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We present a parallel priority queue that supports the following operations in
constant time: parallel insertion of a sequence of elements ordered according
to key, parallel decrease keyor a sequence of elements ordered according to
key, deletion of the minimum key elemeand deletion of an arbitrary element
Our data structure is the first to support multi-insertion and multi-decrease key in
constant time. The priority queue can be implemented on the EREW PRAM and
can perform any sequence perations inO(n) time andO(m log n) work, m
being the total number of keyes inserted and/or updated. A main application is a
parallel implementation of Dijkstra’s algorithm for the single-source shortest path
problem, which runs irD(n) time andO(m log n) work on a CREW PRAM on
graphs withn vertices andm edges. This is a logarithmic factor improvement in
the running time compared with previous approachesiggs Academic Press
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1. INTRODUCTION

A priority queue is a sequential data structure which can maintain a set of elements
with keys drawn from a totally ordered universe subject to the operations of insertion,
deletion, decrease key, and find minimum key element. There has been a considerable
amount of work orparallel priority queuessee for instance [2, 5, 8-10, 26—29].
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There are two different directions for incorporating parallelism into priority queues.
The first is to speed up the individual queue operations that handlagée element,
using a small number of processors [2, 5, 26, 28, 29]. For instance, the parallel priority
queue of Brodal [2] supports find minimum in constant time with one processor, and
insertion, deletion, and decrease key operations (as well as other operations) in constant
time with O(log ng) processorsng being the maximum number of elements allowed
in the priority queue. The other direction is to support the simultaneous insertion
of k elements and the simultaneous deletion of thesmallestelements,k being
a constant. Pinotti and Pucci introduced in [27] the notionkdfandwidth parallel
priority queue implementations, by giving implementationskdfandwidth-heaps and
k-bandwidth-leftist-heaps for the CREW PRAM. Using tkdvandwidth idea Chen and
Hu [5] gave an EREW PRAM parallel priority queue supporting multi-insert and multi-
delete (of thek smallest elements) i®(log log n/k + log k) time. Ranadeet al. [29]
showed how to apply th&-bandwidth technique to achieve a parallel priority queue
implementation for al-dimensional array of processors, and Pinettal. [26] and Das
et al.[8] gave implementations for hypercubes. None of the above data structures supports
the simultaneous deletion &farbitrary elements.

In this paper we present a parallel priority queue which supports simultaneous insertion
and simultaneous decrease key ofahitrary sequence of elements ordered according
to key, in addition to finding minimum and single element delete operations. These
operations can all be performed in constant time. Our main result is that any sequence of
n queue operations involvingn elements in total can be performed @(n) time using
O(m log n) operations on the EREW PRAM. The basic idea in the implementation is to
perform a pipelined merging of keys. With the aid of our parallel priority queue we can
give a parallel implementation on the CREW PRAM of Dijkstra’s single-source shortest
path algorithm running ifO(n) time and O(m log n) work on digraphs withn nodes
andm edges. This improves the running time of previous implementations [12, 25] by
a logarithmic factor, while sacrificing only a logarithmic factor in the work. This is the
fastest, work-efficient parallel algorithm for the single-source shortest path problem.

The rest of the paper is organized as follows. In Section 2 we define the operations
supported by our parallel priority queue. The main application to Dijkstra’s single-
source shortest path algorithm is presented in Section 3. In Section 4 we give a simple
implementation of the priority queue which illustrates the basic idea of the pipelined
merge, but require®©(n® + m log n) work for a sequence ofi queue operations. In
Section 5 we show how to reduce the work@gm log n) by dynamically restructuring
the pipeline in a tree-like fashion. Further applications are discussed in Section 6. A
preliminary version of the paper appeared as [4]. In that version a parallel priority data
structure was proposed supporting a somewhat different set of operations, more directly
tailored to the parallel implementation of Dijkstra’s algorithm.

2. A PARALLEL PRIORITY QUEUE

In this section we specify the operations supported by our parallel priority queue.
We will be working on the PRAM [19, 20], and for the description of the queue
operations and the simple implementation assume that successively numbered processors
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Pi, ..., B, ..., are available as we need them. In Section 5 we will then show how
to work with a reduced number of processors.
Consider a set of up tmg elements g ..., e, each with akey drawn from a

totally ordered set. We emphasize that an elemegthias keyd; by writing g (d;). Keys

do not uniquely identify elements, that is(d’) and e(d”) are differentoccurrences

of the sameelemente. The priority queue maintains a s€ of elements subject to

the operations described below. At any given instant a set of successively numbered
processorsPy, ..., B will be associated withQ. We use|Q| to denote the number

of processors currently associated with The priority queue operations are executed

by the available processors in parallel, with the actual work carried out by Q@he
processors associated with the queue. The operations may assign new proce&sors to
and/or change the way processors are associatedQuiffhe result (if any) returned by

a queue operation is stored at a designated location in the shared memaory.

e INIT(Q): initializes Q to the empty set.

e UPDATE (Q, L): updatesQ with a list L = e1(d1), ..., e(dk) of (different)
elements in nondecreasing key order, id.,< --- < dk. If elementg was not in the
queue before the update, is inserted intoQ with key d;. If g was already inQ with
key d/, the key ofg is changed tal; if dj < d/, otherwiseg remains inQ with its old
key d/.

e DELETEMIN (Q): deletes and returns the minimum key element fr@min
location MINELT.

* DELETE (Q, e): deletes elemera from Q.

* EMPTY (Q): returnstrue if Q is empty in location $aTus.

The UPDATE (Q, L) operation provides for (combined) multi-insert and multi-decrease
key for a sequence of elements ordered according to key. For the implementation, it is
important that the sequence be given as a list, enabling one processor to retrieve, starting
from the first element, the next element in constant time. We will represent such a list of
elements as an object with operatidnéirst , L.remfirst  for accessing and removing
the head (first element) of the list, operatidngurr and L.advance for returning a
current element and advancing to the next element, larginove (e) for removing the
element (pointed to byg. When the end of the list is reached by operatioadvance ,

L.curr returns a special elemedt. A list object can easily be built to support these
operations in constant time (with one processor).

In Sections 4 and 5 we present two different implementations of the priority queue. In
particular, we establish the following two main results:

THEOREM 1. The operation$niT(Q) andEMPTY(Q) take constant time with one pro-
cessor. ThELETEMIN(Q) and DELETE(Q, €) operations can be done in constant time
by | Q| processors. The operatiddPDATE(Q, L) can be done in constant time by | Q|
processors and assigns one new processor to Q. The priority queue can be implemented
on theEREW PRAM Space consumption per processor igng), where ry is the maxi-
mum number of elements allowed in the queue.

THEOREM?2. The operation$niT(Q) andEMPTY(Q) take constant time with one pro-
cessor. After initialization, any sequence of n queue operations involving m elements in
total can be performed in ) time with O(m log n) work. The priority queue can be
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implemented on thEREW PRAM Space consumption per processor ing), where iy
is the maximum number of elements allowed in the queue.

Before giving the proofs of Theorems 1 and 2 in Sections 4 and 5, respectively, we
present our main application of the parallel priority queue.

3. THE MAIN APPLICATION

The single-source shortest path problesa notorious example of a problem which
despite much effort has resisted a very fast (i.e., NC), work-efficient parallel solution.
Let G = (V, E) be ann-vertex, m-edge directed graph with real-valued, nonnegative
edge weightx(v, w), and lets € V be a distinguishedource vertexThe single-source
shortest path problem is to compute for all vertiees V the length of a shortest path
from s to v, where the length of a path is the sum of the weights of the edges on the path.

The best sequential algorithm for the single-source shortest path problem on directed
graphs with nonnegative real valued edge weights is Dijkstra’s algorithm [11]. The
algorithm maintains for each vertexc V a tentative distance(v) from the source and
a set of verticess for which a shortest path has been found. The algorithm iterates over
the set of vertices oB, in each iteration selecting a vertex of minimum tentative distance
which can be added t8. The algorithm can be implemented to run@{m + n log n)
operations by using efficient priority queues like Fibonacci heaps [13] for maintaining
tentative distances or other priority queue implementations supporting deletion of the
minimum key element in amortized or worst case logarithmic time and decrease key in
amortized or worst case constant time [3, 12, 18].

The single-source shortest path problem is in NC (by virtue of the all-pairs shortest
path problem being in NC), and thus a fast parallel algorithm exists, but for general
digraphs nowork-efficientalgorithm in NC is known. The best NC algorithm runs in
O(log? n) time and performsO(n3(log log n/log n)1/3) work on an EREW PRAM
[17]. Moreover, work-efficient algorithms which are (at least) sublinearly fast are also
not known for general digraphs.

Dijkstra’s algorithm is highly sequential and can probably not be used as a basis for a
fast (NC) parallel algorithm. However, it is easy to give a parallel implementation of the
algorithm that runs irD(n log n) time [25]. The idea is to perform the distance updates
within each iteration in parallel by associating a local priority queue with each processor.
The vertex of minimum distance for the next iteration is determined (in parallel) as the
minimum of the minima in the local priority queues. For this parallelization it is important
that the priority queue operations have worst case running time, and therefore the original
Fibonacci heap cannot be used to implement the local queues. This was first observed in
[12] where a new data structure, called relaxed heaps, was developed to overcome this
problem. Using relaxed heaps, &1n log n) time andO(m + n log n) work(-optimal)
parallel implementation of Dijkstra’s algorithm is obtained. This seems to have been
the previously fastest work-efficient parallel algorithm for the single-source shortest
path problem. The parallel time spent in each iteration of the above implementation of
Dijkstra’s algorithm is determined by the (processor local) priority queue operations of
finding a vertex of minimum distance and deleting an arbitrary vertex, plus the time to find
and broadcast a global minimum among the local minima. Either or both of the priority
gqueue operations take(log n) time, as does the parallel minimum computation; for the
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latter Q2 (log n) time is required, even on a CREW PRAM [7]. Hence, the approach with
processor local priority queues does not seem to make it possible to improve the running
time beyondO(n log n) without resorting to a more powerful PRAM model. This was
considered in [25] where two faster (but not work-efficient) implementations of Dijkstra’s
algorithm were given on a CRCW PRAM: the first algorithm run€ign log log n) time,

and performsO(n?) work; the second runs i®(n) time and performg(n?t¢) work
for0<e < 1.

An alternative approach would be to use a parallel global priority queue supporting
some form of multi-decrease key operation. As mentioned in the Introduction none of the
parallel priority queues proposed so far support such an operation; they only support a
multi-delete operation which assumes thatkhedements to be deleted are thelements
with smallest keys in the priority queue. This does not suffice for a faster implementation
of Dijkstra’s algorithm.

Using our new parallel priority queue, we can give a linear time parallel implementation
of Dijkstra’s algorithm. Finding the vertex of minimum distance and decreasing the
distances of its adjacent vertices can obviously be done by the priority queue, but
preventing that a vertex, once selected and added to th® afetorrect vertices, is ever
selected again requires a little extra work. The problem is that when veiitegelected
by the find minimum operation, some of its adjacent vertices may have been selected
at a previous iteration. If care is not taken, our parallel update operation would reinsert
such vertices into the priority queue, which would then lead to more thaerations.
Hence, we must make sure that we can remove such vertices from the adjacency list of
v in constant time upon selection of We first sort the adjacency list of each vertex
v € V according to the weight of its adjacent edges. Using a sublinear time work-optimal
mergesort algorithm [6, 16] this is done with(m log n) work on the EREW PRAM.

This suffices to ensure that priority queue updates are performed on lists of vertices of
nondecreasing tentative distance. To make it possible to remove in constant time any
vertexw from the adjacency list of we make the sorted adjacency lists doubly linked.
For eachv € V we also construct an array consisting of the verticeto which v is
adjacent(w, v) € E, together with a pointer to the position ofin the sorted adjacency

list of w. This preprocessing can easily be carried ouDitiog n) time using linear work

on the EREW PRAM.

Let L, be the sorted, doubly linked adjacency list of vertex V, andl, the array
of vertices to whichv is adjacent. As required in the specification of the priority queue,
we represent each, as an object with operatioris, first , L,.remfirst , L,.curr ,

L ,.advance , andL,.remove (€). In the iteration where is selected the object fdr, will
be initialized with a constant value representing the distance offrom the source. We
denote this initialization of the object Wy, (d). The operations , first  andL,.curr
return a vertexw on the sorted adjacency list of (first, respectively, current) with key
c(v, w) offset by the valudl, i.e., d + c(v, w). The initialization step is completed by
initializing the priority queueQ and inserting the objedts(0) representing the vertices
adjacent to the source vertexwith offset 0 into Q.

We now iterate as in the sequential algorithm until the priority queue becomes empty,
in each iteration deleting a vertexwith minimum key (tentative distance) fro@. As in
the sequential algorithm the distand®f v will be equal to the length of a shortest path
from s to v, sov is added toS and should never be considered again. The adjacency
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Algorithm Parallel-Dijkstra
/* Initialization */
Sort the adjacency lists of ¢ after edge weight, and make doubly linked lists L,;
For each v build array I, of vertices to which v is adjacent;
INIT(Q);
d(s) « 0; 5 « {s};
UPDATE(Q, L,(0));
/* Main loop */
while ~-EMPTY () do

v(d) < DELETEMIN(Q);

d(v) « d; S + SU{v}

UPDATE(Q, L,(d));

forall w € I, pardo

if w ¢ S then remove v from L, fi;

odpar

od

FIG. 1. An O(n) time parallel implementation of Dijkstra’s algorithm.

list object L,(d) representing the vertices adjacentutmffset with v's distance from

s is inserted into the priority queue and will in turn produce the tentative distances
d + c(v, wj) of v's adjacent vertices;. Since the adjacency lists were initially sorted,
the tentative distances produced by theobject will appear in nondecreasing order as
required in the specification of the priority queue. To guarantee that the selectedwertex
is never selected again,must be removed from the adjacency lists of all verticeg S.

This can be done in parallel in constant time by using the alyap removev from the
adjacency listd,, of vertices to whichv is adjacent for alw ¢ S. Note that this step
requires concurrent reading, since thg processors have to know the starting address of
the |, array for the selected vertex However, the concurrent reading required is of the
restricted sort of broadcasting the same constant-size information to a set of processors.
A less informal description of the above implementation of Dijkstra’s algorithm is given
in Fig. 1.

THEOREM 3. The parallel Dijkstra algorithm runs(i) in O(n) time and Qm log n)
work on theCREW PRAM; (ii) in O(n log(m/n)) time and Qm log n) work on the
EREW PRAM

Proof. (i) The initialization takes sublinear time ai@(m log n) work on an EREW
PRAM, depending on the choice of parallel sorting algorithms. Since one vertex is put
into S in each iteration, at most — 1 iterations of thewhile loop are required. Each
iteration (excluding the priority queue operations) can obviously be done in constant
time with a total amount of work bounded (>, .y [Lul+ >, cy [1u)) = O(m). We
have a total oh priority queue operations involving a total number of elements equal to
> vev Lyl = m. Now, the bounds of part (i) follow from Theorem 2.

(i) Concurrent reading was needed only for removing the selected vertem
the adjacency lists of vertices ¢ S using thel, array. This step can be done on an
EREW PRAM if we broadcast the information thatwas selected t¢l,| processors.
In each iteration this can be done @log |1,|) time andO(|l,|) work. Summing over
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all iterations givesO(}_, .y log [1,)) = O(log (TTyev|ly]) = O(n log(m/n)) time and
O(m) work. W

4. LINEAR PIPELINE IMPLEMENTATION

In this section we present a simple implementation of the priority queue as a linear
pipeline of processors, thereby giving a proof of Theorem 1.

At any given instant the processors associated ®ithre organized in a linear pipeline.
When an WDATE(Q, L) operation is performed a new processor becoasssciatedvith
Q and is put at the front of the pipeline. Elements of the lismay already occur in
Q, possibly with different keys; it is the task of the implementation to ensure that only
the occurrences with the smallest keys are output by theeTEMIN(Q) operation. An
array is used to associate processors Wth_et P, denote thath processor to become
associated withQ. The task ofP, will be to perform a stepwise merging of the elements
of the listL = ey(dy), ..., e(dk) with the output from the previous procesd@r ; in
the pipeline (whem > 1). SinceL becomes associated wikh at the WPDATE(Q, L) call,
we shall refer to it as the element list of P, when we describe actions Bf. Processor
P produces output to aputput queue @ Q; is either read by the next processor,
or, if B is the last processor in the pipelin®; contains the output to be returned by
the next ZELETEMIN(Q) operation. The pipeline after fourADATE(Q, L) operations is
shown in Fig. 2. EachQ; is a standard FIFO queue with operatio@sfirst , which
returns the first element d@;, Q;.remfirst , which deletes the first element gf;, and
Qi .append (e), which appends the elemeatto the rear ofQ;. Furthermore, eacl;
must support deletion of an element (pointed to &y constant time Q;.remove (e).
Implementation of eacl); as a doubly linked list suffices.

The INIT(Q) operation marks all processors as not associated Witland can
therefore be done in constant time by initializing the association array. The operations
DELETEMIn(Q), DELETE(Q, €), and WPDATE(Q, L) are all implemented by a procedure
MERGESTEP(Q), which, for each processd? associated withQ, performs one step of
a merge of the element lidt; of B and the elements in the output que@g_; of the
previous processor.

F4 F3 F2 Fl
Q4@Q3@\ Qz@ @ 7

4 3

L4 L3 L2 Ll

FIG. 2. The linear processor pipeline with associated data structures.
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Let Q(i) denote the contents of the priority queue after e UPDATE(Q, L)
operation. The purpose of procedureERGESTEP(Q) is to output, for each processor
P associated withQ, the next element 0Q(), if nonempty, in nondecreasing order to
the output queu®);. This is achieved as follows. Recall tHat is a list of elements, some
of which may already have been in the priority queue beforei thaupdate (possibly
with different keys). The elements output to each output queue will be in nhondecreasing
order, so the merge step of proces$prsimply consists of choosing the first element
of either Q;_1 or L;, whichever is smaller (with ties broken arbitrarily), deleting this
element, and outputting it t®;. The merge step must also ensure that an element is
output fromQ at most once. There can be occurrences of an element in different lists
corresponding to a number of updates on this element; the occurrence with the smallest
key must be output. In order to guarantee that an element is output@@m(by P)
at most once, an element is marked faghidden by processorP; once it is output.
Each processor maintains a $¢tof forbidden elements, represented as a Boolean array
indexed by elementsk[€] = true iff e has been output and made forbidden®y This
ensures that ead; always contains different elements. In order that the merge step can
be performed in constant time, it must furthermore hold that neifhes nor L; contain
elements that are forbidden f&. We maintain the invariants that

FFNQ-1=@andF N L =4a.

The merge step for processBr now proceeds as follows: the smaller element is chosen
from eitherQ;_1 or L; (with ties broken arbitrarily), presuming neither is empty. If either
Qi_1 or L is empty the element is taken unconditionally from the other sequence, and
when both are empty®, has no more work to do. If the chosen element is not forbidden
for the next processd?, 1, it is output toQ; and made forbidden fd®. If it also occurs

in either Q;_1 or L; it must be deleted so that the above invariants are maintained. To
this end, each processor maintains two arrays of poir@grand L; into Q; and L;,
respectively, indexed by the elements. When an eleraéntnserted intoQ;, a pointer
Qi[€] to e in Q; is created; where is removed fromQ; (by processorP 1) Q;[€]

is reset toL. The pointersLi[€] into L; should be set, conceptually, when the update
UPDATE(Q, L) is performed. However, this would require concurrent reading, so instead
we initialize theL; pointer array in a pipelined fashion. Since at most one element from
L; is “consumed” at each merge step, it suffices to let each merge step initialize the
pointer for the next element df;. When an elemerg is chosen fromQ;_1 and has to

be deleted fromL;, either Li[€] already points tce's position in L or it has not yet
been set. In the latter cageis deleted later when reached by the corresponding merge
step becausé€i[€e] = true. The MERGESTEP(Q) procedure is shown in Fig. 3.

It is now easy to implement the remainder of the priority queue operations. The
operations BDATE(Q, L) should associate a new processpwith the pipeline whose
task is to mergd. with the elements already in the queue. In order to guarantee that
the new processor has something to merge, ER&STEP(Q) is performed to bring
at least one new element intQ; 1. The new processor then associates itself with the
pipeline and initializes the set of forbidden elements and the pointer a@aysdL;.

The operation is shown in Fig. 4.

A DELETEMIN(Q) is even easier. A call to FRGESTEP(Q) brings a new element into

the output queue of the last proces8prThe smallest element @) is the first element of
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Procedure MERGESTEP(Q)
forall P;, : € |Q| pardo /* for all processors associated with ¢ */
if L,.curr # L then /* lazy L; pointer update */
if F;[L;.curr| = true then L;.remove(L;.curr); /* current element is forbidden */
else L;[L;.curr| «+ L;.curr; fi;
L;.advance; /* advance to next element */
fi;
e(d) « Q;-1.first;
e'(d") « L;.first;
if " < d' then
el(dl) — e”(d//);
L; remfirst;
/* remove € from Q;_; using Q,_,[e'] ¥/
ifQ;_,[¢/] # L then Q;_,.remove(Q,_,[€]);
else
Q;.remfirst;
/* remove ¢’ from L; using L;[¢'] */
if L;[e'] # L then L;.remove(L;[e']);
fi;
File'] « true;
if ~F;11[¢'] then
Q:.append(e'(d’));
Update @Q;[¢'] to the position of ¢ in @;
fi;
odpar;
End of Procedure

FIG. 3. The MERGESTEP(Q) procedure.

Qi which is removed and copied to the return celN®LT. The operation BLETE(Q, €)
just makese forbidden for the last processor. To ensure that the last output queue does
not become empty, one call toBAGESTEP is performed. The code for these operations
is shown in Fig. 5. The final operationMBTY(Q) simply queries the output queue of
the last processor, and writésie into the SATUS cell if empty.

For the correctness of the queue operations it only remains to show that processor
P +1 only runs out of elements to merge whéXxi), the queue after theah update, has
become empty. We establish the following:

LEMMA 1. The output queue {Qof processor Pis nonempty, unless @ is empty.

Proof. It suffices to show that as long &3(i) is nonempty, the invariantQ;| >
|Fi+1\ Fi| = 0 holds. Consider the work of procesd@r;; at some MRGESTEP. Either

Procedure UPDATE((, L)

MERGESTEP(Q); /* perform a merge step to ensure that last queue is non-empty */;
Associate a new processor I, with Q) and connect it to the pipeline; ’
Li «— L

Initialize F}, L; and Q;;

End of Procedure

FIG. 4. The UPDATE(Q, L) operation.
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Procedure DELETEMIN (Q)
MERGESTEP(Q);
if P; is the last processor then

MINELT « @Q;.first; Q;.remfirst;
fi;
End of Procedure

Procedure DELETE((Q, €)
MERGESTEP(Q);

if P; is the last processor then

File] « true;

/* Remove e from Q; using Q;[e] */

if Q;le] # L then Q;.remove(Q;[e]);
fi;
End of Procedure

FIG. 5. The DELETEMIN(Q) and DELETE(Q, €) operation.

|Fi+1 \ Fi| is increased by one, dQj| is decreased by one, but not both, since in the
case whereP ;1 outputs an element fron®; this element has been put inEp at some
previous operation, and in the case whée, outputs an element fromj,1 which
was also inQ;, this element has again been put irffp at some previous operation.
In both casegFi 1 \ Fi| does not change wheR 1 puts the element intd,1. The
work of P, ;1 therefore maintaingQ;| > |Fi1 \ Fi|; strict inequality is reestablished by
considering the work of? which either increasegQ;| or, in the case wher®, is not
allowed to put its elemerg into Q; (becausee € Fi1), decrease$Fi ;1 \ Fi| (because
eis inserted intoF). W

In procedure BDATE(Q, L) we need to initialize the array of forbidden elemefts
to false for all elements and each of the pointer arrdysand Q; to L. There is a
well-known solution to do this sequentially in constant time, see for instance [22, pp.
289-290]. This completes the proof of Theorem 1.

In Fig. 6 we show the situation of a sequential pipeline before and after applying
UPDATE. In the MERGESTEP-Operation processor®;, P, and P; select, respectively,
5(15), 2(12), and 1(10) to output. Note that 5(15) is not outpu@Qtoby P; because
5 € F,, and 2(14) is removed frorhy by P> too. As seen, the global minimum is the
smaller of the first elements ibs and Qs.

L; Q: F;
Py 5(15)4(17) 7(19) 2(12) 1(14) 123
P, 4(13)2(14) 5(11) 35
Py 1(10) 5(14) 4(18) 2(19)
Py 4017)7(19) 1(14) 1235
Py, 4(13) 5(11)2(12) 235
Py 5(14) 4(18) 2(19) 1(10) 1

Py 4(13) 6(15)

FIG. 6. A sequential pipeline before and aftePbATE(Q, 4(13) 6(15)).
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4.1. A Linear Space Implementation

For the linear pipeline implementation as described above it is possible to reduce the
O(ng) space required per processor for the forbidden sets and the arrays of pointers into
the output queues to a total 6f(ng+ m) for a sequence of queue operations involuing
elements, if we allow concurrent reading. Instead of maintaining the forbiddef;satsl
arraysL; and Q; explicitly, we let each occurrence of an element in the priority queue
carry information about its position (whether in some qu@yeor in L), whether it has
been forbidden and if so, by which processor. Maintaining for each element a doubly
linked list of its occurrences in the data structure makes it possible for procBssor
determine in constant time whether a given element has been forbidden for processor
P .1 and to remove it in constant time fro@; _1 whenever it is output fronk; and from
L; whenever it is output fron@Q; _1. In order to insert new elements on theseurrence
lists in constant time an array of siz®(ng) is needed. For elemermt this array will
point to the most recently inserted occurrencea@ivhich is still in Q). Occurrences of
e appear in the occurrence list efin the order in which update operations involviag
were performed.

At the ith UPDATE(Q, L) operation, each elemeetof L; (i.e., of L which is now
associated with the new procesdd) is linked to the front of the occurrence list ef
with a label that it belongs th; and pointers which allows it to be removed frdm
in constant time. Let us now consider a merge step of procdasaiVhen an element
e is chosen fromQ;_1, P looks at the next occurrence efin €'s occurrence list. If
this occurrence is irhj, it is removed, both froni; and from the list ofe-occurrences.

This eliminates the need for tHg array. It is now checked whetheris forbidden for

P +1 by looking at the next occurrence ef if it not marked adorbidden by Py 1, e is

output to Q;, marked adorbidden by P. If e was forbidden byP, ;1 this occurrence is

still marked as forbidden by, but not output. Ife is chosen fromL;, P, looks at the
previous occurrence df. If this is in Q;_1 it is removed from bothQ;_1 and from the

list of e-occurrences. This eliminates both the need for forbidden sets and the pointer
arraysQ;. It should be clear that consecutive occurrences afe never removed in the
same merge step, so the doubly linked lists of occurrences are properly maintained also
when different processors work on different occurrenceg.dflote, however, that all
elements inL; have to be linked into their respective occurrence lists before subsequent
merge steps are performed, so concurrent reading is needed. This gives the following
variant of the priority queue.

LEMMA 2. The operation$niT(Q) andEMPTY(Q) take constant time with one proces-
sor. TheDELETEMIN(Q) and DELETE(Q, €) operations can be done in constant time by
| Q| processors. The operatid#PDATE(Q, L) can be done in constant time by-| Q|+|L |
processors and assigns one new processor to Q. The priority queue can be implemented on
the CREW PRAM The total space consumption i1 + m), where ry is the maximum
number of elements allowed in the queue and m the total number of elements updated.

5. DYNAMICALLY RESTRUCTURING TREE PIPELINE

In this section we describe how to decrease the work done by the algorithm in Section 4
so that we achieve the result stated in Theorem 2. Before describing the modified data
structure, we first make an observation about the work done in Section 4.
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Intuitively, the work done by processd?, is to output elements by incrementally
merging its listL; with the queueQ;_1 of elements output by processBr_;. Processor
P terminates when nothing is left to be merged. An alternative bound on the work done is
the sum of thelistanceeach elemeng(d) belonging to a list; travels, where we define
the distance to be the number of processors that o@fjolit Since the elementd) in
L; can be output only by a prefix of the processBrs P11, ..., Pn, the distancex(d)
travels is at mosh —i + 1. This gives a total bound on the work done by the processors
of O(mn). The work can actually be bounded §(n?) due to the fact that elements
get annihilated by forbidden sets.

In this section we describe a variation of the data structure in Section 4 that intuitively
bounds the distance an element can travel ®gtog n), i.e., bounds the work by
O(m log n). The main idea is to replace the linear pipeline of processors by a binary
tree pipeline of processors of heigBt(log n).

We start by describing how to arrange the processors in a tree and how to dynamically
restructure this tree while adding new processors for eaebatiE operation. We then
describe how the work can be bounded ®ym log n) and finally how to perform the
required processor scheduling.

5.1. Tree Structured Processor Connections

To arrange the processors in a tree we slightly modify the information stored at each
processor. The details of how to handle the queues and the forbidden sets are given in
Section 5.2. Each processBr still maintains a list_; and a set of forbidden elemerfes.

The output of processd® is still inserted into the processor’s output quepg but P

now receives input from two processors instead of one processor. As for the linear pipeline
we associate two array®; andL; with the queueQ; and listL;. The initialization of

the arrayL; is done in the same pipelined fashion as for the linear pipeline.

The processors are arranged as a sequence of perfect binary trees. We represent the
trees as shown in Fig. 7. A left child has an outgoing edge to its parent and a right child
an edge to its left sibling. The incoming edges of a nod@me from the left child of
v and the right sibling ofv. Figure 7 shows trees of size 1, 3, 7, and 15. Each node
corresponds to a processor and the unique outgoing edge of a node corresponds to the
output queue of the processor (and an input queue of the parent processor). The rank of
a node is the height of the node in the perfect binary tree and the rank of a tree is the
rank of the root of the tree. A tree of ramk+ 1 can be constructed from two trees of
rankr plus a single node, by connecting the two roots with the new node. It follows by
induction that a tree of rank has size 2— 1.

@ @ﬁ@ 3 @
@) ©) ©) (3)
O—D O—D 5}—/@ @) ©)
D G-

FIG. 7. The tree arrangement of processors. Numbers denote processor ranks.
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1—1

FIG. 8. How to restructure the tree when performing4Te. Node names denote processor indices.

The processors are arranged in a sequence of trees of gamk_1, ..., ri, where
theith root is connected to thet+ 1st root as shown in Fig. 8. For the sequence of trees
we maintain the invariant that

rp <fp_1<fp2<---<Ilp<I1. 8

When performing an BDATE operation a new processor is initialized.rf < rp_1 the
new processor is inserted as a new rank one tree at the front of the sequence of trees
as for the linear pipeline. That (1) is satisfied follows fromxIp <rp_1 < --- <ry.
If rp = rp_1 we link the pth and p — 1st tree with the node corresponding to the
new processor to form a tree of rank#lrp_;. That (1) is satisfied follows from
14rp1 <rp_2 <rp_3 < --- < ry. Figure 8 illustrates the relinking for the case
whererp = rp_1 = 2 andrp_» = 4. Note that the only restructuring of the pipeline
required is to make the edgean incoming edge of the new node associated with pro-
cessorP,.

The described approach for relinking has been applied in a different context to construct
purely functional random-access lists [24]. In [24] it is proved that a sequence of trees
satisfying (1) is unique for a given number of nodes.

5.2. Queues and Forbidden Sets

We now give the details of how to handle the output queues and the forbidden sets
and how to implement the BRGESTEP operation. LetPj be a processor connected to
a processorP, i > j, by the queueQj. For the tree pipeline processét is only
guaranteed to output a subset of the element®(f) in nondecreasing order. For the
linear pipeline processdP; outputs exactly the se®(j).

Assume that processofs and P; were created as a result of thih and jth UPDATE
operations, respectively, > j. Let J; denote the set of elements deleted byLBrE
and DELETEMIN operations between thgh andith UPDATE operations. The important
property ofJ; is thatJ; are the elements that can be outputR)ybut are illegal as input
to P, because they already have been deleted prior to the creatiBn @fe represent
eachJ; as a Boolean array. How to handlg when restructuring the pipeline is described
later in this section. To guarantee th@4 does not contain any illegal input t8 we
maintain the invariant

Qj n (R U Jp=20. 3
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Our main invariant for the connection between processgrand P while processor
P; still has input left to be considered is (3), which intuitively states fahas output
more elements than the number of elements outpu® kptus the elements deleted before
the connection betweeR; and P is created.

I(F U D\ Fjl < [Fjp\ (R U Jpl. ®3)

We now describe how to implement theeRGESTEP operation such that the invariants
(2) and (3) remain satisfied. The basic idea of the implementation is the same as for the
linear pipeline. Processd?; first selects the elementwith smallest key inLj and the
input queues oP; in constant time. If na exists processoP; terminates. Otherwise,
all occurrences ob are removed fromlL; and the input queue®, of Pj using the
arraysfj and Q,, respectively, and is added toF;. If Qj is an input queue of;
andv ¢ F U Jj, thenv is inserted inQj. If v € F U Jj, thenv is not inserted into
Qj, since otherwise (2) would be violated.ufe F;, thenv has already been output by
processorP, and we can safely annihilate If v € Jj, thenv has been deleted from
Qk), j < k < i, and we can again safely annihilate That (3) is satisfied after a
MERGESTEP operation follows from an argument similar to the one given in the proof
of Lemma 1 for the linear pipeline: the work done by procesBgrwhen inserting a
new element intd~;, either increases the left-hand side of (3) by one or decreases the
right-hand side of (3) by one and thereby makes the inequaliffhe < is reestablished
by processoiPj which inserts a new element infg; this either decreases the left-hand
side of (3) by one or increases the right-hand side of (3) by one.

Invariant (3) allows us to leQ; become empty throughout aE®GESTEP operation,
without violating the correctness of the operation and witheubeing terminated. The
reason is thaF; \ (F U Jj) # @ implies that there exists an elemanthat has been
output by Pj (v € Fj) that neither has been deleted from the data structure bé&ore
was createdv ¢ Jj) nor has been output bR (v ¢ F). If Q; becomes empty, can
only be stored in an output queue of a processor in the subtree roogdlae to how
the dynamic relinking is performed, i.ex,appears in a queu@y, j < k < i. It follows
thatv has to be output by (perhaps with a smaller key becausgets annihilated by
an appearance af with a smaller key) before the next element to be outputPhycan
be output byP;. This means thaP, can safely skip to consider input from the empty
input queueQj, even if Q; later can become nonempty. Note that (3) guarantees that a
queue betweer,_; and P, always is nonempty.

We now describe how to implement theebhTE operation. The implementation is as
for the linear pipeline, except for the dynamic relinking of a single connection (edge
in Fig. 8) which is done after the BRGESTEP operation and the initialization of the new
processor. Assume th& is the newly created processor. Ti@t_; satisfies (3) and (2)
follows from the fact that)_; c Fi_1 (the MERGESTEP operation at the beginning of the
UPDATE operation implies that at least one element outpuPhy, has not been deleted)
andF = ¢. What remains to be shown is how to satisfy the invariants for the iyde
when Qj is relinked to become an input queue Bf and hence ceases to be an input
queue ofP, j < k < i (see Fig. 8). WherQ);j is relinked, Pj has output at leagtlj| + 1
elements in total|J;| for delete operations and one from theeRGESTEP operation at
the beginning of the BDATE operation). Becausg; = ¢ andi > j, it follows that (3)
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is satisfied after the relinking. To guarantee that (2) is satisfied we have to update
according to the definition and to update the qu&ye This is done as follows:

Qj < Qj\ Jj; Jj < JjuUJ_1U Kk

SinceQ; and Jj can be arbitrary sets it seems hard to do this updating in constant time
without some kind of precomputation. Note that the only connections which can be re-
linked are the connections between the tree roots.

Our solution to this problem is as follows: For eacBUBTE or DELETEMIN operation,
we mark the deleted elementasdirty in all the output queue®j, wherePj is a root
processor and); is an input queue to the root procesder If v ¢ Jj, then we insert
v into Jj as being marked dirty; otherwise, we do nothing. Whenever a q@guées
relinked we just need to be able in constant time to delete all elements marked dirty
from Qj and unmark all elements marked dirty dy. A new elemenu is inserted as
being unmarked int@;, if u ¢ F U Jj; and it is inserted as being marked dirty into
Qj, if u¢ F andu is marked dirty inJ;. A reasonably simple solution to the marking
problem, as well as to the insertion of the dirty elementdjinis the following. First,
note that each tim®); is relinked it is connected to a node having rank one higher, i.e.,
we can use this rank as a time stamp/Ve represent a queu®; as a linked list of
vertices, where each vertexhas two time stamped links to vertices in each direction
from v. The link with the highest time stamg t is the current link in a direction. A
link with time stampt + 1 is a link that will become active whe@j is relinked, i.e., we
implicitly maintain two versions of the queue: The current version and the version where
all the dirty vertices have been removed. The implementation of the marking procedure
is straightforward. To handle the Boolean arrdy it is sufficient for eachirue entry
to associate a time stamp. A time stamp equal 401 implies that the entry inJ; is
dirty. As described here the marking of dirty vertices requires concurrent read to know
the deleted element, but by pipelining the dirty marking process along the tree roots from
left to right, concurrent read can be avoided. This is possible because the relinking of
the tree pipeline only affects the three leftmost roots in the tree pipeline.

We now argue that the described data structure achieves the time bounds claimed in
Theorem 2, i.e., that the work done by the processors for tBRA¥STEP operations is
O(m logn). Observe that every restructuring of the pipeline takes constant time and the
total work done by the processors can be charged to the distance (in the sense mentioned
in the beginning of this section) thm elements travel. Elements can travel a distance
of at most 2 logn in a tree before they reach the root of the tree. However, there is an
additional distance to travel as a result of the fact that the root processors move elements
to lower ranked nodes. La&?j;, and Pj;,, be two root processors having rankandr; 1,
respectively, 1< i < p. The additional distance the elements, outputfyyand taken
as input byPj,_,, should travel is bounded by(12 — ri;1). Hence, the increase in the
total distance to travel along the root path for each of ih&lERGESTEP operations is
bounded by the telescoping sum

20ry—r2) + 202 —r13) +---+2(rp_1 —rp) <2 logn.

Consequently, the actual merging work is bounded @§2m logn + 2nlogn) =
O(m log n).



PARALLEL PRIORITY QUEUE WITH CONSTANT TIME OPERATIONS 19

L; Q; F; J;
s 4 3 P 423) 6(20)9(22) 12356789
P 9(25) 3(17)8(18) 1234578
) 21 Py 3(23)8(21) 5(14)7(15) 124567 26
Py 9(25) 5(26) 1(12) 3(13) 134
Py 1(11) 5(14) 8(18) 47 47
P 9(22) 123456789
6 3 P, 9(25) 8(18)6(20) 12345678
P 8121 1234567 2467
340241 Pooes) 3(13)5(14) 1345
Ps  5(14) 8(18) 1(11) 147 47

FPs  3(13) 1(15)

FIG. 9. A tree pipeline before and afterAOATE(Q, 3(13) 1(15)). Node numbers denote processor indices.

In Fig. 9 we show the situation of a tree pipeline before and after applyrmptE.
In the MERGESTEP operation processorBy, ..., Ps select, respectively, 4(23), 6(20),
3(17), 5(14), and 1(11) to output. Proces$arremoves 3(23) fromlz when selecting
3(17) from Q. Likewise processoPs removes 1(12) fron@Q4. Note that 4(23) and 3(17)
are not output becausedF, and 3¢ F4, and that 7(15) is removed froi®3; because
after restructuring the pipeline & Js.

5.3. Processor Scheduling

What remains is to divide th®(m log n) work among the available processors on
an EREW PRAM. Assuming thaD(m log n/n) processors are available, the idea is
to simulate the tree structured pipeline fox(log n) time steps, after which we stop
the simulation and irfD(log n) time eliminate the (simulated) terminated processors and
reschedule. By this scheme a terminated processor is kept alive foiQgidyg n) time
steps, and hence no superfluous work is done. In total the simulation @kedime.

6. FURTHER APPLICATIONS AND DISCUSSION

The improved single-source shortest path algorithm immediately gives rise to corre-
sponding improvements in algorithms in which the single-source shortest path problem
occurs as a subproblem. We mention here the assignment problem, the minimum-cost
flow problem, (for definitions see [1]) and the single-source shortest path problem in
planar digraphs. As usual,andm denote the number of vertices and edges of the input
graph, respectively. Note that the minimum-cost flow problem is P-complete [15] (i.e.,
it is very unlikely that it has a very fast parallel solution), while the assignment prob-
lem is not known to be in NC (only an RNC algorithm is known in the special case
of unary weights [21, 23] and a weakly polynomial CRCW PRAM algorithm that runs
in O(n?3 log? n log(nC)) time with O(n%3 log? nlog(nC)) work [14] in the case of
integer edge weights in the range(, CJ).

The assignment problem can be solvedrbgalls to Dijkstra’s algorithm (see, e.g.,

[1, Section 12.4]), while the solution of the minimum-cost flow problem is reduced to
O(m log n) calls to Dijkstra’s algorithm (see e.g., [1, Section 10.7]). The best previous
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(strongly polynomial) algorithms for these problems are given in [12]. They run on
an EREW PRAM and are based on their implementation of Dijkstra’s algorithm: the
algorithm for the assignment problem runs@in? log n) time usingO(nm-+n? log n)

work, while the algorithm for the minimum-cost flow problem runs@nm log? n)

time using O(m? log n + nmlog? n) work. Using the implementation of Dijkstra’s
algorithm presented in this paper, we can speedup the above results on a CREW PRAM.
More specifically, we have a parallel algorithm for the assignment problem that runs in
O(n?) time usingO(nm log n) work and a parallel algorithm for the minimum-cost flow
problem that runs irO(nm log n) time andO(m? Iog2 n) work.

Greater parallelism for the single-source shortest path problem in the case of planar
digraphs can be achieved by plugging our implementation of Dijkstra’s algorithm
(Theorem 3(ii)) into the algorithm of [30] resulting in an algorithm which runs in
O(n% 4+ n'~#) time and perform®(n*t#) work on an EREW PRAM, for any & & <
1/2. With respect to work, this gives the best (deterministic) parallel algorithm known
for the single-source shortest path problem in planar digraphs that runs in sublinear time.
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