
Multi-way Dataflow Constraint Propagation in Real-
time Collaborative Systems

Kai Lin, David Chen and Geoff Dromey
School of Information and Communication Technology

Griffith University
Brisbane, QLD 4111, Australia

{K.Lin, D.Chen, G.Dromey}@griffith.edu.au

Chengzheng Sun
School of Computer Engineering

Nanyang Technological University
Singapore, 639798
CZSun@ntu.edu.sg

Abstract—Constraints are very useful in real-time collaborative
editing systems. They are able to automatically enforce semantic
rules and properties. A specific type of constraint is dataflow
constraint. Any property that can be expressed as an equation
can be represented as a dataflow constraint. However, ensuring
multi-way dataflow constraint satisfaction and consistency
maintenance in a replicated collaborative environment is a
challenge. This paper presents a novel method for computing
multi-way dataflow constraint propagation for real-time
collaborative editing systems. This method produces convergent
result that is consistent with syntax level effect, irrespective of the
operation execution order. This method is generic and is applied
to enforce object placement and label name consistency in a real-
time collaborative CASE system.

Keywords-multi-way dataflow constraint; constraint
propagation; real-time collaborative systems

I. INTRODUCTION
Constraints specify semantic level conditions that must be

satisfied, and will automatically be maintained by the
constraint system. For instance, they may be adopted by a
spreadsheet system to denote the relationship of different cells,
a graphical system to specify the positions of graphic objects,
etc. Constraint-based applications simplify users’ jobs by
allowing users to concentrate on saying what should be true,
leaving it to the constraint systems to worry about when and
how to make these things true [3].

This paper concentrates on a frequently used type of
constraint called dataflow constraint that is capable of
expressing relationships over multiple data types and is
conceptually simple [2], [8]. Any requirement that can be
expressed as an equation can be represented as a dataflow
constraint. For instance, the requirement defining “point A
should be in the middle of the line connecting points B and C”
can be reduced to a dataflow constraint “A=(B+C)/2”.

A major issue that needs to be solved when developing
dataflow constraint systems is being able to propagate update
effects in order to maintain the constraint. For instance, in a
graphical system, constraint propagation can be used to
maintain constraints between graphical objects when they are
moved. If object B is kept to the right of A, expressed as
“B.left=A.left+A.width”, and the end-user moves object A

sideways, then B will be moved with it as a result of constraint
propagation.

New challenges arise when adopting dataflow constraints in
real-time collaborative systems. Firstly, operation execution
and constraint propagation effects need to be consistent with
the underlying syntax level execution effect. Secondly, due to
replicated nature of the systems, convergent propagation effects
need to be ensured at all replica sites. This has to be achieved
under the condition that concurrent actions may be generated to
update variables in the same constraint. Thirdly, as constraint
propagation may take arbitrary amount of time to compute, the
ability to allow locally generated operations to be executed
before operation propagation is required. This is to ensure fast
local response time.

In this paper, we proposed an efficient constraint
propagation method which is able to maintain both dataflow
constraints and consistency in real-time collaborative systems.

II. DATAFLOW CONSTRAINT
A dataflow constraint is an equation that has one or more

Constraint Satisfaction Methods (CSM) associated with it that
may be used to satisfy the equation [8]. Each CSM uses some
of the constraint’s variables as inputs and computes the
remainder as outputs [2]. For example, suppose constraint C
defining “X=Y+Z” is associated with a CSM, “X←Y+Z”,
which means that X should be calculated according to Y and Z.
Each time a user updates either Y or Z, the constraint system
will invoke the CSM updating X accordingly to satisfy the
constraint.

A dataflow constraint could be one-way or multi-way. If a
constraint has exactly one CSM that is used to satisfy it, it is a
one-way constraint. On the other hand, a multi-way constraint
has multiple CSMs that can be used to satisfy it. Multi-way
dataflow constraints can express relationships in multiple
directions and have a number of advantages over one-way ones
[2], [6], [8].

A CSM may have only one output or multiple outputs.
Obviously, multi-output constraints are more expressive than
single-output ones. However, multi-way, multi-output
constraints have drawbacks which impeded their acceptance. It
is proved that satisfaction of multi-way, multi-output constraint
is NP-complete [8]. Moreover, the constraint satisfaction

results of multi-way, multi-output constraints are unpredictable
[8].

In this paper, we focus on multi-way, single-output
constraints. In addition, a multi-way constraint has a CSM for
calculating a value for each of the variables it constrains, in
terms of the values of the other variables [8]. Each CSM uses
all the variables confined by the constraint, one as the output
and the others as the inputs. For instance, C, defining
“X=Y+Z”, is associated with three CSMs, “X←Y+Z”, “Y←X-
Z” and “Z←X-Y”.

Dataflow constraints are commonly expressed in terms of
constraint graphs. Initially, the constraint system is represented
as an undirected bipartite graph [2], [6], [8], such as Fig. 1 that
represents two constraints. Ca defines “W=X+U” and Cb
constrains “X=Y+Z”. Here, a circle represents a variable and a
square expresses a constraint. A set of undirected edges denotes
the relationship between variables and constraints.

WX

U

Y Cb

Z

Ca
Figure 1. Graphic representations of constraints

If a CSM, f, is selected to satisfy constraint C, all the inputs
to f are represented as directed edges from the input variables
to C and a directed edge from C points to f’s output. In Fig. 2,
CSM “X←Y+Z” is used to satisfy Cb. Here, Y and Z are the
inputs and X is the output of Cb.

WX

U

Y Cb

Z

Ca
Figure 2. A solution graph

A set of constraints, CS={C1, C2,…, Cn}, is satisfiable if for
each Ci∈CS, 1≤i≤n, a CSM can be selected to satisfy it, such
that (1) all satisfiable constraints and their variables form a
directed, acyclic graph and (2) no variable in the graph can be
pointed to by more than one directed edge. A direct graph that
satisfies these two conditions is called a solution graph which
represents a computation flow to satisfy a set of constraints [8].

III. A CONSTRAINT PROPAGATION METHOD
In constraint-based interactive systems, users may update

constrained variables, which causes constraint violations.
Constraint propagation provides an efficient way to re-satisfy
constraints.

Propagation, which is a generalization of data-driven
computation, works very effectively in interactive systems.
Consider the constraint defining “left-endpoint.y=right-
endpoint.y” of a horizontal-line. Any assignment to the variable
left-endpoint.y causes an assignment to right-endpoint.y. Here,
the change of left-endpoint.y is propagated to right-endpoint.y.
The constraint maintenance is achieved by taking user
operations as inputs, performing propagation, and outputting
the consequences.

When operation O assigns constrained variable V a new
value, constraint propagations should be performed for all the
constraints associated with V to satisfy them. In general, each
variable may be involved in many constraints. Consequently,
the assignment of a new value to a given variable as a result of
propagation may propagate further new assignments to other
variables, which may cause further propagation in their turn.

Determining the propagation path for an Update operation
is a critical issue. U(object.key, (new-value, new-priority), (old-
value, old-priority)) denotes an Update operation which
updates the attribute key of object from old-value to new-value
[7]. According to the Priority Assignment Scheme (PAS)
introduced in [7], when a user generates an Update at a site, its
new-value parameter shall be assigned with the current highest
priority available, and its old-value shall be assigned with the
lowest priority. We refer the priority assigned to the new-value
parameter of an Update as the priority of the operation. As the
priorities assigned to different Updates are totally ordered [7],
we use a sequence of positive integers to represent the totally
ordered priorities in this paper for the sake of conciseness.

To propagate the effect of O updating constrained variable
V, we may build an arbitrary solution graph, where V is not the
output of any constraint (As V is determined by O rather than
by any constraint). Then re-satisfy each constraint according to
the solution graph. However, to construct a solution graph, we
should examine the entire constraint set. A change to a
constrained variable usually perturbs only a portion of
constraints, so that it is more expedient to determine
propagation path incrementally based on the previous
propagation result.

Given operation O updates constrained variable V on
document state So where all the constraints are satisfied. Let
Go be the solution graph denoting the computation flow to
satisfy all the constraints on So. According to the definition of
solution graph, V could be the output of at most one constraint
and an input of some constraints in Go, as shown in Fig. 3.
Here, a directed dashed line connecting two variables indicates
that there may be many variables and constraints in the directed
path between the two variables.

VmC2

Vk

Vh

V VoC1 Vg

Va

Vi C

Vb

Vf

Vd C3

C4

Figure 3. The initial solution graph of a system

For any constraint Ci, one of whose inputs is V in Go, such
as C1 and C2 in Fig. 3, constraint propagation should be
performed to satisfy it after V is updated. Let Vo be the output
of Ci in Go. It is desirable that the change of V is propagated to
Vo, because (1) constraint propagation can be conducted
according to the propagation path defined in Go, so that
constructing new propagation path is unnecessary, and (2) Vo is
the output of a constraint in Go, so that it is not determined by
a user operation on document state So. The propagation result
will not mask the effect of any user operation. For the same
reason, when Vo is updated as a result of constraint
propagation, the change of Vo should be propagated to the

output of any constraint, one of whose inputs is Vo in Go.
Consequently, the change of V should be propagated to all the
downstream variables of V in Go.

On the other hand, the change of V may also be propagated
to some of its upstream variables in Go. V is the output of
constraint C in Go, as shown in Fig. 3. When V is updated by
operation O, it is determined by O rather than by C. Therefore,
the computation flow satisfying C in Go, where V is the output
of C, cannot be applied. To re-satisfy C, the change of V should
be propagated to another constrained variable of C. V becomes
an input of C and another C’s variable should be changed to the
output of C. In Fig. 3, any one of Va, Vb and Vi could be the new
output of C. Given Vi becomes the new output of C. As Vi is the
output of C4 in Go, when it becomes the output of C, it should
be changed as an input of C4 (a variable cannot be the output of
more than one constraint in a solution graph). Consequently,
one of the inputs of C4 should be assigned as the new output.
The upstream propagation continues until reaching variable Vf
which is not the output of any constraint in Go, as shown in Fig.
4. Accordingly, the change of V is propagated to every one of
the downstream variables of V in figure Fig. 4.

VmC2

Vk

Vh

V VoC1 Vg

Va

Vi C

Vb

Vf

Vd C3

C4

Figure 4. The solution graph after constraint propagation

According to the above discussion, if n variables are the
upstream variables of V but not the output of any constraint in
Go, we may construct n different solution graphs to conduct the
constraint propagation caused by O. Our proposed scheme
ensures that all the collaborating sites produce the same final
solution graph.

The key idea behind our constraint-propagation-method is
to associate sufficient information with each variable to enable
the method to determine propagation paths: The value of
variable V is associated with a priority, expressed as
V.value.priority and referred as the priority of V. When V is
updated by O, set V.value=O.new-value so that V.value.priority
=O.new-value.priority. If V is the output of constraint C,
V.value.priority=Vi.value.priority, while Vi is the variable with
the lowest priority among all the inputs of C.

V is also associated with a level property, denoted as
V.level. If V is not the output of any constraint in a system,
V.level=0. Otherwise, if V is the output of constraint C, then
V.level=Vi.level+1, while Vi is the variable with the lowest
priority among all the inputs of C.

We define the power of variable V as a tuple,
(V.value.priority, V.level), denoted as V.power. For any two
constrained variables V and Vi, the power of V is lower than the
power of Vi, denoted as V.power<Vi.power, if and only if (1)
V.value.priority<Vi.value.priority, or (2) V.value.priority=
Vi.value.priority and V.level>Vi.level.

The powers of constrained variables can be used to guide
the directions of constraint propagations. In our method, when
constrained variable V is updated, for any constraint C that is

associated with V, the change should always be propagated to
the constrained variable which has the lowest power among all
of C’s variables.

Function constraintPropagation() is invoked to perform
constraint propagation each time a constrained variable is
assigned a new value, which is sketched below.

Procedure constraintPropagation(V,C)
{
For any constraint Ci associated with V while Ci≠C,
 Vo=getLowestPowerVariable(Ci)
 call Vo←f(V, V1, ..,Vn)
 Vi=getLowestPowerVariable(f().getInputs())
 Vo.value.priority=Vi.value.prirority
 Vo.level=Vi.level+1
 call constraintPropagation(Vo, Ci)
}

The input parameter, V, of the above function is a variable
which is assigned a new value by an Update or a CSM. C is a
constraint associated with V and constraint propagation has
been performed for it after V is updated. When an Update
assigns V a new value, V and null will be passed as inputs to
the function. Accordingly, constraint propagation will be
performed for any constraint Ci associated with V. Method
invoking getLowestPowerVariable(Ci) returns constrained
variable Vo, which has the lowest power among all the
constrained variables of Ci. Vo←f(V, V1, ..Vn) denotes the CSM
associated with Ci, whose output is Vo. Method invoking
getLowestPowerVariable(f().getInputs()) returns variable Vi
which has the lowest power among all the inputs of the CSM.
Accordingly, Vo.value.priority=Vi.value.prirority and Vo.level=
Vi.level+1. If Vo is also associated with other constraints, after
Vo is updated, constraint propagations will be performed for
these constraints by recursively invoking the function.

We have proved that the proposed method is able to
maintain both constraint and consistency in collaborative
systems, which is independent of the execution orders of
concurrent operations.

IV. OPTIMIZATION
In section III, the analysis is under the situation that

constraint propagation is performed immediately after each
user operation that updates a constrained variable. Suppose m
operations update constrained variables in a system with n
constraints. In the worst case, each operation may cause
constraint propagation for n constraints, to satisfy these
constraints we should perform m×n times constraint
propagations. Thus, the time complexity is O(n2).

Performing constraint propagation each time a constrained
variable is assigned a new value is unnecessary. For instance,
when two users concurrently update the positions of left-point
and right-point, to satisfy constraint Cp, defining “middle-
point=(left-point+right-point)/2”, we can perform constraint
propagation only once, which changes the position of middle-
point by taking into account the effects of both user operations.

To improve system-responsiveness, if any user operation is
waiting for execution, constraint propagation will not be

performed. Each site maintains a Constraint-Propagation-
Buffer (CPB), which is to record constraints whose constrained
variables have been updated and constraint propagations should
be performed to satisfy them. Each time a constrained variable
of C is assigned a new value at a site, constraint C will be
recorded in the CPB of the site.

In the best case, constraint propagation is performed after
all the m operations have been executed. Obviously, at most all
the n constraints are recorded in CPB after the m operations
have been executed. If we know the final solution graph Gn in
advance, the most efficient way to conduct constraint
propagation is to satisfy C before all of its downstream
constraints in Gn, which is the strategy used to satisfy
constraints on the initial document state. Thus, constraint
propagation will be performed for each constraint only once.

Even though we cannot predict the final solution graph Gn,
we know that if Ca is an upstream constraint of Cb in Gn, its
output must have a higher power than the output of Cb.
Moreover, the power of the output of Ca in Gn will be set
according to the power of the constrained variable with the
second lowest power among all the constrained variables of Ca.
Therefore, we sort the constraints in the CPB. Ca is ordered
before Cb in a CPB, if and only if V1.power>V2.power, while
V1 is the constrained variable of Ca whose power is the second
lowest among all the constrained variables of Ca, and the same
is for V2 to Cb. Performing propagations for constraints
recorded in CPB in sequence, the time complexity of the
proposed schema is O(n) in the best case.

V. SYSTEM STRUCTURE
The structure of a constraint-based collaborative system is

shown in Fig. 5.

User Interface

CPB

constraintPropagationInvoking()

constraintPropagation()

userLocalOperationExecution()

useR
em

oteO
peration()

A

Site A

B

D

C

User Interface

CPB

constraintPropagationInvoking()

constraintPropagation()

userLocalOperationExecution()

useR
em

oteO
peration()

A

Site B

B

D

C

Figure 5. System structure

Any user operation can be executed immediately at the site
it was generated, even if there are remote user operations
waiting for executions. Each site maintains a function,
userLocalOperationExecution(), which is invoked to execute a
local Update, as described below:

//Ua is a local user operation updating V

userLocalOperationExecution(Ua)
{
 execute Ua
 if V is a constrained variable, then
 V.level=0
 for every constraint C associated with V
 record C in CPB
 reorder the constraints in CPB
}

When an Update is executed at the site it was generated, it
is dependent on all the operations that have been executed at
the site, so that it will not be transformed against any operation.
If the operation updates a constrained variable, the level of the
variable is set to 0, as the variable is not the output of any
constraint after the execution of the Update. Moreover, all the
constraints associated with the variable will be recorded in
CPB.

To execute remote Updates, each site maintains a function,
userRemoteOperationExecution(), which is described below:

//Ua is a remote user operation updating V
userRemoteOperationExecution(Ua)
{
if V is not a constrained variable, then
according to operation-execution order, for any executed
operation Ub conflicting with Ua,
 Ua=conflictResolution(Ua, Ub) [7]
 execute Ua
else // if V is a constrained variable
 original=V.value.priority
 if (Ua.new-value.priority<V.value.priority)
 Ua.new-value=V.value
 Ua.old-value=V.value
 execute Ua
 if original≠V.value.priority, then
 V.level=0
 for every constraint C associated with V
 record C in CPB
 reorder the constraints in CPB
}

When user operation Ua updating V is ready for execution
at a remote site, if V is not associated with any constraint, Ua
will be transformed against all of its conflicting operations that
have been executed at the site so that the transformed operation
can achieve the correct effects and maintain document
consistency [7]. The execution of the transformed Ua will not
invoke any constraint propagation. On the other hand, if V is a
constrained variable, Ua can have effect on the current
document state and cause constraint propagation only if
Ua.new-value.priority>V.value.priority. If Ua assigns V with a
new value, all the constraints associated with V will be
recorded in CPB.

Function constraintPropagationInvoking() will be invoked
at each site when the system starts up. The function keeps
running in the background. If no user operation is waiting for
execution at that site, this function will fetch constraints from

the local CPB and send them in sequence to function
constraintPropagation() to perform constraint propagation.

constraintPropagationInvoking()
{
 while (true)
 if no user operation is waiting for execution and CPB
contains any constraint, then
 get the first constraint, C, in CPB
 call constraintPropagation(C)
 delete C from CPB
}

Function constraintPropagation() is maintained at each
collaborating site, which is sketched below.

constraintPropagation (C)
{
Vo=C.getLowestPowerVariable()
call Vo←f(V, V1, ..,Vn)
Vi=getLowestPowerVariable(f().getInputs())
Vo.value.priority=Vi.value.prirority
Vo.level=Vi.level+1
for any Ci, while Ci≠C and Vo is a constrained variable of Ci,
record Ci in CPB
reorder the constraints in CPB
}

The input parameter, C, of function constraint-
Propagation() is a constraint whose constrained variables have
been updated, and constraint propagation should be performed
to satisfied it. Method C.getLowestPowerVariable() returns a
constrained variable Vo, which has the lowest power among all
the constrained variables of C. Vo←f(V1, V2, ..,Vn) denotes the
CSM associated with C, whose output is Vo and inputs are all
the other constrained variables of C. Method
getLowestPowerVariable(f.getInputs()) returns constrained
variable Vi which has the lowest power among all the inputs of
the CSM. Accordingly, Vo.value.priority=Vi.value.prirority and
Vo.level=Vi.level+1. If Vo is also associated with other
constraints, constraint propagations should be performed for
these constraints after Vo is updated. Therefore, these
constraints should be recorded in CPB.

VI. CONCLUSION AND FUTURE WORK
Multi-way dataflow constraints are useful in single user

editing systems, and even more useful in real-time
collaborative systems. However, building a collaborative
system that supports such constraints is a major challenge.

In this paper, we have presented a novel constraint
propagation method, to maintain multi-way single-output
dataflow constraints in real-time collaborative environments.
Consistency of propagation effect is maintained at all replica
sites while allowing operations to be executed in any order.
Compare with the method introduced in [5], this method is
more advanced. It is able to produce propagation effect that is
consistent with the underlying syntax level execution effect.
Furthermore, constraint propagations are performed only when

no user operation is waiting for execution. This improves
system-responsiveness.

The method we have presented can be applied to many
kinds of collaborative applications, including collaborative
CAD, CASE, spreadsheets, graphic editing systems, etc. We
have chosen to implement this method in our Collaborative
Genetic Software Engineering System (CoGSE). CoGSE is a
collaborative CASE system that allows multiple users to draw
Behavior Tree diagrams to represent the behavior of software
systems [1], [4]. One of the constraints that are implemented is
to ensure objects of the same level line up horizontally.
Another constraint is to ensure if a label is changed, then all the
labels with the same name will automatically be updated.

There are some limitations in applying our method. It is
only applicable to equality, not inequality constraints.
Furthermore, it is designed to maintain predefined constraints.
If constraints are added/deleted dynamically, the method
cannot ensure system consistency. The solutions to these
problems are currently being investigated, and will be reported
in our subsequent publications.

Over the last fifteen years, real-time collaborative systems
have moved from being prototypes in laboratories to becoming
usable commercial systems and also freeware. So far, much of
the research and development has concentrated on syntax level
consistency. With the use of constraints in supporting
application level semantics, we hope to make real-time
collaboration even more productive and easier to use.

REFERENCES
[1] R.G. Dromey, “Using behavior trees to design large systems by

requirements integration”, Scenarios: Models, Transformations and
Tools, International Conference and Research Seminar for Computer
Science, Sep. 2003.

[2] BN Freeman-Benson, J. Maloney, and A. Borning., “An incremental
constraint solver”, Communications of the ACM, vol.33, no.1, pp.54-63,
Jan. 1990.

[3] D.R. Hill, “The RENDEZVOUS constraint maintenance system”, In
Proceedings of the ACM Symposium on User Interface Software and
Technology, pp.225-234, 1993.

[4] K. Lin, D. Chen, C. Sun and R.G. Dromey, “Maintaining constraints in
collaborative graphic systems: the CoGSE approach”, In Proceedings of
the 9th European Conference on Computer Supported Cooperative Work,
Paris, 2005.

[5] K. Lin, D. Chen, C. Sun and R.G. Dromey, “Maintaining multi-way
dataflow constraints in collaborative systems”, In Proceedings of IEEE
2005 International Conference in Collaborative Computing: Networking,
Applications and Worksharing, San Jose, CA, USA, Dec. 2005.

[6] M. Sannella, J. Maloney, BN Freeman-Benson, and A. Borning “Multi-
way versus one-way constraints in user interfaces: experience with the
DeltaBlue algorithm”, Software-Practice and Experience, vol.23, no.5,
pp.529-566, 1993.

[7] D. Sun, S. Xia, C. Sun, and D. Chen , “Operational transformation for
collaborative word processing”, In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, Chicago, USA, pp.437-446,
Nov. 6-10, 2004.

[8] B. Zanden, “An incremental algorithm for satisfying hierarchies of
multi-way dataflow constraints”, ACM Transaction on Programming
Languages and Systems, vol.18, no.1, pp.30-72, Jan.1996.

