
Pervasive Computing in Health Care: Smart Spaces
and Enterprise Information Systems

J. P. Black, W. Segmuller, N. Cohen, B. Leiba, A. Misra, M. R. Ebling, and E. Stern
IBM T. J. Watson Research Center

Hawthorne, NY 10532
{jpblack,ncohen,archan,ebling,estern}@us.ibm.com , {whs,leiba}@watson.ibm.com

Abstract— Middleware for pervasive computing is an active
area of research that is now starting to mature. Prototypical
systems have been developed and used for demonstration ap-
plications in a number of domains. However, realistic pervasive
environments of the future will need to integrate with enterprise
systems, including software, hardware, databases, standards,
and life cycle. Designing and implementing “enterprise-strength”
pervasive applications today is not an easy task, as we illustrate
with a simple case study of a healthcare scenario. We use the
case study to draw conclusions about requirements placed on
future pervasive systems.

I. I NTRODUCTION

As pervasive computing develops, there will be an evolution
from isolated “smart spaces” to more integrated enterprise
environments where the dream of unconstrained, ubiquitous,
pervasive computing will face the realities of enterprise re-
quirements, market forces, standardization, government regu-
lation, security, and privacy. These tensions are particularly
strong in the case of health care, given the promise of smart
spaces to improve care and lower costs, the many parties with
legitimate interests, and the medical and legal risks.

Our objective in this paper is to use a case study in
health care to shed light on the architecture of an “enterprise-
strength” pervasive-computing application, the current state of
the art, and the issues that remain to be addressed before
such a system becomes a practical reality. Our case study was
motivated by our own research in context technologies [1]–
[3], by which we mean reusable and scalable middleware to
ease the design, development, and deployment of applications
that sense and react to various types of contextual information
as it appears and changes dynamically. As well, we wished to
gain more experience with building and manipulating sources
of context data.

The next section presents a vision of a “smart hospital” as
a starting point for our case study. In Sect. III, we point out
a number of issues that need to be addressed to achieve the
vision. Sect. IV describes the various components that might
serve as a high-level design for a realistic future system. Since
our resources were limited, we were unable to prototype all
parts of the design, and so Sect. V describes our actual pro-
totype in more detail. Our experience with the demonstration
taught us some lessons and suggested issues that remain to be
addressed; these are discussed in Sect. VI. Finally, Sect. VII
presents our conclusions and some outstanding issues.

II. PERVASIVE HEALTH CARE TOMORROW

We present a scenario where context middleware, within
a few years, might assist in clinical-care business practices.
Patients are instrumented with vital-sign monitors and with a
means of determining their location. Physicians and nurses
have wireless PDAs, also instrumented with a means of
determining their location. Context-aware applications help
optimize physician rounds, support nurse triage, simplify the
user interface to pervasive devices, provide additional data for
billing reconciliation, and provide clinical communications.

A physician, Dr. Able, arrives on the second floor of the
hospital. A graphic appears on his PDA showing the rooms
assigned to his patients. Rooms are highlighted depending on
whether the patient is currently in the room, and ambulating
patients are notified that the doctor is making rounds. Relatives
waiting elsewhere in the hospital are also notified so that they
can go to the patient’s room to talk to the doctor.

As Dr. Able enters John Doe’s room, a subset of John’s
electronic medical record appears on the doctor’s screen.
Current and most recent “readings” appear, with the option
of confirming them as still valid, or updating them. Dr. Able’s
proximity to John is logged, for input to (or reconciliation
with) the hospital’s patient-accounting application. As the
doctor enters data and records orders, logs are created for
the accounting application. John’s wife Joann had wanted to
speak briefly to Dr. Able, and entered the request on the family
patient portal, since Dr. Able had enabled that facility for her.
Dr. Able’s proximity to John and his location in the hospital
room trigger a notification to Joann. She connects to the room
and is able to take part in the visit.

Jane Smith down the hall, also one of Dr. Able’s patients,
experiences difficulty breathing. The patient sensors, given her
medical history, trigger an alert that this is a serious condition;
notifications are sent to the assigned nurse (Nurse Baker),
to whatever nurse is nearest to Jane, and, since he is in the
hospital, to the primary physician, Dr. Able. Nurse Baker and
Dr. Able are notified when the nearest nurse enters Jane’s
room. If no one had, the nurse supervisor and supervising
physician would have been notified.

Dr. Able continues with John. Nurse Baker views her triage
list on her PDA, where her assigned patients are ordered
according to an assessment of their current need for her care
(from sensors, call buttons, and medical history, for example).



The ordering is determined by a combination of medical
practice and hospital policy. Nurse Baker does not see an
electronic chart, but rather a red-yellow-green summary of
vital signs along with the triage list. Jane is clearly most in
need of her help; the others are not in distress. Nurse Baker
goes to check on Jane, finding on her PDA where the nearest
available emergency cart is currently located, lest it be needed.
Nurse Baker thanks the responding nurse, and they agree that
Nurse Baker needs no further assistance from him at this time.

Dr. Able leaves John’s room, and now that he is no longer
“busy,” all pending notifications are given. There are two, one
from an outpatient with a chronic illness, who has been granted
direct access to reach the doctor. The other is an important (but
not urgent) lab result for Jane. He taps the lab result item, and
it appears on the PDA, along with a subset of her electronic
chart needed to make sense of the result. Dr. Able walks to
the nursing station and to an available plasma screen there
(such as a BlueBoard [4]), and touches “Start.” Based on his
proximity, the board presents Jane’s lab result and most recent
X-ray, along with a pick-list of patient data for the last three
patients seen and the closest three patients. Dr. Able reviews
Jane’s data, and decides what to do. At this point, he tells the
system to notify him immediately if any of Jane’s lab results
over the next twelve hours are not normal.

Context technologies are intended to support scenarios like
this. “Adapters,” connected to hardware sensors and software
probes, gather raw context information like vital signs, the
location of individuals, or their online/offline status. Higher-
level “composers,” developed in conjunction with medical pro-
fessionals, process information from the adapters to determine
conditions constituting medical alerts, summarize patient in-
formation for a nurse, or determine that a physician should be
notified. Context also feeds into back-end systems like patient
accounting, and causes notifications to be sent to people based
on a rich representation of communication semantics. Medical
device manufacturers provide context information in stan-
dardized form, and composer specifications help systematize
the exchange of higher-level information. New applications
are built and deployed quickly, improving patient care and
reducing nurse and physician workloads for routine situations.
Even so, healthcare providers remain in control and able to
understand and interact with the context-aware applications
and middleware.

III. PRACTICAL ISSUES INREALISTIC

PERVASIVE-COMPUTING SCENARIOS

Turning this vision into reality presents a number of signifi-
cant challenges with today’s communication media, hardware,
and software.

Dr. Able and Nurse Baker use their PDAs for communi-
cation and as client devices for the various healthcare appli-
cations. Is this communication over a public medium, such
as the (cellular) telephone network, or within some wireless
LAN managed by the hospital? Can the PDAs be used outside
the hospital? Which media should the PDA support? What

happens if a PDA user loses network connectivity momentar-
ily? How do patient-monitoring devices communicate with the
hospital, and how are details like the patient-device association
created, updated, and dropped? Would devices for outpatients
have to use different media than those for inpatients?

The scenario makes no mention of privacy, security, identi-
fication, or authentication, and yet these must be planned for
and guaranteed in fairly strong ways even without considering
mandated standards such as HIPAA (the Health Insurance
Portability and Accountability Act) in the US.

Dr. Able’s presence in John’s room is noted by the smart
space and linked to a back-end system for patient accounting.
This implies that the smart space has some robust, reliable
interface to the enterprise systems. How might these legacy
back-end systems and business processes change because of
the smart spaces? Might they need to be modified substantially,
or is it safe to assume they all have secure but convenient
interfaces accessible to the pervasive applications? How should
they be architected to best incorporate and leverage the pos-
sibilities of the smart spaces? What issues of scale might the
smart spaces impose on the enterprise applications?

How do Dr. Able and Nurse Baker view their day-to-day
work environment? Do the BlueBoard, PDA, and conventional
workstation all have the same set of applications available? Are
the application user interfaces identical across devices, or even
similar? Do the medical professionals have to switch devices
and interfaces often? Re-authenticate often?

And finally, if an entire hospital were under the umbrella
of a pervasive-computing system, with tens of thousands of
devices and thousands of patients and staff, what issues of
scale (beyond those of the enterprise systems) would arise?

IV. A RCHITECTURE

As we considered the overall architecture (see Fig. 1)
required for a system to implement the type of scenario
described above, we made some assumptions. First, we as-
sumed that a modern, web-based, multi-tier application and
development environment would continue to provide a viable
base for the future system. These environments provide end-
user access only through web browsers (the first tier), whose
HTTP interactions are with a web and application server
(the second tier), connected further with back-end enterprise
applications and databases (in one or more tiers). To provide
for identification, authentication, and customization by the
user, we further assumed the web server was in fact a portal
server, as is increasingly common in many enterprises.

End users authenticate and connect to the portal with a
conventional browser, and can customize and arrange the
“portlets” to which they are granted access. A portlet is a small
application component displayed as part of a single browser
page. One or more portlets cooperate to provide a logical
pervasive-computing application. In general, the portlets dis-
play information that changes dynamically, or in response to
explicit user-interface events from the user. Dynamic changes
require some active component in the browser, typically in-
volving a Java applet, JavaScript, or a similar technology.



Fig. 1. Architecture of Enterprise Pervasive-Computing Applications

PDAs have different form factors, display sizes, and user
interfaces than larger computers. However, we assume they run
full browsers that can initiate secure portal sessions, provide
JavaScript access to the browser’s document object model, and
execute Java applets. Browser technology and PDA capacities
are improving steadily, so we feel the assumption is not overly
constraining. In addition to this assumption on the browser
execution environment, we assume portlet developers will
leverage tools for multi-device authoring to enable access from
a range of devices.

User-interface events in the portal are handled by servlets
running in the execution context of the web server (the second
tier). For the purposes of Fig. 1, we imagine only presentation
logic in the servlets, while business logic is the responsibility
of the third-tier application.

The third tier is the core of the context-aware application.
Sensors, either hardware or software, generate raw data that is
presented by the context middleware to context-aware business
logic. This process includes any controls on privacy mandated
externally or by the application. The notification component
provides the application developer with convenient, context-
based facilities for communicating application information
to people. Other business logic may be present, including
components that interact with applications and data in other
tiers. We also show a database management system in the
figure, since effective use of context information may require
access to more static, conventional data.

Although the architecture is generic, we used specific IBM
products and research prototypes for the portal infrastructure
and the context-awareness, privacy, and notification middle-
ware. For definiteness, the description that follows includes
details of the particular components we used.

This architecture exploits a number of mechanisms avail-
able directly in enterprise servers such as WebSphere [5]
and WebSphere Portal Server (WPS) [6]. For example, we
assumed that an enterprise directory, connected to the web
server, would allow us to handle all issues of identification,
authentication, authorization, and encryption with standard
mechanisms in WPS. WebSphere provides a fully managed
application environment for Java servlets and enterprise Java
beans, including transaction management and database access.
It also has transcoding and device-specific functionality that
would be applied to the multiplicity of devices used to interact

with the system. Because we use browser technology, no other
client software would need to be deployed on the devices.

The components for context acquisition and analysis (Con-
text Weaver [1]), context-based notification (INS [7]), and
policy-based secure access to sensitive context information
(CPE [8]) are all recent IBM products or prototypes. We
describe each of them briefly.

Context Weaver is a platform for writing context-aware ap-
plications, and is extensible, scalable, and reusable. It separates
the concerns of accessing pervasive data from the concerns
of aggregating and analyzing it. All sources of context infor-
mation registered with a Context Weaver installation provide
data to applications through a simple, uniform, XML-based
interface. Applications access data sources not by naming
particular providers of the data, but by describing the kind of
data they need, and Context Weaver searches for an available
source of such data. If the source fails, Context Weaver
automatically rebinds the application to another provider of
the same kind of data, if there is one.

Providers of context information include not only devices,
services, and databases external to Context Weaver, but also
programmed entities called composers, which compose con-
text information from other data providers. Context Weaver
applications use composers and external sources of context
information interchangeably. The behavior of a composer is
specified in a nonprocedural manner, using building blocks that
interact with both passive and active providers of input context
information. The nonprocedural approach frees the application
developer from timing concerns, freeing her to concentrate on
the logical mapping from lower-level context information to
higher-level composed information.

The primary function of the Intelligent Notification System
(INS) is to deliver a message to users in the most convenient
fashion. The Notification Manager component of INS accom-
plishes this using preference data describing which devices to
use, at what times, for which users. We envision the use of
current context information both to deliver messages to users
fulfilling a particular role, and to determine the best medium
for delivering a message to a particular recipient.

We recognized that you could not responsibly build or
support context-aware applications without also controlling
access to the information. Many solutions we saw either
ignored the privacy issue or built systems to avoid it (making



the system significantly less useful). Instead, we chose to
address the problem directly.

The goal of the Context Privacy Engine (CPE) is to enable
control of access to personal context information, through the
specification of policies. Access can be managed through the
use of groups, reducing the number of policies required. CPE
also supports multi-level policies defining defaults that user
preferences can override, except when enterprise policies take
precedence. For example, if an enterprise outfits their vehicles
with location-reporting devices, they can create defaults that
allow all other employees to view the location information,
the drivers can override those defaults to reflect their own
wishes, but the enterprise can require that the dispatcher be
allowed to access the location information regardless of the
drivers’ wishes. Architecturally, Context Weaver and CPE are
independent components that can be configured to be aware
of and leverage each other.

A final component publishes dynamic context information
into a portlet page. In the normal case of a web page (including
a portal/portlet page), any changes to the information on the
page after it is rendered initially can only result from some sep-
arate thread of execution running in the browser at the client.
In the case of context information originating and changing at
some distant source, we need some general mechanism that
can subscribe to the changing values, and block awaiting their
arrival. One could imagine a Java applet issuing the requisite
Context Weaver queries, and then rendering the resulting XML
dynamically, once on initial page load, and as context changes
arrived. The applet would execute in the browser, in the box
labeled “Dynamic Content” in Fig. 1.

V. DEMONSTRATION SCENARIO

Before describing what we were able to prototype, we
describe a fuller implementation, concentrating in particular
on the sensors, adapters, composers, and context middleware.
We need location sensors for people and medical carts, and
medical devices (including call buttons) producing digital
sensor readings. Adapters would need to be written for each,
as would composers for higher-level context such as the co-
location of a doctor and a patient or the last three patients
seen by a doctor.

Our early experimentation with radio frequency identifi-
cation (RFID) tags [9] suggests current products would be
sufficient for locating people and equipment, assuming each
patient room has a reader, and that there are other readers
deployed throughout the hospital infrastructure. Patients have
RFID tags as bracelets, medical staff have RFID tags as
badges, and carts have tags attached to them. The adapter for
the readers associates each reader with a hospital location, and
a particular tag with a patient, doctor, nurse, or cart. Tag events
are converted by the adapter to XML data giving hospital
locations of individuals and carts.

Adapters for medical devices convert telemetry to an XML-
based format that includes a unique device identifier. Device
identifiers are associated with patients through some hospital
business process that depends on the device characteristics and

hospital policy. RFID tags and the co-location of devices and
patients can be used in implementing a particular process.

Above the device level, composers filter and aggregate data.
Doctor-location events trigger the display of a particular floor
map in the doctor’s portal, populated with visual indications of
any patients located on the same floor. A “patient-visit” com-
poser uses a doctor’s list of patients, the patients’ locations,
and the doctor’s location to generate a context event whenever
the location of the doctor matches that of one of the patients.
Business processes that subscribe to those context events use
patient-visits for billing, presenting patient information to the
doctor, or notifying Joann of Dr. Able’s visit to John. A very
simple composer tracks the last three patient-visit events for
the doctor’s portlet. A slightly more complicated one computes
the three closest patient locations.

Some context information is acquired from software such
as instant-messaging applications or operating systems. We
have an adapter for Lotus Sametime, IBM’s instant-message
suite, that provides conventional “Active,” “Do Not Disturb,”
or “Unavailable” status, and indications of what application
is active. Composers can use this and other information (such
as calendar entries) to compute an indication of whether a
doctor can be interrupted. In our scenario, the notification
infrastructure refuses to deliver notifications during patient
visits unless they are critical.

Clearly, the scenario required significant pruning for the
purposes of building a modest demonstration. Nevertheless,
we wanted to build a demo that was architecturally realistic
and true to the vision of the scenario. To that end, we built
a simple portal application with WebSphere Portal Server and
Context Weaver, rather than including all the components of
Fig. 1.

We decided to concentrate on what we came to call the nurse
triage portlet, and a patient portlet that provides additional
information. The triage portlet provides a nurse with a list
of the patients in his/her ward, sorted by the seriousness of
current alerts. The alerts are context information, originating
in various devices that monitor each patient, such as blood
pressure, heart rate, or body temperature. This raw telemetry
for a patient is processed by a Context Weaver composer that
encapsulates medical knowledge for evaluating the seriousness
of the combined patient context, and generating appropriate
alerts for the nurse. Fig. 2 shows the run-time structure of the
system for a nurse with two patients.

At the top of the figure, the two portlets are implemented as
in Fig. 1: the user accesses them through a client web browser,
the portlets are rendered by WebSphere via Java Server
Pages (JSPs), and the underlying portal application executes
in WebSphere Application Server, with external connections
to a Context Weaver server and a relational database. The
“business logic” obtains information from the database about
patients and nurses, while the “context-aware business logic”
is implemented in Context Weaver composers that provide
patient alerts and telemetry.

At the bottom of the figure, patient monitors feed raw
telemetry into Context Weaver, where it is merged by the



Fig. 2. Demonstration Healthcare Application

patient composers into one source per patient. This source
is analyzed by a second level of composers to identify alerts,
which, in turn, are fed to the nurse composer. This data is
then published to individual Java Messaging Service (JMS)
“topics” and rendered in the portlets. The dotted line from the
middle publisher indicates that the patient portlet is currently
displaying information from Patient 2 rather than Patient 1.

Alerts are presented on the user’s display in real time. In the
triage portlet, the arrival of an alert reorders the list of patients
and alerts dynamically. Each patient has an associated button
that can be pushed to cause the patient portlet to display more
information. The patient portlet also changes dynamically in
response to alerts or underlying telemetry changes that may
not be significant enough to cause an alert.

Fig. 2 glosses over issues that are architecturally significant.
For example, we had neither real patients nor real medical
devices. We wrote simple Java applications with a user inter-
face to control the streams of telemetry from the simulated
monitors, and the associated adapters to produce the XML
data from the telemetry. We were also unable to include INS
and CPE in the prototype, due to lack of human resources.

We used JDBC links with a simple database to augment
the raw context information with more static information: the
database implemented a simple model of nurses, their patients,
patient biographic information, monitors, patient medication,
and so on. This was an important demonstration point, since
realistic context systems will of necessity rely on additional
information external to them. The database was used both by
Context Weaver (composers, adapters, and related elements)
and by the portlet applications themselves.

Using dynamic HTML to maintain real-time information
in the portlet pages is itself an interesting exercise. The most
direct solution would be to use a Java applet that implemented
a Context Weaver client. Since the existing Java client was

not engineered with applets in mind, we chose a different
approach that had the advantage of reusing a small “web
messaging” applet on the portlet page. The applet subscribed
to the JMS topics from the publishers, but this did not deal
with the initial values displayed on the page. Waiting for all
patients to produce an alert or a clear indication might take
minutes or even hours. While Context Weaver data providers
make their current values available on request, JMS topics have
no such feature, forcing us to a second method for acquiring
and displaying the initial values of patient data. The servlets
query Context Weaver for the initial XML data, and place it
in a string constant in the page source, so that, in the browser,
it can be parsed and displayed with the same JavaScript code
as each JMS message received from a publisher. Although
this reuses at least some of the code for initial and ongoing
rendering, the initialization is very awkward and inelegant.

VI. W HAT HAVE WE LEARNED?

Although our demonstration prototype was very modest, it
taught us a number of lessons about pervasive systems and
their use in an enterprise context.

In our prototype, we chose to transform the Context Weaver
data from XML into dynamic HTML at the browser. We used
browser methods to parse the XML into a DOM (document
object model) object, and JavaScript to combine it with the
DOM tree of the page. This approach could be generalized
in several ways. One would be to replace the JavaScript
functions with a call to a browser method that applies an XML-
stylesheet transformation to it. However, those facilities are
not yet standardized. Also, if a different context middleware
infrastructure were used that did not produce XML-based
data, this approach would fail. We are now seeking more
general approaches to convenient dynamic inclusion of context
information into web (or portal) pages. We expect this to result
in a number of Context Weaver tools, including one that uses
XSL or other transforms in the second tier to minimize the
computation in the browser. Those tools would presumably be
general enough to apply transformations to non-XML data.

Mounting a convincing proof of concept, especially in the
medical domain, is a daunting undertaking. At a technical
level, the architecture of Fig. 1 includes many complex tech-
nologies that need to be assimilated by the designers and de-
velopers of the complete system; it is hardly an exaggeration to
say that each tier and component of the architecture brings its
own, significant, learning curve. There are plausible features of
our demonstration that we did not even attempt to prototype:
acquiring actual medical devices and writing Context Weaver
adapters for them, obtaining medical expertise for plausible
composers for the patient and nurse alerts, understanding
HIPAA well enough to include CPE in a meaningful way,
or attempting to use an actual fourth-tier medical application.

The generality necessary to incorporate pervasive-com-
puting applications into an enterprise setting exacts a cost in
terms of performance and complexity. In spite of the power
of modern desktops, laptops, PDAs, and servers, responsive
pervasive-computing applications will still require significant



attention to performance issues for the foreseeable future. This
is likely to remain true as open standards continue to develop.
While they indeed enable interoperability, they always push
the edge in terms of performance and responsiveness.

Perhaps the most important lesson we learned, however, is
related to the overall integration issues we hope our scenario
has illuminated. For enterprise pervasive computing to become
a reality in a hospital, significant issues have to be faced
in identifying and integrating role-based authentication, not
only across the enterprise, but “down” into even the small
devices and applications of pervasive computing. Our intuition
suggests the same would be true in other enterprises. Other
integration points such as databases and enterprise applications
also add code and complexity, putting pressure on how light-
weight the applications can in fact be. Designing pervasive-
computing applications for this enterprise environment will
remain a challenge for some time to come.

VII. C ONCLUSIONS ANDOUTSTANDING ISSUES

Enterprise smart spaces like the healthcare scenario we
consider can only become common with the emergence of an
“ecology” of pervasive computing that runs the gamut from
device adapters for raw context to packaged applications that
both observe their context and take action in it. To date, our
efforts have been concentrated on context awareness, and so
the outstanding issues we have identified tend to be motivated
by Context Weaver and related components.

A context service like Context Weaver can amortize the cost
of incorporating new sources of context across many context-
aware applications and services, and provide application devel-
opers with a common API for context information. This can be
the core of an ecology, where standardization of context data
and access to it provide the foundation for many context-aware
pervasive applications.

Despite couching our discussion in terms of Context
Weaver, INS, and CPE, we believe strongly in the gen-
eral architectural importance of middleware. For pervasive
computing to become common, there need to be standards,
conventions, interfaces, protocols, and tools that foster the
participation of a wide range of system components in the
pervasive environment. In turn, this systematization enables
middleware to provide value by insulating components from
proprietary interfaces and providing layers of abstraction to
ease the developer’s task.

Although we do not discuss them in this paper, the standard
issues in mobile computing of effective mobility, intermittent
connectivity, and fault tolerance remain important impedi-
ments to an enterprise placing reliance on small and mobile
devices for mission-critical functions.

We mentioned issues of multiple user interfaces in the
scenario, and whether the working environment of the health-
care professionals would be so fragmented across devices and
applications that it would be unwieldy. This requires careful,
system-level attention to computer-human interaction issues,
and may prove quite a significant barrier.

Finally, pervasive computing scenarios and prototypes per-
mit few conclusions to be drawn about how these applications
might scale in an enterprise setting, with many users, applica-
tions, devices, interfaces, and communication media. However,
our architecture builds upon scalable enterprise solutions like
WebSphere application and portal servers, and relational enter-
prise database technology (DB2, in our case). The prototype
software, including Context Weaver, INS, and CPE, has been
designed with enterprise requirements in mind, and so we
believe the application architecture has the potential to scale
to the size suggested by our hospital scenario. Real experience
would be extremely valuable, but also seems unlikely in the
near future.

ACKNOWLEDGMENTS

We are very grateful to Paul Castro for help with the
mocked-up hospital database, and especially to Gerry Buttner
and the rest of Chitra Dorai’s team at the T. J. Watson Research
Center for the use of their “web messaging” tools. Rose
Williams, Ponani Gopalakrishnan, and Lorraine Herger were
instrumental in devising the medical scenario and supporting
our efforts. (Jay Black is on sabbatical from the School
of Computer Science, University of Waterloo, Ontario. His
permanent e-mail address isjpblack@uwaterloo.ca .)

REFERENCES

[1] H. Lei, D. M. Sow, J. S. Davis II, G. Banavar, and M. R. Ebling, “The
design and applications of a context service,”Mobile Computing and
Communications Review, vol. 6, no. 4, pp. 45–55, 2001.

[2] N. H. Cohen, H. Lei, P. Castro, J. S. Davis II, and A. Purakayastha,
“Composing pervasive data using iQL,” inProc. 4th IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA 2002). IEEE,
June 2002, pp. 94–104.

[3] N. H. Cohen, A. Purakayastha, L. Wong, and D. L. Yeh, “iQueue: A
pervasive data composition framework,” in3rd International Conference
on Mobile Data Management (MDM 2002). Singapore: IEEE, January
8–11 2002, pp. 146–153.

[4] A. Crabtree, T. Rodden, T. Hemmings, and S. Benford, “Social aspects
of using large public interactive displays for collaboration,” inProc. Ubi-
Comp 2002, the 4th International Conference on Ubiquitous Computing,
ser. LNCS, no. 2498. Springer-Verlag, September 29–October 2 2002,
pp. 229–236.

[5] WebSphere software platform. IBM. [Online]. Available: http://www.
ibm.com/websphere

[6] WebSphere Portal for Multiplatforms. IBM. [Online]. Available:
http://www.ibm.com/software/genservers/portal/

[7] V. Bazinette, N. H. Cohen, M. R. Ebling, G. D. H. Hunt, H. Lei,
A. Purakayastha, G. Stewart, L. Wong, and D. L. Yeh, “An intelligent
notification system,” IBM Research Division, Thomas J. Watson Research
Center, P. O. Box 704, Yorktown Heights, NY 10598, IBM Research
Report RC 22089 (99042), June 2001.

[8] M. Blount, J. S. Davis II, M. R. Ebling, W. Jerome, B. Leiba, X. Liu,
and A. Misra, “Context privacy engine: A system for managing privacy
in context-aware computing environments,” March 2004, submitted to
Middleware 2004, 14pp. in ms.

[9] RFID.org home page. Association for Automatic Identification
and Mobility (AIM). [Online]. Available: http://www.aimglobal.org/
technologies/rfid/


