
Verification of an Integrated Role-Based Access
Control Model

Saad Zafar1, Kirsten Winter2, Robert Colvin3 and R. G. Dromey4

1Institute for Integrated and Intelligent Systems, Griffith University,
4Software Quality Institute, Griffith University,

4111, Brisbane (Nathan), Australia
2,3School of Information Technology and Electrical Engineering/ARC Centre for Complex

Systems, University of Queensland,
4072 Brisbane (St. Lucia), Australia

{s.zafar, g.dromey}@griffith.edu.au, {robert,kirsten}@itee.uq.edu.au

Abstract. Role-based access control (RBAC) has been acknowledged as an
effective mechanism for specifying and enforcing access control policies.
However, it is not always clear how an RBAC policy can be systematically
integrated into the system design so as to preserve the desired security
requirements. In this paper we propose a representation and a process that
supports systematic integration of an access control policy into the system
design. The integrated design process uses a single notation, called Behavior
Trees (BT), for specifying both the RBAC policy and the system design.
Furthermore, the same notation is used for formal verification of both the
RBAC policy and the system design. We also present strategies and challenges
for automated translation of the extended BT notation required for specifying
an RBAC policy.

Keywords: Access Control, Security Policy, RBAC Policy, Verification,
Validation, Model Checking.

1 Introduction

Role-based access control (RBAC) is a mechanism for specifying and enforcing
organizational access control policies [1]. Because of their flexibility and ease of use
RBAC models are now viewed as a preferred “generalized approach to access
control” [2]. RBAC models have been used in diverse applications ranging from web-
based applications to the health-care industry. The renewed focus on RBAC has been
attributed to the fact that it addresses many needs of the increasing web-based
applications where availability and protection of data are major concerns [3]. In
RBAC these concerns are addressed easily as most of the data availability and
protection policies are generally aligned with the roles that individuals play within an
organization [4].

A number of RBAC policy models and specification languages have been
proposed in the literature [3]. The need for visualization of access control policies by

using graphical notation has been highlighted in [5]. More recently, formal methods
have been used for verification of RBAC specification. In [6], RBAC constraints have
been expressed using LTL formalism. Others have proposed use of Alloy [7] and
SPIN [8] for formulating RBAC security policies for formal verification. However, it
is not always clear how the access control models integrate with application
specifications. Also, it is often difficult to get a complete integrated view of the access
control policy.

In comparison, BT notation offers a single notation, with formal semantics, for
specification of security policies and the specification of system design [9]. This not
only facilitates an integrated and incremental development process but also reduces
the accidental complexity of the overall design process [10]. The formal semantics of
BT notation allows for automated verification of the BT specification model [11]. The
integrated view of the system design generated by the BT specification also facilitates
combining and resolving conflicts in security policies. To specify RBAC policies,
where the roles a user may play are determined by its membership in the access
control sets, we have extended the BT notation to include sets and set operators. The
syntax has also been incorporated into the existing operational semantics and the
translation semantics for automated translation of BT to SAL specification. The SAL
specification can then be used to verify the safety properties [12] of the access control
model.

In related unpublished work, an operational semantics for the BT notation has been
developed and implemented as a simulation tool. The simulator can be used for
validation, and can also be used to check simple safety properties of the model.
During the verification process, the simulator can be used for observing any counter
examples generated by the model checker.

The rest of the paper is organized as follows. Section 2 gives a brief background on
RBAC and BT notation. Section 3, introduces the proposed BT-based RBAC model
which we refer to as BT-RBAC. In section 4, we illustrate the strategies we plan to
use for formal verification of BT-RBAC specification. In section 5, we argue the need
and suitability of the BT based RBAC model and section 6 provides a summary of
future work.

2 Background

2.1 Role-Based Access Control

The central concept behind RBAC is that access control permissions are assigned to
roles and users are then assigned to suitable roles [4]. As roles have more permanence
in an organizational context than users, assigning permissions to roles greatly
facilitates access control management. Individual users can be assigned and de-
assigned from roles without having to manage access control permissions for each
individual separately.

The NIST RBAC model [2] defines a core RBAC model as a collection of
elements, element sets, and relations to specify a role-based access control system.

The basic data elements in the core RBAC are users, roles, permissions, operations,
and objects. A user can be a human being, a machine or an intelligent autonomous
agent. A role corresponds to the job function in the context of an organization which
has authority and responsibility associated with it. Permission is the authority to
perform an operation on protected objects within a system. An operation corresponds
to application-specific user function. An object in an RBAC model may contain or
receive some information. The model also defines a session during which a user can
activate some of the roles that have been assigned to him or her. In addition, the
model defines a hierarchical RBAC which facilitates role management by allowing
inheritance of permissions and users among roles. The constrained RBAC specifies
separation of duty constraints to avoid any conflict of interest in a policy.

2.2 The Behavior Tree Notation

The BT-based design process involves translating individual requirements into the
BT notation, referred to as Requirements Behavior Tree (RBT), one at a time [9]. The
RBT for each of the requirements is then composed together into an Integrated
Behavior Tree (IBT) to provide an integrated view of the system requirements. The
IBT is systematically refined into a Design Behavior Tree (DBT) by taking a number
of design decisions. The impact of these design decision is readily visualized as the
changes are applied to an integrated view of the requirements, thereby, potentially
reducing the complexity of the design process [13]. It is also possible to derive the
system architecture from the DBT which is presented in the form of Component
Interaction Network (CIN) diagram. The behavior of individual components may also
be projected out using Component Behavior Tree (CBT).

Tag Component
[State] Tag Component

?? Event ??

Tag Component
? Condition ? Tag Component

[Attribute := Value]

1) State realization 2) Event

3) Decision 4) Attribute assignment

Tag Component A
[State A]

5) Casual behavior

Tag Component B
[State A] Tag Component B

[State B]

Tag Component A
[State A]

7) Atomic action w ith causal
 dependency

Tag Component B
[State B]

Tag Component A
[State A]

6) Atomic action

Fig. 1. A summary of BT syntax

A Behavior Tree node is used to specify a component and its state. It is also used to
express conditions, events, attribute assignment and data-in and data-out behaviours
of a component. Two BT nodes joined together with an arrowed line represent causal
behaviour and the direction of flow of control. Two nodes joined together with a line
without an arrow specify an atomic action with causal dependency. Atomic actions
without causal dependencies are specified as BT nodes boxed together without a
joining line between them. A summary of BT syntax is presented in Fig. 1.

The Behavior Tree framework has been evaluated as a means of early defect
detection in requirements [14]. It has also been proposed as an effective means for
managing requirements change in the latter stages of the design process [15]. The
suitability of the notation has been evaluated in the design and development of
embedded systems [13] and safety critical systems [11]. The integration of security

requirements into design of a safety and security critical system has been illustrated in
[16]. In [17] IEEE 802.11i WLAN security protocol has been modelled and verified
using the BT notation. Our current research involves evaluating application of BTs in
the domain of security engineering.

2.3 Modelling Role-Based Access Control using BT

To specify RBAC policies, the original BT syntax has been extended to include set
and set operations to model role-based access control requirements. A set can be
specified as a component itself or can be an attribute of a component. Basic set
operations like union, compliment, and intersection are allowed, as well as
membership and cardinality. In addition, two other constructs have been introduced:
one for selection of all elements used in parallel execution of a BT segment, and
another one for selection of one element (chosen non-deterministically) from a given
set (Table 1). The static analysis of the RBAC policy is possible by automatically
translating DBT into the SAL specification language. SAL is an integrated
environment of static analysis tools that include tools for model checking and theorem
proving [18]. A formal specification of the translation rules for a core of the BT
notation into the SAL specification is provided in [19].

Table 1. BT set notation and its semantics.

 Component-State Semantics Component-State Semantics

C
[S := {}]

Set S realizes a state
where S becomes empty. C

? x : S ?

Is x a member of set S?

C
| | x : S

BT(x)

Parallel execution of
Behavior Tree BT for every
element of S.

C
[] x : S

BT(x)

Execution of Behavior
Tree BT for one element
x in set S. x is non-
deterministically
selected from set S.

C
? |S| < n ?

Set cardinality: Is
cardinality of set S less
than n?

C
[S := S + A]

Union of set S with set
A.

C
[S := S + {x}]

Adding an element x to set
S. C

[S := S - A]

Set difference. Set S
minus set A.

C
[S := S - {x}]

Subtraction of element x
from set S. C

[S := S >< A]

Set intersection:
Intersection of set S and
set A.

3 A Component-state Based RBAC Model

In a BT-based RBAC specification, roles are represented as sets. A session is
represented as a component and may contain active roles as attributes. Objects are
represented as components and allowable operations on them are represented as its
states. All user actions are modelled as input events. An operation on object is an

input event, which causes the object component’s state to be changed (Fig. 2). We
have used a simple case study as a running example to illustrate how the RBAC
policy can be specified using BT notation. The case study is a simplified version of an
online-classroom system that requires a decentralized enforcement of RBAC policy in
a collaborative environment [8]. The security requirements that must be preserved in
the online-classroom system are discussed in section 4.

3.1 Role Specification

A role is specified as a set in BT-RBAC. The authorized members for a role are added
or removed using the set operations. The membership of a user in a specified role is
checked by using the set membership function in BT. The count of members in a role
is the cardinality of the set representing the role. In Fig. 2; (a) a user Admin first
creates a role R-Student, (b) a user convener assigns a user S1 to the role R-Student,
(c) a user convener removes the user S1 from the role R-Student.

Admin
?? Create ??

R-Student
[{}]

Convener#
?? Assign ??

R-Student
[R-Student + {S1}]

Convener#
?? De-assign ??

R-Student
[R-Student - {S1}]

a) b) c)

What Role (R-Students) Who User(S1)

What(to) Role(R-Student)

Who User(S1)

What(from) Role(R-Student)

Fig. 2. a) A user Admin creates a role R-Student. b) A user Convener# assigns a member S1 to
role R-Student. c) A user Convener# deassigns user S1 from role R-Student.

3.2 Role Membership Constraints

A role-cardinality constraint in an RBAC policy specifies the maximum number of
members allowed in a particular role [1]. In BT-RBAC model, the role membership
constraints are enforced by specifying them at the time of assigning members to a
role. For instance, a role-cardinality constraint specifies the maximum number of
members allowed in a role. Fig. 3(a) illustrates how the role-cardinality constraint
may be enforced. A member A1 can only be assigned to R-Assistant role if the
cardinality of the role is less than 2. It may be noted that BT nodes are atomically
composed to avoid the possibility of set cardinality being changed by any interleaving
threads.

3.3 Separation of Duty

The concept of separation of duty has been prevalent in many commercial systems as
one of the mechanisms for prevention of fraud and controlling an error in a business
process [20]. The basic concept revolves around the idea that a business operation is

divided into many sub-tasks and then ensuring that each of these tasks is performed
by different persons, thereby, reducing the risk of fraud and error in execution of a
critical business operation. The concept of separation of duty may be divided into two
broad categories; static separation of duty and dynamic separation of duty.

R-Assistant
? |R-Assistant|< 2 ?

Convener#
?? Assign ??

R-Assistant
[R-Assistant + {A1}]

R-Student
? NOT(M1:R-Student) ?

Convener#
?? Assign ??

R-Instructor
[R-Instructor + {M1}]

Course#
? M1 : R-Assistant ?

Exam#
? NOT (M1 : R-Examiner) ?

Instructor#
?? Assign Grader ??

Exam#
[R-Grader:=R-Grader + {M1}]

Exam#
[] Examiner# : R-Examiner

Exam#
? NOT (Paper = Created]) ?

Examiner#
?? Create ??

Exam#
[Paper := Created]

a) b) c) d)

Who User(A1)

What(to) Role(R-Assistant)

Who User(M1)

What(to) Role(R-Instructor)

Who User(M1)

What(to) Role(R-Grader)

What Object(Paper)

What(for) Session(Exam#)

Fig. 3. Examples of (a) role membership constraint; (b) static separation of duty; (c) dynamic
separation of duty; and (d) object-based separation of duty.

In static separation of duty (SSD) policy two roles are made mutually exclusive by
disallowing membership of one person in both the roles [21]. The policy avoids
conflict of interest by disallowing one user to be a member of a second conflicting
role. In Fig. 3(b), a student may not be allowed to join the role of an instructor as a
part of the online-classroom security policy. In dynamic separation of duty (DSD)
policy, a user is allowed to perform conflicting tasks that would not be allowed under
a SSD policy as long as the policy minimizes the chances of fraud and error [21]. A
typical DSD policy requires that two restricted roles may have common members but
they may not join both the roles at the same time [21]. For instance, any member from
R-Assistant can join either R-Examiner or R-Grader roles but one member cannot join
both the roles at the same time (Fig. 3.c).

In another variation of the DSD, object-based separation of duty (OBSD), users are
not allowed to act upon a single object twice [21]. In figure 3(d), the members of R-
Examiner role are not allowed to create an exam paper if one has already been
created. The integrated policy for the online-classroom is presented in Fig. 4. The
figure is only intended to give the reader a feel of the size and structure of the
integrated policy specification. The other variations of DSD which have been
modeled in the final specification include operational separation of duty (OSD), and
order-dependent/independent history-based separation of duty (HSD) [21].

4 Validation and Verification of BT-RBAC Model

The automated translation of BT into SAL specification language makes it possible to
model check the design Behavior Tree. A prototype BT simulator has also been
developed to support early validation of the BT specification. The strategies and
challenges in developing extensions to the existing tools to support validation and
verification of BT-RBAC are discussed in this section.

(f)(e)

(d)
(c)

(b)

On-line Classroom System
Integrated Behavior Tree

1+ Course
| | Course# : Course

1+ Course#
[] Convener#: R-Convener

1 Convener#
?? Initiated Course ??

1 Course#
[Initiated]

3+ Course#
[Assign_roles := T]

3 Students
[] S# : Students

3 Convener#
[] ?? Assign Student ?? []

3
Course#

[R-Student := R-Student +
{S#}]

3+ Course# ̂
[Assign_roles := T]

3.1 R-Staff
[] I# : R-Staff

3 Convener#
[] ?? Assign Instructor ?? []

3
Course#

[R-Instructor :=
R-Instructor + {I#}]

3.1 Course#
? R-Instructor = {} ?

3.2 Convener#
[] ?? Assign Assistant ?? []

3
Course#

[R-Assistant :=
R-Assistant + {A#}]

3.2.3 Course#
? NOT(R-Instructor={}) ?

3.2 R-Staff
[] A# : R-Staff

3.2.1 Course#
? | R-Assistant | < 2 ?

3.2.2 Students
? NOT (A# : Students) ?

4+ Course#
[Initiate_exams := T]

4 Course#
[] Instructor#: R-Instructor

4+ Course#
| | Exam# : Exams

4- Exam#
? NOT (Initiated) ?

4 Instructor#
?? Initiate Exam ??

4 Exam#
[Initiated]

4+ Exam#
[Assign_roles := T]

4.1
4.2

Course# | XOR
[] M# : R-Instructor

4.1 Instructor#
[] ?? Admit Grader ?? []

4.1
Exam#

[R-Grader := R-Grader +
{M#}]

4.1
4.2

Course# | XOR
[] M# : R-Assistant

4+ Exam# ^
[Assign_roles := T]

4.2 Instructor#
[] ?? Admit Examiner?? []

4.2
Exam#

[R-Examiner :=
R-Examiner + {M#}]

4+ Exam# ^
[Assign_roles := T]

5+ Exam#
[Create_paper:= T]

5.1 Exam#
? NOT(Paper = Created) ?

5.2 Exam#
[] Examiner# : R-Examiner

5.2 Examiner#
?? Create Exam Paper??

5.2 Exam#
[Paper:=Created]

6+ Exam#
[Update_grade_sheet := T]

6 Exam#
| | Grader# : R-Grader

6 Grader#
?? Update Grade Sheet ??

6 Course#
[Grade_Sheet := Updated]

3+ Course# ^
[Assign_roles := T]

3+ Course# ^
[Assign_roles := T]

7.7
Session#

??? AnswerBook =
Submitted ???

7.7 Exam#
[] Grader# : R-Grader

7.7 Grader#
?? Grade Answer Book ??

7.7 Session#
[AnswerBook := Graded]

7.7 Session#
[Terminated]

7.7+ Exam#
| | Session# : Session

7.7+
Exam#

[Grade_answer_books :=
T]

7.7 Session#
? NOT (Terminated) ?

6 Grader# ^
?? Update Grade Sheet ??

7+ Exam#
[Enroll_students := T]

7 Course#
| | Student# : R-Student

7.2
Exam#

? NOT (Student# :
Examinees) ?

7 Student#
?? Join R-Examinee ??

7
Exam#

[R-Examinee :=
R-Examinee + {Student#}]

7 Exam#
[] Session# : Session

7.1 Session#
[Created]

7.2 Session#
[Student := Student#]

7.2
Session#

? NOT (Initiated &
Terminated) ?

7.1+ Exam#
[Initiate_session := T]

7.1 Exam#
| | Examinee : R-Examinee

7.1 Exam &
? Session# : Session ?

7.3 Session# &
? Student = Examinee ?

7.1 Examinee#
?? Initiate Session ??

7.3 Session#
[Paper := Exam# [Paper]]

7.1 Session#
[Initiated]

7.4 Session#
[AnswerBook :=Created]

7.6 Examinee#
[Take Exam]

7.6
Session#

? NOT (AnswerBook =
Submitted) ?

7.3 Session#
[Paper := Shared]

7.6
Examinee#

[] ?? Write to Answer Book
?? []

7.6 Session#
[AnswerBook := Written]

7.6 Examinee# ^
[Take Exam]

7.6 Examinee#
[] ?? Read Paper?? []

7.6 Session#
[Paper := Read]

7.6 Examinee# ^
[Take Exam]

7.7
Examinee#

[] ?? Submit Answer Book
?? []

7.7 Session#
[AnswerBook := Submitted]

1- Course
[Initialized]

4- Exam#
[Initialized]

6- Course#
[Grade Sheet := Initialized]

5.1- Exam#
[Paper := Initialized]

(a)

4.1+ Exam#
? NOT(M# : R-Examiner)? 4.2+ Exam#

? NOT(M# : R-Grader) ?

Fig. 4. Integrated RBAC Policy (a) Role membership assignment: A member from R-Convener
role assigns members to R-Student role. (b) Role membership constraints and static separation
of duty: A member from R-Staff role can only be assigned to R-Assistant role if he/she is not a
member of R-Student, if the R-Assistant role cardinality is less than two and if R-Instructor role
has been assigned a role. (c) Dynamic separation of duty: A member from R-Assistant is
assigned to either R-Examiner or R-Grader role but can not be assigned to both the roles at the
same time. (d) Object-based separation of duty: The members of R-Examiner role are not
permitted to create an exam paper twice. (e) Order-independent history-based separation of
duty: An examinee can read from the exam paper and write to an answer book before it is
submitted. (f) Order-dependant history-based separation of duty: A member from R-Grader
role can only grade the answer book if it has been submitted.

4.1 BT to SAL Translation

To include the new features of the BT notation for manipulating sets, we have had to
extend the given translation rules [19]. For the most common set theoretic operations
(like adding and removing a member from a set, union and intersection of sets,
membership and empty set queries) we follow the suggestions in [22] where a
translation from the Z set-theoretical specification language into the SAL language is
introduced. For the encoding we can utilize a predefined set context of the SAL
package. This context defines a type SET and all the necessary set operators.

The set context also provides an operator for the cardinality of a set. However, the
encoding of this operator in SAL is known to be computationally expensive. Where
possible the use of the cardinality operator should be avoided or circumvented, e.g. by
auxiliary counters.

As a challenge we encounter two new constructs that diverge from basic set-
theoretic operators:

a) For every member c, written (||c:S;T(c)), execute subtree T(c).
b) Non-deterministically choose a member c, written ([]c:S;T(c)), execute subtree

T(c).
To translate these two constructs we unfold the tree to its maximal size, based on

predetermined maximal sizes for sets S. For instance, if Colour is a type defined as
{red, blue, yellow}, and S is declared as a set of Colour, then both of the constructs
are unfolded into three branches, corresponding to each element of Colour. Because S
may change dynamically during run time, i.e., contain some subset of the three
colours, we only enable the threads which correspond to values that are currently in
the set. The others remain disabled. In case of (a) above, all activated threads run
concurrently, whereas in case of (b) only one activated thread is chosen and all others
become disabled.

For this purpose the user needs to input the maximal size of the sets that are to be
unfolded. Moreover, due to the fact the model checking approach used here works on
finite systems only, all sets have to be finite. In most cases, however, it is sufficient to
use a model with only small sets in order to show violations of safety and security
requirements.

4.2 Verification of BT-RBAC Properties using Model-Checker

The safety property of an access control configuration refers to inaccessibility of
protected objects to unauthorized users [12]. Since the safety property is said to be
undecidable, the access control models often use constraints on access control to
facilitate safety analysis of the model [5]. As discussed earlier, in the BT-RBAC
model constraint expressions are placed on the access control to facilitate analysis of
the model. In our running example we follow the approach discussed in [8] to verify
that: 1) a participant of the examinee role cannot access the content of the question
paper before the start of his/her own exam, and 2) a participant of the examinee role
can only modify his/her answer book before end of his/her exam-session.

The first property embodies confidentiality or information flow policy. A
confidentiality policy aims to protect unauthorized disclosure of information. In the
example, the constraints placed on the access of the exam paper restrict its access
before the start of student’s own exam session. The verification of the property
involves the verification of these constraints on the flow of information. The
following LTL formula (1) is used to verify the first property. The actual SAL syntax
has been slightly changed in the formula to improve readability. The U operator in the
formula is read as “p until q”, i.e. p holds until a state is reached where q holds.

(FORALL(s:SessionType):
 (contains?(S,s)) AND NOT(s.Paper=read)
 U (s.Status=initiated OR NOT(contains?(S,s)));

(1)

We benefit from the SAL’s advanced input language that allows us to use record
types and set operators. The record types used in Formula 1 have been defined as
follows.
StatusType : TYPE={initiated, terminated};
 PaperType : TYPE={read,unread};

 AnswerBookType : TYPE={not created, created,
submitted, graded};
SessionType : TYPE = [# Status : StatusType,
 Paper : PaperType,
 AnswerBook : AnswerBookType #];
Session : TYPE=set{SessionType}!Set;
% The variable S for being a set of sessions:
S : SessionType

The second property relates to the integrity policy of the RBAC model. To verify
the integrity of an RBAC model we verify that access rights are not leaked during role
assignments [8]. In this case, we verify that the ability to the answer book is not
leaked after the session has been terminated. The following LTL formula (2) is used
to verify the second property. The G operator in the formula is read as “always p”, i.e.
p is always true.

(FORALL(s:SessionType):
 G(s.Status=terminated AND contains?(S,s)
 => s.AnswerBook=submitted);

(2)

5 Discussion

In this paper we have presented the BT-RBAC model as a proof of concept for a
completed model. The key potential benefits of the model- are discussed here.

The BT-based RBAC model is flexible and allows better integration with systems
requirements. It can potentially be used to specify fine-grained-and-coarse-grained
specifications [23] that allows for specific access control rules for users and objects in
an RBAC configuration. This is possible since the Behavior Tree notation supports
modelling of complex and concurrent system behaviour. In our example, we were
able to model a decentralized [24] computer supported cooperative work system with
relative ease. A completed BT-RBAC template would support repeatability and
accuracy of specification.

Another requirement of an access control model is ensuring the reliability of the
input [23]. In the BT specification this is ensured by putting the necessary checks with
every input event as shown in our running example. These checks may include
authentication of users along with conditional authorization [23] like time constraints
on roles. The principle of least privilege [23] is supported by constraining user
behaviour to the assigned roles and by performing necessary checks before every user
action. To this end various separation of duty [23] policies are often used. The BT
notation is flexible enough to model most of these policies. Policy combination and
conflict resolution [23] is inherently supported in BT specification. An Integrated
Behavior Tree assists in resolving conflicts in requirements and helps identify any
incompleteness in them [25]. The integrated view of an access control policy can also
play the same role in identification of conflicts and incompleteness in the policy.
Policy combination is achieved in a manner similar to the integration of requirements
behaviour trees into a single IBT [25].

Integration of security requirements with systems engineering is essential for
developing security critical applications [26]. The security requirements of a system
must be integrated with the rest of the system requirements to achieve this objective.
The integration requirements must then be validated and verified for correctness and
completeness. The isolated verification and validation of security policies may lead to
false sense of faith in the security policy. As illustrated in [16], the BT-based design
process offers a platform for integration of security requirements into the design of a
system. The incremental proof of a system is possible by first verifying the
correctness of the policy and then verifying the integrated system specification that
incorporates the policy.

The BT-based design process supports accurate formalization in the early
requirements engineering phase by providing a systematic translation technique that
translates informal requirements into BT notation. The BT editing tool helps traverse
through each individual requirement during the translation process. The components
and their corresponding, states, events, or conditions are identified using the tool. Any
ambiguities, aliases and incompleteness is resolved and documented for validation.
The tool automatically maintains traceability by marking each BT node with the
corresponding requirement number. The requirements specification is then refined
into a design specification in the form of a DBT. The key advantage of the approach
is that the requirements specification notation is same as the design notation [27]. The
use of single language through out the development process is aimed at facilitating the
integrated design process and reducing the accidental complexity of the process [10].
The formal semantics of the BT notation makes it possible to formally verify and
simulate the specification. In addition, the graphical tree structure of the notation is
intended to enhance the comprehensibility of the specification [25].

The early validation and verification of BT-RBAC is possible by extending the
operational and translational semantics of the BT to include BT set notation. The
specified policy can be validated by generating all the traces of the finite system
(subject to hardware constraints) and check the safety properties on the state of the
system at all intermediate steps. A potentially infinite (reactive) system can be made
finite by limiting the number of entities participating in a system and restricting the
number of interactions with the environment. The BT-RBAC policy can also be
verified using the tools in SAL environment by specifying security requirements as
LTL formulas.

6 Future Work

The BT-RBAC model presented here is envisioned to have application-independent
templates necessary to specify most common RBAC policies. The model will be
extended to include identification and authentication templates for better integration
of security requirements. The possibility of automatically generating various views
like role permissions, and access control lists from the specification will also be
explored. We will also investigate the performance related issues in simulating and
model checking of the integrated BT-Models. To meet our research objectives of
developing a systematic approach for designing dependable systems the use of BT

design process for integrating safety and security requirements are also being
investigated.

Acknowledgments. This work is partially funded by Australian Research Council
(ARC) under the ARC Centres of Excellence program. We would also like to
acknowledge the contribution of our colleagues at the Building Dependability into
Complex Computer-Based Systems research sub-program established under the ARC
Centre for Complex Systems.

References

1. Ferraiolo, D.F., J. Cugini, and D.R. Kuhn, Role-Based Access Control (RBAC):
Features and Motivations. Proceedings, 11th Annual Computer Security Applications
Conference, 1995: p. 241-48.

2. Ferraiolo, D.F., et al., Proposed NIST Standard for Role-Based Access Control. ACM
Transactions on Information and System Security, 2001. 4(3): p. 224-274.

3. Ferrari, E., Guest editorial: Special issue on access control models and technologies.
ACM Trans. Inf. Syst. Secur., 2005. 8(4): p. 349-350.

4. Sandhu, R.S., et al., Role-Based Access Control Models. IEEE Computer, 1996.
29(2): p. 38-47.

5. Jaeger, T. and J.E. Tidswell, Practical Safety in Flexible Access Control Models.
ACM Transactions on Information and System Security, 2001. 4(2): p. 158-190.

6. Drouineaud, M., M. Bortin, and P.S. Torrini, K. A first step towards formal
verification of security policy properties for RBAC. in Proceedings Fourth
International Conference on Quality Software, 2004. QSIC 2004. 2004.

7. Hughes, G. and T. Bultan, Automated Verification of Access Control Policies. 2004,
Computer Science Department, University of California, Santa Barbara, CA 93106,
USA.

8. Ahmed, T. and A.R. Tripathi, Static verification of security requirements in role
based CSCW systems. Proceedings of the eighth ACM symposium on Access control
models and technologies, 2003: p. 196-203.

9. Dromey, R.G. From Requirements to Design: Formalizing the Key Steps. in
Proceeding, First International Conference on IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2003). 2003. Brisbane: IEEE
Computer Society.

10. Dromey, R.G., Climbing over the 'No silver bullet' brick wall. IEEE Software, 2006.
11. Grunske, L., et al. An Automated Failure Mode and Effect Analysis based on High-

Level Design Specification with Behavior Trees. in Fifth International Conference on
Integrated Formal Methods (IFM2005). 2005. Eindhoven, The Netherlands.

12. Harrison, M.A., W.L. Ruzzo, and J.D. Ullman, Protection in operating systems.
Commun. ACM, 1976. 19(8): p. 461-471.

13. Zafar, S. and R.G. Dromey. Managing Complexity in Modelling Embedded Systems.
in Systems Engineering / Test and Evaluation Conference SETE2005. 2005. Brisbane,
Australia.

14. Dromey, R.G. and D. Powell, Early requirements defects detection. TickIT Journal,
2005. 4Q05: p. 3-13.

15. Wen, L. and R.G. Dromey, From Requirement Change to Design Change.
Proceedings, IEEE International Conference on Software Engineering and Formal
Methods, 2004: p. 104-113.

16. Zafar, S. and R.G. Dromey. Integrating Safety and Security Requirements into
Design of an Embedded System. in Asia-Pacific Software Engineering Conference.
2005. Taipei, Taiwan: IEEE Computer Society.

17. Sithirasenan, E., S. Zafar, and V. Muthukkumarasamy. Formal Verification of the
IEEE 802.11i WLAN Security Protocol. in Australian Software Engineering
Conference (ASWEC '06). 2006. Sydney, Australia.

18. Shankar, N. Combining Theorem Proving and Model Checking through Symbolic
Analysis. in CONCUR'00: Concurrency Theory. 2000: Springer-Verlag.

19. Grunske, L., K. Winter, and N. Yatapanage, Defining and Parsing the Abstract
Syntax of Visual Languages with Advanced Graph Grammars - A Case Study Based
on Behavior Trees. To Appear, 2006.

20. Clark, D.D. and D.R. Wilson, A Comparison of Commercial and Military Computer
Security Policies. IEEE Symposium on Security and Privacy, 1987: p. 184-194.

21. Simon, R.T. and M.E. Zurko, Separation of Duty in Role-based Environments.
Proceedings: 10th Computer Security Foundations Workshop, 1997: p. 183-194.

22. Smith, G. and L. Wildman. Model checking Z specifications using SAL. in 4th
International Conference of B and Z Users (ZB 2005). 2005. Guildford, UK: Lecture
Notes in Computer Science, Springer-Verlag.

23. Vimercati, S.D.C.d., S. Paraboschi, and P. Samarati, Access control: principles and
solutions. Softw. Pract. Exper., 2003. 33(5): p. 397-421.

24. Bhatti, R., et al., X-GTRBAC Admin: A Decentralized Administration Model for
Enterprise-Wide Access Control. ACM Transactions on Information and System
Security, 2005. 8(4): p. 388-423.

25. Dromey, R.G., Genetic Design: Amplifying Our Ability to Deal With Requirements
Complexity. Lecture Notes in Computer Science, 2005. 3466: p. 95-108.

26. Devanbu, P.T. and S.G. Stubblebine. Software Engineering for Security: A Roadmap.
in International Conference on Software Engineering (ICSE 2000) - Future of SE
Track. 2000.

27. Hall, A. Software Verification and Software Engineering. in (Keynote Address)
Verified Software: Theories, Tools, Experiments (VSTTE'05). 2005. Zürich.

