

From Requirements to Design:

Formalizing the Key Steps
R.G. Dromey,

Software Quality Institute, Griffith University,
Nathan, Brisbane, Qld., 4111, AUSTRALIA

rgd@cit.gu.edu.au

Abstract

 Despite the advances in software engineering since 1968,
current methods for going from a set of functional
requirements to a design are not as direct, repeatable and
constructive as we would like. Progress with this
fundamental problem is possible once we recognize that
individual functional requirements represent fragments of
behaviour, while a design that satisfies a set of functional
requirements represents integrated behaviour. This
perspective admits the prospect of constructing a design
out of its requirements. A formal representation for
individual functional requirements, called behavior trees
makes this possible. Behaviour trees of individual
functional requirements may be composed, one at a time, to
create an integrated design behaviour tree. From this
problem domain representation it is then possible to
transition directly and systematically to a solution domain
representation of the component architecture of the system
and the behaviour designs of the individual components
that make up the system – both are emergent properties.

“Finding deep simplicities in a complex logical task
leads to work reduction”- Harlan Mills .

1. Introduction

 A great challenge that continues to confront software
engineering is how to proceed in a systematic way from a
set of functional requirements to a design that will satisfy
those requirements. In practice, the task is further
complicated by defects in the original requirements and,
subsequent changes to the requirements.

 A first step towards taking up this challenge is to ask –
what are functional requirements? Study of diverse sets of
functional requirements suggest that it is safe to conclude
individual requirements express constrained behaviour.
By comparison, a system that satisfies a set of functional
requirements exhibits integrated constrained behaviour.
The latter behaviour of systems is not inherently different.

 Functional requirements contain, and systems exhibit, the
behavior summarized below.

• Components realise states
• Components change states
• Components have sets of attributes that are assigned values
• Components, by changing states, can cause other components

to change their states
• Supplementing these component-state primitives are

conditions/decisions, and events involving component-states.
• Interactions between components also play a key role in

describing behaviour. They involve control-flow and/or data-
flow between components.

 Notations like sequence diagrams, class and activity
diagrams from UML[1], data-flow diagrams, Petri-nets[2],
state-charts [3], and Message Sequence Charts (MSCs) [4],
accommodate some or all of the behaviour we find
expressed in functional requirements and designs.
Individually however, none of these notations provide the
level of constructive support we need. This forces us to
contemplate another representation for functional
requirements and designs. As Jackson wisely remarked [5],
such ventures are generally not enthusiastically received –
a consensus is that new proposals just muddy the waters.
Our justification for ignoring this advice is that the
Behavior Tree Notation solves a fundamental problem – it
provides a clear, simple, constructive and systematic path
for going from a set of functional requirements to a design
that will satisfy those requirements.

2. Behavior Trees

 The Behavior Tree Notation captures in a simple tree-like
form of composed component-states what usually needs to
be expressed in a mix of other notations. Behavior is
expressed in terms of components realizing states,
augmented by the logic and graphic forms of conventions
found in programming languages to support composition,
events, control-flow data-flow, and threads.

Therefore, can the same formal representation of behaviour
be used for requirements and for a design? If it could, it
may clarify the requirements-design relationship.

 Behavior trees are equally suited to capture behavior
expressed in the natural language representation of
functional requirements as to provide an abstract graphical
representation of behavior expressed in a program.

Definition: A Behavior Tree is a formal, tree-like
graphical form that represents behaviour of individual
or networks of entities which realize or change states,
make decisions, respond-to/cause events, and interact by
exchanging information and/or passing control.

 To support the implementation, of software intensive
systems we must capture, first in a formal specification of
the requirements, then in the design, and finally in the
software; the actions, events, decisions, and/or logic,
obligations, and constraints expressed in the original
natural language requirements for a system. Behavior trees
do this. They provide a direct and clearly traceable
relationship between what is expressed in the natural
language representation and its formal specification.
Translation is carried out on a sentence-by-sentence basis,
e.g., the sentence “when the door is opened the light
should go on” is translated to the behaviour tree below:

DOOR
[Open]

LIGHT
[On]

 The principal conventions of the notation for component-
states are the graphical forms for associating with a
component a [State], ??Event??, ?Decision?, [Sub-
cpt[State]], or [Attribute := expression | State]. Exactly

what can be an event, a decision, a state, etc are built on
the formal foundations of expressions, Boolean
expressions and quantifier-free formulae (qff). To assist

with traceability to original requirements a simple
convention is followed. Tags (e.g. R1 and R2, etc, see
below) are used to refer to the original requirement in the
document that is being translated. Record/data definitions
and other constraints are signalled by a “/”. System states,
are used to model high-level (abstract) behavior, some
preconditions/postconditions and possibly other behavior
that has not been associated with particular components.
They are represented by rectangles with a double line
(===) border. A brief summary of key elements of the
notation is given in Figure 1, above (see EBNF, semantics,
web-site http://www.sqi.gu.edu.au/gse/papers).

 In practice, when translating functional requirements into
behavior trees we often find that there is a lot of behavior
that is either missing or is only implied by a requirement.
We mark implied behavior with a “+” in the tag (and/or the
colour yellow if colour can be shown). Behavior that is
missing is marked with a “-“ in the tag (and/or the colour
red). Explicit behavior in the original requirement that is
translated and captured in the behavior tree has no “+/-“
marking, and the colour green is used - see Fig. 4 below.
These conventions maximize traceability to original
requirements. The Green-Yellow-Red traffic light metaphor
is intended to indicate the need for caution (yellow) and
danger (red) and to draw attention, to deficiencies in the
original requirements. Subsequent change to a working
system requirements/design is marked by a “++” in the tag
and/or the colour blue. These conventions are particularly
useful when discussing requirements and designs with
users or clients and developers/maintainers. It provides a
clear record of the evolution of, and deficiencies in the
original system. We can now explore the relationship
between a set of requirements and its corresponding
design. And from this follows a systematic method for
constructing a design from its requirements.

3. Genetic Software Engineering Method

 Conventional software engineering applies the
underlying design strategy of constructing a design that
will satisfy its set of functional requirements. In contrast to
this, a clear advantage of the behavior tree notation is that
it allows us to construct a design out of its set of functional
requirements, by integrating the behavior trees for
individual functional requirements (RBTs), one-at-a-time,
into an evolving design behavior tree (DBT). This very
significantly reduces the complexity of the design process
and any subsequent change process. Any design, built out
of its requirements will conform to the weaker criterion of
satisfying its set of functional requirements.

 What we are suggesting is that a set of functional
requirements, represented as behavior trees, in principal at
least (when they form a complete and consistent set),
contains enough information to allow their composition.
This property is the exact same property that a set of

Component-State Label Semantics

tag COMPONENT
[State]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
when state is realized

tag COMPONENT
[Sub-cpt [State]]

Container - State
Indicates that a container
component will have a sub-
component realize a state

tag COMPONENT
[Attribute := Value]

Attribute - State
Indicates that the component
will assign a value to one of
its attributes.

tag COMPONENT
?? WHEN-State ??

WHEN - State
Indicates that the component
will only pass control when and
if the event WHEN-state happens

tag COMPONENT
< Dataflow-State >

Data-out State Indicates that when the
component has realized the
state it will pass the data to
the component that receives
the flow

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
will only pass control if If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to its output

tag System-Name
[State]

Figure 1. Behavior Tree Notation, key elements

pieces for a jigsaw puzzle possess. And, interestingly, it is
the same property which a set of genes that create a living
entity possess. Witness the remark by geneticist Adrian
Woolfson: in his recent book ([6], p.12), Life Without
Genes, “we may thus imagine a gene kit as a cardboard
box filled with genes. On the front and sides of the box is a
brightly coloured picture of the creature that might in
principle be constructed if the information in the kit is
used to instruct a biological manufacturing process”

 The obvious question that follows is: “what information
is possessed by a set of functional requirements that might
allow their composition or integration?” The answer
follows from the observation that the behaviour expressed
in functional requirements does not “just happen”. There is
always a precondition that must be satisfied in order for
the behaviour encapsulated in a functional requirement to
be accessible or applicable or executable. In practice, this
precondition may be embodied in the behaviour tree
representation of a functional requirement (as a
component-state or as a composed set of component
states) or it may be missing - the latter situation represents
a defect that needs rectification. The point to be made here
is that this precondition is needed, in each case, in order to
integrate the requirement with at least one other member of
the set of functional requirements for a system. (In practice,
the root node of a behaviour tree often embodies the
precondition we are seeking). We call this foundational
requirement of the genetic software engineering method,
the precondition axiom.

Precondition Axiom
Every constructive, implementable individual functional
requirement of a system, expressed as a behavior tree, has
associated with it a precondition that needs to be
satisfied in order for the behavior encapsulated in the
functional requirement to be applicable.

 A second building block is needed to facilitate the
composition of functional requirements expressed as
behaviour trees. Jigsaw puzzles, together with the
precondition axiom, give us the clues as to what additional
information is needed to achieve integration. With a jigsaw
puzzle, what is key, is not the order in which we put the
pieces together, but rather the position where we put each
piece. If we are to integrate behaviour trees in any order,
one at a time, an analogous requirement is needed. We
have already said that a functional requirement’s
precondition needs to be satisfied in order for its
behaviour to be applicable. It follows that some other
requirement, as part of its behaviour tree, must establish
the precondition. This requirement for
composing/integrating functional requirements expressed
as behaviour trees is more formally expressed by the
following axiom.

Interaction Axiom
For each individual functional requirement of a system,
expressed as a behavior tree, the precondition it needs to
have satisfied in order to exhibit its encapsulated
behavior, must be established by the behavior tree of at
least one other functional requirement that belongs to the
set of functional requirements of the system. (The
functional requirement that forms the root of the design
behavior tree, is excluded from this requirement. The

external environment makes its precondition applicable).

 The precondition axiom and the interaction axiom play a
central role in defining the relationship between a set of
functional requirements for a system and the
corresponding design. What they tell us is that the first
stage of the design process, in the problem domain, can
proceed by first translating each individual natural
language representation of a functional requirement into
one or more behaviour trees. We may then proceed to
integrate those behaviour trees just as we would with a set
of jigsaw puzzle pieces. What we find when we pursue this
whole approach to software design is that the process can
be reduced to the following four overarching steps:

• Requirements translation – (problem domain)
• Requirements integration – (problem domain)
• Component architecture transformation
• Component behaviour projection

 Each overarching step, needs to be augmented with a
verification and refinement step designed specifically to
isolate and correct the class of defects that show up in the
different work products generated by the process.
.

BT-y

BT-x

Py

Px

Px

Matching
Precondition

Interaction Axiom

Figure 2. Interaction Axiom - graphic form

 Integrating the root of BT-x
 with a matching node in BT-y

Integration

 To maximize communication our intent here is therefore to
only introduce the main ideas of the method, and do so in a
relatively informal way. The whole design process is best
understood in the first instance by observing its
application to a simple example. For our purposes, and for
the purposes of comparison, we will use a design example
for a Microwave Oven that has already been published in
the literature [7]. The seven stated functional requirements
for the Microwave Oven problem [7, p.36] are given in the
table below. Shlaer, and Mellor have applied their state-
based Object-Oriented Analysis method to this set of
functional requirements.

Table 1. Functional Requirements for Microwave Oven

3.1 Requirements Translation
 Requirements translation is the first formal step in the
Genetic Software Engineering (GSE) design process. Its
purpose is to translate each natural language functional
requirement, one at a time, into one or more behaviour
trees. Translation identifies the components (including
actors and users), the states they realise (including
attribute assignments), the events and
decisions/constraints that they are associated with, the
data components exchange, and the causal, logical and
temporal dependencies associated with component
interactions.

Example Translation
 The translations for the first six functional requirements
for the Microwave Oven given in Table 1 are shown in
figure 4. Translation of R7 from Table 1 will now be
considered in slightly more detail. For this requirement we
have underlined the states/actions and made the
components bold, i.e., “If the oven times out the light and
the power-tube are turned off and a beeper emits a sound to
indicate that cooking has finished”. Figure 3. (see below)
gives a translation of this requirement R7, to a
corresponding requirements behavior tree (RBT). In this
translation we have followed the convention of trying
wherever possible to associate higher level system states
(here OVEN states) with each functional requirement, to act
as preconditions/postconditions.

 What we see from this translation process is that even
for a very simple example, it can identify problems that, on
the surface, may not otherwise be apparent (e.g. the
original requirement, as stated, leaves out the precondition
that the oven needs to be cooking in order to
subsequently time-out). In addition, the behavior tree
representation tags (here R7) are able to provide very
direct traceability back to the original statement of
requirements. Our claim is that the translation process is
highly repeatable if translators forego the temptation to
interpret, design, and introduce new things as they do an
initial translation. Once the initial translation has been
done it is then necessary to carry out systematic
inspections of each individual requirement behavior tree
(RBT) to identify missing preconditions, missing alternate
cases, redundancy and/or other completeness or
inconsistency problems. We should also determine
whether each RBT has a precondition that enables it to be
integrated to make a complete system. We do this by
checking whether the root node of each RBT occurs in
another RBT. If it does not it is either the root node of the
whole system, or it requires a precondition to be added (as
was the case with R7 above, where we added the
precondition OVEN[Cooking]) or the set of requirements is
incomplete or there is behavior missing from the
requirement it needs to integrate with. These integration
checks allow us to find and rectify many otherwise subtle
defects in the behavior of a set of requirements. This is
particularly important with systems that have a large
number of functional requirements. Why is translation of
individual functional requirements to one or more
behavior trees feasible? We suggest this is so because
individual functional requirements of interest express
constrained but implementable behavior. This implies that
such behavior can ultimately be implemented in a
programming language. The behavior tree notation

R1. There is a single control button available for the user of the oven.
If the oven is idle with the door closed and you push the button, the
oven will start cooking (that is, energize the power-tube for one
minute).
R2. If the button is pushed while the oven is cooking it will cause the
oven to cook for an extra minute.
R3. Pushing the button when the door is open has no effect (because it
is disabled).
R4. Whenever the oven is cooking or the door is open the light in the
oven will be on.
R5. Opening the door stops the cooking.
R6. Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.
R7. If the oven times-out the light and the power-tube are turned off
and then a beeper emits a sound to indicate that the cooking is finished.

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking]

R7 OVEN
?? Timed-Out ??

Requirement-7
If the oven times-out the light and the
power-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 3. Behavior Tree for Requirement R7

contains, as a subset of its expressive capability, a graphic
representation for basic logical forms and for sequence,
selection, iteration, data-flow and assignment - the core
building blocks of programming languages. It follows
behavior trees have enough expressive power to capture
implementable behavior described in individual functional
requirements.
3.2 Requirements Integration
 When requirements translation has been completed each
individual functional requirement is translated to one or
more corresponding requirements behavior tree(s) (RBT).
We can then systematically and incrementally construct a
design behaviour tree (DBT) that will satisfy all its
requirements by integrating the requirements’ behavior
trees (RBT). Integrating two behavior trees turns out to be
a relatively simple process that is guided by the

precondition and interaction axioms referred to above. In
practice, it most often involves locating where, (if at all) the
component/state root node of one behavior tree occurs in
the other tree and grafting the two trees together at that
point. This process generalises when we need to integrate
N behaviour trees. We only ever attempt to integrate two
behaviour trees at a time – either two RBTs, an RBT with a
DBT or two partial DBTs. In some cases, because the
precondition for executing the behavior in an RBT has not
been included, or important behaviour has been left out of
a requirement, it is not clear where a requirement integrates
into the design. This immediately points to a problem with
the requirements. In other cases, there may be
requirements/behaviour missing from the set which
prevents integration of a requirement. Attempts at
integration uncover such problems with requirements at
the earliest possible time.

Requirement-2
If the button is pushed while the oven is
cooking it will cause the oven to cook for an
extra-minute.

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R2 OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

Requirement-3
Pushing the button when the door is open has
no effect (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[Open]

R3
C+

BUTTON
[Disabled]

Requirement-4
Whenever the oven is cooking or the door is
open the light in the oven will be on.

R4
C

DOOR
[Open]

R4
C

LIGHT
[On]

R4
C

OVEN
[Cooking]

R4
C

LIGHT
[On]

Requirement-5
Opening the door stops the cooking

R5
+

USER
??Door-Opened??

R5
+

OVEN
[Cooking]

R5 DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R1 OVEN
[Idle]

Requirement-1
If the oven idle with the door closed and you
push the button the oven will start cooking
(that is, energize the power-tube for one
 minute)

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking when the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[Open]

NOTE: I t is actually pressing the button
that causes the light to go on.

Figure 4. Behavior trees for Microwave Oven

Example Integration
 To illustrate the process of requirements integration we
will integrate requirement R6, with part of the constraint
Requirement R3C to form a partial design behaviour tree
(DBT). This is straightforward because the root node (and
precondition) of R3C, DOOR[Closed] occurs in R6. We
integrate R3C into R6 at this node. Because R3C is a
constraint it should be integrated into every requirement
that has a door closed state (in this case there is only one
such node). The result of the integration is shown below.

 Figure 5. Result of Integrating R6 and R3C

When R6 and R3C have been integrated we have a “partial
design” (the evolving design behavior tree) whose
behavior will satisfy R6, and the R3C constraint. In this
DBT it is clear and traceable where and how each of the
original functional requirements contribute to the design.

 Using this same behavior-tree grafting process, a
complete design is constructed (it evolves) incrementally
by integrating RBTs and/or DBTs pairwise until we are left
with a single final DBT (see Figure 6 below). This is the
ideal for design construction that is realizable when all
requirements are consistent, complete, composable and do
not contain redundancies. When it is not possible to
integrate an RBT or DBT with any other it points to an
integration problem with the specified requirements that
needs to be resolved. Being able to construct a design
incrementally, significantly reduces the complexity of this
critical phase of the design process. And importantly, it
provides direct traceability to the original natural language
statement of the functional requirements. From a careful
inspection of the integrated DBT (Fig. 6) we see that there
is a missing requirement associated with opening the oven
when it is idle. This has been added as requirement R8.
Note with constraint R4 we have used the causal
relationship for the light turning on rather than the literal
translation of the requirement.

 Once the design behavior tree (DBT) has been
constructed the next jobs are to transform it into its
corresponding software or component architecture (or
component interaction network - CIN) and then project
from the design behavior tree the component behavior
trees (CBTs) for each of the components mentioned in the
original functional requirements.

3. 3 Software Architecture Transformation
 A design behavior-tree is the problem domain view of
the “shell of a design” that shows all the states and all the
flows of control (and data), modelled as component-state
interactions without any of the functionality needed to
realize the various states that individual components may
assume . It has the genetic property of embodying within
its form two key emergent properties of a design: (1) the
component-architecture of a system and, (2) the
behaviors of each of the components in the system. In the
DBT representation, a given component may appear in
different parts of the tree in different states (e.g., the OVEN
component may appear in the Open-state in one part of the

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[Open]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@) R1

@
BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@+

OVEN
[Idle]

R6
+

OVEN
[Open]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ̂
[Open]

R3
C+

BUTTON
[Enabled]

R3
C

BUTTON
[Disabled]

Figure 6. Integration of all functional requirements

R4
C

LIGHT
[On]

R8
-

LIGHT
[On]

tree and in the Cooking-state in another part of the tree).
Interpreting what we said earlier in a different way, we need
to convert a design behavior-tree to a component-based
design in which each distinct component is represented
only once. This amounts to shifting from a representation
where functional requirements are integrated to a
representation, which is part of the solution domain,
where the components mentioned in the functional
requirements are themselves integrated. A simple
algorithmic process may be employed to accomplish this
transformation from a tree into a network. Informally, the
process starts at the root of the design behavior tree and
moves systematically down the tree towards the leaf nodes
including each component and each component
interaction (e.g. arrow) that is not already present.
When this is done systematically the tree is transformed
into a component-based design in which each distinct
component is represented only once. We call this a
Component Interaction Network (CIN) representation.
Above, we show the eighth step of this transformation,
involving the components on the eighth level of the DBT.
Here the POWER-TUBE gets included into the CIN and the
link between the BUTTON and the LIGHT is added to the
network.

 The complete Component Interaction Network derived
from the Microwave Oven design behavior tree is shown
below in Figure 8. It defines the component-component

interactions and therefore the interfaces for each
component. It also captures the “business model” or
“conceptual design” for the system and represents the first
cut at the software architecture for a system. Studying the
network in figure 8, we note that the USER component
interacts with only the DOOR and the BUTTON, as we
would expect. This outcome was not something we
consciously planned, but it is something that followed
naturally from accommodating the original requirements –
this shows the constructive power of the method for
producing a semantically based system architecture. The
next important task is to isolate the behaviours of the
individual components present in the architecture from the
DBT using projection.

3.4 Component Behavior Projection
 In the design behavior tree, the behavior of individual
components tends to be dispersed throughout the tree (for
example, see the OVEN component-states in the
Microwave Oven System DBT). To implement components
that can be embedded in, and operate within, the derived
component interaction network, it is necessary to
“concentrate” each component’s behavior. We can
achieve this by systematically projecting each
component’s behavior tree (CBT) from the design behavior
tree. We do this by simply ignoring the component-states
of all components other than the one we are currently
projecting. The resulting connected “skeleton” behavior

R4
C

LIGHT
[On]

R1
BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1
USER

??Button-Push??

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@

OVEN
[Idle]

R8
-

USER
??Door-Opened??

R8
DOOR
[Open]

R4
C

LIGHT
[On]

R3
C

BUTTON
[Disabled]

R3
C+

BUTTON
[Enabled]

Traversed Design Behavior Tree
Evolving Component
Interaction Network

1 DOOR
[Closed]

3C
BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

R6
+

OVEN
[Open] STEP 8

Figure 7. A step in the Tree-to-Network Transformation

ç Level 8 of Design Behavior Tree

tree for a particular component defines the behavior of the
component that we will need to implement and encapsulate
in the final component-based implementation.

 Example – Component Behavior Projection
To illustrate the effect and significance of component
behavior projection we show the projection of the OVEN
SYSTEM component from the DBT for the Microwave
Oven. In figure 9 below the OVEN component is
highlighted in the DBT on the left of the figure and is
projected on the right of the figure. Component behavior
projection is a key design step in the solution domain that
needs to be done for each component in the design
behavior tree. When this process has been carried out for
ALL the components in the DBT, that is, USER, BUTTON,
etc, all the behavior in the DBT has been projected into the
components that are intended to implement the system.
That is, the complete set of component behavior
projections conserve the behavior that was originally
present in the DBT. What this set of component
projections allows us to achieve is a metamorphosis from
an integrated set of functional requirements to an
integrated component based design. To complete the
component-based design, we embed the behaviors of each
component into the architectural design provided by the
component interaction network (CIN) – see, for example
figure 8 above. The tasks that then remain are to rationalize
the component interfaces and to implement the component
interaction network which supports the component
interactions that, in turn, implement the system behaviors.
And finally, we must provide implementations to support
the behaviors exhibited by each of the components.
Component integration can be done using either the
facilities of a component framework [1] or by using a

standard code implementation that maps the graphic
network into code.

 Component behavior projections frequently show up
incompleteness and other defects, as is the case with the
OVEN component projection – figure 9. Missing is the
behavior that should happen next when the cooking is
stopped by opening the door and what should happen
after cooking has finished. We see from this that projection
provides another systematic way of finding and removing
subtle requirements defects that are difficult to identify by
other means. Leaf nodes for the OVEN component need to
revert (^) back to earlier behaviour in order for the
component’s behaviour to be complete and consistent. For
example, we need to add after OVEN[Cooking-Stopped] a
reverting leaf node OVEN^[Open] that transfers control
back to OVEN[Open] at the top of the CBT. And, after
OVEN[Cooking_Finished] we need to add a reverting leaf
node OVEN^[Idle] to make the oven behaviour complete.

3.5 Comparison With Other Methods
 The Microwave Oven problem has been previously
studied by Shlaer and Mellor [7]. They employ a state
transition diagram and a state transition table to model the
behaviors of the Microwave Oven. The state transition
diagram (STD) bears some similarity to the GSE projected
behaviour for the OVEN system component. However the
STD is a network rather than a tree. Events involving other
components cause transitions between STD states. In
contrast, using the GSE method, the behaviour of all other
components in the system is incorporated directly in the
DBT. Using STDs traceability to the original requirements
is not direct and transparent. In going from original
requirements to an STD additional behaviour not specified
in the original requirements has been added without
comment (e.g. the behaviour to allow the oven to be
opened when it is idle). In GSE, direct translation, defect
detection, and augmentation of requirements are clearly
separated steps. The use of STDs makes no provision for
the determination of a problem-dependent architecture from
the requirements or for the identification of behaviour for
other components. Instead the Shlaer and Mellor method
proposes generic architectural classes for the finite state
model, transition, timers and active instances (see [7],
chapter 9). In contrast, GSE leads to an architecture and
component behaviour designs that are problem-dependent
rather than generic. GSE has similar advantages over MSCs
[4] and Statecharts [3]. In a number of reports and
presentations at http://www.sqi.gu.edu.au/gse/papers we
provide a more detailed account of the GSE method, the
notation and its application to a diverse set of problems
including contract automation and much larger
applications. We also provide examples that show how to
translate the designs that the method produces into object-
oriented and component-based implementations in Java.

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 8. Component Interaction Network - (CIN)

4. Discussion

 In contrast to other methods that are used for object-
oriented design the GSE method relies on the use of a
single notation, behavior trees, to represent (1) behavior in
individual functional requirements (or use-cases), (2) the
integrated behavior of a set of requirements and (3) the
projected behavior of individual components. Behavior
trees capture what is usually spread across sequence
diagrams, activity diagrams, class diagrams and state-
machines. The initial focus in GSE is on translation,
integration of functional requirements and defect
detection. This contrasts with the strong focus on
identifying objects and classes in more traditional object
oriented design. It is important to note that the Behavior
Tree Notation which forms the backbone of the GSE
method can be formalised using an extension to Dijkstra’s
Weakest Precondition theory [8]. Our intention, in the

limited space here, is to show this formalization only for a
key element of the notation. Gries [8], used the following
weakest precondition formalization for an assignment
“x:=e” establishing a postcondition R, i.e.,
 wp (x := e , R) ≡ R[e/x] ∧ def(e) -- (1)
In the behaviour tree notation for a component C which
realises a defined and allowable state s, (i.e, textually C[s])
and establishes a postcondition R , at time t, we have:

Applying (2) for a component state X[s1], a postcondition X.t1
= s1, and assuming s1 is defined we have:
 wp (X[s1] , X.t1 = s1 , t1)) ≡ X.t1 = s1[s1 / X.t1]
 ≡ (s1 = s1) ≡ TRUE
This shows a component X, realizing a state s1, at a
particular time t1, corresponds to the establishment of a
logical equality X.t1 = s1. Weakest preconditions can

R2 OVEN
[Extra-Minute]

R2 OVEN ^
[Cooking]

R7 OVEN
?? Timed-Out ??

R1 OVEN
[Cooking]

R6 OVEN
[Idle]

R8 OVEN ^
[Open]

R5 OVEN
[Cooking-Stopped]

R7 OVEN
[Cooking-Finished

R6 OVEN
[Open]

OVEN COMPONENT - Projected Behavior

DESIGN BEHAVIOR TREE - (DBT)

Component
Behavior Projection

Figure 9. Component Behavior Projection from the Design Behavior Tree

R5
-

OVEN ̂
[Open]

Missing

R5
-

OVEN ^
[Idle]

Missing

R1
@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ̂
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@+

OVEN
[Idle]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ̂
[Open]

R3
C+

BUTTON
[Enabled]

R3
C

BUTTON
[Disabled]

R4
C

LIGHT
[On]

R8
-

LIGHT
[On]

R6
+

OVEN
[Open]

C
[s]wp(C[s] , R , t) ≡ R[s / C.t] ∧ def(s) -- (2)

characterize the semantics of the other component-states
from the behaviour tree notation and accommodate
sequential composition, etc, associated with composing
component states. This permits association of formal
specifications with DBT nodes, e.g. for OVEN[Idle]:

 OVEN[Idle] ≡ DOOR[Closed] ∧ LIGHT[Off] ∧
BUTTON[Enabled].

 What we have shown here is just a simple, informal
“textbook” application of GSE. An obvious question to
ask is does the GSE method scale-up to larger applications?
At the website given above we have documented the
construction of the DBT for a Satellite Control System that
has been studied by Lockheed-Martin using Objectory and
Prowell, et al, from the SEI [9] using the Cleanroom method.
It has a 15-page functional requirements specification. We
have also successfully applied the “large-scale” adaptation
of the GSE method (see website) to a web-based car-fleet
management system whose implementation required over
160 web-pages. Currently we are applying the method to a
much larger system – part of the Orion AP-3C
reconnaissance aircraft software functional requirements.
The results have been promising particularly for the control
of complexity that is achieved and for the effectiveness in
the detection of integration, redundancy and other defects
in the original requirements.

 Another obvious question is, does the behavior tree
notation have enough expressive power to compete with
extensive composite notations like UML? No half-page
argument can settle this question. Our response is to claim
that behavior trees can capture what is expressed in use-
cases, class diagrams, sequence diagrams, activity
diagrams and state machines. The incorporation of graphic
logical forms, including a disjunctive normal form, provides
enough power to accommodate case analyses, decisions,
and associated and/or complexity.

 Considerable thought has gone into whether it is
appropriate to use the term “genetic software engineering”
given the established use of the term “genetic algorithms”
in a different context. The parallels of the proposed method
with key genetic principles spelled out in Woolfson’s
recent book [6] gives considerable justification to the claim
that “genetic” is being accurately used here. The way
behavior tree integration can result in the evolutionary
growth of a design adds weight to the genetic
characterization of the method.

Conclusion
What we have presented is an intuitive, stepwise process
for going from a set of functional requirements to a design.
The method is attractive for its simplicity, its traceability,
its ability to detect defects, its control of complexity, and
its accommodation of change. However, like any method,
Genetic Software Engineering, will only work well when
applied rigorously. Derivation of the software component

architecture from the design behavior tree and projection of
the set of component behavior trees from a design
behavior tree are both repeatable, algorithmic processes,
that can be automated if we choose to do so. The greatest
chance for variation with work products comes in the
translation of natural language descriptions of functional
requirements to requirements behavior trees (RBTs).
Variance can be minimized by making sure all components
and all behaviors in a given textual description are
accommodated in the translated RBT. Best results are
obtained by getting two people to translate each
requirement and then resolve their differences.
Requirements integration is also potentially algorithmic and
automatable, but defects in requirements need software
engineers to resolve such problems.

 Returning to our original motivations from genetics and
jigsaw puzzles, we have seen that Genetic Software
Engineering exploits three fundamental genetic properties
of a set of functional requirements that are revealed and
become easily accessible when they are expressed and
then integrated as behaviour trees. It is these emergent
properties that give the method its constructive power.
Things may be summed up with the words of eighteenth
century thinker Giambattista Vico, who said, “To
understand something, and not merely be able to describe
it, or analyse it into its component parts, is to understand
how it came into being – its genesis, its growth … true
understanding is always genetic”.

References
[1] G.Booch, J. Rumbaugh, I Jacobson, The Unified Modelling
Language User Guide, Addison-Wesley, Reading, Mass. (1999).

[2] A.M.Davis, A Comparison of Techniques for the
Specification of External System Behavior, Comm. ACM, vol.
31 (9), 1098-1115, (1988).

[3] D.Harel, Statecharts: Visual Formalism for Complex
Systems, Sci. Comp. Prog., 8, 231-274 (1987)

[4] D. Harel., W. Damm, LSCs: Breathing Life into Message
Sequence Charts, 3rs IFIP Conf. On Formal Methods for Open
Objected-based Distributed Systems, New York, 1999, Kluwer

[5] D. Jackson, Alloy: A Lightweight Object Modelling
Notation, MIT Lab. for Comp. Sci. Report (1999)

[6] A. Woolfson, Life Without Genes, Flamingo, (2000).

[7] S. Shlaer, S.J. Mellor, Object Lifecycles, Yourdon Press,
New Jersey, 1992.

[8] D. Gries, The Science of Programming, Springer-Verlag,
(1981).

[9] S.J. Prowell, C.J.Trammell, R.C. Linger, J.H. Poore,
Cleanroom Software Engineering: Technology and Process,
Addison-Wesley, Reading Mass., (1999).

