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Abstract. Role-based access control (RBAC) has been acknowledged as an 
effective mechanism for specifying and enforcing access control policies. 
However, it is not always clear how an RBAC policy can be systematically 
integrated into the system design so as to preserve the desired security 
requirements. In this paper we propose a representation and a process that 
supports systematic integration of an access control policy into the system 
design. The integrated design process uses a single notation, called Behavior 
Trees (BT), for specifying both the RBAC policy and the system design. 
Furthermore, the same notation is used for formal verification of both the 
RBAC policy and the system design. We also present strategies and challenges 
for automated translation of the extended BT notation required for specifying 
an RBAC policy. 

Keywords: Access Control, Security Policy, RBAC Policy, Verification, 
Validation, Model Checking. 

1   Introduction 

Role-based access control (RBAC) is a mechanism for specifying and enforcing 
organizational access control policies [1]. Because of their flexibility and ease of use 
RBAC models are now viewed as a preferred “generalized approach to access 
control” [2]. RBAC models have been used in diverse applications ranging from web-
based applications to the health-care industry. The renewed focus on RBAC has been 
attributed to the fact that it addresses many needs of the increasing web-based 
applications where availability and protection of data are major concerns [3]. In 
RBAC these concerns are addressed easily as most of the data availability and 
protection policies are generally aligned with the roles that individuals play within an 
organization [4]. 

A number of RBAC policy models and specification languages have been 
proposed in the literature [3]. The need for visualization of access control policies by 



using graphical notation has been highlighted in [5]. More recently, formal methods 
have been used for verification of RBAC specification. In [6], RBAC constraints have 
been expressed using LTL formalism. Others have proposed use of Alloy [7] and 
SPIN [8] for formulating RBAC security policies for formal verification. However, it 
is not always clear how the access control models integrate with application 
specifications. Also, it is often difficult to get a complete integrated view of the access 
control policy. 

In comparison, BT notation offers a single notation, with formal semantics, for 
specification of security policies and the specification of system design [9]. This not 
only facilitates an integrated and incremental development process but also reduces 
the accidental complexity of the overall design process [10]. The formal semantics of 
BT notation allows for automated verification of the BT specification model [11]. The 
integrated view of the system design generated by the BT specification also facilitates 
combining and resolving conflicts in security policies. To specify RBAC policies, 
where the roles a user may play are determined by its membership in the access 
control sets, we have extended the BT notation to include sets and set operators. The 
syntax has also been incorporated into the existing operational semantics and the 
translation semantics for automated translation of BT to SAL specification. The SAL 
specification can then be used to verify the safety properties [12] of the access control 
model. 

In related unpublished work, an operational semantics for the BT notation has been 
developed and implemented as a simulation tool. The simulator can be used for 
validation, and can also be used to check simple safety properties of the model. 
During the verification process, the simulator can be used for observing any counter 
examples generated by the model checker. 

The rest of the paper is organized as follows. Section 2 gives a brief background on 
RBAC and BT notation. Section 3, introduces the proposed BT-based RBAC model 
which we refer to as BT-RBAC. In section 4, we illustrate the strategies we plan to 
use for formal verification of BT-RBAC specification. In section 5, we argue the need 
and suitability of the BT based RBAC model and section 6 provides a summary of 
future work. 

2   Background 

2.1   Role-Based Access Control 

The central concept behind RBAC is that access control permissions are assigned to 
roles and users are then assigned to suitable roles [4]. As roles have more permanence 
in an organizational context than users, assigning permissions to roles greatly 
facilitates access control management. Individual users can be assigned and de-
assigned from roles without having to manage access control permissions for each 
individual separately.  

The NIST RBAC model [2] defines a core RBAC model as a collection of 
elements, element sets, and relations to specify a role-based access control system. 



The basic data elements in the core RBAC are users, roles, permissions, operations, 
and objects. A user can be a human being, a machine or an intelligent autonomous 
agent. A role corresponds to the job function in the context of an organization which 
has authority and responsibility associated with it. Permission is the authority to 
perform an operation on protected objects within a system. An operation corresponds 
to application-specific user function. An object in an RBAC model may contain or 
receive some information. The model also defines a session during which a user can 
activate some of the roles that have been assigned to him or her. In addition, the 
model defines a hierarchical RBAC which facilitates role management by allowing 
inheritance of permissions and users among roles. The constrained RBAC specifies 
separation of duty constraints to avoid any conflict of interest in a policy. 

2.2   The Behavior Tree Notation 

The BT-based design process involves translating individual requirements into the 
BT notation, referred to as Requirements Behavior Tree (RBT), one at a time [9]. The 
RBT for each of the requirements is then composed together into an Integrated 
Behavior Tree (IBT) to provide an integrated view of the system requirements. The 
IBT is systematically refined into a Design Behavior Tree (DBT) by taking a number 
of design decisions. The impact of these design decision is readily visualized as the 
changes are applied to an integrated view of the requirements, thereby, potentially 
reducing the complexity of the design process [13]. It is also possible to derive the 
system architecture from the DBT which is presented in the form of Component 
Interaction Network (CIN) diagram. The behavior of individual components may also 
be projected out using Component Behavior Tree (CBT).  

Tag Component
[State] Tag Component

?? Event ??

Tag Component
? Condition ? Tag Component

[Attribute := Value]

1) State realization 2) Event

3) Decision 4) Attribute assignment

Tag Component A
[State A]

5) Casual behavior

Tag Component B
[State A] Tag Component B

[State B]

Tag Component A
[State A]

7) Atomic action w ith causal
     dependency

Tag Component B
[State B]

Tag Component A
[State A]

6) Atomic action

Fig. 1. A summary of BT syntax  

A Behavior Tree node is used to specify a component and its state. It is also used to 
express conditions, events, attribute assignment and data-in and data-out behaviours 
of a component. Two BT nodes joined together with an arrowed line represent causal 
behaviour and the direction of flow of control. Two nodes joined together with a line 
without an arrow specify an atomic action with causal dependency. Atomic actions 
without causal dependencies are specified as BT nodes boxed together without a 
joining line between them. A summary of BT syntax is presented in Fig. 1. 

The Behavior Tree framework has been evaluated as a means of early defect 
detection in requirements [14]. It has also been proposed as an effective means for 
managing requirements change in the latter stages of the design process [15]. The 
suitability of the notation has been evaluated in the design and development of 
embedded systems [13] and safety critical systems [11]. The integration of security 



requirements into design of a safety and security critical system has been illustrated in 
[16]. In [17] IEEE 802.11i WLAN security protocol has been modelled and verified 
using the BT notation. Our current research involves evaluating application of BTs in 
the domain of security engineering. 

2.3   Modelling Role-Based Access Control using BT 

To specify RBAC policies, the original BT syntax has been extended to include set 
and set operations to model role-based access control requirements. A set can be 
specified as a component itself or can be an attribute of a component. Basic set 
operations like union, compliment, and intersection are allowed, as well as 
membership and cardinality. In addition, two other constructs have been introduced: 
one for selection of all elements used in parallel execution of a BT segment, and 
another one for selection of one element (chosen non-deterministically) from a given 
set (Table 1). The static analysis of the RBAC policy is possible by automatically 
translating DBT into the SAL specification language. SAL is an integrated 
environment of static analysis tools that include tools for model checking and theorem 
proving [18]. A formal specification of the translation rules for a core of the BT 
notation into the SAL specification is provided in [19]. 

Table 1.  BT set notation and its semantics.  

 Component-State  Semantics  Component-State  Semantics 

C
[S := {}]

 

Set S realizes a state 
where S becomes empty. C

? x : S ?
 

Is x a member of set S? 

C
| |  x : S

BT(x)

 

Parallel execution of 
Behavior Tree BT for every 
element of S. 

C
[] x : S

BT(x)

 

Execution of Behavior 
Tree BT for one element 
x in set S. x is non-
deterministically 
selected from set S. 

C
? |S|  < n ?

 

Set cardinality: Is 
cardinality of set S less 
than n? 

C
[ S := S + A ]

 

Union of set S with set 
A. 

C
[ S := S + {x} ]

 

Adding an element x to set 
S. C

[ S := S - A ]
 

Set difference. Set S 
minus set A. 

C
[ S := S - {x} ]

 

Subtraction of element x 
from set S. C

[ S := S >< A ]
 

Set intersection: 
Intersection of set S and 
set A. 

3   A Component-state Based RBAC Model 

In a BT-based RBAC specification, roles are represented as sets. A session is 
represented as a component and may contain active roles as attributes. Objects are 
represented as components and allowable operations on them are represented as its 
states. All user actions are modelled as input events. An operation on object is an 



input event, which causes the object component’s state to be changed (Fig. 2). We 
have used a simple case study as a running example to illustrate how the RBAC 
policy can be specified using BT notation. The case study is a simplified version of an 
online-classroom system that requires a decentralized enforcement of RBAC policy in 
a collaborative environment [8]. The security requirements that must be preserved in 
the online-classroom system are discussed in section 4. 

3.1   Role Specification 

A role is specified as a set in BT-RBAC. The authorized members for a role are added 
or removed using the set operations. The membership of a user in a specified role is 
checked by using the set membership function in BT. The count of members in a role 
is the cardinality of the set representing the role. In Fig. 2; (a) a user Admin first 
creates a role R-Student, (b) a user convener assigns a user S1 to the role R-Student, 
(c) a user convener removes the user S1 from the role R-Student. 

 

Admin
?? Create ??

R-Student
[{}]

Convener#
?? Assign ??

R-Student
[R-Student + {S1}]

Convener#
?? De-assign ??

R-Student
[R-Student - {S1}]

a) b) c)

What Role (R-Students) Who User(S1)

What(to) Role(R-Student)

Who User(S1)

What(from) Role(R-Student)

 
Fig. 2. a) A user Admin creates a role R-Student. b) A user Convener# assigns a member S1 to 
role R-Student. c) A user Convener# deassigns user S1 from role R-Student. 

3.2   Role Membership Constraints 

A role-cardinality constraint in an RBAC policy specifies the maximum number of 
members allowed in a particular role [1]. In BT-RBAC model, the role membership 
constraints are enforced by specifying them at the time of assigning members to a 
role. For instance, a role-cardinality constraint specifies the maximum number of 
members allowed in a role. Fig. 3(a) illustrates how the role-cardinality constraint 
may be enforced. A member A1 can only be assigned to R-Assistant role if the 
cardinality of the role is less than 2. It may be noted that BT nodes are atomically 
composed to avoid the possibility of set cardinality being changed by any interleaving 
threads. 

3.3   Separation of Duty 

The concept of separation of duty has been prevalent in many commercial systems as 
one of the mechanisms for prevention of fraud and controlling an error in a business 
process [20]. The basic concept revolves around the idea that a business operation is 



divided into many sub-tasks and then ensuring that each of these tasks is performed 
by different persons, thereby, reducing the risk of fraud and error in execution of a 
critical business operation. The concept of separation of duty may be divided into two 
broad categories; static separation of duty and dynamic separation of duty. 

 

R-Assistant
? |R-Assistant|< 2 ?

Convener#
?? Assign ??

R-Assistant
[R-Assistant + {A1}]

R-Student
? NOT(M1:R-Student) ?

Convener#
?? Assign ??

R-Instructor
[R-Instructor + {M1}]

Course#
? M1 : R-Assistant ?

Exam#
? NOT (M1 :  R-Examiner) ?

Instructor#
?? Assign Grader ??

Exam#
[R-Grader:=R-Grader + {M1}]

Exam#
[] Examiner# : R-Examiner

Exam#
? NOT (Paper = Created]) ?

Examiner#
?? Create ??

Exam#
[Paper := Created]

a) b) c) d)

Who User(A1)

What(to) Role(R-Assistant)

Who User(M1)

What(to) Role(R-Instructor)

Who User(M1)

What(to) Role(R-Grader)

What Object(Paper)

What(for) Session(Exam#)

Fig. 3.  Examples of (a) role membership constraint; (b) static separation of duty; (c) dynamic 
separation of duty; and (d) object-based separation of duty. 

In static separation of duty (SSD) policy two roles are made mutually exclusive by 
disallowing membership of one person in both the roles [21]. The policy avoids 
conflict of interest by disallowing one user to be a member of a second conflicting 
role. In Fig. 3(b), a student may not be allowed to join the role of an instructor as a 
part of the online-classroom security policy. In dynamic separation of duty (DSD) 
policy, a user is allowed to perform conflicting tasks that would not be allowed under 
a SSD policy as long as the policy minimizes the chances of fraud and error [21]. A 
typical DSD policy requires that two restricted roles may have common members but 
they may not join both the roles at the same time [21]. For instance, any member from 
R-Assistant can join either R-Examiner or R-Grader roles but one member cannot join 
both the roles at the same time (Fig. 3.c).  

In another variation of the DSD, object-based separation of duty (OBSD), users are 
not allowed to act upon a single object twice [21]. In figure 3(d), the members of R-
Examiner role are not allowed to create an exam paper if one has already been 
created. The integrated policy for the online-classroom is presented in Fig. 4. The 
figure is only intended to give the reader a feel of the size and structure of the 
integrated policy specification. The other variations of DSD which have been 
modeled in the final specification include operational separation of duty (OSD), and 
order-dependent/independent history-based separation of duty (HSD) [21]. 

4   Validation and Verification of BT-RBAC Model 

The automated translation of BT into SAL specification language makes it possible to 
model check the design Behavior Tree. A prototype BT simulator has also been 
developed to support early validation of the BT specification.  The strategies and 
challenges in developing extensions to the existing tools to support validation and 
verification of BT-RBAC are discussed in this section. 



(f)(e)

(d)
(c)

(b)

On-line Classroom System
Integrated Behavior Tree

1+ Course
| |  Course# : Course

1+ Course#
[] Convener#: R-Convener

1 Convener#
?? Initiated Course ??

1 Course#
[Initiated]

3+ Course#
[Assign_roles := T]

3 Students
[] S# : Students

3 Convener#
[] ?? Assign Student ?? []

3
Course#

[R-Student := R-Student +
{S#}]

3+ Course# ̂
[Assign_roles := T]

3.1 R-Staff
[] I# : R-Staff

3 Convener#
[] ?? Assign Instructor ?? []

3
Course#

[R-Instructor :=
R-Instructor + {I#}]

3.1 Course#
? R-Instructor = {} ?

3.2 Convener#
[] ?? Assign Assistant ?? []

3
Course#

[R-Assistant :=
R-Assistant + {A#}]

3.2.3 Course#
? NOT(R-Instructor={}) ?

3.2 R-Staff
[]  A# : R-Staff

3.2.1 Course#
? | R-Assistant | < 2 ?

3.2.2 Students
? NOT (A# : Students) ?

4+ Course#
[Initiate_exams := T]

4 Course#
[] Instructor#: R-Instructor

4+ Course#
| |  Exam# : Exams

4- Exam#
? NOT (Initiated) ?

4 Instructor#
?? Initiate Exam ??

4 Exam#
[Initiated]

4+ Exam#
[Assign_roles := T]

4.1
4.2

Course# | XOR
[] M# : R-Instructor

4.1 Instructor#
[] ?? Admit Grader ?? []

4.1
Exam#

[R-Grader := R-Grader +
{M#}]

4.1
4.2

Course# | XOR
[] M# : R-Assistant

4+ Exam# ^
[Assign_roles := T]

4.2 Instructor#
[] ?? Admit Examiner?? []

4.2
Exam#

[R-Examiner :=
R-Examiner +  {M#}]

4+ Exam# ^
[Assign_roles := T]

5+ Exam#
[Create_paper:= T]

5.1 Exam#
? NOT(Paper = Created) ?

5.2 Exam#
[] Examiner# : R-Examiner

5.2 Examiner#
?? Create Exam Paper??

5.2 Exam#
[Paper:=Created]

6+ Exam#
[Update_grade_sheet := T]

6 Exam#
| | Grader# : R-Grader

6 Grader#
?? Update Grade Sheet ??

6 Course#
[Grade_Sheet := Updated]

3+ Course# ^
[Assign_roles := T]

3+ Course# ^
[Assign_roles := T]

7.7
Session#

??? AnswerBook  =
Submitted ???

7.7 Exam#
[] Grader# : R-Grader

7.7 Grader#
?? Grade Answer Book ??

7.7 Session#
[AnswerBook := Graded]

7.7 Session#
[Terminated]

7.7+ Exam#
| |  Session# : Session

7.7+
Exam#

[Grade_answer_books :=
T]

7.7 Session#
? NOT (Terminated) ?

6 Grader# ^
?? Update Grade Sheet ??

7+ Exam#
[Enroll_students := T]

7 Course#
| | Student# : R-Student

7.2
Exam#

? NOT (Student# :
Examinees) ?

7 Student#
?? Join R-Examinee ??

7
Exam#

[R-Examinee :=
R-Examinee +  {Student#}]

7 Exam#
[] Session# : Session

7.1 Session#
[Created]

7.2 Session#
[Student := Student#]

7.2
Session#

? NOT (Initiated &
Terminated) ?

7.1+ Exam#
[Initiate_session := T]

7.1 Exam#
| |  Examinee : R-Examinee

7.1 Exam &
? Session# : Session ?

7.3 Session# &
? Student = Examinee ?

7.1 Examinee#
?? Initiate Session ??

7.3 Session#
[Paper := Exam# [Paper]]

7.1 Session#
[Initiated]

7.4 Session#
[AnswerBook :=Created]

7.6 Examinee#
[Take Exam]

7.6
Session#

? NOT (AnswerBook =
Submitted) ?

7.3 Session#
[Paper := Shared]

7.6
Examinee#

[] ?? Write to Answer Book
??  []

7.6 Session#
[AnswerBook  := Written]

7.6 Examinee# ^
[Take Exam]

7.6 Examinee#
[] ?? Read Paper?? []

7.6 Session#
[Paper := Read]

7.6 Examinee# ^
[Take Exam]

7.7
Examinee#

[] ?? Submit Answer Book
?? []

7.7 Session#
[AnswerBook  := Submitted]

1- Course
[Initialized]

4- Exam#
[Initialized]

6- Course#
[Grade Sheet := Initialized]

5.1- Exam#
[Paper := Initialized]

(a)

4.1+ Exam#
? NOT(M# : R-Examiner)? 4.2+ Exam#

? NOT(M# : R-Grader) ?

 
Fig. 4. Integrated RBAC Policy (a) Role membership assignment: A member from R-Convener 
role assigns members to R-Student role. (b) Role membership constraints and static separation 
of duty: A member from R-Staff role can only be assigned to R-Assistant role if he/she is not a 
member of R-Student, if the R-Assistant role cardinality is less than two and if R-Instructor role 
has been assigned a role. (c) Dynamic separation of duty: A member from R-Assistant is 
assigned to either R-Examiner or R-Grader role but can not be assigned to both the roles at the 
same time. (d) Object-based separation of duty: The members of R-Examiner role are not 
permitted to create an exam paper twice. (e) Order-independent history-based separation of 
duty: An examinee can read from the exam paper and write to an answer book before it is 
submitted. (f) Order-dependant history-based separation of duty: A member from R-Grader 
role can only grade the answer book if it has been submitted. 

4.1   BT to SAL Translation 

To include the new features of the BT notation for manipulating sets, we have had to 
extend the given translation rules [19]. For the most common set theoretic operations 
(like adding and removing a member from a set, union and intersection of sets, 
membership and empty set queries) we follow the suggestions in [22] where a 
translation from the Z set-theoretical specification language into the SAL language is 
introduced. For the encoding we can utilize a predefined set context of the SAL 
package. This context defines a type SET and all the necessary set operators. 

The set context also provides an operator for the cardinality of a set. However, the 
encoding of this operator in SAL is known to be computationally expensive. Where 
possible the use of the cardinality operator should be avoided or circumvented, e.g. by 
auxiliary counters.  

As a challenge we encounter two new constructs that diverge from basic set-
theoretic operators: 



a) For every member c, written (||c:S;T(c)), execute subtree T(c). 
b) Non-deterministically choose a member c, written ([]c:S;T(c)), execute subtree 

T(c). 
To translate these two constructs we unfold the tree to its maximal size, based on 

predetermined maximal sizes for sets S. For instance, if Colour is a type defined as 
{red, blue, yellow}, and S is declared as a set of Colour, then both of the constructs 
are unfolded into three branches, corresponding to each element of Colour. Because S 
may change dynamically during run time, i.e., contain some subset of the three 
colours, we only enable the threads which correspond to values that are currently in 
the set. The others remain disabled. In case of (a) above, all activated threads run 
concurrently, whereas in case of (b) only one activated thread is chosen and all others 
become disabled. 

For this purpose the user needs to input the maximal size of the sets that are to be 
unfolded. Moreover, due to the fact the model checking approach used here works on 
finite systems only, all sets have to be finite. In most cases, however, it is sufficient to 
use a model with only small sets in order to show violations of safety and security 
requirements. 

4.2   Verification of BT-RBAC Properties using Model-Checker 

The safety property of an access control configuration refers to inaccessibility of 
protected objects to unauthorized users [12]. Since the safety property is said to be 
undecidable, the access control models often use constraints on access control to 
facilitate safety analysis of the model [5]. As discussed earlier, in the BT-RBAC 
model constraint expressions are placed on the access control to facilitate analysis of 
the model.  In our running example we follow the approach discussed in [8] to verify 
that: 1) a participant of the examinee role cannot access the content of the question 
paper before the start of his/her own exam, and 2) a participant of the examinee role 
can only modify his/her answer book before end of his/her exam-session. 

The first property embodies confidentiality or information flow policy. A 
confidentiality policy aims to protect unauthorized disclosure of information. In the 
example, the constraints placed on the access of the exam paper restrict its access 
before the start of student’s own exam session. The verification of the property 
involves the verification of these constraints on the flow of information. The 
following LTL formula (1) is used to verify the first property. The actual SAL syntax 
has been slightly changed in the formula to improve readability. The U operator in the 
formula is read as “p until q”, i.e. p holds until a state is reached where q holds. 

(FORALL(s:SessionType): 
        (contains?(S,s)) AND NOT(s.Paper=read) 
           U  (s.Status=initiated OR NOT(contains?(S,s))); 

(1) 

We benefit from the SAL’s advanced input language that allows us to use record 
types and set operators. The record types used in Formula 1 have been defined as 
follows. 
StatusType : TYPE={initiated, terminated}; 
   PaperType : TYPE={read,unread}; 



   AnswerBookType : TYPE={not created, created, 
submitted, graded}; 
SessionType : TYPE = [# Status : StatusType,  
                        Paper :  PaperType, 
                        AnswerBook : AnswerBookType #]; 
Session : TYPE=set{SessionType}!Set; 
% The variable S for being a set of sessions: 
S : SessionType   

The second property relates to the integrity policy of the RBAC model. To verify 
the integrity of an RBAC model we verify that access rights are not leaked during role 
assignments [8]. In this case, we verify that the ability to the answer book is not 
leaked after the session has been terminated. The following LTL formula (2) is used 
to verify the second property. The G operator in the formula is read as “always p”, i.e. 
p is always true. 

(FORALL(s:SessionType): 
          G(s.Status=terminated AND contains?(S,s) 
                             =>  s.AnswerBook=submitted); 

(2) 

5   Discussion 

In this paper we have presented the BT-RBAC model as a proof of concept for a 
completed model. The key potential benefits of the model- are discussed here. 

The BT-based RBAC model is flexible and allows better integration with systems 
requirements. It can potentially be used to specify fine-grained-and-coarse-grained 
specifications [23] that allows for specific access control rules for users and objects in 
an RBAC configuration. This is possible since the Behavior Tree notation supports 
modelling of complex and concurrent system behaviour. In our example, we were 
able to model a decentralized [24] computer supported cooperative work system with 
relative ease. A completed BT-RBAC template would support repeatability and 
accuracy of specification. 

Another requirement of an access control model is ensuring the reliability of the 
input [23]. In the BT specification this is ensured by putting the necessary checks with 
every input event as shown in our running example. These checks may include 
authentication of users along with conditional authorization [23] like time constraints 
on roles. The principle of least privilege [23] is supported by constraining user 
behaviour to the assigned roles and by performing necessary checks before every user 
action. To this end various separation of duty [23] policies are often used. The BT 
notation is flexible enough to model most of these policies. Policy combination and 
conflict resolution [23] is inherently supported in BT specification. An Integrated 
Behavior Tree assists in resolving conflicts in requirements and helps identify any 
incompleteness in them [25]. The integrated view of an access control policy can also 
play the same role in identification of conflicts and incompleteness in the policy. 
Policy combination is achieved in a manner similar to the integration of requirements 
behaviour trees into a single IBT [25]. 



Integration of security requirements with systems engineering is essential for 
developing security critical applications [26]. The security requirements of a system 
must be integrated with the rest of the system requirements to achieve this objective. 
The integration requirements must then be validated and verified for correctness and 
completeness. The isolated verification and validation of security policies may lead to 
false sense of faith in the security policy. As illustrated in [16], the BT-based design 
process offers a platform for integration of security requirements into the design of a 
system. The incremental proof of a system is possible by first verifying the 
correctness of the policy and then verifying the integrated system specification that 
incorporates the policy.  

The BT-based design process supports accurate formalization in the early 
requirements engineering phase by providing a systematic translation technique that 
translates informal requirements into BT notation. The BT editing tool helps traverse 
through each individual requirement during the translation process. The components 
and their corresponding, states, events, or conditions are identified using the tool. Any 
ambiguities, aliases and incompleteness is resolved and documented for validation. 
The tool automatically maintains traceability by marking each BT node with the 
corresponding requirement number. The requirements specification is then refined 
into a design specification in the form of a DBT. The key advantage of the approach 
is that the requirements specification notation is same as the design notation [27]. The 
use of single language through out the development process is aimed at facilitating the 
integrated design process and reducing the accidental complexity of the process [10]. 
The formal semantics of the BT notation makes it possible to formally verify and 
simulate the specification. In addition, the graphical tree structure of the notation is 
intended to enhance the comprehensibility of the specification [25]. 

The early validation and verification of BT-RBAC is possible by extending the 
operational and translational semantics of the BT to include BT set notation. The 
specified policy can be validated by generating all the traces of the finite system 
(subject to hardware constraints) and check the safety properties on the state of the 
system at all intermediate steps. A potentially infinite (reactive) system can be made 
finite by limiting the number of entities participating in a system and restricting the 
number of interactions with the environment. The BT-RBAC policy can also be 
verified using the tools in SAL environment by specifying security requirements as 
LTL formulas. 

6   Future Work 

The BT-RBAC model presented here is envisioned to have application-independent 
templates necessary to specify most common RBAC policies. The model will be 
extended to include identification and authentication templates for better integration 
of security requirements. The possibility of automatically generating various views 
like role permissions, and access control lists from the specification will also be 
explored. We will also investigate the performance related issues in simulating and 
model checking of the integrated BT-Models. To meet our research objectives of 
developing a systematic approach for designing dependable systems the use of BT 



design process for integrating safety and security requirements are also being 
investigated. 
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