or the door is open, the light in the oven

will be on.
R5. Opening the door stops the cooking.

R6. Closing the door turns off the light. This is the normal idle state, prior
to cooking when the user has placed food in the oven.

R7. If the oven times out, the light and the power-tube are turned off and

then a beeper emits a sound to indicate that the cooking has finished.

3.1.1. Translation

Translation identifies the components (including actors and users), the
states they realise (and attribute/property assignments), the events and
decisions/constraints that they are associated with, the data components
exchange, and the causal, logical and temporal dependencies associated with
component interactions.

Example Translation

Translation of R7 from Table 1 will now be considered in slightly more
detail. For this requirement we have put the states/actions in italics and
made the components bold, that is If the oven times out the light and the
power-tube are turned off and a beeper emits a sound to indicate that
cooking has finished . Figure 4 gives a translation of this requirement R7, to
a corresponding requirements behavior tree (RBT). In this translation we
have followed the convention of trying wherever possible to associate higher
level system states (here OVEN states) with each functional requirement,
to act as preconditions/postconditions.

What we see from this translation process is that even for a very simple
example, it can identify problems that, on the surface, may not otherwise
be apparent (e.g. the original requirement, as stated, leaves out the precon-
dition that the oven needs to be cooking in order to subsequently time-out).
In the behavior tree representation tags (here R7) provide direct traceabil-
ity back to the original statement of requirements. Our claim is that the
translation process is highly repeatable if translators forego the temptation
to interpret, design, introduce new things, and leave things out, as they do
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Fig. 4. Behavior Tree produced by translation of requirement R7 in Table 1

an initial translation. In other words translation needs to be done meticu-
lously, sentence-by-sentence and word-by-word. In doing translations there
is no guarantee that two people will get exactly the same result because
there may be more than one way of representing the same behavior. The
best we can hope for is that they would get an equivalent result. The trans-
lations of the other six functional requirements for the Microwave from
Table 1 are shown in figure 5, together with implied behavior that includes
oven system states we have chosen to add. While these additions are “new”
they are clearly distinguished from the original behavior. Later, the rele-
vance and importance of including system-states will be made clear. For
now it suffices to say that they provide a representation (high-level descrip-
tion) of the behavior of a system independent of the behavior of any of the
components in the system.
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Fig. 5. Behavior Trees for Microwave Oven translated from Table 1

3.1.2. Translation Defect Detection

During initial translation of functional requirements to behavior trees there
are four principal types of defects that we encounter:
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• Aliases
• Ambiguities, where not enough context has been provided to allow

us to distinguish among more than one possible interpretation of
the behavior described. Unfortunately there is no guarantee that a
translator will always recognize an ambiguity when doing a transla-
tion this obviously impacts our chances of achieving repeatability
when doing translations.

• Incorrect causal, logical and temporal attributions. For example,
in R4 of our Microwave Oven example, it is implied that the oven
realizing the state ”cooking” causes the light to go on. Here it is
really the button being pushed which causes the light to go on and
the system (oven) to realize the system-state “cooking”. An exam-
ple of the latter case would be “the man got in the car and drove
off”. Here “and” should be replaced by “then”, because getting in
the car happens first.

• Missing implied and/or alternative behavior. For example, in R5
for the oven, the actor who opens the door is left out, together with
the fact that the power-tube needs to be off for the oven to stop
cooking.

It is necessary to maintain a vocabulary of component names and a vocab-
ulary of states associated with each component to maximize our chances
of detecting aliases. In Table 2 we show the states collected for the OVEN
component from requirement R7. As other requirements are translated more
states for the Oven component may accumulate in this table.

Table 2. States for a Component from Requirement 7

COMPONENT STATE FR

OVEN Cooking R7

Timed-Out R7

Cooking{Finished} R7

In practice we have a tool12 that automatically collects and generates
this information as each requirement is entered graphically into the system.

A final point should be made about translation. It does not matter how
good or how formal the representations are that we use for design/modeling,
unless the first step that crosses the informal-formal barrier is as rigorous,
intent-preserving, and as close to repeatable as possible, all subsequent
steps will be undermined because they are not built on a firm foundation.
Behavior trees give us a chance to create that foundation.
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3.2. Requirements Integration

When requirements translation has been completed each individual func-
tional requirement is translated to one or more corresponding requirements
behavior tree(s) (RBT). We can then systematically and incrementally con-
struct a design behavior tree (DBT) that will satisfy all its requirements by
integrating the requirements behavior trees (RBT). Integrating two behav-
ior trees turns out to be a relatively simple process that is guided by the
precondition and interaction axioms referred to above. In practice, it most
often involves locating where, (if at all) the component-state root node of
one behavior tree occurs in the other tree and grafting the two trees to-
gether at that point. This process generalises when we need to integrate N
behavior trees. We attempt to integrate two behavior trees at a time ei-
ther two RBTs, an RBT with a partial DBT or two partial DBTs. In some
cases, because the precondition for executing the behavior in an RBT has
not been included, or important behavior has been left out of a requirement,
it is not clear where a requirement integrates into the design. This immedi-
ately points to a problem with the requirements. In other cases, there may
be requirements/behavior missing from the set which prevents integration
of a requirement. Attempts at integration uncover such problems with re-
quirements at an early time when the consequences and costs are likely to
be minimized.

Example Integration

To illustrate the process of requirements integration we will integrate re-
quirement R6, with part of the constraint requirement R3C to form a partial
design behavior tree (DBT) (note in general constraint requirements need
to be integrated into a DBT wherever their root node appears in the DBT.
This is straightforward because the root node (and precondition) of R3C,
DOOR[Closed] occurs in R6. We integrate R3C into R6 at this node. Be-
cause R3C is a constraint it should be integrated into every requirement
that has a door closed state (in this case there is only one such node). The
result of the integration is shown in Figure 6.

When R6 and R3C have been integrated we have a “partial design” (the
evolving design behavior tree) whose behavior will satisfy R6, and the R3C
constraint. In this partial DBT it is clear and traceable where and how each
of the original functional requirements contribute to the design. Using this
same behavior tree grafting process, a complete design is constructed (it
evolves) incrementally by integrating RBTs and/or DBTs pairwise until we
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Fig. 6. Result of Integrating R6 and R3C

are left with a single final DBT (see Figure 7).
This is the ideal for design construction that is realizable when all re-

quirements are consistent, complete, composable and do not contain re-
dundancies. When it is not possible to integrate an RBT or partial DBT
with any other it points to an integration problem with the specified re-
quirements that needs to be resolved. Being able to construct a design
incrementally significantly reduces the complexity of this critical phase of
the design process. And importantly, it provides direct traceability to the
original natural language statement of the functional requirements.

3.2.1. Integration Defect Detection

During integration of functional requirements represented as behavior trees
(RBTs) there are four principal types of defects that we encounter:

• The RBT that we are trying to integrate has a missing or inap-
propriate (it may be too weak or too strong or domain-incorrect)
precondition that prevents integration by matching the root of the
RBT with a node in some other RBT or in the partially con-
structed DBT. For example, take the case of R5 for the Microwave
Oven: it can only be integrated directly with R1 by including
OVEN[Cooking] as a precondition.

• The behavior in a partial DBT or RBT, where the current RBT
needs to be integrated, is missing or incorrect.

• Both of the first two types of defects may occur at the same time.
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Fig. 7. Integration of all functional requirements for Microwave Oven
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Resolving this type of problem may sometimes require domain
knowledge. Examples of this and other integration problems can
be found in reference 4.

• In some cases, when we attempt to integrate an RBT we find that
more than the leaf node overlaps with the other RBT or partial
DBT. In such cases this redundancy can be removed at the time of
integration.

While in principal, it is possible to construct an algorithm to “auto-
mate” the integration step, because of the integration problems that we
frequently encounter in real systems, it is better to have manual control
over the integration process. Tool support can however be used to identify
the nodes that satisfy the matching criterion for integration. Our experience
with using integration in large industry systems is that the method uncovers
early on problems that have been completely overlooked using conventional
formal inspections. The lesson we have learned is that requirements inte-
gration is a key integrity check that it is always wise to apply to any set of
requirements that are to be used as a basis for constructing a design.

3.2.2. Inspection and Automated Defect Detection

Once we have a set of functional requirements represented as an integrated
design behavior tree we are in a strong position to carry out a range of
defect detection steps. The design behavior tree turns out to be a very
effective representation for revealing a range of incompleteness and incon-
sistency defects that are common in original statements of requirements.
The Microwave Oven System case study has its share of incompleteness
and other defects.

The DBT can be subject to a manual visual formal inspection and
because Behavior Trees have a formal semantics14 we can also use tools
12 to do automated formal analyses. In combination, these tools provide
a powerful armament for defect finding. With simple examples like the
Microwave Oven it is very easy to do just a visual inspection and identify
a number of defects. For larger systems, with large numbers of states and
complex control structures the automated tools are essential for systematic,
logically based, repeatable defect finding. We will now consider a number
of systematic manual and automated defect checks that can be performed
on a DBT.
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Missing Conditions and Events

A common problem is with original statements of requirements that de-
scribe a set of conditions that may apply at some point in the behavior of
the system. They often leave out the case that would make the behavior
complete. The simplest such case is where a requirement says what should
happen if some condition applies but the requirements are silent on what
should happen if the condition does not apply. There can also be missing
events at some point in the behavior of the system. For example, with the
Microwave case study a very glaring missing event is in requirement R5. It
says “opening the door stops the cooking” but neglects to mention that is
possible to open the Microwave door when it is idle/closed. To systemati-
cally “discover” this event-incompleteness defect we can use the following
process. We make a list of all events that can happen in the system (this
includes the user opening the door). We then examine those parts of the
DBT where events occur and ask the question “could any of the other events
that we have listed occur at this point?” In the case where the OVEN[Idle]
occurs the only event in the original requirements is that the user-event of
pushing the button to start the cooking can occur (see Figure 8).

Fig. 8. Missing event detected by the event completeness check rule

In this context, when we ask what other event, out of our list of events
could happen when the Oven is Idle, we discover the user could open the
door. We have added this missing event in as requirement R8.
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Missing Reversion Defects

Original statements of requirements frequently miss out on including de-
tails of reversions of behaviour that are needed to make the behaviour of a
system complete. Systems that “behave” as opposed to programs that ex-
ecute once and terminate must never get into a state from which no other
behaviour is possible if such a situation arises the integrated requirements
have a reversion defect. Take the case of the Microwave Oven DBT in figure
7. We find that if the Oven reaches either an OVEN[Cooking Stopped] or
an OVEN[Cooking Finished] state then no further behaviour takes place.
In contrast, when the system realizes an OVEN∧[Cooking] leaf-node it “re-
verts” to a node higher up in the tree and continues behaving. To correct
these two defects we need to append respectively to the R5 and R7 leaf
nodes the two reversion nodes “∧” shown in figure 9.

Fig. 9. Reversion “∧” nodes added to make DBT behaviour reversion-complete

Deadlock, Live-lock and Safety Checking

The tool we have built allows us to graphically enter behavior trees and
store them using XML12. From the XML we generate a CSP (Communi-
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cating Sequential Processes) representation. There are several translation
strategies that we can use to map behavior trees into CSP. Details of one
strategy for translating behavior trees into CSP are given in14. A similar
strategy involves defining sub-processes in which state transitions for a com-
ponent are treated as events. For example, to model the DOOR [Open] to
DOOR [Closed] transition the following CSP was generated by the trans-
lation system:

DoorOpen = userDoorClosed → doorClosed → DoorClosed

The CSP generated by the tool is fed directly into the FDR model-
checker. This allows us to check the DBT for deadlocks, live-locks and also
to formulate and check some safety requirements14.

Reversion Inconsistency Defect Detection

The current tool does a number of consistency checks on a DBT. One
important check to do is a reversion “∧”check where control reverts back to
an earlier established state. For example, for the Microwave Oven example
in Figure 7, one reversion check that needs to be done is to compare the
states of all components at OVEN[Idle] with those at OVEN∧[Idle]. What
this check allows us to do is see whether all components are in the same
state at the reversion point as the original state realization point. Figure
10 shows the bottom part of the Oven DBT from Figure 7.

We see that requirement R7 (and the DBT in Figure 7) is silent on any
change to the state of the BUTTON component. This means we have from
R1 that BUTTON[Pushed] still holds when OVEN∧[Idle] is realised. How-
ever this is inconsistent with OVEN[Idle] established by R6 and constraint
R3 which has the state for BUTTON as BUTTON[Enabled]. That is, the
system-state definitions which show up the inconsistency are as follows:

OVEN[Idle] ≡ DOOR[Closed] ∧ LIGHT[Off] ∧ BUTTON[Enabled] ∧ . . .

OVEN∧[Idle] ≡ DOOR[Closed] ∧ LIGHT[Off] ∧ BUTTON[Pushed] ∧ . . .

These sort of subtle defects are otherwise difficult to find without sys-
tematic and automated consistency checking.

There are a number of other systematic checks that can be performed on
a DBT, including the checking of safety conditions (e.g., in the Microwave
Oven requirement R5, it indicates that the door needs to realize the state
open to cause the power-tube to be turned off this clearly could be a safety
concern). We will not pursue these checks here as our goal has only been



June 19, 2006 14:43 WSPC/Trim Size: 9in x 6in for Review Volume Dromey-Chapter-Final-2005

Formalizing the Transition from Requirements to Design 21

Fig. 10. Missing behaviour detected by checking OVEN[Idle]/OVEN∧[Idle] component

state consistency

to give a flavour of the sort of systematic defect finding that is possible
with this integrated requirements representation. We claim, because of its
integrated view, that a DBT probably makes it easier to “see” and detect
a diverse set of subtle types of defects, like the ones we have shown here,
compared with other methods for representing requirements and designs.
We have found many textbook examples, where this is the case.

Once the design behavior tree (DBT) has been constructed, inspected
and augmented/corrected where necessary, the next jobs are to transform
it into its corresponding software or component architecture (or component
interaction network - CIN) and project from the design behavior tree the
component behavior trees (CBTs) for each of the components mentioned
in the original functional requirements.

3.3. Component Architecture Transformation

A design behavior-tree is the problem domain view of the shell of a design
that shows all the states and all the flows of control (and data), modelled
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as component-state interactions without any of the functionality needed
to realize the various states that individual components may assume. It
has the genetic property of embodying within its form two key emergent
properties of a design: (1) the component-architecture of a system and, (2)
the behaviors of each of the components in the system.

In the DBT representation, a given component may appear in different
parts of the tree in different states (e.g., in figure 7, the OVEN component
may appear in the Open-state in one part of the tree and in the Cooking-
state in another part of the tree). Interpreting what we said earlier in a dif-
ferent way, we need to convert a design behavior tree to a component-based
design in which each distinct component is represented only once. This
amounts to shifting from a representation where functional requirements
are integrated (which may be thought of as a specification for the system) to
a representation, which is part of the solution domain, where the compo-
nents mentioned in the functional requirements are themselves integrated.
A simple algorithmic process may be employed to accomplish this transfor-
mation from a tree into a network. Informally, the process starts at the root
of the design behavior tree and moves systematically down the tree towards
the leaf nodes including each component and each component interaction
(e.g., arrow) that is not already present. When this is done systematically
the tree is transformed into a component-based design in which each dis-
tinct component is represented only once and each component-component
interaction is represented by a single line. We call this a Component In-
teraction Network (CIN) representation. Below, we show the eighth step of
this transformation, involving the components on the eighth level (from the
root) of the DBT. Here the POWER-TUBE gets included into the CIN and
the link between the BUTTON and the LIGHT is added to the network.

Applying the tree-to-network conversion algorithm to level 8 of the DBT
as shown in Figure 11 we see that the components, DOOR, BUTTON and
LIGHT have been encountered earlier as have the DOOR→LIGHT and
DOOR→BUTTON interactions. However the POWER-TUBE component
has yet to be included in the evolving CIN. Also it is necessary to include
the two interactions, BUTTON→LIGHT and BUTTON→POWER-TUBE
as they have yet to be included. These level 8 inclusions are shown in the
evolving CIN shown in Figure 12.

The complete Component Interaction Network derived from the Mi-
crowave Oven design behavior tree is shown below in Figure 13. It defines
the component-component interactions for each component. It also captures
the “business model” or “conceptual design” for the system and represents
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Fig. 11. Eighth step in converting Oven DBT into a component architecture

the “first cut” at the software architecture for a system. Why we say it is a
first cut at the architecture is because it is sometimes possible to simplify
the component interfaces and the number of interactions. For example, light
has three “inputs”. It only needs a single input to control its on/off sta-
tus. In other situations, where there are a number of different interactions
between two components it may be necessary to have more than one con-
nection between two components (e.g., the interface between OVEN and
USER requires two “arrows” to distinguish four distinct control inputs in
the final component implementation architecture). Studying the network in
figure 13, we note that the USER component interacts with only the DOOR
and the BUTTON, as we would expect. This outcome was not something
we consciously planned, but it is something that followed naturally from ac-
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Fig. 12. Eighth step in converting Oven DBT into a component architecture

commodating the original requirements this shows the constructive power
of the method for producing a semantically based system architecture.

The CIN provides the starting point for constructing a component-based
design and implementation. It identifies the component interactions, subject
to simplification and rationalisation. The job that remains is to identify
the integrated behaviour of each of the components in the network, which
conceptually we “embed” in each of the components in the network. We
then have an integrated component design that can be easily refined into a
component-based implementation. We will now describe how to isolate the
behaviors of the individual components present in the architecture from the
DBT using projection.

What we have focussed on presenting thus far is largely a mechanism
for building a system out of components. It yields an architecture built out
of a set of connected, visible (at that level), interacting components each of
which encapsulates and executes behavior. What is important about this
architecture is that it includes a system-behavior-component (the Oven in
our example) which encapsulates the external behavior that the system
exhibits. A system with this architecture has the important property that
it can easily be used either:



June 19, 2006 14:43 WSPC/Trim Size: 9in x 6in for Review Volume Dromey-Chapter-Final-2005

Formalizing the Transition from Requirements to Design 25

1
DOOR

[Closed]

3C
BUTTON

[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Fig. 13. Component Interaction Network (CIN) derived from the OVEN DBT

• as a standalone system, or
• as a component in a more complex system.

The inclusion of a system-behavior-component allows us to access the
external behavior of the system without having any knowledge of its in-
ternal components and internal workings. All that is needed to use it is
acquaintance with its external behavior. This facilitates reuse. Note that
a system-behavior-component in this context is very different and separate
from the “glue code”, or integration-component, or other means needed to
integrate the components that make up the system.

3.4. Component Behavior Projection

In the design behavior tree, the behavior of individual components tends to
be dispersed throughout the tree (for example, see the OVEN component-
states in the DBT in figure 7).

To implement components that can be embedded in, and operate within,
the derived component interaction network, it is necessary to “concentrate”
each components behavior. We can achieve this by systematically project-
ing each components behavior tree (CBT) from the design behavior tree.
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Fig. 14. Microwave Oven DBT with oven component behaviour highlighted

We do this essentially by ignoring the component-states of all components
other than the one we are currently projecting. The resulting connected
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“skeleton” behavior tree for a particular component defines the behavior
of the component that we will need to implement and encapsulate in the
final component-based implementation. When conducting each projection
we need to preserve information that allows us to identify alternative be-
haviors that result from sets of either events and/or conditions.

Example Component Behavior Projection

To illustrate the effect and significance of component behavior projection
we show the projection of the OVEN system component from the DBT for
the Microwave Oven in figure 7.

Fig. 15. Projected Behavior for the OVEN component derived from the DBT

In Figure 14 the OVEN component is highlighted in the DBT and the
result of projection is shown in Figure 15. Component behavior projection
is a key design step in the solution domain that needs to be done for each
component in the design behavior tree. When this process has been car-
ried out for ALL the components in the DBT, that is, USER, BUTTON,
etc, all the behavior in the DBT has been projected into the components



June 19, 2006 14:43 WSPC/Trim Size: 9in x 6in for Review Volume Dromey-Chapter-Final-2005

28 R.G. Dromey

that are intended to implement the system. That is, the complete set

of component behavior projections conserve the behavior that was

originally present in the DBT. What this set of component projections
allows us to achieve is a metamorphosis from an integrated set of functional
requirements to an integrated component based design. It is worth com-
menting on what happens when we project out the behavior for the light
component.

Fig. 16. Light component behaviour projection and simplification

What we see from this projection is that there is considerable “repeated”
behavior that can be removed before embedding the light behaviour inside
the light component. The implications of what has happened here are signif-
icant. What it means in general is that this component-based representation
of the behaviour for a design factors out redundant and partially overlap-
ping behavior, just as we have observed with the light component. This
contrasts with object-oriented implementations where different scenarios
that partially overlap each need to be separately implemented.

Component behavior projections frequently show up incompleteness and
other defects, as is the case with the OVEN component projection figure
15. Missing is the behavior that should happen next when the cooking is
stopped by opening the door - what should happen after cooking has fin-
ished? We see from this that projection provides another systematic way
of finding and removing subtle requirements defects that are difficult to
identify by other means. Leaf nodes for the OVEN component need to re-
vert (∧) back to earlier behavior in order for the components behavior to be
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complete and consistent. For example, we need to add after OVEN[Cooking-
Stopped] a reverting leaf node OVEN∧[Open] that transfers control back to
OVEN[Open] at the top of the CBT. And, after OVEN[Cooking Finished]
we need to add a reverting leaf node OVEN∧[Idle] to make the oven behav-
ior complete. Such defects may be caught at the reversion-check stage of
the DBT, discussed earlier, or later at the component behavior projection
stage as we have indicated here.

Component Behavior Design

Once we have projected the component behavior tree (CBT) for each com-
ponent from the DBT and corrected any defects it is relatively straight-
forward to design the internal workings for a component together with its
input/output interface. Below we show the corrected CBT for the button
component.

3C
BUTTON
[Enabled]

1
BUTTON
{ Pushed }

3C
BUTTON

{ Disabled }

+
BUTTON^
{ Pushed }

3C
+

BUTTON^
{ Disabled }

7
-

BUTTON^
{ Enabled }

8
-

BUTTON^
[ Enabled ]

Fig. 17. Projected and reversion-corrected Component Behavior Tree for Button

We proceed with the internal design of the button component by iden-
tifying each of the possible “output-states” for the button and then asking,
for each output-state from which internal button states can the component
transition to the particular output state. The Button CBT directly provides
this information. Take for example, the output state BUTTON[Disabled].
The CBT tells us that the Button component can transition to this state
when it is either in a BUTTON[Pushed] or a BUTTON[Enabled] state.
Below in the button component design we show how this information is
recorded together with the transition information for all the other output
states.
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Fig. 18. Button Component internal state transitions derived from the Button CBT

In undertaking the design of the Button component we have chosen to
simplify and identify the set of components that provide input to button.
We have also done a similar thing with buttons outputs. Because in this ex-
ample Button only receives control from other components and only passes
control to other components we have used Booleans (T and F) as inputs
and outputs. This gives the button component the same level of indepen-
dence as a component in a hardware system would enjoy. It also allows
us to clearly separate component implementation from the integration of
the components in the system. In figure 19 the simplified input and output
interactions needed for the button component are shown.

To complete the component-based design, we embed the behaviors of
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Fig. 19. Input and Output Context for the Button component

each component into the architectural design refined from the component
interaction network (CIN). This involves simplifying or augmenting the
component interfaces where needed and implementing the component in-
teractions that deliver the integrated system behaviors. And finally, we must
provide implementations to support the behaviors exhibited by each of the
components. This is relatively straightforward to do from the component
design. Component integration can be done using either the facilities of a
component framework1 or by mapping the graphic integrated network into
a component-based code implementation.

The Microwave Oven problem has been previously studied in detail by
Shlaer and Mellor11.They employ a state transition diagram and a state
transition table to model the behaviors. The state transition diagram (STD)
bears some similarity to the projected behavior for the OVEN system com-
ponent. However the STD is an explicit network form rather than a tree-like
form with reversions. Events involving other components cause transitions
between STD states. In contrast, using genetic design, the behavior of all
other components in the system is incorporated directly in the DBT. Using
STDs traceability to the original requirements is not direct and transpar-
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ent. In going from original requirements to an STD additional behavior
not specified in the original requirements has been added without comment
(e.g. the behavior to allow the oven to be opened when it is idle). In genetic
design, direct translation, defect detection, and augmentation of require-
ments are clearly separated steps. The use of STDs makes no provision for
the determination of a problem-dependent architecture from the require-
ments or for the identification of behavior for other components. Instead
the Shlaer and Mellor method proposes generic architectural classes for the
finite state model, transition, timers and active instances (see 7, Chapter 9).
In contrast, genetic design leads to an architecture and component behavior
designs that are problem-dependent rather than generic.

3.5. Systems Implemented on More than One Level

The system component architecture that we have proposed (and illustrated
using the Oven system) thus far only deals with behavior on a single level.
Complex systems usually need to be able to deal with behavior on more
than one level. For example, we might have a two-level Kitchen system that
exhibits behavior at the Kitchen level but includes a Microwave Oven which
exhibits the behavior given in our treatment of the problem above.

Once we open up the possibility of behavior on more than one level the
two obvious questions to ask are: “(a) what is the role of sub-systems in
such an architecture, and (b) how are sub-systems related to components?”
Understanding of exactly what a sub-system is, often is not very clear.
Consider, for example, the following statement from the literature about
sub-systems. “A sub-system is not an object, nor a function, but a package
of classes, associations, operations, events, and constraints that are inter-
related and have a reasonably well-defined and (hopefully) small interface
with other sub-systems” 10.

In the Unified System Model (USM), proposed here, things are clearer.
The concept of a sub-system is unnecessary. What valid reason could there
possibly be for discarding the notion of sub-system, a concept with such
wide currency and acceptance? The answer lies in three things: (1) how we
use standalone systems in more complex systems (e.g., how do we use the
Microwave Oven system in a Kitchen system), (2) how we describe behavior
at all levels, and that (3) at whatever level we describe a system, it is built
out of a set of connected, visible (at that level), interacting components each
of which encapsulates and executes behavior. (Note that in the Microwave
system, the DOOR component is visible, but when we are describing the
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behavior of the Kitchen System (see below), using the Microwave System
component, the DOOR component becomes invisible because it is at a lower
behavior level).

Fig. 20. Kitchen system that includes Microwave Oven system as a component

In response to (1), we may use what is a standalone system at one level
of description, as a component (or more accurately a system-component)
at the next higher level of behavioural description that is, the Microwave
Oven system may be used as a component in the Kitchen system. Therefore
system-components obviate the need for sub-systems. On the second point,
fundamental to genetic design and the Unified System Model, is the idea
that we describe behavior (and for that matter, requirements) in exactly
the same way, at what ever level we are considering. For example, whether
we are talking about the behavior of a Microwave Oven or the behavior of
a Kitchen system that contains a Microwave Oven the treatment is exactly
the same. It follows that if we loosen our definition of a system to say
it is built out of connected, visible, interacting components and/or system-
components then we have what we need. At whatever level we are describing
a system it will be built out of connected components some of which may be
systems in their own right. A consequence of this system description regime
is that the need architecturally, or otherwise for sub-systems disappears.
This model for a system seems preferable to some vague notion about what
deserves to be a sub-system. The strategy also harmonises with the need
for coarse-grained reuse of components. The word sub-system itself also
gives us a semantic clue that reinforces this view there does not appear
to be anything architecturally to distinguish a sub-system from a system
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other than that it is part of a larger system. In a similar way, from an
external view, in this model, there is nothing to distinguish a system from
a component, both exhibit behavior and both have an external behavior
interface.

One other very important point needs to be made about the description
of behavior, and therefore the requirements of a system. On whatever level
we are describing the system, the scope of the language we can use to de-
scribe requirements/behavior for this level is restricted to the components
that are visible at that level, and the states that each of those components
can realize no other information is relevant. We call this the Behavioral
Description Invariant. Being mindful of, and employing this restriction sim-
plifies the task of expressing requirements and behavior.

4. Comparison with UML and Other Methods

As Jackson observed, new notations and new design methods are generally
not enthusiastically received 8. Such proposals are seen as just muddying
the waters and tinkering around the edges. Our justification for ignoring
this advice is that the Behavior Tree Notation and the accompanying ge-
netic design method solve a fundamental problem they provide a clear,
simple, constructive and systematic path for going from a set of functional
requirements to a design that will satisfy those requirements. Some of the
major differences and advantages of the present approach are summarised
below.

• The most significant advantage of genetic design over UML1 and
other methods is that it allows designers to focus on the com-
plexity/detail of individual requirements while not having to worry
about the detail in other requirements. That requirements can be
dealt with one at a time (both for translation and integration)
significantly reduces the complexity of creating a design. This very
significantly reduces the short-term memory overload problem that
has plagued software development for so long. In fact this approach
to design actually amplifies our ability to deal with complexity.
UML and other methods do not do this.

• Another important advantage of genetic design over UML is that
the component architecture and the component behaviour designs
of all individual components in a system are both emergent prop-
erties of the design behavior tree (DBT) that is constructed by
integrating all the functional requirements of the system.
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• We have shown with the case study that integration of functional
requirements is a powerful way to find behaviour gaps and other
incompleteness and inconsistency defects with a set of functional
requirements. Use-cases and scenario representations that involve
abstraction and loose partial views of requirements information do
not have the same focus on defects and therefore are unlikely to
consistently deliver the same level of constructive defect detection.

• The focus on direct translation of individual functional require-
ments maximizes the chances of preserving and clarifying intent
and guarantees traceability to original statements of requirements.
Because the focus is on translation the method approaches repeata-
bility in design construction. The method also provides a single in-
tegrated view of the requirements which we claim makes it easier
to see and find defects either manually or using automated tools.

• We have not emphasised it here but the genetic design method
provides a formal, automatable method for mapping changes of
requirements to changes in the architecture, the component inter-
faces, and the behaviors of the individual components affected by
the change 13. This follows because the architecture and individ-
ual component designs are emergent properties of the DBT that is
modified by the change in functional requirements of the system.

• The main steps to get to a design are very clear: translation of
requirements to behavior trees, integration of behavior trees, ar-
chitecture transformation, component behaviour projection for all
components following by component design. In contrast with UML
there is a choice of notations to use and an accompanying set of
process choices. Where to start and how to proceed is less obvious.
In scaling up genetic design to larger systems we need to intro-
duce composition trees that provide an integrated view of data
requirements (c.f. function requirements and behavior trees) and
structure trees that provide a formal integrated view of structures
that behaviour takes place on (e.g., a rail network). We also focus
on deriving an initial, high-level, integrated system behavior tree
(SBT) from the original requirements to gain cognitive control of
the systems behaviour before considering the behaviour of require-
ments in detail. Because of space limitations presentation of these
aspects of the method will not be pursued here.
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A comparison of Behavior Trees with Statecharts has been published
elsewhere5. A separate comparison with Cleanroom Software Engineering9

is available from the author.
Considerable thought has gone into whether it is appropriate to use the

term “genetic design” given the established use of the term “genetic algo-
rithms” in a different context. The parallels of the proposed method with
key genetic principles spelled out in Woolfsons recent book15 gives consider-
able justification to the claim that “genetic” is being accurately used here.
The way behavior tree integration can result in the evolutionary growth of
a design adds weight to the genetic characterization of the method. Genetic
design exploits three fundamental genetic properties of a set of functional
requirements that are revealed and become easily accessible when they are
expressed and then integrated as behavior trees. It is these emergent prop-
erties that give the method its constructive power. Things may be summed
up with the words of eighteenth century thinker Giambattista Vico, who
said, “To understand something, and not merely be able to describe it, or
analyse it into its component parts, is to understand how it came into being
its genesis, its growth . . . true understanding is always genetic”.

5. Conclusion

To advance the discipline of software engineering four major problems need
to be addressed. Amplification of our ability to deal with complexity is
the single most important problem to overcome in order to advance the
practice of software engineering. Genetic design has the potential to make
an important contribution to solving this problem because it allows us to
consider, translate, and integrate only one requirement at a time. This
very significantly reduces the short-term memory overload problem that
has plagued software development for so long.

A clarification of the steps to go from a set of requirements to a design
is also central to advancing the practice of software engineering. Presently
there would appear to be too much choice at every stage in terms of which
process to follow, which notation(s) to use and which tools to employ. The
root cause of this uncertainty seems to be a lack of a clear understanding of
the relationship between a set of requirements and a design that will satisfy
those requirements. The suggestion to build a design out of its requirements,
directly leads to a clarification and a simplification of the design process,
and a reduction in the need for different notations. It also guarantees direct
traceability of original statement of requirements. That the component ar-
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chitecture and individual component behavior designs are both emergent
properties of the integrated requirements (the design behavior tree) rep-
resents a further simplification, systematization and a clarification of the
design process.

Early detection of requirements defects is another very significant prob-
lem that thwarts software engineering practice. Requirements translation,
requirements integration and component behavior projection coupled with
both manual and automated analysis/inspection of design behavior trees
offer a powerful set of techniques for early requirements defect detection.
In particular, integration of requirements behavior trees turns out to a very
effective way of uncovering otherwise obscure defects because it forces us
to consider each requirement directly in the context where it is used behav-
iorally.

Yet another thorny challenge for software engineering is how to tran-
sition from a loose informal natural language statement of functional re-
quirements to a formal representation. Unless this transition approaches
repeatability all subsequent development within a formal framework is un-
dermined because we may not be preserving the original intention. With
many development approaches, when this barrier is crossed, we frequently
find some things get left out, new things get added in and in other cases
things are modified. In contrast, with behavior trees, because the focus is on
translation, it follows that the emphasis is on meaning and on the preser-
vation and clarification of intention. Although ambiguity is always a threat
to repeatability, rigorous translation approaches repeatability when carried
out by different translators.

Genetic design has been successfully applied to a diverse range of real
(often large) industrial applications. In all cases the method has proved
very effective at defect detection and in the control of complexity (in larger
systems there can be layers of behavior the method easily accommodates
this). We expect the utility of the method will increase as we enhance the
tool we are building to do more sophisticated graphics, multi-user editing,
vocabulary control, and consistency checking.

In summary, what we have presented is an intuitive, stepwise process
for going from a set of functional requirements to a design. The method is
attractive for its simplicity, its traceability, its ability to detect defects, its
control of complexity, and its accommodation of change.
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