
 

 
From Requirements to Design: 

Formalizing the Key Steps 
R.G. Dromey, 

Software Quality Institute, Griffith University,  
Nathan, Brisbane, Qld., 4111, AUSTRALIA 

rgd@cit.gu.edu.au 
 

Abstract 
 

   Despite the advances in software engineering since 1968, 
current methods for going from a set of functional 
requirements to a design are not as direct, repeatable and 
constructive as we would like. Progress with this 
fundamental problem is possible once we recognize that 
individual functional requirements represent fragments of 
behaviour, while a design that satisfies a set of functional 
requirements represents integrated behaviour.  This 
perspective admits the prospect of constructing a design 
out of its requirements. A formal representation for 
individual functional requirements, called behavior trees 
makes this possible.  Behaviour trees of individual 
functional requirements may be composed, one at a time, to 
create an integrated design behaviour tree. From this 
problem domain representation it is then possible to 
transition directly and systematically to a solution domain 
representation of the component architecture of the system 
and the behaviour designs of the individual components 
that make up the system – both are emergent properties.  
 

“Finding deep simplicities in a complex logical task 
leads to work reduction”- Harlan Mills . 

 
1. Introduction 
    
   A great challenge that continues to confront software 
engineering is how to proceed in a systematic way from a 
set of functional requirements to a design that will satisfy 
those requirements. In practice, the task is further 
complicated by defects in the original requirements and, 
subsequent changes to the requirements. 
 
   A first step towards taking up this challenge is to ask – 
what are functional requirements? Study of diverse sets of 
functional requirements suggest that it is safe to conclude  
individual requirements express constrained behaviour.  
By comparison, a system that satisfies a set of functional 
requirements exhibits integrated constrained behaviour. 
The latter  behaviour of systems is not inherently different.   

 
   Functional requirements contain, and systems exhibit, the 
behavior  summarized below. 
 

• Components realise states 
• Components change states 
• Components have sets of attributes that are assigned values 
• Components, by changing states, can cause other components 

to change their states 
• Supplementing these component-state primitives are 

conditions/decisions, and events involving component-states.  
• Interactions between components also play a key role in 

describing behaviour. They involve control-flow and/or data-
flow between components. 
 

   Notations like sequence diagrams, class and activity 
diagrams from UML[1], data-flow diagrams, Petri-nets[2], 
state-charts [3], and Message Sequence Charts (MSCs) [4], 
accommodate some or all of the behaviour we find 
expressed in functional requirements and designs.  
Individually however, none of these notations provide the 
level of constructive support we need. This forces us to 
contemplate another representation for functional 
requirements and designs. As Jackson wisely remarked [5], 
such ventures are generally not enthusiastically received – 
a consensus is that new proposals just muddy the waters. 
Our justification for ignoring this advice is that the 
Behavior Tree Notation solves a fundamental problem – it 
provides a clear, simple, constructive and systematic path 
for going from a set of functional requirements to a design 
that will satisfy those requirements.  
 
2. Behavior Trees 
 
   The Behavior Tree Notation captures in a simple tree-like 
form of composed component-states what usually needs to 
be expressed in a mix of other notations. Behavior is 
expressed in terms of components realizing states, 
augmented by the logic and graphic forms of conventions 
found in programming languages to support composition, 
events, control-flow data-flow, and threads.

Therefore, can the same formal representation of behaviour 
be used for requirements and for a design? If it could, it 
may clarify the requirements-design relationship. 
 
 

     Behavior trees are equally suited to capture behavior 
expressed in the natural language representation of 
functional requirements as to provide an abstract graphical 
representation of  behavior expressed in a  program. 



 

 

Definition: A Behavior Tree is a formal, tree-like 
graphical form that  represents  behaviour of  individual 
or networks of entities which realize or change states, 
make decisions, respond-to/cause events, and interact by 
exchanging information and/or passing control.  
 
   To support the implementation, of software intensive 
systems we must capture, first in a formal specification of 
the requirements, then in the design, and finally in the 
software; the actions, events, decisions, and/or logic, 
obligations,  and constraints expressed in the original 
natural language requirements for a system.  Behavior trees 
do this. They provide a direct and clearly traceable 
relationship between what is expressed in the natural 
language representation and its formal specification. 
Translation is carried out on a sentence-by-sentence basis,  
e.g., the sentence “when the door is opened the light 
should go on” is translated to the behaviour tree below: 

DOOR
[ Open ]

LIGHT
[ On ]

 
   The principal conventions of the notation for component-
states are the graphical forms for associating with a 
component a [State], ??Event??, ?Decision?, [Sub-
cpt[State]], or [Attribute := expression | State ]. Exactly 

what can be an event, a decision, a state, etc are built on 
the formal foundations of expressions, Boolean 
expressions and quantifier-free formulae (qff). To assist 

with traceability to original requirements a simple 
convention is followed. Tags (e.g. R1 and R2, etc, see 
below) are used to refer to the original requirement in the 
document that is being translated. Record/data definitions 
and other constraints are signalled by a “/”. System states, 
are used to model high-level (abstract) behavior, some 
preconditions/postconditions and possibly other behavior 
that has not been associated with particular components. 
They are represented by rectangles with a double line 
(===) border. A brief summary of key elements of the 
notation is given in Figure 1, above (see EBNF,  semantics, 
web-site http://www.sqi.gu.edu.au/gse/papers). 
 
   In practice, when translating functional requirements into 
behavior trees we often find that there is a lot of behavior 
that is either missing or is only implied by a requirement. 
We mark implied behavior with a “+” in the tag (and/or the 
colour yellow if colour can be shown). Behavior that is 
missing is marked with a “-“ in the tag (and/or the colour 
red). Explicit behavior in the original requirement that is 
translated and captured in the behavior tree has no “+/-“ 
marking, and the colour green is used - see Fig. 4 below. 
These conventions maximize traceability to original 
requirements. The Green-Yellow-Red traffic light metaphor 
is intended to indicate the need for caution (yellow) and 
danger (red) and to draw attention, to deficiencies in the 
original requirements. Subsequent change to a working 
system requirements/design is marked by a “++” in the tag 
and/or the colour blue. These conventions are particularly 
useful when discussing requirements and designs with 
users or clients and developers/maintainers.  It provides a 
clear record of the evolution of, and deficiencies in the 
original system. We can now explore the relationship 
between a set of requirements and its corresponding 
design. And from this follows a systematic method for 
constructing a design from its requirements. 
 
3. Genetic Software Engineering Method 
 
   Conventional software engineering applies the 
underlying design strategy of constructing a design that 
will satisfy its set of functional requirements. In contrast to 
this, a clear advantage of the behavior tree notation is that 
it allows us to construct a design out of its set of functional 
requirements, by integrating the behavior trees for 
individual functional requirements (RBTs), one-at-a-time, 
into an evolving design behavior tree (DBT). This very 
significantly reduces the complexity of the design process 
and any subsequent change process. Any design, built out 
of its requirements will conform to the weaker criterion of 
satisfying its set of functional requirements. 
 
   What we are suggesting is that a set of functional 
requirements, represented as behavior trees, in principal at 
least (when they form a complete and consistent set), 
contains enough information to allow their composition.    
This property is the exact same property that a set of 

Component-State  Label          Semantics

tag COMPONENT
[ State ]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
when state is realized

tag COMPONENT
[ Sub-cpt [ State ] ]

Container - State
Indicates that a container
component will have a sub-
component realize a state

tag COMPONENT
[Attribute := Value]

Attribute - State
Indicates that the component
will assign a value to one of
its attributes.

tag COMPONENT
?? WHEN-State ??

WHEN  - State
Indicates that the component
will only pass control when and
if the event WHEN-state happens

tag COMPONENT
< Dataflow-State >

Data-out State Indicates that when the
component has realized the
state it will pass the data to
the component that receives
the flow

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
will only pass control if If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to its output

tag System-Name
[ State ]

Figure 1. Behavior Tree Notation, key elements



 

 

pieces for a jigsaw puzzle possess. And,  interestingly, it is 
the same property which a set of genes that create a living 
entity possess. Witness the remark by geneticist Adrian 
Woolfson: in his recent book ([6], p.12), Life Without 
Genes, “we may thus imagine a gene kit as a cardboard 
box filled with genes. On the front and sides of the box is a 
brightly coloured picture of the creature that might in 
principle be constructed if the information in the kit is 
used to instruct a biological manufacturing process” 
 
   The obvious question that follows is: “what information 
is possessed by a set of functional requirements that might 
allow their composition or integration?” The answer 
follows from the observation that the behaviour expressed 
in functional requirements does not “just happen”. There is 
always a precondition that must be satisfied in order for 
the behaviour encapsulated in a functional requirement to 
be accessible or applicable or executable.  In practice, this 
precondition may be embodied in the behaviour tree 
representation of a functional requirement (as a 
component-state or as a composed set of component 
states) or it may be missing - the latter situation represents 
a defect that needs rectification. The point to be made here 
is that this precondition is needed, in each case, in order to 
integrate the requirement with at least one other member of 
the set of functional requirements for a system. (In practice, 
the root node of a behaviour tree often embodies the 
precondition we are seeking). We call this foundational 
requirement of the genetic software engineering method, 
the precondition axiom. 
 
Precondition Axiom 
Every constructive, implementable individual functional 
requirement of a system, expressed as a behavior tree, has 
associated with it a precondition that needs to be 
satisfied in order for the behavior encapsulated in the 
functional requirement to be applicable. 
 
   A second building block is needed to facilitate the 
composition of functional requirements expressed as 
behaviour trees. Jigsaw puzzles, together with the 
precondition axiom, give us the clues as to what additional 
information is needed to achieve integration. With a jigsaw 
puzzle, what is key, is not the order in which we put the 
pieces together, but rather the position where we put each 
piece. If we are to integrate behaviour trees in any order, 
one at a time, an analogous requirement is needed.  We 
have already said that a functional requirement’s 
precondition needs to be satisfied in order for its 
behaviour to be applicable. It follows that some other 
requirement, as part of its behaviour tree, must establish 
the precondition. This requirement for 
composing/integrating functional requirements expressed 
as behaviour trees is more formally expressed by the 
following axiom. 

 
Interaction Axiom 
For each individual functional requirement of a system, 
expressed as a behavior tree, the precondition it needs to 
have satisfied in order to exhibit its encapsulated 
behavior, must be established by the behavior tree of at 
least one other functional requirement that belongs to the 
set of functional requirements of the system. (The 
functional requirement that forms the root of the design 
behavior tree, is excluded from this requirement. The 

external environment makes its precondition applicable ).  
 
   The precondition axiom and the interaction axiom play a 
central role in defining the relationship between a set of 
functional requirements for a system and the 
corresponding design.  What they tell us is that the first 
stage of the design process, in the problem domain, can 
proceed by first translating each individual natural 
language representation of a functional requirement into 
one or more behaviour trees. We may then proceed to 
integrate those behaviour trees just as we would with a set 
of jigsaw puzzle pieces. What we find when we pursue this 
whole approach to software design is that the process can 
be reduced to the following four overarching steps: 

• Requirements translation – (problem domain) 
• Requirements integration – (problem domain) 
• Component architecture transformation 
• Component behaviour projection 

 
   Each overarching step, needs to be augmented with a 
verification and refinement step designed specifically to 
isolate and correct the class of defects that show up in the 
different work products generated by the process.  
. 
 

BT-y

BT-x

Py

Px

Px

Matching
Precondition

Interaction Axiom

Figure 2. Interaction Axiom - graphic form

 Integrating the root of BT-x
 with a matching node in BT-y

Integration



 

 

 
   To maximize communication our intent here is therefore to 
only introduce the main ideas of the method, and do so in a 
relatively informal way. The whole design process is best 
understood in the first instance by observing its 
application to a simple example. For our purposes, and for 
the purposes of comparison, we will use a design example 
for a Microwave Oven that has already been published in 
the literature [7]. The seven stated functional requirements 
for the Microwave Oven problem [7, p.36] are given in the 
table below.  Shlaer, and Mellor have applied their state-
based Object-Oriented Analysis method to this set of 
functional requirements.  
 
Table 1. Functional Requirements for Microwave Oven  

 
3.1 Requirements Translation 
   Requirements translation is the first formal step in the 
Genetic Software Engineering (GSE) design process. Its 
purpose is to translate each natural language functional 
requirement, one at a time, into one or more behaviour 
trees.  Translation identifies the components (including 
actors and users), the states they realise (including 
attribute assignments), the events and 
decisions/constraints that they are associated with, the 
data components exchange, and the causal, logical and 
temporal dependencies associated with component 
interactions.   
 
Example Translation 
   The translations for the first six functional requirements 
for the Microwave Oven given in Table 1 are shown in 
figure 4. Translation of R7 from Table 1 will now be 
considered in slightly more detail. For this requirement we 
have underlined the states/actions and made the 
components bold, i.e., “If the oven times out the light and 
the power-tube are turned off and a beeper emits a sound to 
indicate that cooking has finished”. Figure 3. (see below) 
gives a translation of this requirement R7, to a 
corresponding requirements behavior tree (RBT). In this 
translation we have followed the convention of trying 
wherever possible to associate higher level system states 
(here OVEN states) with each functional requirement, to act 
as preconditions/postconditions.  

   What we see from this translation process is that even 
for a very simple example, it can identify problems that, on 
the surface, may not otherwise be apparent (e.g. the 
original requirement, as stated, leaves out the precondition 
that the oven needs to be cooking in order to 
subsequently time-out). In addition, the behavior tree 
representation tags (here R7) are able to provide very 
direct traceability back to the original statement of 
requirements. Our claim is that the translation process is 
highly repeatable if translators forego the temptation to 
interpret, design, and introduce new things as they do an 
initial translation. Once the initial translation has been 
done it is then necessary to carry out systematic 
inspections of each individual requirement behavior tree 
(RBT) to identify missing preconditions, missing alternate 
cases, redundancy and/or other completeness or 
inconsistency problems.  We should also determine 
whether each RBT has a precondition that enables it to be 
integrated to make a complete system. We do this by 
checking whether the root node of each RBT occurs in 
another RBT. If it does not it is either the root node of the 
whole system, or it requires a precondition to be added (as 
was the case with R7 above, where we added the 
precondition OVEN[Cooking]) or the set of requirements is 
incomplete or there is behavior missing from the 
requirement it needs to integrate with. These integration 
checks allow us to find and rectify many otherwise subtle 
defects in the behavior of a set of requirements.  This is 
particularly important with systems that have a large 
number of  functional requirements. Why is translation of 
individual functional requirements to one or more 
behavior trees feasible? We suggest this is so because 
individual functional requirements of interest express 
constrained but implementable behavior. This implies that 
such behavior can ultimately be implemented in a 
programming language. The behavior tree notation 

R1.  There is a single control button available for the user of the oven. 
If the oven is idle with the door  closed and you push the button, the 
oven will start cooking (that is, energize the power-tube for one 
minute).  
R2.  If the button is pushed while the oven is cooking it will cause the 
oven to cook for an extra minute.  
R3.  Pushing the button when the door is open has no effect (because it 
is disabled). 
R4.  Whenever the oven is cooking or the door is open the light in the 
oven will be on. 
R5.  Opening the door stops the cooking.  
R6. Closing the door turns off the light. This is the normal idle state, 
prior to cooking when the user has placed food in the oven. 
R7.  If the oven times-out the light and the power-tube are turned off 
and then a beeper emits a sound to indicate that the cooking is finished.  
 

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking ]

R7 OVEN
?? Timed-Out ??

Requirement-7
If the oven times-out the light and the
power-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 3. Behavior Tree for Requirement R7



 

 

contains, as a subset of its  expressive capability, a graphic 
representation for basic logical forms and for sequence, 
selection, iteration, data-flow and assignment - the core 
building blocks of programming languages. It follows 
behavior trees have enough expressive power to capture 
implementable behavior described in individual functional 
requirements. 
3.2 Requirements Integration 
   When requirements translation has been completed each 
individual functional requirement is translated to one or 
more corresponding requirements behavior tree(s) (RBT). 
We can then systematically and incrementally construct a 
design behaviour tree (DBT) that will satisfy all its 
requirements  by integrating the requirements’ behavior 
trees (RBT).  Integrating two behavior trees turns out to be 
a relatively simple process that is guided by the 

precondition and interaction axioms referred to above. In 
practice, it most often involves locating where, (if at all) the 
component/state root node of one behavior tree occurs in 
the other tree and grafting the two trees together at that 
point.  This process generalises when we need to integrate 
N behaviour trees. We only ever attempt to integrate two 
behaviour trees at a time – either two RBTs, an RBT with a 
DBT  or two partial DBTs. In some cases, because the 
precondition for executing the behavior in an RBT has not 
been included, or important behaviour has been left out of 
a requirement, it is not clear where a requirement integrates 
into the design. This immediately points to a problem with 
the requirements. In other cases, there may be 
requirements/behaviour missing from the set which 
prevents integration of a requirement. Attempts at 
integration uncover such problems with requirements at 
the earliest possible time. 

Requirement-2
If the button is pushed while the oven is
cooking it will cause the oven to cook for an
extra-minute.

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R2 OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

Requirement-3
Pushing the button when the door is open has
no effect  (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[ Open ]

R3
C+

BUTTON
[ Disabled ]

Requirement-4
Whenever the oven is cooking or the door is
open the light in the oven will be on.

R4
C

DOOR
[Open ]

R4
C

LIGHT
[On  ]

R4
C

OVEN
[Cooking ]

R4
C

LIGHT
[On  ]

Requirement-5
Opening the door stops the cooking

R5
+

USER
??Door-Opened??

R5
+

OVEN
[Cooking]

R5 DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R1 OVEN
[Idle]

Requirement-1
If the oven idle with the door closed  and you
push the button the oven will start  cooking
(that is, energize the power-tube for one
 minute)

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking when the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

NOTE: I t is actually pressing the button
that causes the light to go on.

Figure 4. Behavior trees for Microwave Oven



 

 

Example Integration 
   To illustrate the process of requirements integration we 
will integrate requirement R6, with part of the constraint 
Requirement R3C to form a partial design behaviour tree 
(DBT). This is straightforward because the root node (and 
precondition) of R3C, DOOR[Closed] occurs in R6. We 
integrate R3C into R6 at this node. Because R3C is a 
constraint it should be integrated into  every requirement 
that has a door closed state (in this case there is only one 
such node). The result of the integration is shown below. 

      Figure 5. Result of Integrating R6 and R3C 
 
When R6 and R3C have been integrated we have a “partial 
design” (the evolving design behavior tree) whose 
behavior will satisfy R6, and the R3C constraint. In this 
DBT it is clear and traceable where and how each of the 
original functional requirements contribute to the design. 
 
   Using this same behavior-tree grafting process, a 
complete design is constructed (it evolves) incrementally 
by integrating RBTs and/or DBTs  pairwise until we are left 
with a single final DBT (see Figure 6 below). This is the 
ideal for design construction that is realizable when all 
requirements are consistent, complete, composable and do 
not contain redundancies.  When it is not possible to 
integrate an RBT or DBT with any other it points to an 
integration problem with the specified requirements that 
needs to be resolved. Being able to construct a design 
incrementally, significantly reduces the complexity of this 
critical phase of the design process. And importantly, it 
provides direct traceability to the original natural language 
statement of the functional requirements. From a careful 
inspection of the integrated DBT (Fig. 6) we see that there 
is a missing requirement associated with opening the oven 
when it is idle. This has been added as requirement R8. 
Note with constraint R4 we have used the causal 
relationship for the light turning on rather than the literal 
translation of the requirement. 
 

   Once the design behavior tree (DBT) has been 
constructed the next jobs are to transform it into its 
corresponding software or component architecture (or 
component interaction network - CIN) and then project 
from the design behavior tree the component behavior 
trees (CBTs) for each of the components mentioned in the 
original functional requirements.  
 
3. 3 Software Architecture Transformation  
   A design behavior-tree is the problem domain view of 
the “shell of a design” that shows all the states and all the 
flows of control (and data), modelled as component-state 
interactions without any of the functionality needed to 
realize the various states that individual components may 
assume .  It has the genetic property of embodying within 
its form two key emergent properties of a design: (1) the 
component-architecture of a system and, (2) the 
behaviors of each of the components in the system. In the 
DBT representation, a given component may appear in 
different parts of the tree in different states (e.g., the OVEN 
component may appear in the Open-state in one part of the  
 

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@) R1

@
BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ̂
[Open]

R3
C+

BUTTON
[Enabled ]

R3
C

BUTTON
[Disabled ]

Figure 6. Integration of all functional  requirements

R4
C

LIGHT
[ On ]

R8
-

LIGHT
[ On ]



 

 

 
tree and in the Cooking-state in another part of the tree). 
Interpreting what we said earlier in a different way, we need 
to convert a design behavior-tree to a component-based 
design in which each distinct component is  represented 
only once.  This amounts to shifting from a representation 
where functional requirements are integrated to a 
representation, which is part of the solution domain, 
where the components mentioned in the functional 
requirements are themselves integrated. A simple 
algorithmic process may be employed to accomplish this 
transformation from a tree into a network. Informally, the 
process starts at the root of the design behavior tree and 
moves systematically down the tree towards the leaf nodes 
including each component and each component 
interaction (e.g. arrow) that is not already present.  
When this is done systematically the tree is transformed 
into a component-based design in which each distinct 
component is represented only once. We call this a 
Component Interaction Network (CIN) representation.  
Above, we show the eighth step of this transformation, 
involving the components on the eighth level of the DBT. 
Here the POWER-TUBE gets included into the CIN and the 
link between the BUTTON and the LIGHT is added to the 
network. 
 
   The complete Component  Interaction Network derived 
from the Microwave Oven design behavior tree is shown 
below in Figure 8.  It defines the component-component 

interactions and therefore the interfaces for each 
component. It also captures the “business model” or 
“conceptual design” for the system and represents the first 
cut at the software architecture for a system. Studying the 
network in figure 8, we note that the USER component 
interacts with only the DOOR and the BUTTON, as we 
would expect. This outcome was not something we 
consciously planned, but it is something that followed 
naturally from accommodating the original requirements – 
this shows the constructive power of the method for 
producing a semantically based system architecture. The 
next important task is to isolate the behaviours of the 
individual components present in the architecture from the 
DBT using projection. 
 
3.4 Component Behavior Projection 
   In the design behavior tree, the behavior of individual 
components tends to be dispersed throughout the tree (for 
example, see the OVEN component-states in the 
Microwave Oven System DBT). To implement components 
that can be embedded in, and operate within, the derived 
component interaction network, it is necessary to 
“concentrate” each component’s behavior. We can 
achieve this by systematically projecting each 
component’s behavior tree (CBT) from the design behavior 
tree. We do this by simply ignoring the component-states 
of all components other than the one we are currently 
projecting. The resulting connected “skeleton” behavior 

R4
C

LIGHT
[On]

R1
BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1
USER

??Button-Push??

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@

OVEN
[Idle]

R8
-

USER
??Door-Opened??

R8
DOOR
[Open]

R4
C

LIGHT
[On]

R3
C

BUTTON
[Disabled]

R3
C+

BUTTON
[Enabled]

Traversed Design Behavior Tree
Evolving Component
Interaction Network

1 DOOR
[Closed]

3C
BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

R6
+

OVEN
[Open ] STEP 8

Figure 7. A step in the Tree-to-Network Transformation

ç Level 8 of Design Behavior Tree



 

 

tree for a particular component defines the behavior of the 
component that we will need to implement and encapsulate 
in the final component-based implementation. 

 Example – Component Behavior Projection 
To illustrate the effect and significance of component 
behavior projection we show the projection of the OVEN 
SYSTEM component from the DBT for the Microwave 
Oven. In figure 9 below the OVEN component is 
highlighted in the DBT on the left of the figure and is 
projected on the right of the figure. Component behavior 
projection is a key design step in the solution domain that 
needs to be done for each component in the design 
behavior tree.  When this process has been carried out for 
ALL the components in the DBT, that is, USER, BUTTON, 
etc, all the behavior in the DBT has been projected into the 
components that are intended to implement the system. 
That is, the complete set of component behavior 
projections conserve the behavior that was originally 
present in the DBT.  What this set of component 
projections allows us to achieve is a metamorphosis from 
an integrated set of functional requirements to an 
integrated component based design. To complete the 
component-based design, we embed the behaviors of each 
component into the architectural design provided by the 
component interaction network (CIN) – see, for example 
figure 8 above. The tasks that then remain are to rationalize 
the component interfaces and to implement the component 
interaction network which supports the component 
interactions that, in turn, implement the system behaviors.  
And finally, we must provide implementations to support 
the behaviors exhibited by each of the components. 
Component integration can be done using either the 
facilities of a component framework [1] or by using a 

standard code implementation that maps the graphic 
network into code.  
 
   Component behavior projections frequently show up 
incompleteness and other defects, as is the case with the 
OVEN component projection  – figure 9. Missing is the 
behavior that should happen next when the cooking is 
stopped by opening the door and what should happen 
after cooking has finished. We see from this that projection 
provides another systematic way of finding and removing 
subtle requirements defects that are difficult to identify by 
other means. Leaf nodes for the OVEN component need to 
revert (^) back to earlier behaviour in order for the 
component’s behaviour to be complete and consistent. For 
example, we need to  add after OVEN[Cooking-Stopped] a 
reverting leaf node OVEN^[Open] that transfers control 
back to OVEN[Open]  at the top of the CBT. And, after 
OVEN[Cooking_Finished] we  need to add a reverting leaf 
node OVEN^[Idle] to make the oven behaviour complete. 
 
3.5 Comparison With Other Methods  
   The Microwave Oven problem has been previously 
studied by Shlaer and Mellor [7].  They employ a state 
transition  diagram and a state transition table to model the 
behaviors of the Microwave Oven.  The state transition 
diagram (STD) bears some similarity to the GSE projected 
behaviour for the OVEN system component. However the 
STD is a network rather than a tree. Events involving other 
components cause transitions between STD states. In 
contrast, using the GSE method, the behaviour of all other 
components in the system is incorporated directly in the 
DBT. Using STDs traceability to the original requirements 
is not direct and transparent. In going from original 
requirements to an STD additional behaviour not specified 
in the original requirements has been added without 
comment (e.g. the behaviour to allow the oven to be 
opened when it is idle). In GSE, direct translation, defect 
detection, and augmentation of requirements are clearly 
separated steps. The use of STDs makes no provision for 
the determination of a problem-dependent architecture from 
the requirements or for the identification of behaviour for 
other components. Instead the Shlaer and Mellor method 
proposes generic architectural classes for the finite state 
model, transition, timers and active instances (see [7], 
chapter 9). In contrast, GSE leads to an architecture and 
component behaviour designs that are problem-dependent 
rather than generic. GSE has similar advantages over MSCs 
[4] and Statecharts [3]. In a number of reports and 
presentations at  http://www.sqi.gu.edu.au/gse/papers we 
provide a more detailed account of the GSE method, the 
notation and its application to a diverse set of problems 
including contract automation and much larger 
applications. We also provide examples that show how to 
translate the designs that the method produces into object-
oriented and component-based implementations in Java.  
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4. Discussion  
 
   In contrast to other methods that are used for object-
oriented design the GSE method relies on the use of a 
single notation, behavior trees, to represent (1) behavior in 
individual functional requirements (or use-cases), (2) the 
integrated behavior of a set of requirements and (3) the 
projected behavior of individual components. Behavior 
trees capture what is usually spread across sequence 
diagrams, activity diagrams, class diagrams and state-
machines. The initial focus in GSE is on translation, 
integration of functional requirements and defect 
detection. This contrasts with the strong focus on 
identifying objects and classes in more traditional object 
oriented design.  It is important to note that the Behavior 
Tree Notation which forms the backbone of the GSE 
method can be formalised using an extension to Dijkstra’s 
Weakest Precondition theory [8]. Our intention, in the 

limited space here, is to show this formalization only for a 
key element of the notation. Gries [8], used the following 
weakest precondition formalization for an assignment 
“x:=e” establishing a postcondition R, i.e., 
     wp ( x := e , R) ≡  R[e/x] ∧ def(e)   -- (1) 
In the behaviour tree notation for a component C which 
realises a defined and allowable state s, (i.e, textually C[s]) 
and establishes a postcondition R , at time t, we have: 

Applying (2) for a component state X[s1], a postcondition X.t1 
= s1, and assuming s1 is defined we have: 
      wp ( X[s1] , X.t1 = s1 , t1 ) ) ≡  X.t1 = s1[s1 / X.t1]  
                                                     ≡  ( s1 = s1)  ≡ TRUE 
This shows a component X, realizing a state s1, at a 
particular time t1, corresponds to the establishment of a 
logical equality X.t1 = s1. Weakest preconditions can 
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characterize the semantics of the other component-states 
from the behaviour tree notation and accommodate 
sequential composition, etc, associated with composing 
component states. This permits association of formal 
specifications with DBT nodes, e.g. for OVEN[Idle]: 
 
   OVEN[Idle] ≡ DOOR[Closed] ∧ LIGHT[Off] ∧ 
BUTTON[Enabled].  
 
   What we have shown here is just a simple, informal 
“textbook” application of  GSE. An obvious question to 
ask is does the GSE method scale-up to larger applications? 
At the website given above we have documented the 
construction of the DBT for a Satellite Control System that 
has been studied by Lockheed-Martin using Objectory and 
Prowell, et al, from the SEI [9] using the Cleanroom method. 
It has a 15-page functional requirements specification.  We 
have also successfully applied the “large-scale” adaptation 
of the GSE method (see website) to a web-based car-fleet 
management system whose implementation required over 
160 web-pages. Currently we are applying the method to a 
much larger system – part of the Orion AP-3C 
reconnaissance aircraft software functional requirements. 
The results have been promising particularly for the control 
of complexity that is achieved and for the effectiveness in 
the detection of integration, redundancy and other defects 
in the original requirements.  
 
   Another obvious question is, does the behavior tree 
notation have enough expressive power to compete with 
extensive composite notations like UML? No half-page 
argument can settle this question. Our response is to claim 
that behavior trees can capture what is expressed in use-
cases, class diagrams, sequence diagrams, activity 
diagrams and state machines. The incorporation of graphic 
logical forms, including a disjunctive normal form, provides 
enough power to accommodate case analyses, decisions, 
and associated and/or complexity. 
 
   Considerable thought has gone into whether it is 
appropriate to use the term “genetic software engineering” 
given the established use of the term “genetic algorithms” 
in a different context. The parallels of the proposed method 
with key genetic principles spelled out in Woolfson’s 
recent book [6] gives considerable justification to the claim 
that “genetic” is being accurately used here. The way 
behavior tree integration can result in the evolutionary 
growth of a design adds weight to the genetic 
characterization of the method. 
 
Conclusion 
What we have presented is an intuitive, stepwise process 
for going from a set of functional requirements to a design. 
The method is attractive for its simplicity, its traceability, 
its ability to detect defects, its control of complexity, and 
its accommodation of change. However, like any method, 
Genetic Software Engineering, will only work well when 
applied rigorously.  Derivation of the software component 

architecture from the design behavior tree and projection of 
the set of component behavior trees from a design 
behavior tree are both repeatable, algorithmic processes, 
that can be automated if we choose to do so.  The greatest 
chance for variation with work products comes in the 
translation of natural language descriptions of functional 
requirements to requirements behavior trees (RBTs). 
Variance can be minimized by making sure all components 
and all behaviors in a given textual description are 
accommodated in the translated RBT. Best results are 
obtained by getting two people to translate each 
requirement and then resolve their differences. 
Requirements integration is also potentially algorithmic and 
automatable, but defects in requirements need software 
engineers to resolve such problems.  
 
   Returning to our original motivations from genetics and 
jigsaw puzzles, we have seen that Genetic Software 
Engineering exploits three fundamental genetic properties 
of a set of functional requirements that are revealed and 
become easily accessible when they are expressed and 
then integrated as behaviour trees. It is these emergent 
properties that give the method its constructive power. 
Things may be summed up with the words of eighteenth 
century thinker Giambattista Vico, who said, “To 
understand something, and not merely be able to describe 
it, or analyse it into its component parts, is to understand 
how it came into being – its genesis, its growth … true 
understanding is always genetic”. 
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