FAIRCHILD

SEMICONDUCTOR

CD4021BC 8-Stage Static Shift Register

General Description

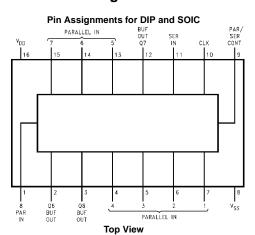
The CD4021BC is an 8-stage parallel input/serial output shift register. A parallel/serial control input enables individual JAM inputs to each of 8 stages. Q outputs are available from the sixth, seventh, and eighth stages. All outputs have equal source and sink current capabilities and conform to standard "B" series output drive.

When the parallel/serial control input is in the logical "0" state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/ serial control is in the logical "1" state, data is jammed into each stage of the register asynchronously with the clock.

All inputs are protected against static discharge with diodes to $\rm V_{DD}$ and $\rm V_{SS}.$

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:


Fan out of 2 driving 74L or 1 driving 74LS

- 5V–10V–15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 µA at 15V over full temperature range

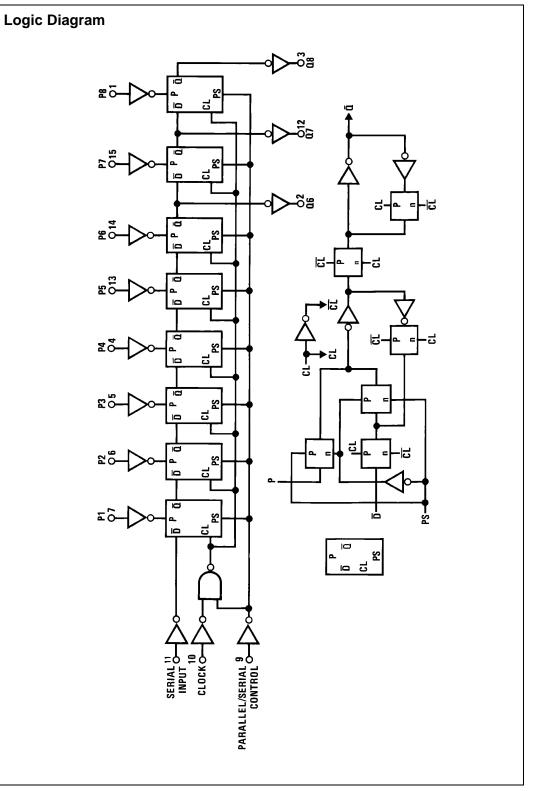
Ordering Code:

Order Number	Order Code	Package Description				
CD4021BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body				
CD4021BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
Devices also available in Tape and Real. Specify by appending the suffix letter "X" to the ordering code						

Connection Diagram

Truth Table

C∟ (Note 1)	Serial Input	Parallel/ Serial Control	PI 1	Pl n	Q1 (Internal)	Q _n (Note 2)
Х	Х	1	0	0	0	0
Х	х	1	0	1	0	1
Х	Х	1	1	0	1	0
х	Х	1	1	1	1	1
~	0	0	х	Х	0	Q _{n-1}
~	1	0	х	Х	1	Q _{n-1} Q _{n-1}
~	Х	0	Х	Х	Q1	Q _n


X = Don't care case Note 1: Level change

Note 2: No change

© 1999 Fairchild Semiconductor Corporation DS005954.prf

www.fairchildsemi.com

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 3)

Recommended Operating Conditions (Note 4)

(Note 4)	-
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	–0.5V to V_{DD} +0.5V
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0 to V _{DD}
Operating Temperature Range (T _A)	
CD4021BCN	-40°C to +85°C

CD4021BC

Note 3: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Deprating Tempera-ture Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 4: V_{SS} = 0V unless otherwise specified.

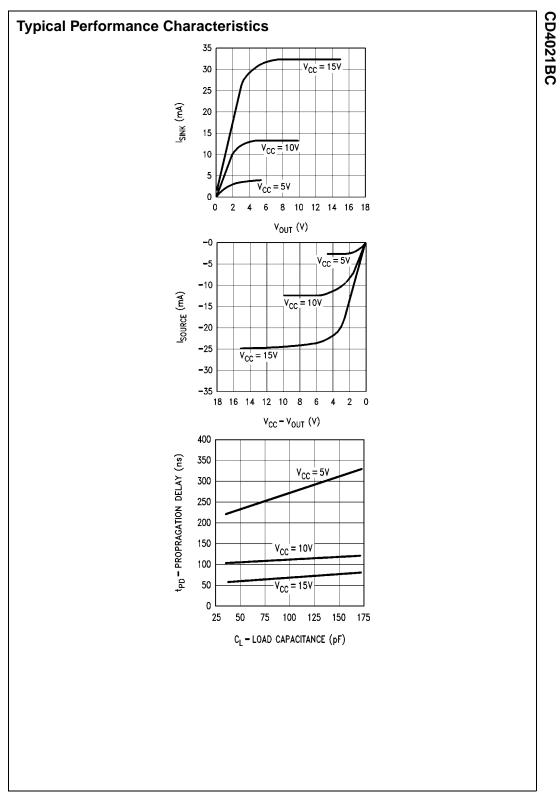
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	-4	0°C		+25°C		+85°C		Units
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.1	20		150	μΑ
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		40		0.2	40		300	μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		80		0.3	80		600	μA
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1~\mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \ \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V$, $V_O = 1.0V$ or $9.0V$		3.0		4	3.0		3.0	V
		V_{DD} = 15V, V_{O} = 1.5V or 13.5V		4.0		6	4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V$, $V_O = 1.0V$ or $9.0V$	7.0		7.0	6		7.0		V
		V_{DD} = 15V, V_{O} = 1.5V or 13.5V	11.0		11.0	9		11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 5)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.2		0.90		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 5)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.2		-0.90		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μA

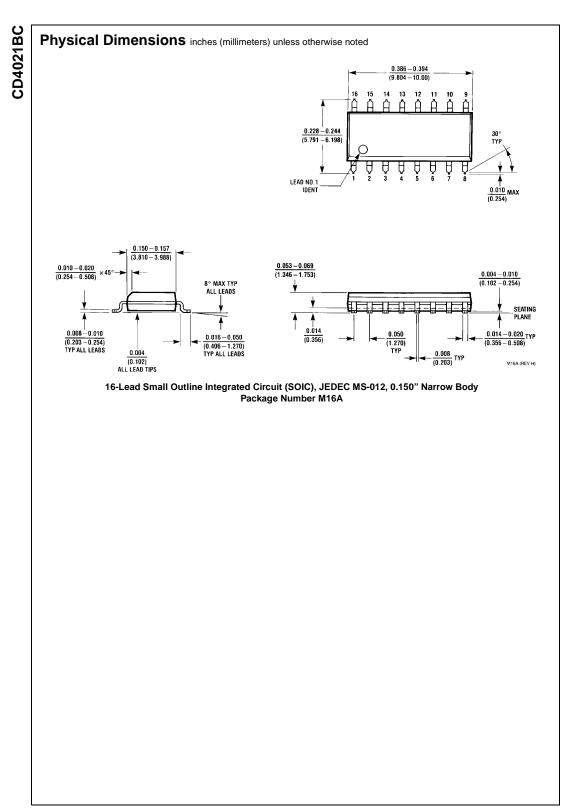
Note 5: I_{OH} and I_{OL} are tested one output at a time.

www.fairchildsemi.com

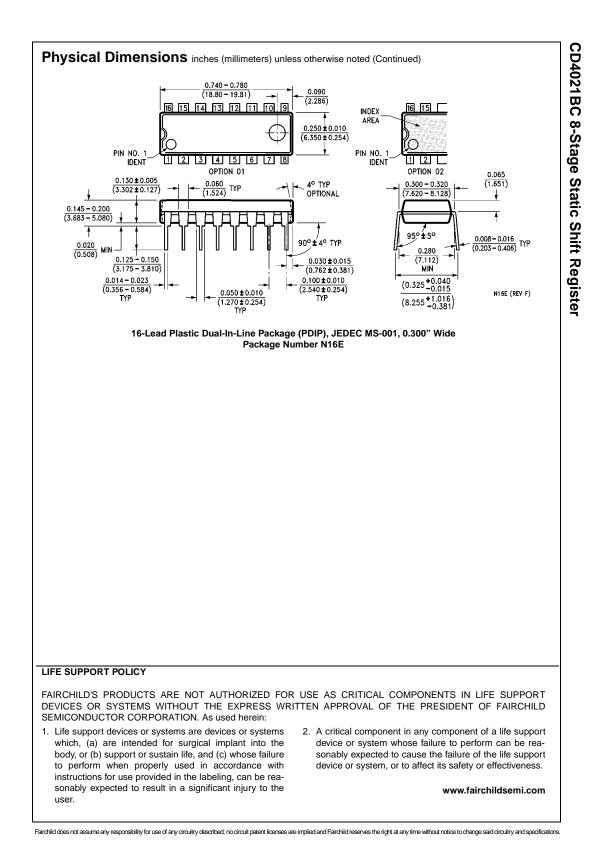
C
ш
2
0
4
C


AC Electrical Characteristics (Note 6) $T_A = 25^{\circ}C$, input t_r , $t_f = 20$ ns, $C_I = 50$ pF, $R_I = 200$ k Ω

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH} , t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		240	350	ns
		$V_{DD} = 10V$		100	175	ns
		$V_{DD} = 15V$		70	140	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2.5	3.5		MHz
	Input Frequency	$V_{DD} = 10V$	5	10		MHz
		$V_{DD} = 15V$	8	16		MHz
t _W	Minimum Clock	$V_{DD} = 5V$		100	200	ns
	Pulse Width	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _r CL, t _f CL	Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time (Note 6)	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	μs
t _s	Minimum Set-Up Time					
	Serial Input	$V_{DD} = 5V$		60	120	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		40	80	ns
	(Ref. to CL)	$V_{DD} = 15V$		30	60	ns
	Parallel Inputs	$V_{DD} = 5V$		25	50	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		15	30	ns
	(Ref. to P/S)	$V_{DD} = 15V$		10	20	ns
t _H	Minimum Hold Time	$V_{DD} = 5V$			0	ns
	Serial In, Parallel In, $t_s \ge 400 \text{ ns}$	$V_{DD} = 10V$			10	ns
	Parallel/Serial Control	$V_{DD} = 15V$			15	ns
t _{WH}	Minimum P/S	$V_{DD} = 5V$		150	250	ns
	Pulse Width	$V_{DD} = 10V$		75	125	ns
		$V_{DD} = 15V$		50	100	ns
t _{REM}	Minimum P/S Removal	$V_{DD} = 5V$		100	200	ns
	Time (Ref. to CL)	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
CI	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation			100		pF
	Capacitance (Note 8)					


Note 6: AC Parameters are guaranteed by DC correlated testing.

Note 7: If more than one unit is cascaded t_rCL should be made less than or equal to the fixed propagation delay of the output of the driving stage for the estimated capacitive load.


Note 8: Cpp determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C family characteristics application note AN-90.

www.fairchildsemi.com

www.fairchildsemi.com

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.