
BitBakeBitBake & & OpenEmbeddedOpenEmbedded

pastpast, , presentpresent, and , and futurefuture

Michael 'Mickey' LauerMichael 'Mickey' Lauer

Richard 'RP' PurdieRichard 'RP' Purdie

Holger 'Zecke' Holger 'Zecke' FreytherFreyther

0

10

20

30

40

50

60

70

80

Dez 0
3

Mrz
04

Ju
n 0

4
Sep

 04
Dez 0

4
Mrz

05
Ju

n 0
5

Sep
 05

Dez 0
5

Mrz
06

Ju
n 0

6
Sep

 06

Machines
Contributors

0

10

20

30

40

50

60

70

80

Dez 0
3

Mrz
04

Ju
n 0

4
Sep

 04
Dez 0

4
Mrz

05
Ju

n 0
5

Sep
 05

Dez 0
5

Mrz
06

Ju
n 0

6
Sep

 06

Machines
Contributors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Dez 03
Feb 04
Apr 0

4
Ju

n 04
Aug 04

Okt 0
4

Dez 04
Feb 05
Apr 0

5
Ju

n 05
Aug 05

Okt 0
5

Dez 05
Feb 06
Apr 0

6
Ju

n 06
Aug 06

Okt 0
6

Pa
ck

ag
es

Packages

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Dez 03
Feb 04
Apr 0

4
Ju

n 04
Aug 04

Okt 0
4

Dez 04
Feb 05
Apr 0

5
Ju

n 05
Aug 05

Okt 0
5

Dez 05
Feb 06
Apr 0

6
Ju

n 06
Aug 06

Okt 0
6

Pa
ck

ag
es

Packages

2

AgendaAgenda

● What‘s it?

● What‘s new?

● What‘s coming?

3

The BitBake Task ExecutorThe BitBake Task Executor

bitbake foo
1. parsing data from all recipes it‘s instructed to find

2. For each recipe
1. Builds a storage area to hold the metadata that comes from

the local environment, the recipe itself, the data in the build classes a recipe include.

2. Computes task dependencies

3. Builds a combined task graph containing all tasks from all recipes

4. Builds all task dependencies for „foo“
1. generates a shell script on-the-fly out of the metadata

2. runs the shell script

5. Builds all tasks listed in recipe providing „foo“

BitBake Recipes Task Graph Binary Packages Flash Image

4

BitBake Recipe StructureBitBake Recipe Structure

● Declarative Language
● Operators: =, =+, +=, ?=, ~=
● Two different kinds of data:

� Non-executable
FOO = "bar"

� Executable
do_foo() {

bar }
FOO = "${@python code here}

DESCRIPTION = "GNU nano is an enhanced clone of the Pico text editor."
HOMEPAGE = "http://www.nano-editor.org/"
LICENSE = "GPLv2"
SECTION = "console/utils"
DEPENDS = "ncurses"

SRC_URI = "http://www.nano_editor.org/dist/v1.3/nano-${PV}.tar.gz \
file://glib.m4"

inherit autotools

do_configure_prepend() {
install -m 0644 ${WORKDIR}/glib.m4 m4/

}

● Three different file types:
.conf -> configuration data
.bbclass -> (build) class
.bb -> package recipe
.inc -> include file

● Common tasks:
� fetch, unpack, patch
� configure, compile
� Install, package

5

The OpenEmbedded Metadata RepositoryThe OpenEmbedded Metadata Repository

A A repositoryrepository containingcontaining everythingeverything** necessarynecessary to to buildbuild softwaresoftware fromfrom scratchscratch

● Build classes containing common tasks, e.g. support for buildsystems
� autotools

� qmake

� python distutils

� gettext

● Machine configurations for
� common architectures, developer boards

� PDAs like Zaurus, iPAQ, HTC

� WebPads like SIMpad, Nokia 770

� Network Routers like LinkSys WRT54

� Network Attached Storage like LinkSys NSLU2

� GSM Phones like Motorola A780, FIC Neo1973

● Distribution policies like packaging, naming, preferred toolchain, versions, …

● Recipes (over 4000 nowadays) describing how to build software
� Descriptions & Licenses

� Source locations & Patches

� Dependencies

6

What‘s new in BitBake?What‘s new in BitBake?

● More consistency

● Speed and Memory Improvements

● Modularization of core

7

Consistent depends/rdepends handlingConsistent depends/rdepends handling

● Reminder
� Differenciating build time dependencies and run time dependencies

� foo.bb: DEPENDS = “bar” ~> foo needs bar to build

� foo.bb: RDEPENDS = “bar” ~> foo needs bar to run

● Problem
� Run time dependencies don’t necessarily end up in images, because

nothing DEPENDS on them, hence they don’t get built at all

● Workaround
� DEPENDS being a superset of RDEPENDS

� Ugly and compromising metadata

● Solution
� Change BitBake

� BitBake now knows about RDEPENDS and builds runtime providers as well

● Result
� Clean metadata

� Automatic RDEPEND handling

8

Speeding up BitBake, Part 1Speeding up BitBake, Part 1

● Memory Usage Improvements
� True CoW for the data store
� Don't hold all metadata in memory, only current recipe

● Speeding up uncached parsing
� Profiling
� Optimize frequently used loops
� Mini caches for variable expands, functions, OVERRIDES

● Speeding up cached parsing
� Old-style cache grew up to ~400MB on disk – I/O bound, nearly slower than

reparsing
� Rethink cache, extract only the needed data = 10MB cache
� Throw away the rest of parsed data, faster to reparse at recipe build time
� Now near instant rebuild if cache is unchanged
� Still: Changing a class or a conf file requires full reparse

● Don‘t generate world dependency tree
� Previously BitBake always computed a dependency tree

not considering what was actually requested
� It no longer does

9

Speeding up BitBake, Part 2Speeding up BitBake, Part 2

● Multithreaded builds to make best use of system resources
● Different tasks use different system resources

� (fetch, unpack, compile) => (network, I/O+CPU, CPU)
● Problems with previous BitBake core

� Makes the build path up as it goes along after each recipe completes
� Recipe based granularity, not task based
� Complicated by multiple providers, try each in order of preference

● Solution
� Create new datamodel to hold task dependencies (taskdata.py)
� Taskdata is compiled to form a runqueue
� Upon failure, update taskdata and build new runqeue from it

● Result
� Task based granularity
� Each task runs in its own thread
� Controlled by BB_NUMBER_THREADS

● Future Plans
� Indicate task resource usage
� Match against available system resources

10

Separating BitBake Frontend/BackendSeparating BitBake Frontend/Backend

● First, there was the bitbake executable
� Using lib/bb/*

● Then there was OE commander
� PyQt-based command center

● To ease reparsing woes, I wrote the Shell (bitbake -i)
� Required some refactoring to reuse lib/bb/*
� Still a lot of quirks due to a non-consistent state

● Lots of users request a nice UI frontend
� Even more so, now that we have multithreaded building

● First though, we needed a thorough split of BitBake into
� Backend (building recipies)
� Frontend (UI for selecting what to build and showing build progress)

� Later, something more fancy IDE-style

● Result
� BitBake goes Client/Server
� Additional benefit: Remote / Distributed building

11

What‘s new in OpenEmbedded?What‘s new in OpenEmbedded?

● More Policies

● Less redundancy

● Quality Assurance

12

s/task-bootstrap/task-base/s/task-bootstrap/task-base/

● task-bootstrap ~> minimum amount packages to get a device „up
and running“

● Problems
� „up and running“ is wish-wash

� different machines have different capabilities

� different distributions have different requirements

� People started (ab)using BOOTSTRAP_EXTRA_(R)DEPENDS to put all kinds
of things into resulting images -> duplicated work, confusing for new users

� But: How to define a task-bootstrap that fits all possible combinations of
machine and distribution configurations?

● Solution
� A fine grained mechanism computing dependencies on-demand

� A distribution.conf requests the features a distribution wants
DISTRO_FEATURES = „nfs smbfs ipsec wifi ppp alsa pcmcia usbhost"

� A machine.conf states the machine capabilities
MACHINE_FEATURES = "kernel26 apm alsa pcmcia bluetooth"

Â task-base combines MACHINE_FEATURES w/ DISTRO_FEATURES

13

Unifying autotools site filesUnifying autotools site files

● Reminder
� Autotools contains makefile generator and runs tests on the build platform to check

for capabilities and specifics
� Since we can’t run cross-binaries, we feed prepopulated site files containing test

results

● Problem
� Duplicated work, since every tuple of { architecture, byte endian, libc } needs one

● Solution
� Introduce common site files and generate the appropriate one on demand

● Result
� Clean metadata
� Automatic updates

ac_cv_sizeof_int=${ac_cv_sizeof_int=4}
ac_cv_sizeof_int_p=${ac_cv_sizeof_int_p=4}
ac_cv_sizeof_long=${ac_cv_sizeof_long=4}
ac_cv_sizeof_long_int=${ac_cv_sizeof_long_int=4}

arm-common arm-linux common-glibc endian-little mipsel-linux-uclibc
powerpc-linux-uclibc x86_64-linux armeb-linux arm-linux-uclibc
common-uclibc ix86-common powerpc-darwin sh-common
x86_64-linux-uclibc armeb-linux-uclibc common endian-big
mipsel-linux powerpc-linux sparc-linux

14

STAGING_BINDIR changesSTAGING_BINDIR changes

● Reminder
� STAGING_DIR is the area where a recipe installs files which may be needed

later
� STAGING_INCDIR contains header files to include
� STAGING_LIBDIR contains libraries to link against
� STAGING_BINDIR contains binaries for the build architecture

● Problem
� One staging directory, three types of binaries: Host, Target, Cross

● Solution
� Introduce multiple staging directories:

STAGING_BINDIR_NATIVE, STAGING_BINDIR, STAGING_BINDIR_CROSS

● Result
� STAGING_BINDIR_NATIVE and STAGING_BINDIR_CROSS already in PATH
� Required vetting references to STAGING_BINDIR
� Allowed simplification of classes like binconfig
� Removes one barrier to packaged staging
� Simplifies QEmu usage

15

DevshellDevshell

● Problem
� Manually recompiling a package in-place needs

recreating the OpenEmbedded environment

● First Shot
� Devshell recipe – generate script that sets up environment

� Didn't fit well within the framework

� Needed fiddling for debugging existing packages

● Second Shot
� Dedicated DevShell task

� Appears for every recipe

� Drops to a shell within that recipe's environment

� Idea of "interactive" tasks within BitBake

● Usage
� bitbake -c devshell <bbfile>

● Future
� UI-Integration

16

Debug PackagesDebug Packages

● Problem
� Debug information usually not present in builds

� Debug builds are _HUGE_

● Solution
� Debug information can be shipped seperatly

� Always build seperate debug packages (foo-dbg)

● Effort necessary
� Change package.bbclass to spit out the .debug binraries and link to the

original (5 lines)

� Add FILES_${PN}-dbg entry to bitbake.conf (1 line)

� Change 25% of malformed FILES_ entries to catch up

● Result
� Get started with debugging earlier

� Improved metadata

17

Debian PackagesDebian Packages

● Problem
� Debian packaging desirable
� Ipkg close, but no cigar
� Making it possible to replace ipkg with dpkg + apt

● Solution
� Yank ipkg assumptions spread over parts of OE including variable names

� IPKG_INSTALL ~> PACKAGE_INSTALL
� IPKG_EXTRA_ARCHS ~> PACKAGE_EXTRA_ARCHS

● Required restructuration
� Package classes
� Image classes

● Result
� Classes now clean for all kinds of packaging
� Dpkg/apt has no real understanding of compatitble architectures like ipkg
� Solved by using separate feed per arch and

careful feed configuration

18

Configuration time QA: Sanity.bbclassConfiguration time QA: Sanity.bbclass

● Problem
� People hitting same configuration issues again and again

� OE developers bored of answering the same things

● Solution
� Write BitBake class that automatically checks the user's configuration

� Can easily be disabled if you understand BitBake (and not if otherwise☺)

� Most core devs thought they'd hate it but have hit useful warnings too

● Result
� "Please set TARGET_OS directly, or choose a MACHINE or DISTRO that does

so"

� "Please use ASSUME_PROVIDED +=, not ASSUME_PROVIDED = in your
local.conf"

� "DISTRO '%s' not found. Please set a valid DISTRO in your local.conf"

� "Your installation is missing the following utilitites:
GNU make, patch, texi2html"

� "You do not include OpenEmbedded version
of conf/bitbake.conf"

19

Compile time QA: Fail-Fast OverrideCompile time QA: Fail-Fast Override

● Set of patches to toolchain to make it abort on common mistakes

● Example: Detecting local paths when cross compiling

● Usage:
� OVERRIDES = "<…>:fail-fast"

| if arm-linux-gcc -march=armv5te -mtune=xscale -DHAVE_CONFIG_H -I. -
I/local/pkg/oe/spitz/tmp/work/armv5te-linux/nano-1.3.9-r0/nano$
-Iintl -DLOCALEDIR=\"/usr/share/locale\" -DSYSCONFDIR=\"/etc\" -
isystem/local/pkg/oe/spitz/tmp/staging/arm-linux/include -
I/usr/include -fexpensive-optimizations -fomit-frame-pointer -
frename-registers -O2 -MT$ -MF ".deps/move.Tpo" -c -o move.o move.c;
| then mv -f ".deps/move.Tpo" ".deps/move.Po"; else rm -f
".deps/move.Tpo"; exit 1; fi
| CROSS COMPILE Badness: /usr/include in INCLUDEPATH: /usr/include
| cc1: internal compiler error: in add_path, at c-incpath.c:362
| Please submit a full bug report,
| with preprocessed source if appropriate.
| See <URL:http://gcc.gnu.org/bugs.html> for instructions.
| CROSS COMPILE Badness: /usr/include in INCLUDEPATH: /usr/include
| Please submit a full bug report,

20

Packaging time QA: Insane.bbclassPackaging time QA: Insane.bbclass

● Quality-Insurance

● Inspired by Portage and (early) bug reports

● Post-packaging Checks
� Package RDEPENDS on a –dbg package

� .debug directories not in .dbg package

� ABI and MACHINE of resulting binary don't match

� Bogus entries in staged pkg-config and libtool files

� Incorrect permissions of files

� Security issues with RPATH for binaries

● Usage:
� INHERIT += insane.bbclass

21

Using Qemu in/with OpenEmbeddedUsing Qemu in/with OpenEmbedded

● Problem
� Locales had to run on the device, often OOM

● Solution
� Generate using qemu binary execution

● Qemu can also run systems

● Openedhand developed pseudo machines in Poky
� MACHINE = "qemuarm"

� MACHINE = "qemux86"

● Generated images run under Qemu system emulation mode

● Poky has scripts to make this as easy as "runqemu"

● Allow tests to be run on OE images without presence of hardware

22

Testing Infrastructure (wishlist)Testing Infrastructure (wishlist)

● Regularly compiling different configurations
● Reporting status to central server
● Interconnecting

� Bugtracker
� Compile results
� Installation results
� Runtime results
� Commits

● Browser interface to track progress for
� Single packages
� Distributions
� Architectures

● Use monotone to attach test results to bitbake files
● Regression suit

� Upload package, install it, execute test suite
� Upload coverage and results

● Do that 24/7

23

Tiny little thingsTiny little things

● New mailing lists @ lists.openembedded.org
� openembedded-issues

� openembedded-users

● Monthly Bugsquash Event
� every last weekend a month

● Removal of MAINTAINERS

● Oe-stylize

● Interactive Patch Resolve Mode

● BitBake & OpenEmbedded goes Debian
� bitbake.deb

� task-openembedded-essential.deb

24

What‘s coming?What‘s coming?

● More Quality

● Support for new OSes
� OE is supposed to be OS-agnostic

● More package formats
� rpm

● Stable Snapshots
� Frequently

� Stabilization Phase

� Test Phase

� Release

● Public buildserver
� Once remote BitBake access is finished

● OE Book
� Dual release (german/english)

� OpenSourcePress.de

