
BitBakeBitBake & & OpenEmbeddedOpenEmbedded

pastpast, , presentpresent, and , and futurefuture

Michael 'Mickey' LauerMichael 'Mickey' Lauer

Richard 'RP' PurdieRichard 'RP' Purdie

Holger 'Zecke' Holger 'Zecke' FreytherFreyther

0

10

20

30

40

50

60

70

80

Dez 0
3

Mrz
04

Ju
n 0

4
Sep

 04
Dez 0

4
Mrz

05
Ju

n 0
5

Sep
 05

Dez 0
5

Mrz
06

Ju
n 0

6
Sep

 06

Machines
Contributors

0

10

20

30

40

50

60

70

80

Dez 0
3

Mrz
04

Ju
n 0

4
Sep

 04
Dez 0

4
Mrz

05
Ju

n 0
5

Sep
 05

Dez 0
5

Mrz
06

Ju
n 0

6
Sep

 06

Machines
Contributors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Dez 03
Feb 04
Apr 0

4
Ju

n 04
Aug 04

Okt 0
4

Dez 04
Feb 05
Apr 0

5
Ju

n 05
Aug 05

Okt 0
5

Dez 05
Feb 06
Apr 0

6
Ju

n 06
Aug 06

Okt 0
6

Pa
ck

ag
es

Packages

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Dez 03
Feb 04
Apr 0

4
Ju

n 04
Aug 04

Okt 0
4

Dez 04
Feb 05
Apr 0

5
Ju

n 05
Aug 05

Okt 0
5

Dez 05
Feb 06
Apr 0

6
Ju

n 06
Aug 06

Okt 0
6

Pa
ck

ag
es

Packages

2

AgendaAgenda

● What‘s it?

● What‘s new?

● What‘s coming?

3

The BitBake Task ExecutorThe BitBake Task Executor

bitbake foo
1. parsing data from all recipes it‘s instructed to find

2. For each recipe
1. Builds a storage area to hold the metadata that comes from

the local environment, the recipe itself, the data in the build classes a recipe include.

2. Computes task dependencies

3. Builds a combined task graph containing all tasks from all recipes

4. Builds all task dependencies for „foo“
1. generates a shell script on-the-fly out of the metadata

2. runs the shell script

5. Builds all tasks listed in recipe providing „foo“

BitBake Recipes Task Graph Binary Packages Flash Image

4

BitBake Recipe StructureBitBake Recipe Structure

● Declarative Language
● Operators: =, =+, +=, ?=, ~=
● Two different kinds of data:

Non-executable
FOO = "bar"

Executable
do_foo() {

bar }
FOO = "${@python code here}

DESCRIPTION = "GNU nano is an enhanced clone of the Pico text editor."
HOMEPAGE = "http://www.nano-editor.org/"
LICENSE = "GPLv2"
SECTION = "console/utils"
DEPENDS = "ncurses"

SRC_URI = "http://www.nano_editor.org/dist/v1.3/nano-${PV}.tar.gz \
file://glib.m4"

inherit autotools

do_configure_prepend() {
install -m 0644 ${WORKDIR}/glib.m4 m4/

}

● Three different file types:
.conf -> configuration data
.bbclass -> (build) class
.bb -> package recipe
.inc -> include file

● Common tasks:
fetch, unpack, patch
configure, compile
Install, package

5

The OpenEmbedded Metadata RepositoryThe OpenEmbedded Metadata Repository

A A repositoryrepository containingcontaining everythingeverything** necessarynecessary to to buildbuild softwaresoftware fromfrom scratchscratch

● Build classes containing common tasks, e.g. support for buildsystems
autotools

qmake

python distutils

gettext

● Machine configurations for
common architectures, developer boards

PDAs like Zaurus, iPAQ, HTC

WebPads like SIMpad, Nokia 770

Network Routers like LinkSys WRT54

Network Attached Storage like LinkSys NSLU2

GSM Phones like Motorola A780, FIC Neo1973

● Distribution policies like packaging, naming, preferred toolchain, versions, …

● Recipes (over 4000 nowadays) describing how to build software
Descriptions & Licenses

Source locations & Patches

Dependencies

6

What‘s new in BitBake?What‘s new in BitBake?

● More consistency

● Speed and Memory Improvements

● Modularization of core

7

Consistent depends/rdepends handlingConsistent depends/rdepends handling

● Reminder
Differenciating build time dependencies and run time dependencies

foo.bb: DEPENDS = “bar” ~> foo needs bar to build

foo.bb: RDEPENDS = “bar” ~> foo needs bar to run

● Problem
Run time dependencies don’t necessarily end up in images, because
nothing DEPENDS on them, hence they don’t get built at all

● Workaround
DEPENDS being a superset of RDEPENDS

Ugly and compromising metadata

● Solution
Change BitBake

BitBake now knows about RDEPENDS and builds runtime providers as well

● Result
Clean metadata

Automatic RDEPEND handling

8

Speeding up BitBake, Part 1Speeding up BitBake, Part 1

● Memory Usage Improvements
True CoW for the data store
Don't hold all metadata in memory, only current recipe

● Speeding up uncached parsing
Profiling
Optimize frequently used loops
Mini caches for variable expands, functions, OVERRIDES

● Speeding up cached parsing
Old-style cache grew up to ~400MB on disk – I/O bound, nearly slower than
reparsing
Rethink cache, extract only the needed data = 10MB cache
Throw away the rest of parsed data, faster to reparse at recipe build time
Now near instant rebuild if cache is unchanged
Still: Changing a class or a conf file requires full reparse

● Don‘t generate world dependency tree
Previously BitBake always computed a dependency tree
not considering what was actually requested
It no longer does

9

Speeding up BitBake, Part 2Speeding up BitBake, Part 2

● Multithreaded builds to make best use of system resources
● Different tasks use different system resources

(fetch, unpack, compile) => (network, I/O+CPU, CPU)
● Problems with previous BitBake core

Makes the build path up as it goes along after each recipe completes
Recipe based granularity, not task based
Complicated by multiple providers, try each in order of preference

● Solution
Create new datamodel to hold task dependencies (taskdata.py)
Taskdata is compiled to form a runqueue
Upon failure, update taskdata and build new runqeue from it

● Result
Task based granularity
Each task runs in its own thread
Controlled by BB_NUMBER_THREADS

● Future Plans
Indicate task resource usage
Match against available system resources

10

Separating BitBake Frontend/BackendSeparating BitBake Frontend/Backend

● First, there was the bitbake executable
Using lib/bb/*

● Then there was OE commander
PyQt-based command center

● To ease reparsing woes, I wrote the Shell (bitbake -i)
Required some refactoring to reuse lib/bb/*
Still a lot of quirks due to a non-consistent state

● Lots of users request a nice UI frontend
Even more so, now that we have multithreaded building

● First though, we needed a thorough split of BitBake into
Backend (building recipies)
Frontend (UI for selecting what to build and showing build progress)

Later, something more fancy IDE-style

● Result
BitBake goes Client/Server
Additional benefit: Remote / Distributed building

11

What‘s new in OpenEmbedded?What‘s new in OpenEmbedded?

● More Policies

● Less redundancy

● Quality Assurance

12

s/task-bootstrap/task-base/s/task-bootstrap/task-base/

● task-bootstrap ~> minimum amount packages to get a device „up
and running“

● Problems
„up and running“ is wish-wash

different machines have different capabilities

different distributions have different requirements

People started (ab)using BOOTSTRAP_EXTRA_(R)DEPENDS to put all kinds
of things into resulting images -> duplicated work, confusing for new users

But: How to define a task-bootstrap that fits all possible combinations of
machine and distribution configurations?

● Solution
A fine grained mechanism computing dependencies on-demand

A distribution.conf requests the features a distribution wants
DISTRO_FEATURES = „nfs smbfs ipsec wifi ppp alsa pcmcia usbhost"

A machine.conf states the machine capabilities
MACHINE_FEATURES = "kernel26 apm alsa pcmcia bluetooth"

task-base combines MACHINE_FEATURES w/ DISTRO_FEATURES

13

Unifying autotools site filesUnifying autotools site files

● Reminder
Autotools contains makefile generator and runs tests on the build platform to check
for capabilities and specifics
Since we can’t run cross-binaries, we feed prepopulated site files containing test
results

● Problem
Duplicated work, since every tuple of { architecture, byte endian, libc } needs one

● Solution
Introduce common site files and generate the appropriate one on demand

● Result
Clean metadata
Automatic updates

ac_cv_sizeof_int=${ac_cv_sizeof_int=4}
ac_cv_sizeof_int_p=${ac_cv_sizeof_int_p=4}
ac_cv_sizeof_long=${ac_cv_sizeof_long=4}
ac_cv_sizeof_long_int=${ac_cv_sizeof_long_int=4}

arm-common arm-linux common-glibc endian-little mipsel-linux-uclibc
powerpc-linux-uclibc x86_64-linux armeb-linux arm-linux-uclibc
common-uclibc ix86-common powerpc-darwin sh-common
x86_64-linux-uclibc armeb-linux-uclibc common endian-big
mipsel-linux powerpc-linux sparc-linux

14

STAGING_BINDIR changesSTAGING_BINDIR changes

● Reminder
STAGING_DIR is the area where a recipe installs files which may be needed
later
STAGING_INCDIR contains header files to include
STAGING_LIBDIR contains libraries to link against
STAGING_BINDIR contains binaries for the build architecture

● Problem
One staging directory, three types of binaries: Host, Target, Cross

● Solution
Introduce multiple staging directories:
STAGING_BINDIR_NATIVE, STAGING_BINDIR, STAGING_BINDIR_CROSS

● Result
STAGING_BINDIR_NATIVE and STAGING_BINDIR_CROSS already in PATH
Required vetting references to STAGING_BINDIR
Allowed simplification of classes like binconfig
Removes one barrier to packaged staging
Simplifies QEmu usage

15

DevshellDevshell

● Problem
Manually recompiling a package in-place needs
recreating the OpenEmbedded environment

● First Shot
Devshell recipe – generate script that sets up environment

Didn't fit well within the framework

Needed fiddling for debugging existing packages

● Second Shot
Dedicated DevShell task

Appears for every recipe

Drops to a shell within that recipe's environment

Idea of "interactive" tasks within BitBake

● Usage
bitbake -c devshell <bbfile>

● Future
UI-Integration

16

Debug PackagesDebug Packages

● Problem
Debug information usually not present in builds

Debug builds are _HUGE_

● Solution
Debug information can be shipped seperatly

Always build seperate debug packages (foo-dbg)

● Effort necessary
Change package.bbclass to spit out the .debug binraries and link to the
original (5 lines)

Add FILES_${PN}-dbg entry to bitbake.conf (1 line)

Change 25% of malformed FILES_ entries to catch up

● Result
Get started with debugging earlier

Improved metadata

17

Debian PackagesDebian Packages

● Problem
Debian packaging desirable
Ipkg close, but no cigar
Making it possible to replace ipkg with dpkg + apt

● Solution
Yank ipkg assumptions spread over parts of OE including variable names

IPKG_INSTALL ~> PACKAGE_INSTALL
IPKG_EXTRA_ARCHS ~> PACKAGE_EXTRA_ARCHS

● Required restructuration
Package classes
Image classes

● Result
Classes now clean for all kinds of packaging
Dpkg/apt has no real understanding of compatitble architectures like ipkg
Solved by using separate feed per arch and
careful feed configuration

18

Configuration time QA: Sanity.bbclassConfiguration time QA: Sanity.bbclass

● Problem
People hitting same configuration issues again and again

OE developers bored of answering the same things

● Solution
Write BitBake class that automatically checks the user's configuration

Can easily be disabled if you understand BitBake (and not if otherwise☺)

Most core devs thought they'd hate it but have hit useful warnings too

● Result
"Please set TARGET_OS directly, or choose a MACHINE or DISTRO that does
so"

"Please use ASSUME_PROVIDED +=, not ASSUME_PROVIDED = in your
local.conf"

"DISTRO '%s' not found. Please set a valid DISTRO in your local.conf"

"Your installation is missing the following utilitites:
GNU make, patch, texi2html"

"You do not include OpenEmbedded version
of conf/bitbake.conf"

19

Compile time QA: Fail-Fast OverrideCompile time QA: Fail-Fast Override

● Set of patches to toolchain to make it abort on common mistakes

● Example: Detecting local paths when cross compiling

● Usage:
OVERRIDES = "<…>:fail-fast"

| if arm-linux-gcc -march=armv5te -mtune=xscale -DHAVE_CONFIG_H -I. -
I/local/pkg/oe/spitz/tmp/work/armv5te-linux/nano-1.3.9-r0/nano$
-Iintl -DLOCALEDIR=\"/usr/share/locale\" -DSYSCONFDIR=\"/etc\" -
isystem/local/pkg/oe/spitz/tmp/staging/arm-linux/include -
I/usr/include -fexpensive-optimizations -fomit-frame-pointer -
frename-registers -O2 -MT$ -MF ".deps/move.Tpo" -c -o move.o move.c;
| then mv -f ".deps/move.Tpo" ".deps/move.Po"; else rm -f
".deps/move.Tpo"; exit 1; fi
| CROSS COMPILE Badness: /usr/include in INCLUDEPATH: /usr/include
| cc1: internal compiler error: in add_path, at c-incpath.c:362
| Please submit a full bug report,
| with preprocessed source if appropriate.
| See <URL:http://gcc.gnu.org/bugs.html> for instructions.
| CROSS COMPILE Badness: /usr/include in INCLUDEPATH: /usr/include
| Please submit a full bug report,

20

Packaging time QA: Insane.bbclassPackaging time QA: Insane.bbclass

● Quality-Insurance

● Inspired by Portage and (early) bug reports

● Post-packaging Checks
Package RDEPENDS on a –dbg package

.debug directories not in .dbg package

ABI and MACHINE of resulting binary don't match

Bogus entries in staged pkg-config and libtool files

Incorrect permissions of files

Security issues with RPATH for binaries

● Usage:
INHERIT += insane.bbclass

21

Using Qemu in/with OpenEmbeddedUsing Qemu in/with OpenEmbedded

● Problem
Locales had to run on the device, often OOM

● Solution
Generate using qemu binary execution

● Qemu can also run systems

● Openedhand developed pseudo machines in Poky
MACHINE = "qemuarm"

MACHINE = "qemux86"

● Generated images run under Qemu system emulation mode

● Poky has scripts to make this as easy as "runqemu"

● Allow tests to be run on OE images without presence of hardware

22

Testing Infrastructure (wishlist)Testing Infrastructure (wishlist)

● Regularly compiling different configurations
● Reporting status to central server
● Interconnecting

Bugtracker
Compile results
Installation results
Runtime results
Commits

● Browser interface to track progress for
Single packages
Distributions
Architectures

● Use monotone to attach test results to bitbake files
● Regression suit

Upload package, install it, execute test suite
Upload coverage and results

● Do that 24/7

23

Tiny little thingsTiny little things

● New mailing lists @ lists.openembedded.org
openembedded-issues

openembedded-users

● Monthly Bugsquash Event
every last weekend a month

● Removal of MAINTAINERS

● Oe-stylize

● Interactive Patch Resolve Mode

● BitBake & OpenEmbedded goes Debian
bitbake.deb

task-openembedded-essential.deb

24

What‘s coming?What‘s coming?

● More Quality

● Support for new OSes
OE is supposed to be OS-agnostic

● More package formats
rpm

● Stable Snapshots
Frequently

Stabilization Phase

Test Phase

Release

● Public buildserver
Once remote BitBake access is finished

● OE Book
Dual release (german/english)

OpenSourcePress.de

