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A Parallel Priority Queue with Constant
Time Operations1
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We present a parallel priority queue that supports the following operations in
constant time: parallel insertion of a sequence of elements ordered according
to key, parallel decrease keyfor a sequence of elements ordered according to
key, deletion of the minimum key element, and deletion of an arbitrary element.
Our data structure is the first to support multi-insertion and multi-decrease key in
constant time. The priority queue can be implemented on the EREW PRAM and
can perform any sequence ofn operations inO(n) time andO(m log n) work, m
being the total number of keyes inserted and/or updated. A main application is a
parallel implementation of Dijkstra’s algorithm for the single-source shortest path
problem, which runs inO(n) time andO(m log n) work on a CREW PRAM on
graphs withn vertices andm edges. This is a logarithmic factor improvement in
the running time compared with previous approaches.© 1998 Academic Press
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1. INTRODUCTION

A priority queue is a sequential data structure which can maintain a set of elements
with keys drawn from a totally ordered universe subject to the operations of insertion,
deletion, decrease key, and find minimum key element. There has been a considerable
amount of work onparallel priority queues; see for instance [2, 5, 8–10, 26–29].
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There are two different directions for incorporating parallelism into priority queues.
The first is to speed up the individual queue operations that handle asingle element,
using a small number of processors [2, 5, 26, 28, 29]. For instance, the parallel priority
queue of Brodal [2] supports find minimum in constant time with one processor, and
insertion, deletion, and decrease key operations (as well as other operations) in constant
time with O(log n0) processors,n0 being the maximum number of elements allowed
in the priority queue. The other direction is to support the simultaneous insertion
of k elements and the simultaneous deletion of thek smallest elements,k being
a constant. Pinotti and Pucci introduced in [27] the notion ofk-bandwidth parallel
priority queue implementations, by giving implementations ofk-bandwidth-heaps and
k-bandwidth-leftist-heaps for the CREW PRAM. Using thek-bandwidth idea Chen and
Hu [5] gave an EREW PRAM parallel priority queue supporting multi-insert and multi-
delete (of thek smallest elements) inO(log log n/k + log k) time. Ranadeet al. [29]
showed how to apply thek-bandwidth technique to achieve a parallel priority queue
implementation for ad-dimensional array of processors, and Pinottiet al. [26] and Das
et al. [8] gave implementations for hypercubes. None of the above data structures supports
the simultaneous deletion ofk arbitrary elements.

In this paper we present a parallel priority queue which supports simultaneous insertion
and simultaneous decrease key of anarbitrary sequence of elements ordered according
to key, in addition to finding minimum and single element delete operations. These
operations can all be performed in constant time. Our main result is that any sequence of
n queue operations involvingm elements in total can be performed inO(n) time using
O(m log n) operations on the EREW PRAM. The basic idea in the implementation is to
perform a pipelined merging of keys. With the aid of our parallel priority queue we can
give a parallel implementation on the CREW PRAM of Dijkstra’s single-source shortest
path algorithm running inO(n) time andO(m log n) work on digraphs withn nodes
and m edges. This improves the running time of previous implementations [12, 25] by
a logarithmic factor, while sacrificing only a logarithmic factor in the work. This is the
fastest, work-efficient parallel algorithm for the single-source shortest path problem.

The rest of the paper is organized as follows. In Section 2 we define the operations
supported by our parallel priority queue. The main application to Dijkstra’s single-
source shortest path algorithm is presented in Section 3. In Section 4 we give a simple
implementation of the priority queue which illustrates the basic idea of the pipelined
merge, but requiresO(n2 + m log n) work for a sequence ofn queue operations. In
Section 5 we show how to reduce the work toO(m log n) by dynamically restructuring
the pipeline in a tree-like fashion. Further applications are discussed in Section 6. A
preliminary version of the paper appeared as [4]. In that version a parallel priority data
structure was proposed supporting a somewhat different set of operations, more directly
tailored to the parallel implementation of Dijkstra’s algorithm.

2. A PARALLEL PRIORITY QUEUE

In this section we specify the operations supported by our parallel priority queue.
We will be working on the PRAM [19, 20], and for the description of the queue
operations and the simple implementation assume that successively numbered processors
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P1, . . . , Pi , . . . , are available as we need them. In Section 5 we will then show how
to work with a reduced number of processors.

Consider a set of up ton0 elements e1, . . . , en0, each with akey drawn from a
totally ordered set. We emphasize that an elementei has keydi by writing ei (di ). Keys
do not uniquely identify elements, that ise(d′) and e(d′′) are differentoccurrences
of the sameelemente. The priority queue maintains a setQ of elements subject to
the operations described below. At any given instant a set of successively numbered
processorsP1, . . . , Pi will be associated withQ. We use|Q| to denote the number
of processors currently associated withQ. The priority queue operations are executed
by the available processors in parallel, with the actual work carried out by the|Q|
processors associated with the queue. The operations may assign new processors toQ
and/or change the way processors are associated withQ. The result (if any) returned by
a queue operation is stored at a designated location in the shared memory.

• INIT(Q): initializes Q to the empty set.
• UPDATE (Q, L): updatesQ with a list L = e1(d1), . . . , ek(dk) of (different)

elements in nondecreasing key order, i.e.,d1 ≤ · · · ≤ dk. If elementei was not in the
queue before the update,ei is inserted intoQ with key di . If ei was already inQ with
key d′i , the key ofei is changed todi if di < d′i , otherwiseei remains inQ with its old
key d′i .

• DELETEMIN (Q): deletes and returns the minimum key element fromQ in
location MINELT.

• DELETE (Q, e): deletes elemente from Q.
• EMPTY (Q): returnstrue if Q is empty in location STATUS.

The UPDATE (Q, L) operation provides for (combined) multi-insert and multi-decrease
key for a sequence of elements ordered according to key. For the implementation, it is
important that the sequence be given as a list, enabling one processor to retrieve, starting
from the first element, the next element in constant time. We will represent such a list of
elements as an object with operationsL.first , L.remfirst for accessing and removing
the head (first element) of the list, operationsL.curr and L.advance for returning a
current element and advancing to the next element, andL.remove (e) for removing the
element (pointed to by)e. When the end of the list is reached by operationL.advance ,
L.curr returns a special element⊥. A list object can easily be built to support these
operations in constant time (with one processor).

In Sections 4 and 5 we present two different implementations of the priority queue. In
particular, we establish the following two main results:

THEOREM 1. The operationsINIT(Q) andEMPTY(Q) take constant time with one pro-
cessor. TheDELETEMIN(Q) and DELETE(Q, e) operations can be done in constant time
by |Q| processors. The operationUPDATE(Q, L) can be done in constant time by1+|Q|
processors and assigns one new processor to Q. The priority queue can be implemented
on theEREW PRAM. Space consumption per processor is O(n0), where n0 is the maxi-
mum number of elements allowed in the queue.

THEOREM 2. The operationsINIT(Q) andEMPTY(Q) take constant time with one pro-
cessor. After initialization, any sequence of n queue operations involving m elements in
total can be performed in O(n) time with O(m log n) work. The priority queue can be
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implemented on theEREW PRAM. Space consumption per processor is O(n0), where n0
is the maximum number of elements allowed in the queue.

Before giving the proofs of Theorems 1 and 2 in Sections 4 and 5, respectively, we
present our main application of the parallel priority queue.

3. THE MAIN APPLICATION

The single-source shortest path problemis a notorious example of a problem which
despite much effort has resisted a very fast (i.e., NC), work-efficient parallel solution.
Let G = (V, E) be ann-vertex, m-edge directed graph with real-valued, nonnegative
edge weightsc(v, w), and lets ∈ V be a distinguishedsource vertex. The single-source
shortest path problem is to compute for all verticesv ∈ V the length of a shortest path
from s to v, where the length of a path is the sum of the weights of the edges on the path.

The best sequential algorithm for the single-source shortest path problem on directed
graphs with nonnegative real valued edge weights is Dijkstra’s algorithm [11]. The
algorithm maintains for each vertexv ∈ V a tentative distanced(v) from the source and
a set of verticesS for which a shortest path has been found. The algorithm iterates over
the set of vertices ofG, in each iteration selecting a vertex of minimum tentative distance
which can be added toS. The algorithm can be implemented to run inO(m+ n log n)
operations by using efficient priority queues like Fibonacci heaps [13] for maintaining
tentative distances or other priority queue implementations supporting deletion of the
minimum key element in amortized or worst case logarithmic time and decrease key in
amortized or worst case constant time [3, 12, 18].

The single-source shortest path problem is in NC (by virtue of the all-pairs shortest
path problem being in NC), and thus a fast parallel algorithm exists, but for general
digraphs nowork-efficientalgorithm in NC is known. The best NC algorithm runs in
O(log2 n) time and performsO(n3(log log n/ log n)1/3) work on an EREW PRAM
[17]. Moreover, work-efficient algorithms which are (at least) sublinearly fast are also
not known for general digraphs.

Dijkstra’s algorithm is highly sequential and can probably not be used as a basis for a
fast (NC) parallel algorithm. However, it is easy to give a parallel implementation of the
algorithm that runs inO(n log n) time [25]. The idea is to perform the distance updates
within each iteration in parallel by associating a local priority queue with each processor.
The vertex of minimum distance for the next iteration is determined (in parallel) as the
minimum of the minima in the local priority queues. For this parallelization it is important
that the priority queue operations have worst case running time, and therefore the original
Fibonacci heap cannot be used to implement the local queues. This was first observed in
[12] where a new data structure, called relaxed heaps, was developed to overcome this
problem. Using relaxed heaps, anO(n log n) time andO(m+ n log n) work(-optimal)
parallel implementation of Dijkstra’s algorithm is obtained. This seems to have been
the previously fastest work-efficient parallel algorithm for the single-source shortest
path problem. The parallel time spent in each iteration of the above implementation of
Dijkstra’s algorithm is determined by the (processor local) priority queue operations of
finding a vertex of minimum distance and deleting an arbitrary vertex, plus the time to find
and broadcast a global minimum among the local minima. Either or both of the priority
queue operations takeO(log n) time, as does the parallel minimum computation; for the
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latter�(log n) time is required, even on a CREW PRAM [7]. Hence, the approach with
processor local priority queues does not seem to make it possible to improve the running
time beyondO(n log n) without resorting to a more powerful PRAM model. This was
considered in [25] where two faster (but not work-efficient) implementations of Dijkstra’s
algorithm were given on a CRCW PRAM: the first algorithm runs inO(n log log n) time,
and performsO(n2) work; the second runs inO(n) time and performsO(n2+ε) work
for 0< ε < 1.

An alternative approach would be to use a parallel global priority queue supporting
some form of multi-decrease key operation. As mentioned in the Introduction none of the
parallel priority queues proposed so far support such an operation; they only support a
multi-delete operation which assumes that thek elements to be deleted are thek elements
with smallest keys in the priority queue. This does not suffice for a faster implementation
of Dijkstra’s algorithm.

Using our new parallel priority queue, we can give a linear time parallel implementation
of Dijkstra’s algorithm. Finding the vertex of minimum distance and decreasing the
distances of its adjacent vertices can obviously be done by the priority queue, but
preventing that a vertex, once selected and added to the setS of correct vertices, is ever
selected again requires a little extra work. The problem is that when vertexv is selected
by the find minimum operation, some of its adjacent vertices may have been selected
at a previous iteration. If care is not taken, our parallel update operation would reinsert
such vertices into the priority queue, which would then lead to more thann iterations.
Hence, we must make sure that we can remove such vertices from the adjacency list of
v in constant time upon selection ofv. We first sort the adjacency list of each vertex
v ∈ V according to the weight of its adjacent edges. Using a sublinear time work-optimal
mergesort algorithm [6, 16] this is done withO(m log n) work on the EREW PRAM.
This suffices to ensure that priority queue updates are performed on lists of vertices of
nondecreasing tentative distance. To make it possible to remove in constant time any
vertexw from the adjacency list ofv we make the sorted adjacency lists doubly linked.
For eachv ∈ V we also construct an array consisting of the verticesw to which v is
adjacent,(w, v) ∈ E, together with a pointer to the position ofv in the sorted adjacency
list of w. This preprocessing can easily be carried out inO(log n) time using linear work
on the EREW PRAM.

Let Lv be the sorted, doubly linked adjacency list of vertexv ∈ V , and Iv the array
of vertices to whichv is adjacent. As required in the specification of the priority queue,
we represent eachLv as an object with operationsLv.first , Lv .remfirst , Lv.curr ,
Lv.advance , andLv.remove (e). In the iteration wherev is selected the object forLv will
be initialized with a constant valued representing the distance ofv from the source. We
denote this initialization of the object byLv(d). The operationsLv.first and Lv.curr

return a vertexw on the sorted adjacency list ofv (first, respectively, current) with key
c(v, w) offset by the valued, i.e., d + c(v, w). The initialization step is completed by
initializing the priority queueQ and inserting the objectLs(0) representing the vertices
adjacent to the source vertexs with offset 0 intoQ.

We now iterate as in the sequential algorithm until the priority queue becomes empty,
in each iteration deleting a vertexv with minimum key (tentative distance) fromQ. As in
the sequential algorithm the distanced of v will be equal to the length of a shortest path
from s to v, so v is added toS and should never be considered again. The adjacency
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FIG. 1. An O(n) time parallel implementation of Dijkstra’s algorithm.

list object Lv(d) representing the vertices adjacent tov offset with v’s distance from
s is inserted into the priority queue and will in turn produce the tentative distances
d + c(v, wi ) of v’s adjacent verticeswi . Since the adjacency lists were initially sorted,
the tentative distances produced by theLv object will appear in nondecreasing order as
required in the specification of the priority queue. To guarantee that the selected vertexv

is never selected again,v must be removed from the adjacency lists of all verticesw /∈ S.
This can be done in parallel in constant time by using the arrayIv to removev from the
adjacency listsLw of vertices to whichv is adjacent for allw /∈ S. Note that this step
requires concurrent reading, since the|Iv| processors have to know the starting address of
the Iv array for the selected vertexv. However, the concurrent reading required is of the
restricted sort of broadcasting the same constant-size information to a set of processors.
A less informal description of the above implementation of Dijkstra’s algorithm is given
in Fig. 1.

THEOREM 3. The parallel Dijkstra algorithm runs:(i) in O(n) time and O(m log n)
work on theCREW PRAM; (ii) in O(n log(m/n)) time and O(m log n) work on the
EREW PRAM.

Proof. (i) The initialization takes sublinear time andO(m log n) work on an EREW
PRAM, depending on the choice of parallel sorting algorithms. Since one vertex is put
into S in each iteration, at mostn − 1 iterations of thewhile loop are required. Each
iteration (excluding the priority queue operations) can obviously be done in constant
time with a total amount of work bounded byO(

∑
v∈V |Lv| +

∑
v∈V |Iv|) = O(m). We

have a total ofn priority queue operations involving a total number of elements equal to∑
v∈V |Lv| = m. Now, the bounds of part (i) follow from Theorem 2.

(ii) Concurrent reading was needed only for removing the selected vertexv from
the adjacency lists of verticesw /∈ S using theIv array. This step can be done on an
EREW PRAM if we broadcast the information thatv was selected to|Iv| processors.
In each iteration this can be done inO(log |Iv|) time andO(|Iv|) work. Summing over
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all iterations givesO(
∑
v∈V log |Iv|) = O(log(5v∈V |Iv|) = O(n log(m/n)) time and

O(m) work.

4. LINEAR PIPELINE IMPLEMENTATION

In this section we present a simple implementation of the priority queue as a linear
pipeline of processors, thereby giving a proof of Theorem 1.

At any given instant the processors associated withQ are organized in a linear pipeline.
When an UPDATE(Q, L) operation is performed a new processor becomesassociatedwith
Q and is put at the front of the pipeline. Elements of the listL may already occur in
Q, possibly with different keys; it is the task of the implementation to ensure that only
the occurrences with the smallest keys are output by the DELETEMIN(Q) operation. An
array is used to associate processors withQ. Let Pi denote thei th processor to become
associated withQ. The task ofPi will be to perform a stepwise merging of the elements
of the list L = e1(d1), . . . , ek(dk) with the output from the previous processorPi−1 in
the pipeline (wheni > 1). SinceL becomes associated withPi at the UPDATE(Q, L) call,
we shall refer to it as the element listLi of Pi when we describe actions atPi . Processor
Pi produces output to anoutput queue Qi ; Qi is either read by the next processor,
or, if Pi is the last processor in the pipeline,Qi contains the output to be returned by
the next DELETEMIN(Q) operation. The pipeline after four UPDATE(Q, L) operations is
shown in Fig. 2. EachQi is a standard FIFO queue with operationsQi .first , which
returns the first element ofQi , Qi .remfirst , which deletes the first element ofQi , and
Qi .append (e), which appends the elemente to the rear ofQi . Furthermore, eachQi

must support deletion of an element (pointed to by)e in constant time,Qi .remove (e).
Implementation of eachQi as a doubly linked list suffices.

The INIT(Q) operation marks all processors as not associated withQ and can
therefore be done in constant time by initializing the association array. The operations
DELETEMin(Q), DELETE(Q, e), and UPDATE(Q, L) are all implemented by a procedure
MERGESTEP(Q), which, for each processorPi associated withQ, performs one step of
a merge of the element listLi of Pi and the elements in the output queueQi−1 of the
previous processor.

FIG. 2. The linear processor pipeline with associated data structures.
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Let Q(i ) denote the contents of the priority queue after thei th UPDATE(Q, L)
operation. The purpose of procedure MERGESTEP(Q) is to output, for each processor
Pi associated withQ, the next element ofQ(i ), if nonempty, in nondecreasing order to
the output queueQi . This is achieved as follows. Recall thatLi is a list of elements, some
of which may already have been in the priority queue before thei th update (possibly
with different keys). The elements output to each output queue will be in nondecreasing
order, so the merge step of processorPi simply consists of choosing the first element
of either Qi−1 or Li , whichever is smaller (with ties broken arbitrarily), deleting this
element, and outputting it toQi . The merge step must also ensure that an element is
output fromQ at most once. There can be occurrences of an element in different listsLi

corresponding to a number of updates on this element; the occurrence with the smallest
key must be output. In order to guarantee that an element is output fromQ(i ) (by Pi )
at most once, an element is marked asforbidden by processorPi once it is output.
Each processor maintains a setFi of forbidden elements, represented as a Boolean array
indexed by elements:Fi [e] = true iff e has been output and made forbidden byPi . This
ensures that eachQi always contains different elements. In order that the merge step can
be performed in constant time, it must furthermore hold that neitherQi−1 nor Li contain
elements that are forbidden forPi . We maintain the invariants that

Fi ∩ Qi−1 = ∅ and Fi ∩ Li = ∅.
The merge step for processorPi now proceeds as follows: the smaller element is chosen
from eitherQi−1 or Li (with ties broken arbitrarily), presuming neither is empty. If either
Qi−1 or Li is empty the element is taken unconditionally from the other sequence, and
when both are empty,Pi has no more work to do. If the chosen element is not forbidden
for the next processorPi+1, it is output toQi and made forbidden forPi . If it also occurs
in either Qi−1 or Li it must be deleted so that the above invariants are maintained. To
this end, each processor maintains two arrays of pointersQi and Li into Qi and Li ,
respectively, indexed by the elements. When an elemente is inserted intoQi , a pointer
Qi [e] to e in Qi is created; whene is removed fromQi (by processorPi+1) Qi [e]
is reset to⊥. The pointersLi [e] into Li should be set, conceptually, when the update
UPDATE(Q, L) is performed. However, this would require concurrent reading, so instead
we initialize theLi pointer array in a pipelined fashion. Since at most one element from
Li is “consumed” at each merge step, it suffices to let each merge step initialize the
pointer for the next element ofLi . When an elemente is chosen fromQi−1 and has to
be deleted fromLi , either Li [e] already points toe’s position in Li or it has not yet
been set. In the latter casee is deleted later when reached by the corresponding merge
step becauseFi [e] = true. The MERGESTEP(Q) procedure is shown in Fig. 3.

It is now easy to implement the remainder of the priority queue operations. The
operations UPDATE(Q, L) should associate a new processorPi with the pipeline whose
task is to mergeL with the elements already in the queue. In order to guarantee that
the new processor has something to merge, a MERGESTEP(Q) is performed to bring
at least one new element intoQi−1. The new processor then associates itself with the
pipeline and initializes the set of forbidden elements and the pointer arraysQi and Li .
The operation is shown in Fig. 4.

A DELETEMIN(Q) is even easier. A call to MERGESTEP(Q) brings a new element into
the output queue of the last processorPi . The smallest element ofQ is the first element of
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FIG. 3. The MERGESTEP(Q) procedure.

Qi which is removed and copied to the return cell MINELT. The operation DELETE(Q, e)
just makese forbidden for the last processor. To ensure that the last output queue does
not become empty, one call to MERGESTEP is performed. The code for these operations
is shown in Fig. 5. The final operation EMPTY(Q) simply queries the output queue of
the last processor, and writestrue into the STATUS cell if empty.

For the correctness of the queue operations it only remains to show that processor
Pi+1 only runs out of elements to merge whenQ(i ), the queue after thei th update, has
become empty. We establish the following:

LEMMA 1. The output queue Qi of processor Pi is nonempty, unless Q(i ) is empty.

Proof. It suffices to show that as long asQ(i ) is nonempty, the invariant|Qi | >
|Fi+1 \ Fi | ≥ 0 holds. Consider the work of processorPi+1 at some MERGESTEP. Either

FIG. 4. The UPDATE(Q, L) operation.
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FIG. 5. The DELETEMIN(Q) and DELETE(Q, e) operation.

|Fi+1 \ Fi | is increased by one, or|Qi | is decreased by one, but not both, since in the
case wherePi+1 outputs an element fromQi this element has been put intoFi at some
previous operation, and in the case wherePi+1 outputs an element fromLi+1 which
was also inQi , this element has again been put intoFi at some previous operation.
In both cases|Fi+1 \ Fi | does not change whenPi+1 puts the element intoFi+1. The
work of Pi+1 therefore maintains|Qi | ≥ |Fi+1 \ Fi |; strict inequality is reestablished by
considering the work ofPi which either increases|Qi | or, in the case wherePi is not
allowed to put its elemente into Qi (becausee ∈ Fi+1), decreases|Fi+1 \ Fi | (because
e is inserted intoFi ).

In procedure UPDATE(Q, L) we need to initialize the array of forbidden elementsFi

to false for all elements and each of the pointer arraysLi and Qi to ⊥. There is a
well-known solution to do this sequentially in constant time, see for instance [22, pp.
289–290]. This completes the proof of Theorem 1.

In Fig. 6 we show the situation of a sequential pipeline before and after applying
UPDATE. In the MERGESTEP-operation processorsP1, P2, and P3 select, respectively,
5(15), 2(12), and 1(10) to output. Note that 5(15) is not output toQ1 by P1 because
5 ∈ F2, and 2(14) is removed fromL2 by P2 too. As seen, the global minimum is the
smaller of the first elements inL4 and Q3.

FIG. 6. A sequential pipeline before and after UPDATE(Q, 4(13) 6(15)).
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4.1. A Linear Space Implementation

For the linear pipeline implementation as described above it is possible to reduce the
O(n0) space required per processor for the forbidden sets and the arrays of pointers into
the output queues to a total ofO(n0+m) for a sequence of queue operations involvingm
elements, if we allow concurrent reading. Instead of maintaining the forbidden setsFi and
arraysLi and Qi explicitly, we let each occurrence of an element in the priority queue
carry information about its position (whether in some queueQ j or in Li ), whether it has
been forbidden and if so, by which processor. Maintaining for each element a doubly
linked list of its occurrences in the data structure makes it possible for processorPi to
determine in constant time whether a given element has been forbidden for processor
Pi+1 and to remove it in constant time fromQi−1 whenever it is output fromLi and from
Li whenever it is output fromQi−1. In order to insert new elements on theseoccurrence
lists in constant time an array of sizeO(n0) is needed. For elemente this array will
point to the most recently inserted occurrence ofe (which is still in Q). Occurrences of
e appear in the occurrence list ofe in the order in which update operations involvinge
were performed.

At the i th UPDATE(Q, L) operation, each elemente of Li (i.e., of L which is now
associated with the new processorPi ) is linked to the front of the occurrence list ofe
with a label that it belongs toLi and pointers which allows it to be removed fromLi

in constant time. Let us now consider a merge step of processorPi . When an element
e is chosen fromQi−1, Pi looks at the next occurrence ofe in e’s occurrence list. If
this occurrence is inLi , it is removed, both fromLi and from the list ofe-occurrences.
This eliminates the need for theLi array. It is now checked whethere is forbidden for
Pi+1 by looking at the next occurrence ofe; if it not marked asforbidden by Pi+1, e is
output to Qi , marked asforbidden by Pi . If e was forbidden byPi+1 this occurrence is
still marked as forbidden byPi , but not output. Ife is chosen fromLi , Pi looks at the
previous occurrence ofe. If this is in Qi−1 it is removed from bothQi−1 and from the
list of e-occurrences. This eliminates both the need for forbidden sets and the pointer
arraysQi . It should be clear that consecutive occurrences ofe are never removed in the
same merge step, so the doubly linked lists of occurrences are properly maintained also
when different processors work on different occurrences ofe. Note, however, that all
elements inLi have to be linked into their respective occurrence lists before subsequent
merge steps are performed, so concurrent reading is needed. This gives the following
variant of the priority queue.

LEMMA 2. The operationsINIT(Q) andEMPTY(Q) take constant time with one proces-
sor. TheDELETEMIN(Q) and DELETE(Q, e) operations can be done in constant time by
|Q| processors. The operationUPDATE(Q, L) can be done in constant time by1+|Q|+|L|
processors and assigns one new processor to Q. The priority queue can be implemented on
theCREW PRAM. The total space consumption is O(n0+m), where n0 is the maximum
number of elements allowed in the queue and m the total number of elements updated.

5. DYNAMICALLY RESTRUCTURING TREE PIPELINE

In this section we describe how to decrease the work done by the algorithm in Section 4
so that we achieve the result stated in Theorem 2. Before describing the modified data
structure, we first make an observation about the work done in Section 4.



PARALLEL PRIORITY QUEUE WITH CONSTANT TIME OPERATIONS 15

Intuitively, the work done by processorPi is to output elements by incrementally
merging its listLi with the queueQi−1 of elements output by processorPi−1. Processor
Pi terminates when nothing is left to be merged. An alternative bound on the work done is
the sum of thedistanceeach elemente(d) belonging to a listLi travels, where we define
the distance to be the number of processors that outpute(d). Since the elementse(d) in
Li can be output only by a prefix of the processorsPi , Pi+1, . . . , Pn, the distancee(d)
travels is at mostn− i +1. This gives a total bound on the work done by the processors
of O(mn). The work can actually be bounded byO(n2) due to the fact that elements
get annihilated by forbidden sets.

In this section we describe a variation of the data structure in Section 4 that intuitively
bounds the distance an element can travel byO(log n), i.e., bounds the work by
O(m log n). The main idea is to replace the linear pipeline of processors by a binary
tree pipeline of processors of heightO(log n).

We start by describing how to arrange the processors in a tree and how to dynamically
restructure this tree while adding new processors for each UPDATE operation. We then
describe how the work can be bounded byO(m log n) and finally how to perform the
required processor scheduling.

5.1. Tree Structured Processor Connections

To arrange the processors in a tree we slightly modify the information stored at each
processor. The details of how to handle the queues and the forbidden sets are given in
Section 5.2. Each processorPi still maintains a listLi and a set of forbidden elementsFi .
The output of processorPi is still inserted into the processor’s output queueQi , but Pi

now receives input from two processors instead of one processor. As for the linear pipeline
we associate two arraysQi and Li with the queueQi and list Li . The initialization of
the arrayLi is done in the same pipelined fashion as for the linear pipeline.

The processors are arranged as a sequence of perfect binary trees. We represent the
trees as shown in Fig. 7. A left child has an outgoing edge to its parent and a right child
an edge to its left sibling. The incoming edges of a nodev come from the left child of
v and the right sibling ofv. Figure 7 shows trees of size 1, 3, 7, and 15. Each node
corresponds to a processor and the unique outgoing edge of a node corresponds to the
output queue of the processor (and an input queue of the parent processor). The rank of
a node is the height of the node in the perfect binary tree and the rank of a tree is the
rank of the root of the tree. A tree of rankr + 1 can be constructed from two trees of
rank r plus a single node, by connecting the two roots with the new node. It follows by
induction that a tree of rankr has size 2r − 1.

FIG. 7. The tree arrangement of processors. Numbers denote processor ranks.
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FIG. 8. How to restructure the tree when performing UPDATE. Node names denote processor indices.

The processors are arranged in a sequence of trees of rankr p, r p−1, . . . , r1, where
the i th root is connected to thei +1st root as shown in Fig. 8. For the sequence of trees
we maintain the invariant that

r p ≤ r p−1 < r p−2 < · · · < r2 < r1. (1)

When performing an UPDATE operation a new processor is initialized. Ifr p < r p−1 the
new processor is inserted as a new rank one tree at the front of the sequence of trees
as for the linear pipeline. That (1) is satisfied follows from 1≤ r p < r p−1 < · · · < r1.
If r p = r p−1 we link the pth and p − 1st tree with the node corresponding to the
new processor to form a tree of rank 1+ r p−1. That (1) is satisfied follows from
1 + r p−1 ≤ r p−2 < r p−3 < · · · < r1. Figure 8 illustrates the relinking for the case
where r p = r p−1 = 2 and r p−2 = 4. Note that the only restructuring of the pipeline
required is to make the edgee an incoming edge of the new node associated with pro-
cessorPi .

The described approach for relinking has been applied in a different context to construct
purely functional random-access lists [24]. In [24] it is proved that a sequence of trees
satisfying (1) is unique for a given number of nodes.

5.2. Queues and Forbidden Sets

We now give the details of how to handle the output queues and the forbidden sets
and how to implement the MERGESTEP operation. LetPj be a processor connected to
a processorPi , i > j , by the queueQ j . For the tree pipeline processorPj is only
guaranteed to output a subset of the elements inQ( j ) in nondecreasing order. For the
linear pipeline processorPj outputs exactly the setQ( j ).

Assume that processorsPi and Pj were created as a result of thei th and j th UPDATE

operations, respectively,i > j . Let Jj denote the set of elements deleted by DELETE

and DELETEMIN operations between thej th and i th UPDATE operations. The important
property ofJj is that Jj are the elements that can be output byPj but are illegal as input
to Pi , because they already have been deleted prior to the creation ofPi . We represent
eachJj as a Boolean array. How to handleJj when restructuring the pipeline is described
later in this section. To guarantee thatQ j does not contain any illegal input toPi we
maintain the invariant

Q j ∩ (Fi ∪ Jj ) = ∅. (2)



PARALLEL PRIORITY QUEUE WITH CONSTANT TIME OPERATIONS 17

Our main invariant for the connection between processorsPj and Pi while processor
Pj still has input left to be considered is (3), which intuitively states thatPj has output
more elements than the number of elements output byPi plus the elements deleted before
the connection betweenPj and Pi is created.

|(Fi ∪ Jj ) \ Fj | < |Fj \ (Fi ∪ Jj )|. (3)

We now describe how to implement the MERGESTEP operation such that the invariants
(2) and (3) remain satisfied. The basic idea of the implementation is the same as for the
linear pipeline. ProcessorPj first selects the elementv with smallest key inL j and the
input queues ofPj in constant time. If nov exists processorPj terminates. Otherwise,
all occurrences ofv are removed fromL j and the input queuesQ` of Pj using the
arrays L j and Q`, respectively, andv is added toFj . If Q j is an input queue ofPi

andv /∈ Fi ∪ Jj , thenv is inserted inQ j . If v ∈ Fi ∪ Jj , thenv is not inserted into
Q j , since otherwise (2) would be violated. Ifv ∈ Fi , thenv has already been output by
processorPi and we can safely annihilatev. If v ∈ Jj , then v has been deleted from
Q(k), j ≤ k < i , and we can again safely annihilatev. That (3) is satisfied after a
MERGESTEP operation follows from an argument similar to the one given in the proof
of Lemma 1 for the linear pipeline: the work done by processorPi , when inserting a
new element intoFi , either increases the left-hand side of (3) by one or decreases the
right-hand side of (3) by one and thereby makes the inequality≤. The< is reestablished
by processorPj which inserts a new element intoFj ; this either decreases the left-hand
side of (3) by one or increases the right-hand side of (3) by one.

Invariant (3) allows us to letQ j become empty throughout a MERGESTEP operation,
without violating the correctness of the operation and withoutPj being terminated. The
reason is thatFj \ (Fi ∪ Jj ) 6= ∅ implies that there exists an elementv that has been
output by Pj (v ∈ Fj ) that neither has been deleted from the data structure beforePi

was created(v /∈ Jj ) nor has been output byPi (v /∈ Fi ). If Q j becomes empty,v can
only be stored in an output queue of a processor in the subtree rooted atPi due to how
the dynamic relinking is performed, i.e.,v appears in a queueQk, j < k < i . It follows
that v has to be output byPi (perhaps with a smaller key becausev gets annihilated by
an appearance ofv with a smaller key) before the next element to be output byPj can
be output byPi . This means thatPi can safely skip to consider input from the empty
input queueQ j , even if Q j later can become nonempty. Note that (3) guarantees that a
queue betweenPi−1 and Pi always is nonempty.

We now describe how to implement the UPDATE operation. The implementation is as
for the linear pipeline, except for the dynamic relinking of a single connection (edgee
in Fig. 8) which is done after the MERGESTEP operation and the initialization of the new
processor. Assume thatPi is the newly created processor. ThatQi−1 satisfies (3) and (2)
follows from the fact thatJi−1 ⊂ Fi−1 (the MERGESTEP operation at the beginning of the
UPDATE operation implies that at least one element output byPi−1 has not been deleted)
and Fi = ∅. What remains to be shown is how to satisfy the invariants for the nodePj

when Q j is relinked to become an input queue ofPi and hence ceases to be an input
queue ofPk, j < k < i (see Fig. 8). WhenQ j is relinked,Pj has output at least|Jj |+1
elements in total (|Jj | for delete operations and one from the MERGESTEP operation at
the beginning of the UPDATE operation). BecauseFi = ∅ and i > j , it follows that (3)
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is satisfied after the relinking. To guarantee that (2) is satisfied we have to updateJj

according to the definition and to update the queueQ j . This is done as follows:

Q j ← Q j \ Jj ; Jj ← Jj ∪ Ji−1 ∪ Jk.

SinceQ j and Jj can be arbitrary sets it seems hard to do this updating in constant time
without some kind of precomputation. Note that the only connections which can be re-
linked are the connections between the tree roots.

Our solution to this problem is as follows: For each DELETE or DELETEMIN operation,
we mark the deleted elementv asdirty in all the output queuesQ j , wherePj is a root
processor andQ j is an input queue to the root processorPi . If v 6∈ Jj , then we insert
v into Jj as being marked dirty; otherwise, we do nothing. Whenever a queueQ j is
relinked we just need to be able in constant time to delete all elements marked dirty
from Q j and unmark all elements marked dirty inJj . A new elementu is inserted as
being unmarked intoQ j , if u 6∈ Fi ∪ Jj ; and it is inserted as being marked dirty into
Q j , if u 6∈ Fi andu is marked dirty inJj . A reasonably simple solution to the marking
problem, as well as to the insertion of the dirty elements inJj , is the following. First,
note that each timeQ j is relinked it is connected to a node having rank one higher, i.e.,
we can use this rank as a time stampt . We represent a queueQ j as a linked list of
vertices, where each vertexv has two time stamped links to vertices in each direction
from v. The link with the highest time stamp≤ t is the current link in a direction. A
link with time stampt +1 is a link that will become active whenQ j is relinked, i.e., we
implicitly maintain two versions of the queue: The current version and the version where
all the dirty vertices have been removed. The implementation of the marking procedure
is straightforward. To handle the Boolean arrayJj , it is sufficient for eachtrue entry
to associate a time stamp. A time stamp equal tot + 1 implies that the entry inJj is
dirty. As described here the marking of dirty vertices requires concurrent read to know
the deleted element, but by pipelining the dirty marking process along the tree roots from
left to right, concurrent read can be avoided. This is possible because the relinking of
the tree pipeline only affects the three leftmost roots in the tree pipeline.

We now argue that the described data structure achieves the time bounds claimed in
Theorem 2, i.e., that the work done by the processors for the MERGESTEP operations is
O(m logn). Observe that every restructuring of the pipeline takes constant time and the
total work done by the processors can be charged to the distance (in the sense mentioned
in the beginning of this section) them elements travel. Elements can travel a distance
of at most 2 logn in a tree before they reach the root of the tree. However, there is an
additional distance to travel as a result of the fact that the root processors move elements
to lower ranked nodes. LetPji and Pji+1 be two root processors having rankri andri+1,
respectively, 1≤ i < p. The additional distance the elements, output byPji and taken
as input byPji+1, should travel is bounded by 2(ri − ri+1). Hence, the increase in the
total distance to travel along the root path for each of then MERGESTEP operations is
bounded by the telescoping sum

2(r1 − r2)+ 2(r2− r3)+ · · · + 2(r p−1− r p) ≤ 2 log n.

Consequently, the actual merging work is bounded byO(2m log n + 2n log n) =
O(m log n).
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FIG. 9. A tree pipeline before and after UPDATE(Q, 3(13) 1(15)). Node numbers denote processor indices.

In Fig. 9 we show the situation of a tree pipeline before and after applying UPDATE.
In the MERGESTEP operation processorsP1, . . . , P5 select, respectively, 4(23), 6(20),
3(17), 5(14), and 1(11) to output. ProcessorP3 removes 3(23) fromL3 when selecting
3(17) fromQ2. Likewise processorP5 removes 1(12) fromQ4. Note that 4(23) and 3(17)
are not output because 4∈ F2 and 3∈ F4, and that 7(15) is removed fromQ3 because
after restructuring the pipeline 7∈ J3.

5.3. Processor Scheduling

What remains is to divide theO(m log n) work among the available processors on
an EREW PRAM. Assuming thatO(m log n/n) processors are available, the idea is
to simulate the tree structured pipeline forO(log n) time steps, after which we stop
the simulation and inO(log n) time eliminate the (simulated) terminated processors and
reschedule. By this scheme a terminated processor is kept alive for onlyO(log n) time
steps, and hence no superfluous work is done. In total the simulation takesO(n) time.

6. FURTHER APPLICATIONS AND DISCUSSION

The improved single-source shortest path algorithm immediately gives rise to corre-
sponding improvements in algorithms in which the single-source shortest path problem
occurs as a subproblem. We mention here the assignment problem, the minimum-cost
flow problem, (for definitions see [1]) and the single-source shortest path problem in
planar digraphs. As usual,n andm denote the number of vertices and edges of the input
graph, respectively. Note that the minimum-cost flow problem is P-complete [15] (i.e.,
it is very unlikely that it has a very fast parallel solution), while the assignment prob-
lem is not known to be in NC (only an RNC algorithm is known in the special case
of unary weights [21, 23] and a weakly polynomial CRCW PRAM algorithm that runs
in O(n2/3 log2 n log(nC)) time with O(n11/3 log2 n log(nC)) work [14] in the case of
integer edge weights in the range [−C, C]).

The assignment problem can be solved byn calls to Dijkstra’s algorithm (see, e.g.,
[1, Section 12.4]), while the solution of the minimum-cost flow problem is reduced to
O(m log n) calls to Dijkstra’s algorithm (see e.g., [1, Section 10.7]). The best previous
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(strongly polynomial) algorithms for these problems are given in [12]. They run on
an EREW PRAM and are based on their implementation of Dijkstra’s algorithm: the
algorithm for the assignment problem runs inO(n2 log n) time usingO(nm+n2 log n)
work, while the algorithm for the minimum-cost flow problem runs inO(nm log2 n)
time using O(m2 log n + nm log2 n) work. Using the implementation of Dijkstra’s
algorithm presented in this paper, we can speedup the above results on a CREW PRAM.
More specifically, we have a parallel algorithm for the assignment problem that runs in
O(n2) time usingO(nm log n) work and a parallel algorithm for the minimum-cost flow
problem that runs inO(nm log n) time andO(m2 log2 n) work.

Greater parallelism for the single-source shortest path problem in the case of planar
digraphs can be achieved by plugging our implementation of Dijkstra’s algorithm
(Theorem 3(ii)) into the algorithm of [30] resulting in an algorithm which runs in
O(n2ε + n1−ε) time and performsO(n1+ε) work on an EREW PRAM, for any 0< ε <

1/2. With respect to work, this gives the best (deterministic) parallel algorithm known
for the single-source shortest path problem in planar digraphs that runs in sublinear time.
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