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Abstract

The thesis concerns the (class) structure No of Conway’s surreal numbers. The
main concern is the behaviour on No of some of the classical functions of real
analysis, and a definition of integral for such functions.

In the main texts on No, most definitions and proofs are done by transfinite
recursion and induction on the complexity of elements. In the thesis I consider
a general scheme of definition for functions on No, generalising those for sum,
product and exponential. If a function has such a definition, and can live in a
Hardy field, and satisfies some auxiliary technical conditions, one can obtain in No
a substantial analogue of real analysis for that function. One example is the sign-
change property, and this (applied to polynomials) gives an alternative treatment of
the basic fact that No is real closed. I discuss the analogue for the exponential.

Using these ideas one can define a generalisation of Riemann integration (the
indefinite integral falling under the recursion scheme). The new integral is linear,
monotone, and satisfies integration by parts.

For some classical functions (e.g. polynomials) the integral yields the tradi-
tional formulae of analysis. There are, however, anomalies for the exponential
function. But one can show that the logarithm, defined as the inverse of the expo-
nential, is the integral of 1/x as usual.
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Notice

The notions of intellectual property and originality are self-contradictory. Ideas
cannot be the private property of anybody;nihil sub sole noviwas already in the
Bible.(1) Nobody cares about who first uttered a theorem, only whether it is true or
false.(2)

You can freely distribute, copy, quote, edit or modify the present work, either
as a whole, or in part, without any further obligation on you.

(1)The thing that hath been, it is that which shall be; and that which is done is that which shall be
done: and there is no new thing under the sun.
Is there any thing whereof it may be said, See, this is new? it hath been already of old time, which
was before us.
There is no remembrance of former things; neither shall there be any remembrance of things that are
to come with those that shall come after. EcclesiastesI, 9–11.

(2)Unfortunately, this work, being a (almost) verbatim copy of a Ph.D. thesis, does not follow the
principles stated here. . .
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Introduction

Surreal numbers were discovered by J. Conway and described in the 0th part of
his book [6]. He showed that from a remarkably simple set of rules is possible to
extract a rich algebraic structure, the classNo of surreal number. It is, among other
things, an elementary extension ofRan, the structure given by the reals with+, ·,<
and restricted analytic functions. Later, H. Gonshor (see [10]) and M. Kruskal
added a full exponential function, makingNo an elementary extension ofRan(exp).
Moreover,No contains, in a natural way, all ordinal numbers; therefore, it is possi-
ble to give meaning to expressions such as

√
ω−1, and much more.

Central to both [6] and [10] are the notion of complexity of a surreal number,
and the idea of defining functions onNo by transfinite recursion over the complex-
ity of the argument; the value of such a functionf at a pointx is determined by the
value off at simpler points. Strictly correlated is the notion of uniformity of such
a definition.

One of the aims of this thesis is to give a precise meaning to both ideas of
recursively definable function onNo and of uniformity. I will show that, together
with some “finiteness” condition, they have some striking consequences.

I have sometimes the notion of complexity of a function: loosely speaking, if
f is recursive overA thenf in general is more complicated than the functions in
A; I can then use induction on the complexity of a function to give some important
definitions and to prove some basic theorems.

My second objective is to define the Riemann integral of a recursive function
f , as another function

F (x) :=
∫ x

0
f (t)dt.

Suppose that we have a family of functionA containing+, and a functionf over
the reals, and letB be the family of the primitives ofA. Assume that we succeeded
in extending every function inA andB andf to all of No. Call L the first order
language given by(<,A,B, f ). Suppose the following:

1. (R,L ) is an elementary substructure of(No,L );

2. f is recursive overA.

My aim is to find a functionF which extends to allNo the primitive onR of f ,
such that:

vii



viii INTRODUCTION

1. F is recursive overA∪B;

2. (R,L ,F ) is an elementary substructure of(No,L ,F ).

At every pointa∈ No, F (a) will have to satisfy a typeTa(x) in the languageL ,
over the set

S:= {a}∪{c,F (c) : c is simpler thana} .

For instance, we know that iff (x) > 0 for everyx andc < a, thenF (c) < F (a). If
the classIa of surreal numbers satisfyingTa(x) is convex and nonempty, the natural
choice is to defineF (a) as the simplest element inIa. I will give a possible choice
of formulae forTa, all of the formx > d or x < d for somed ∈ No definable over
S.

S. Norton did also give a definition of integral for function onNo, which was
later improved by Kruskal. Their definition is similar to the present one, but I am
not acquainted enough with their work to give a full account of it.

In the first chapter I will recall some elementary basic definitions and theorems
on surreal numbers, and give the formal definition of recursive functions, which
will be used throughout all of the thesis. I will assume that the reader is familiar
with the basic definitions and properties ofNo, as described in [6], and that he feels
comfortable with “one line proofs” employed in it.

In the second I will define the integration, and prove some of its properties. I
will find it necessary to assume some further properties aboutf andA in order to
be able to define a meaningful notion of integral. One of the assumptions I could
make is that the functions inA form a Hardy field overNo, or even an o-minimal
structure; nevertheless, I will try to avoid using such a strong hypothesis.

In the third chapter I will prove the integration by part formula. While for
content it is a direct continuation of the second, the complexity of the necessary
algebraic manipulations distinguishes it. The result will not be used later in the
thesis; even the integration of polynomials, which could be obtained directly from
it, will instead be proved in a different way.

The fourth chapter will deal with definition and integration of polynomials and
restricted analytic functions. I will show that the integral is exactly what we expect.
Moreover, I will give a proof of the real closure ofNo different from the one in [6],
and show how it can be generalised to recursive functions.

Finally, the last chapter will deal with logarithm and exponential function. In
their discussion I will assume a certain acquaintance on the part of the reader with
Gonshor’s treatment, even if I will try to quote all the necessary definitions and the
theorems. I will show that, forx > 0,

logx =
∫ x

1

1
t

dt.

On the other hand, the integral of expx is not what we would expect.



Chapter 1

Definitions and basic properties

In this chapter I will recall the basic properties of the classNo. I will also introduce
the basic notion of a functionf : No→ No defined recursively over a family of
functionsA. Moreover, I will give some general notions on ordered sets, which
will be useful in later chapters.

1.1 Basic definitions

Let No be Conway’s field of surreal numbers (see [6] and [10]).
No can be identified with the class of all possible maps with domain an ordinal

and codomain the set{+,−}. The identification of a surreal numberx with a
function is called thesign sequenceof x, and the domain of this function is̀(x),
the lengthof x.

On this class we put a linear order in the following way:

Definition 1.1. On is the class of ordinal numbers. Letx,y ∈ No. Suppose that
x 6= y, and letγ ∈On be the smallest ordinal such thatx(γ) 6= y(γ). Then,x < y iff

• x(γ) =− andy(γ) = + or is undefined, or

• x(γ) is undefined andy(γ) = +.

Equivalently,No is ordered lexicographically, with−< undefined< +.
For x,y ∈ No, I will write x� y (x is simpler thany) if the sign sequence of

x is the restriction of the sign sequence ofy to some initial segment of̀(y). The
relation� is a well-founded partial order onNo. I say thatx is anancestorof y, in
symbolsx≺ y, iff x� y andx 6= y.

Given two surreal numberx,y, their common lengthis either`(x) if x = y or
the smallest ordinalα such thatx(α) 6= y(α). The restriction ofx (or equivalently
of y) to the common length ofx,y is thecommon ancestorof x,y.

A subclassS⊆ No is convexiff

∀x,y∈ S∀z∈ No (x≤ z≤ y)→ z∈ S.

1



2 CHAPTER 1. DEFINITIONS AND BASIC PROPERTIES

The following are the fundamental properties connecting< with �.

Lemma 1.2. Let S be a non-empty convex subclass ofNo. Then, there exists a
unique s∈ S which is a minimum for� in S (thesimplest elementof S).

Proof. The relation� is well founded. Suppose for contradiction that there are two
elementss 6= s′ which are minimal for� in S. Without loss of generality,s≤ s′;
let α be their common length. Ifs(α) was undefined thens≺ s′, contradicting the
minimality of s′. Sinces′(α) is defined too, we haves(α) =− ands′(α) = +. Let
c be the restriction ofs to α. Then,s < c < s′. Therefore, by convexity,c ∈ S,
contradicting the minimality ofs (and ofs′). �

Remark1.3. Let a∈ No. Then{x∈ No : a� x} is a convex subclass ofNo.

An open (closed)interval is a subclass ofNo of the form(a,b) (of the form
[a,b]) for somea < b ∈ No. The common ancestor ofx,y is also the simplest
element in the interval[x,y].

Theconcatenationof two surreal numbersx,y is the surreal numberx : y, given
by the sign sequence ofx followed by the sign sequence ofy. Every ordinal number
α can be identified canonically with the surreal number given by a sign sequence
of only pluses of lengthα. In particular, 0 is the simplest element ofNo.

The opposite of a surreal numberx is −x; it has the same length asx, and
its sign sequence is obtained exchanging all pluses in the sign sequence ofx with
minuses and all minuses with pluses.

Let L,R be subsets ofNo. ThenL < R means∀x∈ L,∀y∈ R x< y. Moreover,
(L | R) is the cut

(L | R) := {x∈ No : L < x < R} .

Theorem 1. (L | R) is non-empty if L< R.

Proof. (See [10], Theorem 2.1 for a different proof).
Suppose, for contradiction, that(L | R) is empty. I will construct a sequence

of surreal numbers(xα)
α∈On such that∀α < β ∈ On xα ≺ x

β
. Moreover, I will

construct two sequencesLα andRα of subsets ofNo such that∀β < α ∈On

L
β
⊇ Lα andR

β
⊇ Rα

and∀α ∈ No
(Lα | Rα ) = /0 and∀y∈ Lα ∪Rα xα � y

(L | R) is empty. Therefore, for everyx∈ No either

∃y∈ L such thaty≥ x or

∃y∈ Rsuch thaty≤ x.

In the first case, I say thatx is excluded byL, in the second byR.
Let x0 = 0, L0 = L, R0 = R. Suppose that we have already definedxγ ,Lγ ,Rγ for

everyγ < α.



1.1. BASIC DEFINITIONS 3

There are two possibilities:α is a successor ordinal, or a limit one.
• If α = β +1 andx

β
/∈ (L | R) thenx

β
is excluded either byL, or byR.

In the first case, letδ be the smallest ordinal such that(x
β

: δ ) (the concatena-
tion of x

β
andδ ) is excluded byR (I will prove later that it exists). Let

xα = x
β

: δ

Rα =
{

y∈ R
β

: xα � y
}

Lα =
{

y∈ L
β

: xα � y
}

.

In the second, let letδ be the smallest ordinal such thatx
β

: (−δ ) is excluded
by L, and let

xα = x
β

: (−δ ),

Lα =
{

y∈ L
β

: xα � y
}

,

Rα =
{

y∈ R
β

: xα � y
}

.

I remind that in the first case I must also prove that∃λ ∈On such that(xα :−λ ) is
excluded byL (and similarly for the second case). Suppose not; then(xα :−λ ) is
excluded byR, i.e.

∀λ ∈On ∃t
λ
∈ R (xα :−λ )≥ t

λ
.

But R is aset, therefore we can findt ∈ Rsuch that

∀λ ∈On (xα :−λ ) > t.

Let c be the common ancestor ofxα , t. Thent ≤ c≤ xα . Moreover,x
β

< c < xα

andx
β
≺ xα . Therefore,x

β
≺ c≺ xα , soc = x

β
: δ ′ for someδ ′ < δ ∈ On. This

contradicts the definition ofδ as the smallest ordinal such thatx
β

: δ is excluded
by R. The second case is similar.

• If α is a limit ordinal, let

Lα =
⋂

β<α

L
β

Rα =
⋂

β<α

R
β

xα =
⋃

β<α

x
β
.

Again, I must prove that ifxα is excluded byR there existsλ ∈On such thatxα :−λ

is excluded byL. Suppose not; then

∃t ∈ R∀λ ∈On xα :−λ > t.

Letc be the common ancestor oft andxα . Thenc≺ xα andxα =
⋃

b<α
x

β
, therefore

c� x
β

for someβ < α.
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If x
β

< c, thenxα < c, a contradiction. Ifx
β

> c, then∀z� x
β

z> c, while
we can findx

β+1 < c. If x
β

= c thenxα = x
β

: 1 :z for somez∈ No; in particular,
x

β+1 = x
β

: δ for someδ ∈ On. But x
β

is excluded byR, thereforex
β+1 < x

β
, a

contradiction.
Finally, by hypothesis,L∪R is a set, while{xα : α ∈On} is a proper class,

which is impossible. �

If L or Rare proper classes, the construction of(xα)
α∈On in the previous proof

may not terminate, or for someβ ∈On I may not be able to findδ ∈On such that
(x

β
:±δ ) is excluded byR (or by L). In either case, I construct the sign sequence

of the cut(L |R). In the first case it is given byx =
⋃

α∈On xα , in the second byx
β

followed by infinitely many (i.e. a proper class of) pluses (or minuses).
An example of the second case isL = N andR= {x∈On : x > N}. The sign

sequence of〈L | R〉 is given byω pluses followed by infinitely many minuses.
Thesimplest elementin (L | R) is written〈L | R〉.

Lemma 1.4. Every x∈No can be written in a canonical way as〈L |R〉, choosing

L = {y∈ No : y < x & y≺ x}
R= {y∈ No : y > x & y≺ x}

(1.1)

Proof. I have to verify thatx is the simplest element in the cut(L | R). First,
by definition ofL,R, x is in this cut. Letc be the simplest surreal number in it.
Suppose, for contradiction, thatc 6= x, for instance thatc < x. Therefore,c≺ x, so
c∈ L andc /∈ (L | R). �

If x = 〈L | R〉, I will say that an element ofL (of R) is a left (right)optionof x.
The options of the canonical representation ofx are calledcanonical options.

I will write x = 〈xL | xR〉
xL∈L
xR∈R

, or simplyx = 〈xL | xR〉 instead ofx = 〈L | R〉.

Remark1.5. Let x,y∈No. Let x = 〈xL | xR〉, y = 〈yL | yR〉 be some representation
of x,y. Then,

• x < y iff ∃yL such thatx≤ yL or ∃xR such thatxR≤ y

• x≤ y iff ∀yR∀xL xL < y andx < yR.

Remark1.6. Let x,y∈ No. The following are equivalent:

• x� y.

• There existsx = 〈xL | xR〉, a representation ofx such that

∀xL∀xR xL < y < xR.

• If x = 〈xL | xR〉 is the canonical representation ofx,

∀xL∀xR xL < y < xR.
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The last definitions and theorems of this section are taken from [10].

Definition 1.7. Let L,R,L′,R′ be subsets ofNo, with L < R andL′ < R′. Then
(L,R) is cofinal in (L′,R′ ) iff(

∀r ′ ∈ R′ ∃r ∈ R r≤ r ′
)

&
(
∀l ′ ∈ L′ ∃l ∈ L l ≥ l ′

)
.

Example1.8. Let L,L′ be sets of ordinal numbers.(L, /0) cofinal in (L′, /0) is
equivalent toL cofinal inL′ as set of ordinals.

Theorem 2 (Cofinality theorem). Suppose that x= 〈L | R〉, L′ < x < R′ and
(L′,R′ ) is cofinal in(L,R). Then,〈L′ | R′ 〉= x.

Theorem 3 (Cofinality theorem b). Let (L,R) and(L′,R′ ) be mutually cofinal in
each other. Then,〈L | R〉= 〈L′ | R′ 〉.

Theorem 4 (Inverse cofinality theorem).Let x∈No, let 〈L |R〉 be the canonical
representation of x, let〈L′ |R′ 〉 be another representation. Then,(L′,R′ ) is cofinal
in (L,R).

1.2 Further structure on No

In this section, every algebraic structure (Group, Field, etc.), unless otherwise spec-
ified, may have a proper class as domain.

No is endowed with further algebraic structure, via definition schemata, which I
will introduce with an example about the definition of sum of two surreal numbers.

First, letx= 〈xL | xR〉 andy= 〈yL | yR〉 be the canonical representations ofx,y.
Suppose that I have already definedx+ yo andxo + y for everyxo,yo canonical
options ofx,y respectively. Then, define

x+y = 〈x+yL,xL +y | x+yR,xR+y〉. (1.2)

There is something to prove, namely that in the above definition every left option
is less than every right option (this, and much else, is proved in [6]).

The definition is recursive. The recursion is done onx andy (with the well-
founded partial order�). Let x minimal such that there existsz such thatx+ z is
undefined. Lety be a minimal suchz. Therefore,x+yo andxo +y are defined for
every optionxo andyo, so all the options in (1.2) are defined and, by the already
mentioned lemma, every left option is less than every right one, sox+y is defined.

But something more is true: suppose thatx = 〈xL | xR〉 andy = 〈yL | yR〉 are
any representations (not necessarily canonical) ofx,y. The options in (1.2) are
defined for these representations too. Not only it is true that every left option is
less than every right option, but the number〈x+yL,xL +y | x+yR,xR+y〉 is still
x+y. In this case I say that the definition ofx+y is uniform.

(No,+,<) is an ordered Abelian group, the neutral element is 0, the simplest
element ofNo, and

−x = 〈−xR | −xL 〉.
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OnNo there is also a multiplication, recursively defined as

xy= 〈xLy+xyL−xLyL, xRy+xyR−xRyR | xLy+xyR−xLyR, xRy+xyL−xRyL 〉.

Again, every left option is less than every right option, and the value ofxy is inde-
pendent from the choices of the representations ofx andy.

With these definitions of order, sum and multiplication,No is a real closed
field.

There is a canonical embedding from the classOn of ordinals intoNo: an
ordinal α goes into the constant function with domainα and value+. For x,y∈
On, x+ y andxy are ordinal numbers too. The sum and product of two ordinals
as surreal numbers are not the usual sum and product on ordinals (which are not
commutative), but thenaturaladdition and multiplication(1). A proof can be found
in [10], chapter 4D.

1.2.1 Valuation and power series in No

Definition 1.9. A valued fieldis a triple(F,G,v), with F is a field,G a linearly
ordered Abelian group (written additively), andv a map

v : F→G∪{∞}

such that

1. ∀x∈ F v(x) = ∞ iff x = 0

2. v is surjective

3. v(x+y)≤max{v(x),v(y)}

4. v(xy) = v(x)+v(y).

The mapv is called thevaluation, G thevalue group. The convention is that
∀g∈G g+∞ = ∞ and∞ < g.

Usually, a valuation satisfying the previous definition is called non-Archime-
dean, but I will consider only such valuations.

In literature, the order ofG is often reversed, i.e. instead of3 they often write

v(x+y)≥min{v(x),v(y)} ,

but this would result in the anti-intuitive fact that infinitesimal elements have “large”
value. Moreover, working onNo is easier with this convention.

(1)The natural addition and multiplication of two ordinalsα,β are defined in terms of their Cantor
normal forms.
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Definition 1.10. Given a valued field(F,G,v),

O := {x∈ F : v(x)≤ 0}

is a local subring ofF, thevaluation ring. Its only maximal ideal is

M := {x∈ F : v(x) < 0} .

The quotientO/M is theresidue field. An element ofO is calledboundedor finite,
an element ofM infinitesimal.

Two valuations(F,G,v) and(F,G′,v′) on the same fieldF areequivalentiff
there is an isomorphism of ordered groupsφ : G→G′ such that∀x∈K∗ v′(φ(x)) =
v(x).

Suppose that on the fieldF there is also an order< such that(F,<) is an
ordered field. The valuation< is compatiblewith the order iff O is a convex
subclass ofK.

In the following, I will mostly consider fields of characteristic 0.

Definition 1.11. Let F be a linearly ordered group,x,y∈ F.

• x� y iff for every natural numbern, |x| ≥ n|y|

• x∼ y iff neitherx� y nory� x

• x' y iff x = y or x� x−y (or equivalentlyy� x−y).

x∼ y is equivalent to∃n∈ N |x|
n ≤ y≤ n|x|.

On an ordered fieldF we can define thenatural valuation. The value group
is the quotientK∗/∼ and the valuation the quotient map. The natural valuation
is compatible with the order. An ordered field is said to beArchimedeaniff the
natural valuation is trivial (i.e. its value group is{0}) iff (in a unique way) it is an
ordered subfield ofR.

No is an ordered field and therefore it containsQ. If (L,R) is a Dedekind cut of
rational numbers, it determines an unique element〈L | R〉 ∈ No. The resulting set
(an element for every Dedekind cut ofQ) is a subfield ofNo that can be identified
canonically withR.

Definition 1.12. There is a valuationv : No∗→No, which, forx> 0, is defined as

v(x) = 〈
{

v(xL) : 0 < xL � x
}
|
{

v(xR) : xR� x & xR > 0
}
〉. (1.3)

The mapω : No→ No>0 is specified in the following way

ω
x := 〈{0}∪

{
qω

xL
: 0 < q∈Q

}
|
{

qω
xR

: 0 < q∈Q
}
〉.
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The mapω is well defined, andx< y iff ωx�ωy. Moreover,∀x,y∈No ωx+y =
ωxωy. For the proof, see [10], chapter 5B.

Lemma 1.13. The definition of v is sound, independent of the representation of x,
and v is a valuation equivalent to the natural one. Moreover,

∀x∈ No v(ω(x)) = x.

Proof. By induction: letx,y be positive surreal numbers, and suppose that the
result is true for everyxo, yo which are canonical options ofx,y.

Sincex andy are positive, they do not have negative options in their canonical
representations.

If xL � x� xR then by inductive hypothesisv(xL) < v(xR), so the definition of
v(x) is sound.

Claim 1. Suppose thatx� y. Then,v(x) < v(y).
If x≺ y thenv(x) < v(y) by definition ofv(y). Similarly for y≺ x. Otherwise,

let zbe the common ancestor ofx,y. Then,x < z< y andx� y, thereforex� zor
z� y.

If x� z, by inductive hypothesisv(x) < v(z), and similarlyv(z)≤ v(y), there-
forev(x) < v(y). Similarly for z� y.

Claim 2. Suppose thatv(x) < v(y). Then,x� y.

Eitherv(x)≤ v(y)L or v(x)R≤ v(y) for somev(y)L or v(x)R options ofv(y),v(x)
in the definition1.12. Suppose that the first case happens. Then,v(x) ≤ v(yL) for
some canonical optionsyL such thatyL � y. By inductive hypothesis, eitheryL � y
andx∼ yL, or x� yL. Therefore,x� y. Similarly for the second case.

Now I will prove that the definition ofv(x) is uniform. Letx = 〈 tL | tR〉 be
another representation ofx > 0, and let

w = 〈
{

v(tL) : 0 < tL � x
}
|
{

v(tR) : tR� x & tR > 0
}
〉.

First,v(tL) < v(x) < v(tR) for everytL, tR mentioned in the definition ofw, therefore
w� v(x).

On the other hand, by the inverse cofinality theorem, for everyxL there exists
tL such thatxL ≤ tL < x. Therefore, 0< xL � x implies thatxL � tL or xL ∼ tL,
implying v(xL) ≤ v(tL). Similarly, for everyxR there existstR such thatv(xR) ≥
v(tR). So,v(x)� w.

The fact thatv(x+y)≤max{v(x),v(y)} is a direct consequence of what I have
already proved.

Claim 3. If x > 0, v(ωx) = x.

By induction onx. First, v(ω(x)) < xR. In fact, by induction,xR = v(ωxR
) =

v(qωxR
) for everyq > 0∈ Q, and the latter is a right option ofv(ωx). Similarly,

v(ω(x)) > xL.
Second,x < v(ωx)R. In fact, the right option is equal tov((ωx)R) = v(qωxR

) =
v(ωxR

) = xR > x. Similarly for left options.
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It remains to show thatv(xy) = v(x) + v(y) for x,y > 0. But this is a conse-
quence of the fact thatωx+y = ωxωy �

Definition 1.14. Given a fieldK and a linearly ordered additive groupG, K((G))
is the field of formal power series with coefficient inK and exponents inG. Its
elements are given as formal sums

x = ∑
g∈G

rgt
g,

whererg are elements ofK and such that thesupportof x

supp(x) = {g∈G : rg 6= 0}

is an anti-well-orderedset. In the previous definition,G might be a proper class.
The sum of two elements inK((G)) is defined “point-wise”:

(∑
g

rgt
g)+(∑

g
sgt

g) = ∑
g

(rg +sg)tg.

Their product is the Cauchy product:

( ∑
h∈G

rht
h)(∑

k∈G

skt
k) = ∑

g∈G

( ∑
h+k=g

rhsk)t
g.

By Neumann’s lemma (see for instance [1], 7.20), the previous definition is
sound: givenx,y∈ K((G)), the support ofx+ y is anti-well-founded. Moreover,
for everyg∈ G there are at most finitely manyh∈ supp(x) andk ∈ supp(y) such
thath+k = g, and the support of the resultingxy is well founded.

With these operations,K((G)) is not only a ring, but a field.
Moreover, if K is an algebraically closed field andG is a divisible group,

K((G)) is an algebraically closed field.
Let x 6= 0 ∈ K((G)). If x = ∑g∈G rgtg then theleading coefficientof x is rh,

whereh is the maximum of the support ofx
If K is an ordered field,K((G)) is an ordered field too:x > 0 iff the leading

coefficient ofx is greater than 0.
If K is a real closed field andG is divisible, thenK((G)) is real closed too.
OnK((G)) there is a canonical valuation (theHahn valuation)

v : K((G))∗→G,

with v(x) the maximum of the support ofx. The value group ofv is all of G, and
the residue field isK. If K is an Archimedean ordered field,v coincides with the
natural valuation.

Definition 1.15. Let (F,v,G) be a valued field. Asequence(of elements inF) is a
function from some limit ordinal intoF. A sequence(xα)

α<λ
is pseudo-convergent

(or pseudo-Cauchy) iff

∀α < β < γ < λ ,v(xα −x
β
) > v(x

β
−xγ).



10 CHAPTER 1. DEFINITIONS AND BASIC PROPERTIES

x∈ F is apseudo-limitof the pseudo-convergent sequence(xα)
α<λ

iff

∀α < λ v(xα −x) = v(xα −x
α+1).

F is pseudo-completeiff every pseudo-convergent sequence has a pseudo-limit.
An extensionof F is given by a valued field(F′,G′,v′) and pair of mapsι : F→

F′ andφ : G→ G′ such thatι is a field embedding,φ is an embedding of ordered
groups, and the diagram commutes:∀x∈ F v′(ι(x)) = φ(v(x)).

Such an extension isimmediateiff φ and the induced map between the residue
fields are isomorphisms.

K((G)) with the canonical valuation is pseudo-complete. IfF is an ordered
valued field, and the valuation onF is compatible with the order, then the class of
pseudo-limits of a given sequence(xα)

α∈λ
is a convex subclass ofF.

If F is a set, thenF is pseudo-complete iff it is maximal(2) (i.e. it does not
admit non-trivial immediate extensions), iff it is isomorphic toK((G))(3), with G
the value group andK the residue field ofF. See [12] for a proof of this fact.

In No, by theorem1, every pseudo-convergent sequence(xα)
α<λ

has a pseudo-
limit, and the simplest pseudo-limit of the sequence isthepseudo-limit of(xα)

α<λ
.

Let λ be an ordinal,(rα)
α<λ

be a sequence non zero real numbers, and(aα)
α<λ

be a strictly decreasing sequence of surreal numbers. The formal expression

∑
α<λ

rαω
aα

determines the unique surreal numberx = ∑
α<λ

rαωaα . It is defined by induction
on λ :

• If λ = γ +1, then
x = ( ∑

α<γ

rαω
aα )+ rγω

aγ .

• If λ is a limit ordinal, thenx is the pseudo-limit of the pseudo-convergent
sequence (

∑
α<γ

rαω
aα

)
γ<α

.

Conversely, every non-zero surreal numberx is represented by a unique sum

x = ∑
α<λ

rαω
aα ,

called thenormal formof x.

(2)This is no longer true for classes, unless we change the definition of pseudo-complete. For
instance,No is pseudo-complete, but not maximal.

(3)This is true only if the characteristic of the residue field is 0. Otherwise, additional hypothesis
are required.
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Proof. The uniqueness is obvious: ifx = ∑a∈No raωa andy = ∑a∈Nosaωa are two
distinct formal sums, andc is the largest surreal numberb such thatrb 6= sb, then
v(x−y) = c.

Givenx 6= 0, I will find its normal form. Leta0 := v(x) andr0 be the unique
real number such that(x− r0ωa0)� x. Given an ordinalλ and sequences(aα)

α<λ

and(rα)
α<λ

, let
x

λ
= ∑

α<λ

rαω
aα .

If x
λ

= x, we proved the conclusion. Otherwise, definea
λ

:= v(x−x
λ
) andr

λ
the

unique real such thatx− (x
λ

+ r
λ

ωa
λ )� x. The sequence(x

λ
)

λ∈On is defined for
every ordinal numberλ , and thex

λ
are are all distinct (because∀λ ∈On r

λ
6= 0).

But for every limit ordinalλ , x is a pseudo-limit of(xα)
α<λ

, thereforex
λ
� x, and

this is impossible. �

Therefore,No can be identified in a canonical way withR((No)). SinceNo is
a field,No∼= R((No)) is a real closed field. This is essentially Conway’s proof of
the fact thatNo is real closed, starting from the knowledge thatNo is an ordered
field. I will give later a different proof of this fact.

Given a fieldK and an ordered groupG, every power series

f ∈K[[x1, . . . ,xn]]

defines a functionf : Mn →K((G)) by formal substitution, which, by Neumann’s
lemma, is well defined.

Let K be an ordered field containingR, and f be a real analytic function con-
verging in a neighbourhood of[−1,1]n. The Taylor expansion off determines a
power seriesfp with real coefficients around everyp ∈ [−1,1]n ⊂ Rn, which in-
duces a functionf : [−1,1]n →K((G))

f (p+ ε) = f (p)+ fp(ε), p∈ Rn,ε ∈Mn

called arestricted analytic function([−1,1] is the interval inK((G))). The first
order language given by the ordered field language(0,1,+, ·,<) plus a function
symbol for every real analytic functionf converging in a neighbourhood of[−1,1]n

is calledLan. If K is real closed andG is divisible, the resultingLan structure on
K((G)) is elementary equivalent toR (see [19]). In particular,No is elementary
equivalent toR in Lan.

Gonshor defined a total exponential function exp :No→ No>0 (see§ 1.5 for
more details). With this definition,No is an elementary extension ofR in the
languageLan(exp).

1.3 Recursive definitions

The sum of two elementx,y∈ No is defined as:

x+y = 〈x+yL,xL +y | x+yR,xR+y〉
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wherexL,xR are generic left and right options ofx, and similarly fory. The def-
inition of x+ y is recursive. We must know the value ofx′+ y andx+ y′ for any
elementsx′ ≺ x and y′ ≺ y in order to computex+ y. In the following, I will
try to give a precise meaning to the notion ofrecursive definitionof a function
on No, which is general enough to encompass the definition of functions such as
x+y,xy,1/x,expx, but at the same time allows me to prove some nontrivial results.

I will write xo for a generic (left or right) option ofx. Given two sets of func-
tions{f L}f L∈A and{f R}f R∈B in the variablesX,Y1,Y2,Z1,Z2, I will write

f = 〈 f L | f R〉f L∈A
f R∈B

or simplyf = 〈 f L | f R〉 if for any x∈ No, written in the canonical form〈xL | xR〉,
a generic left option off (x) is

f L(x,xL,xR, f (xL), f (xR))

and similarly for a right option. This means that∀x∈ No

f (x) = 〈 f L(x,xL,xR, f (xL), f (xR) | f R(x,xL,xR, f (xL), f (xR)〉
xL≺x & xL<x
xR≺x & xR>x

f L∈A
f R∈B

For a shorthand, I will also write

f L(x,xo, f (xo)) or f o(x,xo, f (xo)) or evenf o(x,xL,xR)

and say thatf is defined recursively (or simply recursive) over the family of func-
tionsA∪B. Of course, forf (x) to be defined, it is necessary that

f L(x,xo, f (xo)) < f R(x,xo, f (xo))

for anyf L, f R and for anyxL,xR canonical options ofx.
f L andf R are options off .
If f : Non → No, it is still possible to say what it means to be defined recur-

sively. Write each coordinate of~x∈ Non asxi = 〈xi
L | xi

R〉. I will say that

~xo = (y1, . . . ,yn)

is a canonical option of~x (and similarly for right options) if for eachi = 1, . . . ,n
yi � xi and, for at least onej ≤ n, we havey j ≺ x j . Alternatively, I orderNon with
the well-founded and set-like partial order bnd induced by� (see definition1.56),
and~xo is an element which precedes~x in this order.

Then
f (~X) = 〈 f L | f R〉
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if for each~x∈ Non written in the canonical form, a generic left option off (~x) is

f L(~x,~xo, f (~xo))

wheref L is a function of as many variables as needed.
For instance, iff (x1,x2) = x1x2, among the left options off (~x) there is

f (x1,x
L
2)+ f (xL

1,x2)− f (xL
1,x

L
2).

Note thatf (~xo) can appear many times as an argument off o; once for each possible
combination

xi Q xo
i , i = 1, . . . ,n.

If f = 〈 f L | f R〉, the value off (x) depends in general on the form I choose to
write x (that is the reason why I had to specify that I use the canonical form ofx).

Definition 1.16. I say that the recursive definition off is uniform if f (x) does not
depend on the form I choose forx, for anyx∈ No. This means that:

• For everyf L andf R options off , for everyx,x′,x′′ ∈No such thatx′ < x< x′′

f L(x,x′,x′′, f (x′), f (x′′)) < f R(x,x′,x′′, f (x′), f (x′′))

• ∀x∈ No and for any representationx = 〈L | R〉,

f (x) =
〈

f L(x,xL,xR, f (xL), f (xR)
∣∣ f R(x,xL,xR, f (xL), f (xR))

〉
xL∈L
xR∈R

.

In the following I will mostly consider uniform definitions.

1.4 Canonical form on intervals

Suppose thatL andRare two subclasses ofNo, with L < R. If L,Rare both proper
sets (and not classes), I say that(L | R) is aset-bounded convex subclassof No.

Lemma 1.17.Let S= (A |B) be a set-bounded convex subclass ofNo. Then, as an
ordered tree, S is isomorphic toNo in a unique way. Moreover, this isomorphism
s : No→ S is recursively definable, and uniformly so.

Proof. I will define the isomorphisms : No→ S by induction. Uniqueness will
follow from the definition itself. Obviously,s(0) is the simplest element ofS. As
A andB are both proper sets,(A | s(0)) and(s(0) | B) are non empty, so there is a
simplest element in each of them:s(−1) ands(1).

In general, ifx = 〈xL | xR〉xL∈L,xR∈R is the canonical form ofx, and I have
already defineds(xo) for every option ofx, thens(x) is the simplest element inS
satisfying

s(xL) < s(x) < s(xR)

for every option ofx. There are three cases:
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1. R is empty:s(x) = 〈s(xL) | B〉

2. L is empty:s(x) = 〈A | s(xR)〉

3. L,Rare both non empty:s(x) = 〈s(xL) | s(xR)〉.

The general formula fors is s(x) = 〈A,s(xL) | B,s(xR)〉. It remains to show thats
is uniformly defined, i.e. that ifx = 〈yL | yR〉 is any representation ofx, then

s(x) = 〈A,s(yL) | B,s(yR)〉.

By cofinality, for everyxL canonical left option forx there existsyL such thatxL ≤
yL < x. Thens(xL) ≤ s(yL) < s(x) (and similarly for right options), sos(x) =
〈A,s(yL) | B,s(yR)〉. �

Examples1.18. • (0,1) is isomorphic toNo: s(0) = 0,s(1) = 1/2,s(2) = 3/4,
s(ω) = 1−1/ω, . . ..

• Let η be the cut between infinitesimal and positive finite numbers. Then
(−η ,η) is isomorphic toNo.

• Let a be the cut between finite and infinite positive numbers. Then(−∞,a)
is not isomorphic toNo, becauses(ω) is not defined.

So, givenS= (A | B) a set-bounded convex subclass ofNo, to everyx ∈ S I
can associate throughs a canonical form: ifs−1(x) = y andy = 〈yL | yR〉 is the
canonical form ofy, thenx = 〈A,s(yL) | s(yR),B〉 is the canonical form ofx with
respect toS, ands(yo) are the canonical options ofx w.r.t. S.

Until now, I have supposed that all the functions are total. How do the defi-
nitions change for functions defined only on a subset ofNo? For instance, power
series are defined for infinitesimal elements. IfS= (L |R) is a set-bounded convex
subclass ofNo, andx∈ S, I use the canonical form ofx with respect toS to give
a meaning tof (x) for a recursively defined functionf = 〈 f L | f R〉 with domain
S, i.e. by writing f = 〈 f L | f R〉 I mean that eachf o(x,y1,y2,z1,z2) is defined (at
least) on the set{

x,y1,y2,z1,z2 : x,y1,y2 ∈ S,y1 < x < y2,z1,z2 ∈ No
}

and for eachx∈ S

f (x) = 〈 f L(x,xL,xR, f (xL), f (xR)) | f R(x,xL,xR, f (xL), f (xR))〉

wherexL,xR are canonical options ofx w.r.t. S.

Example1.19. (
1
x

)o

=
1−

(
1− x

xL

)α (
1− x

xR

)β

x

where the denominator simplifies formally with the numerator, is defined on the
intervals(0,+∞) and(−∞,0).
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1.5 Exponential function

On No it is possible to define a totalexponentialfunction exp :No→ No>0 (the
domain of exponential induced by the analytic structure is onlyO). For proofs of
the theorems stated in this section and other properties of the exponential function,
see [10].

Givenn∈ N, let [z]n be then-truncation of the Taylor expansion of expz at 0:

[z]n :=
n

∑
i=0

zi

i!
.

The recursive definition of expx is the following:

expx =
〈

0, (expxL)[x−xL]n, (expxR)[x−xR]2n+1

∣∣ expxR

[xR−x]n
,

expxL

[xL−x]2n+1

〉
,

where ifz< 0 then[z]n must be positive.
The definition is uniform, and the resulting structure satisfies the following

axioms:

• exp is surjective.

• ∀x,y∈ No exp(x+y) = expxexpy.

• For every|x| ≤ 1 expx coincides with the restricted analytic functione(x).

• exp(x) > xn for all positive infinitex.

• ∀x > y expx > expy.

The previous axioms imply thatNo is an elementary extension ofR in the
languageLan(exp) (see [19]). Note thatωx is not ω raised to the powerx.

Gonshor gave other properties of the function exp. Letx > 0∈ No. Define

g(x) := 〈v(x), g(xL) | g(xR)〉,

wherexL varies among thepositiveleft options ofx. The definition ofg is also
uniform; moreover,g is a monotone increasing bijection fromNo>0 ontoNo.

Theorem 5. Let z= ∑i<α
r iω

ai be the normal form of z∈ No. If ai > 0 for every
i < α and z> 0, then

expz= ω
y where y:= ∑

i<α

r iω
g(ai).

Proof. It is Theorem 10.13 of [10]. �
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1.6 Useful formulae

The following formulae are especially useful in dealing with surreal numbers.
Proofs can be found in [6] or [10].

x+y = 〈xL +y,x+yL | xR+y,x+yR〉 (1.4)

xy= 〈xLy+xyL−xLyL,xRy+xyR−xRyR |
xRy+xyL−xRyL,xLy+xyR−xLyR〉

(1.5)(
xn)o = xn− (x−xL)i(x−xR) j (1.6)

where 0≤ i ≤ n∈ N, i + j = n and
(
xn

)o
is a left option if j is even, a right option

if it is odd.

ω
x = 〈0, rω

xL | rω
xR 〉r>0∈R (1.7)

v(x) = 〈
{

vxR : 0 < xL � x
}
|
{

v(xR) : xR� x & xR > 0
}
〉 (1.8)(

1
x

)o

=
1−

(
1− x

xL

)i (
1− x

xR

) j

x
(1.9)(

∑
i<α

r iω
ai

)o

= ∑
i≤β

r iω
ai ± εω

a
β (1.10)

whereα ∈ On is an ordinal number,(ai)i<α
is a strictly decreasing sequence of

surreal numbers,r i are real numbers,β varies among the ordinal numbers strictly
less thanα andε is any positive real.

expx =
〈

0,exp(xL)[x−xL]n,exp(xR)[x−xR]2n+1

∣∣ exp(xR)
[xR−x]n

,
exp(xL)

[xL−x]2n+1

〉
,

(1.11)
see§1.5. All the previous recursive definitions are uniform. The next one (the
concatenation ofx andy) is uniform iny, butnot in x;

x : y = 〈xL,x : yL | xR,x : yR〉 (1.12)

1.7 O-minimality

An ordered field is a commutative fieldA with a linear order< such that

x≤ y→ x+z≤ y+z(
z> 0 & x≤ y

)
→ xz≤ yz

}
∀x,y,z∈ A.

An interval in A is a subset ofA of the form(a,b) or [a,b] or (a,b] or [a,b), where
a < b∈ A∪{±∞}.

Let L be a first order language expanding the languageL ′ := (0,1,+, ·,<) of
ordered rings. Suppose thatA is anL -structure, such that the restriction ofA to
L ′ is an ordered field.
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A is o-minimaliff every subset ofA definable inL (with parameters) is a finite
union of intervals and of points(4).

For a good account on the subject, see [17]. Here, I will only recall some of
the properties of an o-minimal structure, which will be useful later.

Of course, the restriction of an o-minimal structure to some smaller language
is also o-minimal. IfA is elementary equivalent toB, thenA is o-minimal iff B is.
Hence, I can talk of o-minimal (first order) theories.

Every o-minimal theory admits definable Skolem functions. This means that if
C⊆An+m is a subset definable (with parametersa1, . . . ,an), andD is the projection
of C overAn, then I can find a functionφ : D→Am definable (with the same param-
eters) such that∀x∈ D, (x,φ(x)) ∈C. For everyx∈ D, the functionφ “chooses”
an element in the fibre overx.

Every complete o-minimal theory T has a prime model, i.e.P |= T such that
for everyA |= T, P is an elementary substructure ofA. In particular, ifA |= T and
I take a subsetS⊆ A, I can talk of the model of T generated byS.

If a∈ A andC� A, the type ofa overC is determined completely by the cut of
a overC, i.e. by formulae of the kindx < c, x = c andx > c asc varies inC. The
model generated byC∪{a} is also determined (up to isomorphisms fixingC) by
this cut.

An o-minimal structure(A,L ) is κ-saturated for some cardinalκ iff its restric-
tion (A,<) is κ-saturated.

An ordered field is o-minimal iff it is real closed. The theory of real closed
fields is complete, and its prime model is given by the field of real algebraic num-
bers.

As an example of what I said before, suppose thatA is a real closed field, and
S⊆ A is a subfield. Then, the model generated byS is S, the real closure ofS. The
type ofa∈A overSis determined by the cut ofa overS, and ifa,a′ are in the same
cut, thenS(a) is isomorphic toS(a′), with an unique isomorphism fixingS (and
henceS) and sendinga to a′.

In the following discussion, the main example of o-minimal theory is Tan(exp),
the theory ofR in the languageLan(exp), the language of ordered rings plus re-
stricted analytic functions and the total exponentiation.

1.8 Other properties

All lemmas in this section are quite elementary. The most interesting result is
lemma1.41, stating some conditions under which the Cauchy completion of a
substructure ofNo is again a substructure ofNo.

(4)O-minimality has been defined also for structures which are simply expansions of linear orders,
or of linearly ordered groups.
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Givenα ∈ No, let

No(α) := {x∈ No : `(x) < α } (1.13)

B(α) := {x∈ No : `(x) = α } . (1.14)

GivenS⊂ No, I define

`(S) := min{α ∈On : α > `(x)∀x∈ S} .

Equivalently,̀ (S) = min{α ∈On : S⊆ No(α)}. Note that̀ ({x}) = `(x)+1, and
if x = 〈L | R〉, then

`(x)≤ `(L∪R),

with equality holding if〈L | R〉 is the canonical representation ofx.
I recall that, givenx,y∈No, the concatenation ofx,y, in symbolsx:y, is defined

as the surreal number obtained juxtaposingx with y, considered as functions from
some ordinal into{+,−}. Then,̀ (x:y) = `(x)⊕`(y) (ordinal sum). The operation
: is associative, 0 is its neutral element, and ifα,β ∈ On, thenα : β = α ⊕β . If
α ∈ No is infinite positive, 1 :(−α) is an infinitesimal positive surreal number. A
surreal number is positive infinite iff it is of the formω : y for somey∈ No.

Remark1.20. If x,y ∈ No, x = 〈xL | xR〉 is the canonical representation ofx and
y = 〈yL | yR〉 is anyrepresentation ofy, then

x : y = 〈xL,x : yL | xR,x : yR〉.

Note that the previous recursive definition isnot uniform.

Definition 1.21. Let S⊆ No be a subclass ofNo. I say thatS is initial in No iff

∀x∈ S∀y∈ No y� x→ y∈ S.

Example1.22. No(α) is an initial subset ofNo for every ordinalα.

Lemma 1.23. Given a family of functions (which is a proper set)

A =
{

fi : Noni → No
}

and a set S⊂ No, there exists a setK such that S⊂ K ⊂ No and f (Kn) ⊆ K for
everyf ∈ A. Moreover, I can chooseK = No(α) for some cardinal numberα.

I call suchK a fixed set forA.

Proof. For any ordinal numberα, let

g(α) := `
( ⋃

f ∈A

f (No(α))
)

i.e.

g(α) := min
{

β ∈ No : β > `(f (x)) ∀f ∈ A,∀x∈ No s.t.`(x) < α
}

.

g : On → On is a continuous increasing function, therefore it has an arbitrarily
large fixed pointα, which can be taken a cardinal number.No(α) satisfies the
conclusion. �
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Lemma 1.24 (Löwenheim-Skolem).Given A and S as before, there existsK
which is a fixed set forA, and such that(K,A) ≺ (No,A). I can suppose that
K = No(α) for some cardinal numberα, or that |K| ≤ℵ0 + |A|+ |S|.

Proof. The condition on the cardinality ofK is the classical L̈owenheim-Skolem
theorem. Otherwise, apply lemma1.23to the skolemization of the structure(No,A).

�

1.8.1 Cauchy sequences

Definition 1.25. Let K ⊂ No be a divisible subgroup ofNo. I say thatx∈ Non is
K-infinitesimal iff |x| < ε for everyε > 0 ∈ K (with an analogous definition for
K-bounded).

Example1.26. Let f : Non → No be a continuous function and

(K, f ,+,<)≺ (No, f ,+,<).

Then∀x∈Kn,y∈Non if x−y isK-infinitesimal, thenf (x)−f (y) isK-infinitesimal.

In the following lemma, forA⊆ No to beK-dense inB⊆ No means

∀x∈ B ∀ε > 0∈K ∃y∈ A |x−y|< ε

Lemma 1.27. Let K⊂ No be a subgroup ofNo and a proper set. IfK is K-dense
in the interval(0,1) thenK⊆ R.

Proof. Suppose thatK is K-dense in(0,1) and that it contains an infinitesimal
elementε > 0. Letε ∼ ω−c for somec > 0∈ No. Consider the sequence

xα := ω
− c

α

whereα runs through all non zero ordinal numbers. For eachα there is azα ∈ K
such that|zα − xα | < ε. But then thezα are all distinct, soK cannot be a proper
set. �

Question1.28. Under which conditions I can talk of “K-standard part” of aK-
bounded element? I.e. when can I say that for everyy∈ No which isK-bounded
there existsx∈K such thatx−y is K-infinitesimal?

Answer1.28. If and only if K = R. In fact the existence of a standard part implies
thatK is dense in(0,1).

Question1.29. GivenK⊂ No andx∈ No that can be approximated byK, i.e.

∀ε > 0∈K ∃y∈K |x−y|< ε,

when does exists a standard part ofx? To be more precise, for whichK every
element ofNo which can be approximated byK has a standard part?
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Definition 1.30 (Cauchy). Let K be a linearly ordered Abelian group,α be an
ordinal. A sequence(xi)i<α

of elements ofK is aCauchy sequenceiff

∀ε > 0∈K ∃n∈ α ∀i, j > n |xi −x j |< ε.

K is Cauchy completeiff every Cauchy sequence has a limit (in the order topology).

Cauchy sequences and completeness can be defined in a wider context than
ordered group.

Question1.31. For which ordinalα is No(α) Cauchy complete?

If K is a Cauchy complete field andG is an ordered group, thenK((Γ)) is
Cauchy complete.

Lemma 1.32. If α is an epsilon number, thenNo(α) is not complete, nor pseudo-
complete.

Proof. If x∈ No(α), thenωx ∈ No(α) too, becauseα is an epsilon number. Con-
sider the surreal number

y := ∑
i<α

ω
−i .

Every partial sum
y

β
:= ∑

i<β

ω
−i

is in No(α) for every β < α (see [18]). Moreover, (y
β
)

β<α
is a Cauchy and

pseudo-Cauchy sequence, but`(y) = α, so it has no limit nor pseudo-limit in
No(α). �

Definition 1.33. Let K ⊂ No be a divisible subgroup ofNo and α ∈ On. Let
(xi)i<α

be a sequence inK andx ∈ No. Then,(xi)i<α
hasK-limit x (or simply

limit if K is clear from the context),xi → x, means that

∀ε > 0∈K ∃n < α ∀i > n |xi −x|< ε.

The limit is not unique. The class of possible limits ofxi is a convex subclass of
No, and I call the simplest element in such class the simplest limit (if it exists).

The Cauchy completion ofK is K, the set of simplest limits of all sequences in
K.

Note that ifx∈K, xi → x is the usual notion of convergence in the order topol-
ogy ofK.

Lemma 1.34. Let K ⊂ No be a divisible subgroup ofNo. ThenK is Cauchy
complete iff every element ofNowhich can be approximated byK has aK-standard
part.
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Proof. If x∈ No can be approximated byK,

∀ε > 0∈K ∃xε ∈K |xε −x|< ε

Consider the sequencexε . It is Cauchy, therefore it has a limity in K, which is the
standard part ofx.

For the converse, consider any Cauchy sequence(xi)i∈α
in K. Then

∀ε > 0∈K ∃n(ε) < α ∀i, j ≥ n |xi −x j |< ε.

Without loss of generality,n(t) is monotone decreasing. Take

x = 〈xn(ε)− ε | xn(ε) + ε 〉
ε>0∈K.

x exists. In fact, if 0< a < b∈K, thenn(a)≥ n(b). Therefore,|xn(a)−xn(b)|< b,
soxn(b)−b < xn(a) < xn(b) +b. This implies that

xn(a)−a < xn(b) +b andxn(b)−b < xn(a) +a.

Moreover,x is obviously a limit ofxi . Therefore,x has a standard party∈K, which
is a limit of xi . �

Remark1.35. The Cauchy completion ofK is Cauchy complete.

Proof. Usual diagonalisation proof. Let(xi)i<α
∈K, x∈ No such thatxi → x. Let

ε > 0∈K. Let n(ε) < α such that∀i > n |xi −x|< ε.
ε is notK-infinitesimal, therefore we can suppose thatε ∈K.
For everyxi there is a sequence(xi, j) j<βi

∈K with limit xi . Let m(i,ε) be such

that∀ j > m |xi −xi, j |< ε. Then

zε := xn(ε),m(n(ε),ε)

has limit x (I useK as index set instead of an ordinal, but it does not make any
difference, as long asK is a set). �

Lemma 1.36. LetK⊂ No be an initial divisible subgroup ofNo, x∈K.

1. Let x= 〈xL | xR〉 in some representation of x. If xi is the sequence of left
options of x(ordered from the farthest to the nearest), and x/∈K then xi → x.

2. Conversely, if xi → x then∀xo options of x∃i < α arbitrary large such that

|xo−x| ≥ |xi −x|.

3. There exists xi → x such that∀i xi < x. More strongly, there exists xi → x that
is cofinal in the canonical representation of x, i.e.∀xL,xR canonical options
of x there exist i, j such that xL ≤ xi < x < x j ≤ xR.
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Proof. 1. Suppose not. Then there existsε > 0∈ K such that∀i x− xi > 2ε.
Let z∈ K s.t. |z− x| < ε. ThenxL < z− ε < x < xR for all optionsxL,xR,
thereforex� z− ε. But z− ε ∈K, andK is initial in No: contradiction.

2. Suppose that there existsxo a canonical option ofx such that∀i |xo− x| <
|xi −x|. But thenxo is a limit of xi , which is absurd.

3. If x /∈K, use1. Otherwise,(x− ε)
ε>0∈K → x.

�

Definition 1.37. LetK⊂Nobe a subgroup ofNo, f : Non→Nosuch thatf (Kn)⊆
K. I say thatf preservesK-limits iff for every sequence(xi)i<α

∈ Kn converging
to x∈Kn

we havef (xi)→ f (x).

Remark1.38. Suppose thatf : Non → No is uniformly continuous on bounded
intervals, thatK⊂ No is a subgroup ofNo closed underf , and thatK� No in the
language(<,+, f ). Thenf preservesK-limits.

Question1.39. Doesf point-wise continuous suffice?

Lemma 1.40. If K⊂ No is an initial subfield ofNo, thenK is a subfield ofNo.

Proof. Let x,y∈ K, let xi → x, yi → y, xi ,yi ∈ K. By lemma1.36, I can suppose
thatxi andyi are cofinal in the canonical representation ofx andy.

If z is the simplest limit ofxi +yi , I must prove thatx+y = z.
xi +yi → x+y, thereforez� x+y by definition ofz. It is also easy to see that

xi +yi is cofinal in the canonical form ofx+y, thereforex+y� z.
Proceed similarly for the product, usingxy− (x−xi)(y−yi) instead ofxi +yi .
For the inverse 1/x, note that eitherx is not K-infinitesimal, and in that case

proceed as for product, orx = 0, and there is no need to invert it. �

In general, we have the following:

Lemma 1.41. Let f : No→ No be recursively definable over a family of functions
A. LetK⊂No be an initial divisible subgroup ofNo, closed underf . LetK be the
Cauchy completion ofK. Suppose thatK is closed underA.

Suppose moreover that∀t ∈ K,∀ε > 0 ∈ K there existf L ∈ A a left option
of f and a,b ∈ K such that a< t < b and∀t ′, t ′′ such that a≤ t ′ < t < t ′′ ≤ b
|f L(t, t ′, t ′′)− f (t)|< ε, and the same for right options.

Suppose moreover thatf and everyg ∈ A preserveK-limits. ThenK is closed
underf .

The same result holds iff is a function of many variables whose definition is
uniform.

Proof. Let x∈K\K. By lemma1.36, if xi are the canonical options ofx, xi → x.
Moreoverf = 〈 f L | f R〉, so

f (x)o = f o(x,xi ,x j , f (xi), f (x j)) = zk,
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k in some ordinalγ (order thezk from the farthest to the nearest toz). Therefore,
zk∈K (becauseK is closed underA) andf (x) is a limit ofzk (because of hypothesis
of the lemma) and the simplest such.

In many variables I need uniformity, because if~x = (x(1), . . . ,x(n)) ∈Kn\Kn, I
cannot suppose that all coordinatesx(i) /∈ K, but only some of them. Therefore, I
cannot say that~x is theK-limit of its canonical options. �

Remark1.42. For a generic ordered fieldK (which is a set), the Cauchy completion
K⊆K can also be defined by the following universal property:

1. K is dense inK.

2. If K is dense in the fieldF, thenF is isomorphic to a subfield ofK by a
unique isomorphism that is the identity onK.

Therefore,K is unique up to isomorphisms.

Definition 1.43. The cofinality of a linearly ordered setK is c f(K), the smallest
ordinalα such that there exists a sequence(xi)i<α

with domainα cofinal inK, i.e.

∀y∈K ∃i < α xi > y.

If K is an ordered field, thenc f(K) is always a non-zero limit ordinal. If
moreoverK is dense in the fieldF, thenK andF have the same cofinality.

Lemma 1.44. The setK can be defined as a quotient of the sets of all Cauchy
sequences inK with domainα := c f(K). The equivalence relation is given by

(xi)i<α
∼ (yi)i<α

iff ∀ε > 0∈K ∃n < α ∀i > n |xi −yi |< ε.

The sum and product are given point-wise. The order is given by

(xi)i<α
< (yi)i<α

iff (xi)i<α
� (yi)i<α

& ∃n < α ∀i > n xi < yi .

The inclusionK ⊆ K is given by the diagonal map. Moreover,K is Cauchy com-
plete, and ifF is another Cauchy complete ordered fieldF containingK and such
thatK is dense inF, then there exists a unique isomorphism betweenF andK that
is the identity onK.

Sketch of proof.The proof follows the usual one forK = Q.
Suppose thatK is dense inF. Any map fromF to K assigning to an element

x∈ F a Cauchy sequence inK converging tox induces an isomorphism betweenF
and a subfield ofK. �

D. Scott in [16] gives (at least) two other constructions ofK. In particular, he
writes:

The element ofK are in one-to-one correspondence with the [De-
dekind] cuts inK that areneverinvariant under a nonzero translation
by an element ofK.

For a fuller account on the subject, see for instance [9].
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1.8.2 Properties of No(α)

Remark1.45. Let a < b∈ No, c = 〈a | b〉. Then eitherc≺ a andc≺ b, or a≺ b
or b≺ a.

If a≺ b or c≺ b, thenb: (−1) ∈ (a,b). If b≺ a or c≺ a, thena: 1∈ (a,b).

Lemma 1.46. Let α ∈ On. Then,No(α) is discrete iffα is finite. Moreover,α is
a limit ordinal iff No(α) is densely ordered iff

∀a < b∈ No(α) 〈a | b〉 ∈ No(α).

Proof. Density: The second⇔ is easy. I will prove the first⇔.

⇐ Suppose thatα = β +1. Obvious ifα is finite. If α is infinite, let

b = 1 :(−β ).

`(b) = 1⊕β = β < α, where⊕ is the ordinal sum. 0,b∈ No(α), butc = 〈0 |
b〉 /∈ No(α).

⇒ Let a < b∈ No(α), c = 〈a | b〉. Then eitherc≺ a, soc∈ No(α), or a≺ b, so
(b:−1) ∈ (a,b), and`(b:−1) = `(b)⊕1 < α, or similarly if b≺ a.

Discreteness:

⇐ Obvious.

⇒ Suppose thatα infinite. If α is a limit ordinal, thenNo(α) is dense, so it
cannot be discrete. Otherwise,α = λ +n, λ ∈ On is an infinite limit ordinal,
0 < n∈ N. Let b = 1 :(−λ ) : (n−1). Then,`(b) = λ +(n−1) < α. Suppose
thatc is the successor ofb in the discrete order ofNo(α). Then,

∀γ < λ +(n−1) ∈On,b < c < 1 :(−γ).

Therefore,b≺ c, so`(c) > `(b), and`(c)≥ α, a contradiction. �

Lemma 1.47. Let α be an ordinal number.B(α) is discrete iffα is finite.

Proof. ⇐ Obvious.

⇒ If α is a limit infinite ordinal, thenb = 1.(−α) has no successor. Otherwise,
α = λ + n, with λ ∈ On an infinite limit, n∈ N and use example1.55in the
next section. �

Lemma 1.48. No(λ ) is a subfield ofNo iff λ is an epsilon number. Moreover, in
this caseNo(λ ) is also an elementary substructure ofNo in the languageLan(exp)
and for every a∈ No(α), ωa ∈ No(α).

Proof. See [18]. �

Lemma 1.49. Let α,β be two infinite cardinal numbers. Then,(No(α),<) is
β -saturated iffβ ≤ c f(α), where c f(α) is the cofinality ofα.
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Proof. Let K = (No(α),<).

⇐ Let S⊂ K be as set of cardinality less thanc f(α), let T = TS(x) be a 1-type
over it. The important fact is that`(S) < α. I want to prove thatT has a realisa-
tion in K. Suppose that nos∈ SrealisesT (otherwise the conclusion follows).
By lemma1.46, K is densely ordered without endpoints, so its theory has elim-
ination of quantifiers. Therefore, without loss of generality every formula inT
is of the type either(x > s) or (x < s) for somes∈ S. Let

L :={s∈ S: (x > s) ∈ T }
R :={s∈ S: (x < s) ∈ T } .

It is obvious thatL < R, and thata = 〈L | R〉 realisesT. Moreover,̀ (L∪R)≤
`(S) < α ⇒ `(a)≤ `(S)⇒ a∈K.

⇒ Suppose for contradiction thatK is β -saturated and thatc f(α) < β . In that
case, for someγ < β there exists aγ-sequence of ordinal numbersλi which is
cofinal inα. But then, by saturation, there existsc∈K that is greater than each
of theλi ; thereforeα, the simplest suchc, is in K, which is impossible. �

Corollary 1.50. Letα be an uncountable cardinal. LetK be an o-minimal expan-
sion of(No(α),<). If 2β = β+ = α, or if α is inaccessible, thenK is saturated.

Moreover,No itself isα-saturated for every cardinalα.

Lemma 1.51 (Compactness).Let A be a set of subintervals ofNo, where every
interval has endpoints inNo∪{±∞}. If A is a covering ofNo, then it has a finite
sub-covering.

Note thatA must be a proper set. The lemma can be generalised to other|A|+-
saturated ordered groupsK.

Proof. Suppose not. Then, the type inx (in the language(+,<)) given by formulae

x /∈ A1∪·· ·∪An,

for n ∈ N and Ai ∈ A, i = 1, . . .n, would be consistent, and by saturation there
would bex∈No satisfying it, contradicting the fact thatA is a covering ofNo. �

1.9 Orderings

This section deals with some basic properties of partial orders and of ordered trees.
It ends with a characterisation ofNo (remark1.73).
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1.9.1 Set theoretic background

The discussion in this thesis takes place in the axiomatic system NBG of von Neu-
mann, Bernays and G̈odel, with global choice. Its main features is that it treats
classes as legitimate objects; sets are classes which are member of some other
class. The main distinguishing axioms are the following.

Axiom of predicative comprehension for classes.For any condition(5) φ(x)
that contains only quantifiers over sets (and not classes), there exists a classA
which consists exactly of those setsx which satisfyφ(x).

Axiom of global choice. There exists a function(6) F whose domain contains
all non-void sets, and such that for every non-void setx, F(x) ∈ x.

See [8] for more details.
I will also talk of acollectionof classes as an abbreviation device for a condi-

tion φ(x) without quantifiers over classes. Similarly, given two collectionsC and
D (determined by a conditionφC(x) andφD(x)), a function fromC into D is given
by a formulaψ(x,y) (with only x,y as free variables), such that

∀x∈C ∃!y∈ D ψ(x,y).

A relation over a collectionC is again given by a formulaφ(x,y) (without quan-
tifiers over classes). For instance, I will defineNoD , the Dedekind completion of
No: it is a collection and not a class.

Given a well founded partial and set-like order(A,≤) (see1.9.2for the defini-
tion), it is possible to give definitions by transfinite recursion onA, without needing
to go outside NBG. Moreover, it is possible to prove formulae without bounded
class variables by induction onA.

1.9.2 Partial Orders

Definition 1.52. A quasi-ordered class (orquasi-orderfor short) is a pair(A,≤),
whereA is a set or a class, and≤ is a binary relation onA satisfying the following
axioms:

Transitivity ∀x,y,z∈ A x≤ y andy≤ z imply x≤ z.

Reflexivity ∀a∈ A a≤ a.

a∼ b meansa≤ b andb≤ a. ∼ is an equivalence relation onA. If (A,≤) satisfies
also

Antisymmetry ∀a,b∈ A a∼ b iff a = b,

the order is called apartial order.
If neithera≤ b nor b≤ a thena andb are incomparable, in symbols:a ‖ b.

By a < b I meana≤ b andb � a.

(5)A condition is a formulaφ(x) with only x as free variable.
(6)A function is a class whose elements are ordered pairs and satisfying the usual properties.
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A quasi-order istotal iff no two elements are incomparable, i.e. for every
a,b∈ A eithera≤ b or b≤ a. A linear order is a total partial order.

A chain is a subclass ofA which is linearly ordered by≤.
A quasi-order iswell-foundediff there is no infinite sequence(xi)i∈N in it such

thatxi+1 < xi .

Given a quasi-order(A,≤),≤ induces a partial order on the quotientA/∼, the
canonical quotientof (A,≤).

In the following, all orders will be partial orders, unless explicitly stated oth-
erwise.

A quasi-ordered classA is set-likeiff it is well-founded and for everya∈ A the
class of predecessors ofa

P(a) := {x∈ A : x < a}

is a proper set.
Given a well-founded partial order(A,<) anda∈ A, the lengthof a is induc-

tively defined as

`(a) = min{α ∈On : α > `(x) ∀x < a}

(or +∞ if the minimum does not exist). IfA is set-like, theǹ (a) is defined∀a∈ A.
If S⊂ A, let

`(S) := min{α ∈On : α > `(x) ∀x∈ S} ,

or +∞ if the minimum does not exist. Ifa∈A, letP(a) := {x∈ A : x < a}. Then,
`(a) = `(P(a)).

Remark1.53. Let α,β ∈On. The natural sumα +β is the smallest ordinal strictly
greater thanα +β ′ andα ′+β for everyα ′ < α andβ ′ < β (7).

In particular, the natural sum of two ordinals coincides with their sum as surreal
numbers.

Given two partial orders(A,<A) and(B,<B), how can I induce an order on the
productA×B?

Definition 1.54 (lex). Thelexicographic product(or ordinal product) of A,B is the
partial order(A×B,≤

lex
) defined by

(a,b)≤
lex

(a′,b′) iff a < a′∨ (a = a′ & b≤ b′).

(7)The natural sum of two ordinals can be defined either via their Cantor normal form, or using this
remark as a definition.
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If A andB are both linear,C := (A×B,≤
lex

) is linear too. IfA andB are both

well-founded,C is well founded too. But(On×On, lex) is not set-like, even ifOn
is. If A andB are both well founded, anda∈ A,b∈ B, then

`(a,b) =
(
`(a)⊗ `(B)

)
⊕ `(b).

where⊕ and⊗ are the ordinal sum and product.

Example1.55. For everyα,β ∈On

(B(α)×B(β ), lex)' B(α⊕β ) (1.15)

with the isomorphism given by concatenation.

Definition 1.56 (bnd). Thecardinal product(8) (A×B, ≤
bnd

) is the partial order

(a,b) ≤
bnd

(a′,b′) iff a≤ a′ & b≤ b′.

The cardinal product can be easily generalised to the product of more than two
factors.

If A andB are both well-founded,C is well founded too. IfA andB are both
set-like, so isC. But C is almost never linear, even ifA,B are. ForA andB well-
founded,̀ (a,b) = `(a)+ `(b).

Proof. Induction on(a,b). By definition of length and inductive hypothesis,

`(a)+ `(b) =min
{

γ : γ > `(a′,b′) ∀a′ ≤ a,b′ ≤ b,(a′,b′) 6= (a,b)
}

=min
{

γ : γ > `(a′)+ `(b′) ∀a′ ≤ a,b′ ≤ b,(a′,b′) 6= (a,b)
}

,

and the conclusion follows from remark1.53. �

Definition 1.57 (sym). (A×A, ≤
sym

) is thesymmetric product:

(a,b) ≤
sym

(c,d) iff (a,b) ≤
bnd

(c,d)∨ (a,b) ≤
bnd

(d,c).

This ordering is only a quasi-ordering:(a,b)∼ (b,a). C is almost never total.
If A is well founded, so isC; if A is set-like, so isC, and agaiǹ(a,b) = `(a)+`(b).

Proof. Induction on(a,b). By definition and inductive hypothesis,

`(a,b) = min

{
γ : γ > `(c)+ `(d) ∀(c,d) s.t. (c,d) <

bnd
(a,b)∨ (c,d) <

bnd
(b,a)

}
,

and the conclusion follows from the commutativity of+. �

(8)It coincides with the product in the category of partial orders.
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Definition 1.58 (bsym). If A is a linear order, then bsym and bsym2 are thebounded
symmetricorderings onA×A:

(a,b) ≤
bsym

(c,d) iff max(a,b) < max(c,d)∨

∨
(
max(a,b) = max(c,d) & min(a,b)≤min(c,d)

)
(a,b) ≤

bsym2

(c,d) iff min(a,b) < min(c,d)∨

∨
(
min(a,b) = min(c,d) & max(a,b)≤max(c,d)

)
In the general case, whenA is not necessarily linear, bsym is defined as:

(a,b) ≤
bsym

(c,d) iff (a,b) ≤
sym

(c,d)∨ (a < c & b < c)∨ (a < d & b < d).

In general, neither bsym nor bsym2 are partial orders, only quasi-orders. Both
are well-founded (total) ifA is. bsym is set-like, but bsym2 is not. The formula for
`(a,b) is quite complicated in both cases. (It would be interesting to define bsym2
for any partial orderA).

Example1.59. `(N×N,bsym) = ω:

(0,0) < (1,0) < (1,1) < (2,0) < (2,1) < (2,2) <

< (3,0) < (3,1) < (3,2) < (3,3) < · · ·

`(N×N,bsym2) = ω×ω:

(0,0) < (0,1) < (0,2) < · · ·< (1,1) < (1,2) < (1,3) < · · ·< (2,2) < · · ·

A well founded order≤ on A×B gives the means of doing induction on pairs
(a,b). The greater is̀(a,b), the more powerful is the induction (i.e. the stronger
is the inductive hypothesis). On the other hand, the smaller is`(a,b), the more
efficient is a recursive definition of a functionf on A×B (i.e. I need to know
f (a′,b′) for less values before being able to computef (a,b)). In the case ofNo, if
< is not set-like, there is a danger thatf is not defined for some input: this is the
reason why I had to use the cardinal product bnd instead of the lexicographic one
lex in the definition of a function of many variables.

The bounded symmetric order bsym is quite important: when I do induction
on pairs on functionsf ,g : No→ No, I often use bsym. For induction on pairs of
elements ofNo I use the cardinal product bnd (what Gonshor calls induction on
the natural sum ofa,b).

Lemma 1.60. Let (A,≤) be a quasi-ordered set,Γ a group of automorphisms of
(A,≤). Suppose that

∀x∈ A ∀γ ∈ Γ
(
γx∼ x∨ γx ‖ x

)
.

Introduce on A the relation R given by xRy iff x∼ γy for someγ ∈ Γ. Then, R is an
equivalence relation. Let B:= A/Γ be the quotient of A under R. Then≤ induces
a partial order on B, which is well-founded if A is.
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Proof. The definition of≤ onB is ā≤ b̄ iff a≤ γb for someγ ∈ Γ.

Equivalence relation: Reflexivity is obvious. For transitivity, let ¯aRb̄ and
b̄Rc̄, i.e. a∼ γb, b∼ λc for someγ,λ ∈ Γ. Then,a∼ γλc.

Good definition of≤: If ā = b̄ and ā≤ c̄, I have to prove that̄b≤ c̄. The
hypothesis means thata∼ γb anda≤ λc for someγ,λ ∈ Γ. This implies
thatb≤ γ−1λc.

Reflexivity: Obvious.

Antisymmetry: If ā≤ b̄ andb̄≤ ā, thena≤ γb, b≤ λa. Therefore,a≤ γb≤
γλa. So, by hypothesis onΓ, a∼ γλa, thereforea∼ γb, i.e. ā = b̄.

Transitivity: ā≤ b̄≤ c̄. Thena≤ γb, b≤ λc. Therefore,a≤ γλc.

Foundation: Suppose that∀i ∈N āi+1 < āi . Then,ai > γiai+1 for someγi ∈ Γ.
Therefore,

a0 > γ0a1 > γ0γ1a2 > γ0γ1γ2a3 . . .

andA is not well-founded. �

Example1.61. Let A = (B×B, ≤
bnd

) and letΓ be the group generated by the swap-

ping of coordinates. The induced ordering on the quotient is (the canonical quotient
of) sym.

Definition 1.62. Let (Ai ,≤)i∈S be a family of partially ordered sets. Its direct
product is the set∏i∈SAi , given by the direct product of theAi , endowed with the
order

(xi)i∈S≤ (yi)i∈S⇔∀i ∈ S xi ≤ yi .

Suppose that everyAi has a minimum 0. Thesupportof x := (xi)i∈S∈ ∏i∈SAi is
the set

supp(x) := { i ∈ S: xi 6= 0} .

If (S,<) is a linearly ordered set, thelexicographic productΓi∈SAi is the set of all
elements of∏i∈SAi with well-ordered support, with the partial order defined by

x := (xi)i∈S < (yi)i∈S⇔ xi0
< yi0

,

wherei0 is the smallesti ∈ Ssuch thatxi 6= yi . If all factors are the sameA, I call
the lexicographic power ofA (over the baseS) the corresponding lexicographic
product.

If S is anti well-ordered and eachAi is well-founded, thenΓi∈SAi is well-
founded too. If all factors are linearly ordered, the lexicographic product is also
linear.

Example1.63. The order onNo[x] introduced in the proof of lemma4.2 is the
lexicographic power ofNo over the baseN with reversed order.
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Definition 1.64. Let (A,<) be a quasi-ordered set. LetA<ω be the class of all
n-tuples of elementsA asn∈ N, with the quasi-order defined by(xi)i<n ≤ (y j) j<m
iff there exists a function

f : {0,1, . . . ,n−1}→ {0,1, . . . ,m−1}

such that∀i < n xi ≤ yf (i) andxi < yf (i) whenever∃ j 6= i f (i) = f ( j). In gen-

eral, this quasi-order is not a partial order. Thesymmetric powerof A is A(N), the
quotient ofA<ω under the action of the permutation group ofN.

Remark1.65. Let A,A<ω ,A(N) as in the previous definition. The symmetric power
A(N) is a partial order. IfA is well-founded (or set-like, or totally ordered), so are
A<ω andA(N).

Lemma 1.66.Let(A,<) be a set-like partial order. Let x0, . . . ,xn∈A. Letα1, . . . ,αm

be the set of lengths of x0, . . . ,xn, ordered by the greatest to the smallest. For
i = 1, . . . ,m, let ki be the number of j such that`(x j) = αi . Then,

`(x0, . . . ,xn)≤ k1ω
α1 + · · ·+kmω

αm,

with equality holding if for each i= 0. . . ,mP(xi) is a linearly ordered set.

Sketch of proof.I will treat only the case in whichxi are all ordinal numbers. The
mapψ : On(N) →On defined by

ψ(x1, . . . ,xn) = ω
x1 + · · ·+ω

xn

is surjective (where+ is the natural sum of ordinals), by well known facts on the
Cantor normal form of an ordinal. Moreover,x < y impliesψ(x) < ψ(y), and the
conclusion follows. �

The symmetric power is a generalisation of bsym. See also [5] and [4] for other
results on partial orders.

1.9.3 Ordered trees

Definition 1.67. Let ≤ be a (partial) order on a classA. Given a subclassS⊆ A,
a∈ A is anupper boundfor S iff ∀x∈ S a≥ x.
a is theleast upper boundof S iff a is an upper bound forSanda≤ x for everyx
upper bound forS.
Thegreatest lower boundis defined in a similar way.
If ≤ is linear, then aS⊆ A is aconvexsubclass iff

∀x,y∈ S∀z∈ A x≤ z≤ y→ z∈ S.

Definition 1.68 (Tree). An ordered class(A,≺) is atree iff

T1. A is well-founded and set-like.
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T2. ∀a∈ A, P(a) := {x∈ A : x≺ a} is linearly ordered.

T3. Every non-empty subclass ofA has a g.l.b.

A tree A is a binary treeiff every a ∈ A has at most 2 immediate successors. A
structure(A,≺) is aweak treeif the set-like condition is dropped.

Lemma 1.69. If A is a weak tree, then

1. A has a minimum, therootof the tree.

2. Every chain which has an upper bound has a l.u.b.

Proof. 1. The g.l.b. ofA itself is the root ofA.

2. LetC⊂A be a bounded chain. The class of upper bounds ofC is non-empty,
therefore it has a g.l.b.a, which is the l.u.b. ofC.

�

Definition 1.70 (Ordered tree). A structure(A,<,≺) is anordered treeiff

OT1. (A,<) is a linear order.

OT2. (A,≺) is a tree.

OT3. For everyS⊆ A <-convex subclass ofA, the≺-g.l.b. ofS is in S.

OT4. For everya∈ A, S (a) := {x∈ A : a� x} is a<-convex subclass ofA.

If in the above definition a tree is replaced by a weak tree, we would get a weak
ordered tree.

In the following, convex will mean convex with respect to<. If a≤ b∈ A then
[a,b] is the convex subclass{x∈ A : a≤ x≤ b}.

Lemma 1.71.Every ordered tree is isomorphic in a unique way to a initial subtree
of No.

Proof. Let (A,<,≺) be a tree.

Claim 1. Suppose thatx,y,z∈ A, x� y, z≺ x andz< x. Thenz< y. Similarly for
z> x.

S (x) is convex,z /∈S (x) andz< x, thereforez< S (x). In particular,z< y.
I will define the isomorphismφ : A→ No by induction. First, if 0 is the root

of A, thenφ(0) = 0. Suppose that I have already definedφ on P(a), such that
φ�P(a) is an ordered tree isomorphism. Then define

φ(a) = 〈L | R〉,

whereL = {φ(x) : x≺ a & x < a} andR= {φ(x) : x≺ a & x > a}. By T1, φ(x)
exists. I need to check thatφ is an isomorphism, i.e. that ifx < y thenφ(x) < φ(y)
and ifx≺ y thenφ(x)≺ φ(y).
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If x≺ y, from the claim, the definition ofφ and the cofinality theorem onNo it
follows thatφ(x)≺ φ(y).

If x< y, then byT3 the class[x,y] has a≺-g.l.b.zand byOT3z∈ [x,y]. Without
loss of generality, I can suppose thatx≤ z< y. Then, by definition ofφ(x), φ(x)≤
φ(z), and, by definition ofφ(y), φ(z) < φ(y); therefore,φ(x) < φ(y). �

Corollary 1.72. For an ordered tree(A,<,≺), axiomT2 is a consequence of the
other axioms. Moreover, the following statements are also true:

• (A,≺) is a binary tree.

• ∀α ∈On, the class

A(α) := {x∈ A : `(x) < α }

is a proper set.

Remark1.73. (No,<,≺) can be defined asthe maximal ordered tree, or equiva-
lently asthe ordered tree such that ifL < R are two subsets of No, then the cut
(L | R) is non-empty.

An alternative definition of ordered trees, which is surprisingly simple, is the
following.

Definition 1.74 (Weak ordered tree). An weak ordered tree is a triple(A,<, f )
such that:

OT1’. (A,<) is a linearly ordered class.

OT2’. f is a function fromC(A), the collection of non-empty<-convex subclasses
of A, into A.

OT3’. For everyS∈ C(A), f (S) ∈ S.

OT4’. For everyS,T ∈ C(A) such thatS⊆ T and f (T) ∈ Swe havef (S) = f (T).

Given a weak ordered tree (in the sense of1.70) we obtain an weak ordered
tree (in the sense of1.74 ) defining f (S) be the g.l.b. ofS for S∈ C(A). For the
converse:

Lemma 1.75. Let (A,<, f ) be a weak ordered tree. Define

x� y iff

{
f ([x,y]) = x if x≤ y or

f ([y,x]) = x if y < x.

Then,(A,<,�) is a weak ordered tree.

Proof.
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Claim 1. � is a partial order.
Anti-symmetry and reflexivity are obvious. For transitivity, letx� y� z. With-

out loss of generality,x≤ y.
Suppose thatx≤ y≤ z. By OT3’, a := f ([x,z]) ∈ [x,y]∪ [y,z]. If a∈ [x,y] then

by OT4’, a= x, i.e. x� z. If a∈ [y,z], thena= y. Thereforea∈ [x,y] and soa= x.
Suppose thatx≤ z≤ y. By OT4’, f ([x,z]) = x.
Suppose thatz≤ x < y. This is impossible, becausef ([z,y]) = y, therefore, by

OT4’, f ([x,y]) = y, sox = y.

Claim 2. For everyS∈ C(A), f (S) is the�-minimum ofS.

Let a := f (S), and letx∈ S. Without loss of generality,a < x. Then,[a,x]⊆ S,
thereforea = f ([a,x]).

Claim 3. For everya∈ A, P(a) is linearly ordered by�.

Let x� a andy� a. Without loss of generality, I can suppose thatx < a. If
x≤ y < a, thenx� y. If y < x < a, theny� x. If x < a < y, let b := f ([x,y]). If
b∈ [x,a], thenb = x, thereforex� y. Otherwise,y� x.

Claim 4. � is well-founded.

Suppose not. Letx0 � x1 � x2 . . . be an infinite sequence. Without loss of
generality, after taking a subsequence, I can suppose that(xi)i∈N is an infinite<-
descending sequence, i.e.x0 ≥ x1 ≥ x2 . . . . Then, f ([x0,xi ]) = xi for everyi ∈ N.

LetC :=
⋃

i [x0,xi ]. C∈ C(A), thereforec := f (C) is defined, andc∈C. There-
fore,c∈ [x0,xn] for somen∈ N and soc = xn. Thereforexi = xn for everyi > n.

Claim 5. For everya∈ A, the class{x : a� x} is convex.

Let a� x1, a� x2 andx1 < y < x2. Without loss of generality,a≤ y. Then,
[a,y]⊂ [a,x2], thereforef ([a,y]) = a.

Claim 6. Every nonempty subclassS⊆ A has a�-g.l.b.

Let T be the convex hull ofS. I say thata := f (T) is the g.l.b. ofS. By claim2,
a is a lower bound forT, and a fortiori forS. Let y be a lower bound forS. a∈ T,
therefore there existx1,x2 ∈ Ssuch thatx1 ≤ a≤ x2. y� x1 andy� x2, therefore,
by the previous claim,y� a. So,a is the g.l.b. ofS. �

Example1.76. Let (A,<) be the lexicographic sumOn⊕On, and let� coincide
with ≤. ThenA is a weak ordered tree, but it is not set-like.

Of course, for proper sets, weak ordered tree and ordered tree are the same
concept.

For a different account on the subject, see [7].
Lemma1.75can be generalised.

Definition 1.77. Let A be a set. LetC be a family of subsets ofA such that:

1. A∈ C, /0 /∈ C.

2. ∀U ⊆ C
⋂

U 6= 0→
(⋃

U ∈ C &
⋂

U ∈ C
)
.
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For x1, . . . ,xn ∈ A, let [x1, . . . ,xn] be the l.u.b. of
{

x1, . . . ,xn
}

, i.e.

[x1, . . . ,xn] :=
⋂{

S∈ C : x1 ∈ S& . . . & xn ∈ S
}

A C-tree is given by a functionf : C→ A such that

3. ∀S∈ C f (S) ∈ S.

4. ∀x∈ A f([x]) = x.

5. ∀S⊆ T ∈ C
(

f (T) ∈ S→ f (S) = f (T)
)
.

Example1.78. Let (A,<, f ) be an ordered tree (and a set). LetC := C(A) be the
set of non-empty convex subsets ofA. Then,(A, f ) is aC-tree.

Lemma 1.79. EveryC-tree is a tree in a canonical way, with the definition x� y
iff f ([x,y]) = x.

Proof.

Claim 1. � is a partial order.
Antisymmetry is obvious, reflexivity follows from axiom4. For transitivity,

let x� y� z. [x,y]∪ [y,z] = [x,y,z] ∈ C; let c := f ([x,y,z]). Therefore,c∈ [x,y] or
c∈ [y,z]. If c∈ [y,z], c = y, soc∈ [x,y]. If c∈ [x,y], c = x, thereforex� z.

Claim 2. For everyS∈ C, f (S) is the minimum ofS.

Let a := f (S), and letx∈ S. Then,[a,x]⊆ S, thereforea = f ([a,x]).

Claim 3. For everya∈ A, P(a) is linearly ordered by�.

Let x,y∈P(a), b := f ([x,y,a]). If b∈ [x,a], thenb = x, sox� y, otherwise
b∈ [y,a], soy� x.

Claim 4. � is well-founded.

Let xo � x1 � x2 � . . . . Therefore,f ([x0,xi ]) = xi for every i ∈ N. Let C :=⋃
i [x0,xi ]; C ∈ C, so I can definec := f (C). c∈ [x0,xn] for somen∈ N, soc = xn,

thereforexi = xn for everyi ≥ n.

Claim 5. For everya∈ A, the setS (a) := {x∈ A : a� x} is in C.

In fact,S (a) =
⋃
{ [a,x] : a� x}.

Claim 6. Every non-empty subsetR⊆ A has a g.l.b.

Let T :=
⋂
{C∈ C : R⊆C}. Then,a := f (T) is the g.l.b. ofR. In fact, a is

a lower bound ofT, and a fortiori ofR. Moreover, ify is a lower bound forR,
R⊆S (y) andS (y) ∈ C, thereforeT ⊆S (y), soy� a. �

Example1.80. Let (A,�) be a tree (and a set). Define

C := {S (a) : a∈ A} , f (S (a)) := a.

Then(A, f ) is aC-tree.
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Lemma 1.81. Let (A,<,�) be an weak ordered tree,(B,<) a linearly ordered
class such that(A,<) is a dense sub-order of(B,<). Then there is a unique tree
structure on B such that B is a weak ordered tree and A is an initial subtree of B.

Proof. I have to definef : C(B) → B satisfying definition1.74, extending f ′ :
C(A) → A. Let S be a non-empty convex subclass ofB. If S= {s} is a single-
ton, f (S) := s. Otherwise,T := f (S)∩A is a non-empty convex subset ofA, and I
define f (S) := f ′(T). The conclusion is now obvious. �

Definition 1.82. Let (A,<) be a linearly ordered class. A Dedekind cut is a parti-
tion of A into two non-empty subclassesL,R such thatL < R andL has no maxi-
mum. TheDedekind completion AD of (A,<) is the collection of all its Dedekind
cuts with order defined by

(L,R)≤ (L′,R′ )↔ L⊆ L′,

and inclusionι : A→ AD given by

ι(a) = ({x∈ A : x < a} ,{x∈ A : x≥ a}).

A is dense in its Dedekind completion, so lemma1.81applies toAD , if it is a
class.

1.10 Structure on NoD

Let NoD be the Dedekind completion ofNo. I will define a tree structure onNoD

which extends the structure onNo (I cannot use lemma1.81directly becauseNoD

is not a class(9)). If x,y∈ NoD , x� y iff x = y or x,y∈ No andx� y or x = 〈xL |
xR〉 ∈ No, y = (L,R) ∈ NoD andxL ∈ L, xR∈ R for everyxL,xR canonical options
of x.

With abuse of notation, givenL,Rsubclasses ofNo, with L < R, I write 〈L |R〉
for the simplestx∈NoD such thatL < x < R (if it exists). Everyx∈NoD is of the
form 〈L | R〉, with L = {x′ ∈ No : x′ < x} andR= {x′′ ∈ No : x′′ > x}.

Every element ofNoD has a sign expansion corresponding to it, possibly of
lengthOn. But not every sign expansion of length at mostOn corresponds to an
element ofNoD .

For x,y∈ NoD , definex+y as

〈
{

x′+y′ : x′ < x,y′ < y
}
|
{

x′′+y′′ : x′′ > x,y′′ > y
}
〉.

Remark1.83. x+y is a well-defined element ofNoD . Moreover, ifx,y∈ No, then
x+y coincides with the usual sum.

(9)The proof thatNoD is not a class is a trivial modification of Cantor’s diagonal argument showing
that the set of real numbers is not countable.
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−x is defined as

−x = 〈
{
−x′′ : x′′ > x

}
|
{
−x′ : x′ < x

}
〉.

Every positive element ofNoD can be also represented in a unique way as
x = ({x′ ∈ No : 0 < x′ < x} | {x′′ ∈ No : x′′ > x}). With this representation, we
can define

xy= 〈
{

x′y′ : 0 < x′ < x,0 < y′ < y
}
|
{

x′′y′′ : x′′ > x,y′′ > y
}
〉.

Again,xy is a well-defined element ofNoD , which forx,y∈No coincides with the
usual product.

Let

η := 〈{x∈ No : 0 < x� 1} | {x∈ No : 0 < x & v(x)≥ 0}〉
= sup{x∈ No : 0 < x� 1} .

Then,η +η = η2 = η . Therefore,NoD is not a ring. In particular, the sum is not
associative(10).

Remark1.84. Let x > 0∈ No. Then

ηx = sup{y∈ No : 0 < y� x}= inf {y∈ No : y > 0 & v(y)≥ v(x)}

Proof. Let x = 〈L | R〉, where

L =
{

xL ∈ No : 0 < xL < x
}

andR=
{

xR∈ No : xR > x
}

.

Then,

ηx = 〈
{

xL
ε : 0 < xL < x & 0 < ε � 1

}
|
{

xRq : xR > x & q > 0 & v(q)≥ 0
}
〉.

Let 0< y� x. Then 2y/x = ε � 1, therefore

y = εxL,

with xL = x/2, so sup{y∈ No : 0 < y� x} ≤ ηx.
On the other hand, ify > 0 andv(y)≥ v(x), theny≥ 2qx for someq > 0∈Q,

thereforey≥ qxR, with xR = 2x, soy > ηx. �

I will introduce the notion of approximation associated to a surreal number.

Definition 1.85. Let x∈ No.

∆L(x) := sup{ε ∈ No : x� x− ε }
∆R(x) := sup{ε ∈ No : x� x+ ε }
∆(x) := max

{
∆L(x),∆R(x)

}
(10)

η +(η−η) = η

(η +η)−η = 0.
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Note that, in general,∆L,∆R and∆ are not inNo, but inNoD .

Remark1.86. Let x,y∈ No. If |x−y|< ∆(x), thenx� y.
Moreover,

∆L(x) = inf {ε > 0 : x− ε ≺ x} ,

and similarly for∆R(x). Likewise,

∆(x) = inf {ε > 0 : x− ε ≺ x∨x+ ε ≺ x}

In particular, ify≺ x andy < x, thenx−y≥ ∆L(x).

Example1.87.

• ∆(x) = ∞ iff x = 0.

• The ring of omnific integers is the subclass ofNo

Oz := {x∈ No : ∆(x)≥ 1} .

It is a subring ofNo. Its elements are the surreal numbers with normal form

∑
a∈No

raω
a,

with ra = 0 for everya < 0, andr0 ∈ Z. Many properties of this ring are
explained in [6] and [10].

• If x∈ R\Q, then∆(x) = η .

Lemma 1.88. For x,y∈ No,

∆L(x+y)≥min
{

∆L(x),∆L(y)
}

∆R(x+y)≥min
{

∆R(x),∆R(y)
}

∆(x+y)≥min{∆(x),∆(y)}

Proof. It is enough to prove the first inequality.

(x+y)L =

{
x+yL

xL +y.

Therefore

(x+y)− (x+y)L =

{
x−xL > ∆L(x)
y−yL > ∆L(y)

≥min
{

∆L(x),∆L(y)
}

.

Now apply remark1.86and the inverse cofinality theorem. �

Corollary 1.89. If ∆(b) < ∆(a), then∆(a+b) = ∆(b).

Lemma 1.90. For x,y∈ No, ∆(xy)≥ ∆(x)∆(y).
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Proof. Let x = 〈xL | xR〉, y = 〈yL | yR〉 be any representations ofx,y. Then, a
typical option ofxy is of the form(

xy
)o = xy− (x−xo)(y−yo),

therefore|
(
xy

)o−xy|= |x−xo||y−yo|. �

Example1.91. In general, it is not true that∆(xy) = ∆(x)∆(y). For instance, take
x = 1/3, y = 3.
Then,∆(x) = η , ∆(y) = 1, ∆(xy) = ∆(1) = 1 > ∆(x)∆(y).

Remark1.92. Let a∈ No, x > 0∈ No. If x∼ ωa, thenωa � x.

Proof. If a = 〈aL | aR〉 is any representation ofa,

ω
a = 〈qω

aL | qω
aR 〉q>0∈Q.

x∼ ωa, thereforeqωaL
< x < qωaR

, and the conclusion follows. �

Lemma 1.93. Let r∈ R, a∈ No. Then,

rω
a = 〈(r− ε)ωa | (r + ε)ωa〉

ε>0∈Q.

Proof. Without loss of generality,r > 0. Let a = 〈aL | aR〉 be any representation
of a. Then a typical option ofz := rωa is of the form

zo := rqω
ao

+(r± ε)ωa− (r± ε)qω
ao

For someε,q > 0∈Q. If ao = aL < a,

zo ' (r± ε)ωa

otherwiseao = aR > a, and

zo '±qεω
aR � ω

a

Therefore,
z= 〈(r− ε)ωa | (r + ε)ωa〉

ε>0∈Q. �

Lemma 1.94. Let r 6= 0∈ R, a∈ No. Then,ηωa ≤ ∆(rωa)≤ ωa.
Moreover,∀y∈ No y' rωa implies rωa � y.

Proof. If y' rωa, then∀ε > 0∈Q

(r− ε)ωa < y < (r + ε)ωa,

therefore, by lemma1.93, rωa � y. This implies that∆(rωa)≥ ηωa.
Without loss of generality,r > 0. If r ≤ 1, 0 is a canonical left option ofrωa,

therefore∆L(rωa)≤ ωa.
If r > 1, letn be the greatest natural number strictly less thanr; n < r ≤ n+1.
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Claim 1. nωa ≺ rωa.

The claim implies that∆L(rωa)≤ ωa. Let r = 〈 rL | rR〉 be a representation of
r such thatrL, rR ∈ Q are canonical options ofr, n≤ rL < r andr < rR < r + 1.
Let a = 〈aL | aR〉 be the canonical representation ofa. n = 〈n−1 | 〉, therefore a
typical left option ofna is(

nω
a)L = (n−1)ωa +qω

aL ' (n−1)ωa,

while a typical right option is(
nω

a)R = (n−1)ωa +qω
aR ∼ ω

aR
,

for someq > 0∈ Q. On the other hand, by lemma1.93, a typical left options of
rωa is (

rω
a)L = (r− ε)ωa > (n−1)ωa,

while a right option is (
rω

a)R = (r + ε)ωa < ω
aR

.

The conclusion follows easily. �

Lemma 1.95. Let x= ∑i<α
r iω

ai be the normal form of x∈ No. Let a∈ No. For
everyγ ≤ α, define xγ := ∑i<γ

r iω
ai . Then,

1. If ai > a ∀i < α, then∆(x) > ωa.

2. If ai ≥ a ∀i < α, then∆(x)≥ ηωa.

3. If α is a limit ordinal, then

x = 〈xγ +(rγ − ε)ωaγ | xγ +(rγ + ε)ωaγ 〉 γ<α

0<ε∈Q
.

Moreover,∆(x)≥ inf {ωai : i < α }.

4. If α = β +1 and r
β
tβ = z, then∆(x) = ∆(z).

5. ∀γ < α xγ ≺ x.

Proof. Induction onα.
If α is a limit ordinal, then the first part of3 is an immediate consequence of

the definition of∑i<α
r iω

ai . Therefore,

|x−xo| ' εω
aγ >

{
ωa if aγ > a

ηωa if aγ ≥ a.

and the first two points and the second part of3 follow.
If α = β +1, lety = x

β
, z= ω

a
β r

β
, i.e. x = y+z.

The caseα = 1 has already been proved. Forα > 1, by inductive hypothesis
∆(y) > ω

a
β and∆(z)≤ ω

a
β , therefore∆(x) = ∆(y+z) = ∆(z)≥ ηω

a
β .

It remains to prove5. However,v(x− xγ) ≤ aγ and, by point1, ∆(xγ) > ωaγ ,
thereforexγ � x. �
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Theorem 6. Let x= ∑i<α
r iω

ai be the normal form of x.
If α = β +1, then∆(x) = ∆(r

β
ω

a
β ).

If α is a limit ordinal, then∆(x) = inf {ωai : i < α }.

Proof. The caseα = β +1 follows from the previous lemma.
If α limit, then by the previous lemma∆(x)≥ inf {ωai : i < α }. Let γ < α and

y = ∑i≤γ
r iω

ai ; y≺ x and|y−x|< ωaγ , therefore∆(x) < ωaγ . �
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Chapter 2

Integration

The integral of a recursive function is defined along the lines of Riemann integral
on real numbers, and some of its properties are proved.

2.1 Definition

Given a recursively defined functionf (X) = 〈 f L | f R〉, I will try to define what the
Riemann integral off is, knowing what the integrals off o are, for anyf o (left or
right) option off . I will write ∫ b

a
f (t)dt

for such an integral, or
∫ b

a f if the variable of integration is clear.
I will say what properties the function

I (a,b, f ) :=
∫ b

a
f (t)dt

should have. First, it should be “additive” in(a,b), i.e.

I (a,b, f )+I (b,c, f ) = I (a,c, f )

for anya,b,c. This implies that I need only to define whatI (0,a, f ) is, and say

I (a,b, f ) := I (0,b, f )−I (0,a, f ).

Second, it must be increasing inf : if a < b andf (t) < g(t) for all t ∈ (a,b), then

I (a,b, f ) < I (a,b,g).

These two properties are enough for our purpose: I will show that they define a
functionI (a,b, f ), under some assumptions on howf is defined, and that other
natural properties ofI (as, for instance, linearity inf ) follow.

43
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Simple case: the functionsf o do not depend onxo andf (xo), but only onx. In
that case, we know that

f L(x) < f (x) < f R(x).

So, it must be that ∫ b

a
f L(t)dt <

∫ b

a
f (t)dt <

∫ b

a
f R(t)dt

if a< b, and the other way round ifb< a. Let’s callF (x) =
∫ x

0 f (t)dt. In particular,
if a = xL is a left option ofx,

F (xL)+
∫ x

xL
f L(t)dt < F (x) < F (xL)+

∫ x

xL
f R(t)dt,

and analogous formulae fora = xR. So, I could write

F (x) := 〈F (xL)+
∫ x

xL
f L(t)dt, F (xR)+

∫ x

xR
f R(t)dt |

F (xL)+
∫ x

xL
f R(t)dt, F (xR)+

∫ x

xR
f L(t)dt 〉.

(2.1)

The previous definition is sound, because we know already the value of
∫ b

a f o(t)dt
for anya,b, and, by induction onx, we know the value ofF (xo).

As a shorthand, I write

(F (x))o = F (xo)+
∫ x

xo
f o(t)dt.

However, this is not good enough: I must also split the interval[xL,x] (or [x,xR])
into finitely many intervals[ki ,ki+1], i = 0, . . . ,m−1, choose a left (or right) option
f o
i for eachi, and define:

(F (x))o = F (xo)+∑
i

∫ ki+1

ki

f o
i (t)dt.

In the general case, I should write

(F (x))o = F (xo)+
∫ x

xo
f o(t, t o, f (t o))dt, (2.2)

but it is not clear at all what the expression on the right means.
Let a,b be two elements ofNo. I say that

P = (k0, . . . ,km)

is anm-partition of (a,b) (and writeP[a,b]) if k0 = a, km = b andki+1 > ki , for
any 0≤ i < m. I call m the lengthof P. Given a partitionP[a,b] = (k0, . . . ,km) and
m-tuplegp of functionsgi(t, t

L, tR), i = 0, . . . ,m−1, I define∫ b

a
gP(t, t o)dt :=

m−1

∑
i=0

∫ ki+1

ki

g(t,ki ,ki+1)dt
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if the expression on the right makes sense (i.e. if I have already assigned a value
to the various integrals). I say thatgP associates to every interval(ki ,ki+1) of P a
functiongi .

Now we have a candidate for the left side in (2.2): let mbe any natural number,
let P vary among all the possiblem-partitions of(xL,x), let f L

P be anm-tuple of left
options off , then the expression

F (xL)+
∫ x

xL
f L
P (t, t o, f (t o))dt (2.3)

is a left option ofF (x). Similarly, I can use anm-tuple of right options off , or a
partition of (x,xR), to obtain all the other options ofF (x) (4 cases in total). (2.3)
is a sound definition, because to compute it I only need to computeF (xo) (which
I know, by induction onx), and∫ b

a
f o(t,a,b,c,d)dt

for any optionf o of f and for anya,b,c,d in No: so, I need only to suppose I know
how to integrate such expressions.

Concluding, the recursive definition ofF (x) :=
∫ x

0 f (t)dt is

〈
F (xL)+

∫ x

xL
f L
P (t, t o, f (t o)), F (xR)−

∫ xR

x
f R
P (t, t o, f (t o))

∣∣∣
F (xL)+

∫ x

xL
f R
P (t, t o, f (t o)), F (xR)−

∫ xR

x
f L
P (t, t o, f (t o))

〉
,

whereP varies among the partitions of(xL,x) (or of (x,xR), according to the con-
text).

2.2 Problems and examples

There are various difficulties with the previous definitions. Assume thatf is recur-
sive overA.

I. I need to know that ifa < t < b

f L(t,a,b, f (a), f (b)) < f (t)

in order to be able to conclude that (2.3) is less thanF (x), and so be able to
use (2.3) as a left option ofF (x).

II. I want the definition ofF (x) to be uniform inx andf , i.e. independent of the
particular representations ofx and off . Strictly correlated with this, I want
that if f < g anda < b, then

∫ b
a f <

∫ b
a g .
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III. If I consider the number of options necessary to defineF (x), I see that it is
a proper class (at least one option for any possible partition of(0,x)): so, a
priori there is no guarantee on the existence ofF (x), even if I know that every
right option of it is strictly greater than any left option. To solve this, I need
some amount of saturation of the theory of(No,A).

IV. What about other properties of the integral? How does it fit with already
defined functions, such as polynomials, analytic functions, logarithm and ex-
ponential?

I will prove that the integral of a polynomial is equal to the formal one, and
similarly for bounded analytic functions. I will also prove an integration by
parts formula and the fundamental theorem of calculus. However, the integral
of exp is not what we expect.

V. Finiteness theorems. Under some assumptions onf (for instance, that it has
a finite number of zeros), I will prove thatF (x) has a finite number of zeros,
that between any two zeros ofF there is a zero off , and that ifF (a) < 0 <
F (b), then there is a zero ofF in (a,b).

The following two examples illustrate some of the computations one should per-
form and some of the difficulties one may encounter with the definition of the
integral of an arbitrary functionf (recursively defined over some family).

• The integer part function.

[x] = 〈x−1 | x+1〉

is a function defined in an “elementary” way, but surely it is not in a Hardy field.

If x is a finite positive number,[x] is the usual integer part. For negative finite
argumentx, the function[x] behaves slightly differently from the usual integer part
function: instead of returning the greatest integer belowx, it will give the smallest
integer above it Forx a generic surreal number,[x] will return the sometimes the
greatest omnific integer(1) below it, sometimes the smallest above it (the actual
behaviour can be easily computed from the normal form ofx). For instance,[ω−
1/2] = ω.

Let us computeF (x) :=
∫ x

0 [t]dt for some values ofx. Suppose thatx∈ N; so,
x = 〈x−1 | 〉. ThenF (x) = ∑x

i=0 i = x(x−1)/2. In fact,

F (x) = 〈F (x−1)+
∫ x

x−1
(t−1)dt | F (x−1)+

∫ x

x−1
(t +1)dt 〉,

(1)See [6] for the definition.
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i.e.

F (x)o =
(x−1)(x−2)

2
+

[
t2

2
± t

]x

x−1

=
(x−1)(x−2)+x2− (x−1)2

2
±1

=
x2−3x+2+x2−x2 +2x−1

2
±1 =

x2−x+1
2

±1

=
x(x−1)

2
+

1
2
±1.

Therefore,

F (x) = 〈 x(x−1)
2

− 1
2
| x(x−1)

2
+

3
2
〉=

x(x−1)
2

.

But

F (ω)o =F (n)+
∫

ω

n
(t±1)dt

=F (n)+
[

t2

2
± t

]ω

n
= q+

ω2

2
±ω

wheren is any natural number andq is some rational number (depending onn):

F (ω) = 〈 ω2

2
−ω +q | ω2

2
+ω +q′ 〉n∈N =

ω2

2
.

Therefore,
∫

ω

0 [t]dt =
∫

ω

0 t dt.
• Let ε be any positive surreal number.,y∈ No. Let gy(t) the piecewise linear

function that has values 1 int = y, 0 outside the interval(y− ε,y+ ε).
Define

f (t) := 〈gy(t) | 〉y∈No.

Thenf (t)= 2 for anyt ∈No (because 1= gt(t)). So, I would expect that
∫ x

0 f (t)dt =
2x. But,

F (x)o−F (xo) = ∑
i

∫ ki+1

ki

gyi
(t)dt

for somek0, . . . ,km andy0, . . . ,ym. If ε is infinitesimal (for instance,ε = 1/ω), the
former sum is infinitesimal too, and it is then easy to check thatF (x) 6= 2x.

It is unclear whether in the last counterexample is essential that, in order to
definef , I use a class of functions (instead of a set, as it should be); nevertheless,
I think that I must impose some strong conditions on howf is defined in order to
have a useful definition ofF .
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2.3 Conditions of integrability

Let f = 〈 f L | f R〉 be a recursively defined function. I want to state some conditions
under which the previous definitions make sense.

First, of course, I need thatf o(x,a,b,c,d) is integrable for everyf o option off
and for every parametersa,b,c,d ∈No. Moreover, I need some kind of uniformity
in the definition off . To be more precise, the following conditions:

Axiom 1.

1a. For everyt ′ < t < t ′′, for everyf L, f R options off , one has

f L(t, t ′, t ′′, f (t ′), f (t ′′)) < f (t) < f R(t, t ′, t ′′, f (t ′), f (t ′′))

1b. For everyf L there existsf L′ such that for everyt ′1 ≤ t ′2 < t < t ′′2 ≤ t ′′1

f L(t, t ′1, t
′′
1 , f (t ′1), f (t ′′1))≤ f L′(t, t ′2, t

′′
2 , f (t ′2), f (t ′′2))

and analogous conditions forf R (that is, if I taket2 which is a better approx-
imation(2) of t thant1, I can obtain a better approximation off (t)).

Axiom 1 is a (slightly) stronger version of the uniformity of the definition of
f . In the rest of this thesis, when I will compute the integral of some recursively
defined function, I will always assume that it satisfies this axiom.

In the second condition, it is often true thatf L′ = f L, but this usually does not
simplify our task.

Besides, I assume to have a familyA of functions

g(x,~y) : Non+1 → No

in n+1 variables (n depends ong ), with x, the first one, distinguished. Moreover,
g(x,~c) ∈ A for everyg ∈ A and~c∈ Non; A contains all the constants, the identity
function, and+.

I also suppose thatA is obtained by an inductive process adding recursive func-
tions over previous families, starting with only the constants, i.e.

A =
⋃

β<α

A
β

whereα is an ordinal, andA
β+1 is made only by functions recursive overA

β
, and

A
λ

is the union of the previous ones ifλ is a limit ordinal. In this case, I say that
A is constructed inductively. This will allow us to proceed by induction on the
“complexity” of a functiong (namely, the smallestβ such thatg ∈ A

β
).

(2)Givent1, t2, t such thatt1 ≤ t2 < t I say thatt2, as a left approximation oft, is better thant1, and
similarly for right ones.
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A consequence of it is that ifg ∈ A then every option ofg is also inA. This
is weaker than being constructed inductively: see for instance the discussion in
§ 5.2.2about the field of rational functions.

Finally, I assume that I have already defined somehow an integral for every
function of one variable inA, satisfying∫ b

a
g +

∫ c

b
g =

∫ c

a
g

for everya,b,c∈ No, g ∈ A, and ∫ b

a
g <

∫ b

a
h

if a < b ∈ No, g ,h ∈ A and g(t) < h(t) ∀t ∈ (a,b) (and analogous condition if
g(t) ≤ h(t)). I call the first propertyadditivity in the interval of integration,(3) the
secondmonotonicityof the integral.

f = 〈 f L | f R〉 will be a recursive overA (and satisfying axioms1). I can
then define

∫
f using formula (2.2). I will then suppose that

∫
has some further

properties onA, and prove some other property for
∫

f .
For shorthand, I will often writef o(x,xo) for f o(x,xL,xR, f (xL), f (xR)).
I wish to emphasise that the value ofF (x) depends not only on the functionf ,

but also on the following:

1. The value of
∫

g asg varies inA.

2. The recursive definition off in terms of functions inA.

Different definitions of the same functionf might give rise to different values of
F (but I do not have actual examples of this phenomenon). Later, I will give some
conditions under which this does non happen, i.e. the value ofF will not depend
on howf is defined (but it will still depend on the value of

∫
onA).

Therefore, by function we will usually mean application fromNo (or some set-
bounded convex subclass of it) toNo, together with some recursive definition for
it (over some familyA). The theory of integration we will build will consider only
this kind of functions.

So, we have to prove that
∫

f is well defined, and that
∫

is monotone onA∪{
f
}

(additivity of
∫

in the interval of integration is immediate from the definition).
But this does not come for free: we will need some further assumptions.

Definition 2.1. Let f ,g be recursive overA, a < b∈ No.
I say thatf < g provably in(a,b) if there existsP[a,b] andf R

P ,gL
P such that for

eachi either

f (t)≤ gL
i (t,ki ,ki+1) or

f R
i (t,ki ,ki+1)≤ g(t)

(3)In order to avoid confusion with the property
∫

f +
∫

g =
∫
(f + g).
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in (ki ,ki+1).
f ≤ g provably if

f L(t,a′,b′) < g and

f < gR(t,a′,b′)

in (a′,b′) for each optionf L,gR anda′,b, such thata≤ a′ < b′ ≤ b.
f = g provably if f ≤ g andg ≤ f provably.

Axiom 2. For everyh ,g ∈ A∪
{

f
}

eitherh = g identically, or for everya < b∈
No there exists a partitionP of (a,b) such that on each interval(ki ,ki+1) either
h(t) < g(t) or h(t) > g(t), and provably so.

This axiom has two important consequences

1. If f < g , then there are witnesses for it (namely,gL
P or f R

P ).

2. A function either is identically zero, or has only finitely many zeros on any
interval(a,b).

With this hypothesis, I will prove the monotonicity of
∫

, and that
∫

f is independent
from the definition off .

It will remain to prove that the integral off exists. As I said before, the number
of options I use to defineF (x) :=

∫ x
0 f (t)dt is too high (namely, a proper class): I

need to cut it down if I want to be sure thatF (x) exists.

Axiom 3. Let L be the first order language

L :=
(
+,<, f ,g ,

∫ x

0
g(t,y1,y2,z1,z2)dt

)
g∈A

Every subclass ofNo definable inL (with parameters) has a supremum inNo∪
{±∞}. f has at least a left and a right option.

If g ∈ A andg < f on some interval(a,b), then there existsε > 0 such that
g < f − ε on some subinterval of(a,b).

Remark2.2. For the last statement of axiom3, is it enough thatf andg are con-
tinuous at at least one pointx∈ (a,b) andg(x) < f (x).

I will also need thatNo is saturated (in the languageL ), as will be clear from
lemma2.8.

Further properties of the integral will (usually) need additional hypothesis.
I repeat that in all this thesis, I will suppose that axiom1 is true for every

functionf , and that the integral is monotone an additive onA. On the other hand, I
will try to state explicitly which of the other axioms are used to prove each property.
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2.4 Properties of the integral

The first, easy problem is to compute the integral of constant functions.

Lemma 2.3. Let a,b,c∈ No. Then,

∫ b

a
cdt = c(b−a).

Proof. Induction onc,a,b. First, I do induction onc, then on the cardinal product
sym ofa,b. Let 〈aL | aR〉, 〈bL | bR〉 and〈cL | cR〉 be the canonical representations
of a,b,c. Then, by definition of integral and inductive hypothesis,(

(b−a)c
)o = (bo−a)c+(b−bo)co, (b−ao)c+(ao−a)co

=
∫ bo

a
cdt +

∫ b

bo
codt,

∫ b

ao
cdt +

∫ ao

a
codt =

(∫ b

a
cdt

)o
,

proving that(b−a)c�
∫ b

a cdt.
Conversely, letbL be a canonical left options ofb, P := (k0, . . . ,kn) be a parti-

tion of (bL,b), cL
0, . . . ,c

L
n−1 be corresponding canonical left options ofc.

(∫ b

a
cdt

)L =
∫ bL

a
cdt +∑

i

∫ ki+1

ki

cL
i dt

= (bL−a)c+∑
i

(ki+1−ki)c
L
i < (bL−a)c+(b−bL)c = (b−a)c.

Similar inequalities can be proved taking right options ofb or ofc, or taking options
of a. This proves that

∫ b
a cdt � (b−a)c. �

As usual, ifP,Q are partitions of(a,b), I say thatP is a refinement ofQ if Q is
a subsequence ofP. A basic lemma in the theory of Riemann integral on the reals
is that I take a refinement ofP, I obtain a better approximation of the integral. For
this, we will need axiom1.

Lemma 2.4. Let a< b∈No, let P,Q be partitions of(a,b), with P a refinement of
Q. Letf L

Q be a tuple of left options off .

Then there existsgL
P tuple of left options off such that

∫ b

a
f L
Q(t, t o, f (t o))dt ≤

∫ b

a
gL
P(t, t o, f (t o))dt

Proof. W.l.o.g. I can supposeQ= (k1, . . . ,km), P= Q∪{c}, kn < c< kn+1, n< m.

I definegP = fi on(ki ,ki+1) if i 6= n. I apply axiom1b to f L
n to obtainf L

n
′ and define
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gP = f L
n
′ on both(kn,c) and(c,kn+1).∫ b

a
f L
Q(t, t o, f (t o))dt = ∑

i

∫ ki+1

ki

f L
i (t,ki ,ki+1)dt

= ∑
i 6=n

∫ ki+1

ki

f L
i (t,ki ,ki+1)dt +

∫ c

kn

f L
n (t,kn,kn+1)dt +

∫ kn+1

c
f L
n (t,kn,kn+1)dt

≤ ∑
i 6=n

∫ ki+1

ki

gL
i (t,ki ,ki+1)dt +

∫ c

kn

gL
n (t,kn,c)dt +

∫ kn+1

c
gL
n (t,c,kn+1)dt

=
∫ b

a
gL
P(t, t o, f (t o)dt �

Givena< c< b andP[a,b] such thatc∈ P, I define the restriction ofP to [a,c]
in the obvious way: ifP = (k0, . . . ,kn), its restriction is(k0, . . . ,km), wherekm = c.
GivengP tuple of functions, I define the restriction ofgP to [a,c] in a similar way.

Lemma 2.5. Let F (x) :=
∫ x

0 f (t)dt, a < b∈ No, P be a partition of[a,b] and f L
P

be a tuple of left options off . Then,∫ b

a
f L
P (t, t o, f (t o))dt <

∫ b

a
f (t)dt. (2.4)

Similar inequalities hold if b> a or for right optionsf R
P . Moreover, the definition

of F is uniform.

Proof. I will first prove (2.4). If a≺ b or b≺ a, it follows from the very definition
of

∫ b
a f (t)dt.
Otherwise, letc := 〈a | b〉. It follows thatc≺ a andc≺ b. Let Q := P∪{c},

let Q1 (let Q2) be the restriction ofQ to [a,c] (to [c,b]).
By lemma2.4, there existsgL

Q tuple of left options off such that∫ b

a
f L
P ≤

∫ b

a
gL
Q =

∫ c

a
gL
Q1

+
∫ c

b
gL
Q2

<
∫ c

a
f +

∫ b

c
f =

∫ b

a
f

Choose a non-canonical representationx = 〈yL | yR〉 for x, and definezo :=
F (yo)+

∫ x
yo f o

P . I must prove thatz= F (x). For everyyL left option ofx,

F (yL)+
∫ x

yL
f L
P < F (yL)+

∫ x

yL

f = F (x)

and similarly for right options off or of x. So,z� F (x).
It remains to show thatF (x)� z. But, by cofinality, for everyxL canonical left

option ofx there existsyL such thatxL ≤ yL < x. Therefore, givenP[xL,x] and f L
P ,

if Q := P∪{yL}, there existsf L
Q such that

F (x)L = F (xL)+
∫ x

xL
f L
P ≤ F (xL)+

∫ x

xL
f L
Q =

= F (xL)+
∫ yL

xL
f L
Q1

+
∫ x

yL
f L
Q2
≤ F (yL)+

∫ x

yL
f L
Q2

= zL,
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whereQ1,Q2 are the restrictions ofQ to (xL,yL) and(yL,x). (I assumed for sim-
plicity of notation thatx has no right options, but the general case is similar).�

The integral is linear in the function argument, provided that it is already linear
onA, and thatA is constructed inductively.

Lemma 2.6. Suppose thatA is also a vector space overNo, and that
∫

is linear
onA. Let f , g be recursive overA, and a,b,λ ∈ No. Then,∫ b

a
f (t)+ g(t)dt =

∫ b

a
f (t)dt +

∫ b

a
g(t)dt (2.5)∫ b

a
λ f (t)dt = λ

∫ b

a
f (t)dt (2.6)

Proof. I will give all details of this proof, even if it is quite elementary. Both
formulae are proved by induction onf , g , a, b, λ , i.e. I suppose to have proved the
lemma for:

• f o(t,c),g(t),a′,b′,λ ′ for anyf o option off and anyc,a′,b′,λ ′ ∈ No.

• The same as before withf ,g exchanged.

• f ,g ,
(
a,b,λ

)o
where I have already explained what I mean by the option of

a tuple.

In both cases, without loss of generality I can supposea = 0 andb > 0. I call
F (x) :=

∫ x
0 f (t)dt, G(x) :=

∫ x
0 g(t)dt. Fix once for allP = (k0, . . . ,kn) a partition

of (a,b).
By definition of+,(

F (x)+G(x)
)o =

(
F (x)

)o +G(x), F (x)+
(

G(x)
)o

I consider only the first kind of options (the others are similar).
Let H (x) :=

∫ x
0 f (t)+ g(t)dt.

G(x)+
(

F (x)
)o =

= G(xo)+
∫ x

xo
g(t)dt +F (xo)+

∫ x

xo
f o
P (t, t o, f (t o))dt

= G(xo)+∑
i

∫ ki+1

ki

g(t)dt +F (xo)+∑
i

∫ ki+1

ki

f o
i (t,ki ,ki+1)dt

= H (xo)+∑
i

∫ ki+1

ki

f o
i (t,ki ,ki+1)+ g(t)dt

= H (xo)+
∫ x

xo

(
f + g

)o
P(t, tL, tR)dt =

(
H (x)

)o

where
(

f + g
)o

P(t, t ′, t ′′) := f o
P (t, t ′, t ′′, f (t ′), f (t ′′))+ g(t), and I have used the def-

inition of
∫

and the additivity of
∫

in the interval of integration for the first two
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identities, the inductive hypothesis for the third, and the definition of
∫

for the last
two. Therefore, every option ofF +G is an option ofH .

For the converse, let(
f + g

)o
i =

{
f o
i + g or (2.7a)

f + g o
i . (2.7b)

Suppose, for instance, that (2.7a) is true, and thatf o is a left option off . Then, by
inductive hypothesis∫ ki+1

ki

(
f + g

)o
i (t,ki ,ki+1)dt =

∫ ki+1

ki

f o
i (t,ki ,ki+1)dt +

∫ ki+1

ki

g(t)dt.

Lemma2.5 implies that∫ ki+1

ki

f o
i (t,ki ,ki+1)dt <

∫ ki+1

ki

f (t)dt,

therefore

∑
i

∫ ki+1

ki

(
f + g

)o
i (t,ki ,ki+1)dt < ∑

i

∫ ki+1

ki

f (t)dt
∫ ki+1

ki

g(t)dt = F (x)+G(x).

I proceed in the same fashion for scalar multiplication.
Let H (λ ,x) :=

∫ x
0 λ f (t)dt.(

λ F (x)
)o = λ

oF (x)+(λ −λ
o)F (x)o

= λ
oF (x)+(λ −λ

o)
(

F (xo)+
∫ x

xo
f o
P (t, t o)dt

)
= H (λ o,x)+H (λ ,xo)−H (λ o,xo)+

∫ x

xo
(λ −λ

o)f o
P (t, t o)dt

= H (λ ,xo)+
∫ x

xo

(
λ

o f (t)+(λ −λ
o)f o

P (t, t o)
)

dt

= H (λ ,xo)+
∫ x

xo

(
λ f

)o
P(t, t o)dt

where I have used the definition of product for the first identity, the definition of
∫

for the second, the inductive hypothesis for the third and again the definition of the
product for the last one, beside the formula (2.5).

Conversely, for everyi = 0, . . . ,m−1, chooseλi an option ofλ . Then(
H (λ ,x)

)o = H (λ ,xo)+
∫ x

xo

(
λ f

)o
P

= H (λ ,xo)+∑
i

∫ ki+1

ki

(
λ

o
i f +(λ −λ

o
i )f o

i

)
By inductive hypothesis, the previous is equal to

H (λ ,xo)+∑
i

(
(λ −λ

o
i )

∫ ki+1

ki

f o
i +λ

o
i

∫ ki+1

ki

f
)
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Again, if I suppose that
(

H (λ ,x)
)o

is a left option ofH (λ ,x), then, by lemma2.5

(λ −λ
o

i )
∫ ki+1

ki

f o
i +λ

o
i

∫ ki+1

ki

f < λ

∫ ki+1

ki

f (t)dt,

and the conclusion follows. �

Now, the fundamental lemma: the monotonicity of the integral. As I said be-
fore, for this I need thatA is constructed inductively, and that axiom2 is true.

Lemma 2.7. Let a< b∈ No, f ,g be recursive overA. If f (t) ≤ g(t) provably in
(a,b) then ∫ b

a
f (t)dt ≤

∫ b

a
g(t)dt.

If moreover the inequality in the hypothesis is strict, then it is strict also in the
conclusion. If instead I have= in the hypothesis, I have= also in the conclusion.

Proof. Again, I proceed by induction onf ,g ,a,b. Let c = 〈a | b〉 If a � b and
b � a thenc≺ a andc≺ b, so the conclusion follows by induction. Otherwise,
w.l.o.g. a≺ b.

I will treat the case of< first. Simple case:f (x) = gL(x,a,b,g(a),g(b)) for
somegL left option of g , or g(x) = f R(x,a,b, f (a), f (b)). Then the conclusion
follows from lemma2.5and thef = g case of the inductive hypothesis.

In general, letP[a,b], f R
P ,gL

P as in the definition2.1. Then I can use the inductive
hypothesis, obtaining for eachi < m∫ ki+1

ki

f (t) <
∫ ki+1

ki

g(t),

and the conclusion follows.
Now I will treat the casef = g . I must show

(∫ b
a f

)L
<

∫ b
a g (and similarly for

right options and forf , g exchanged). By definitions,

(∫ b

a
f (t)dt

)L

=



∫ bL

a
f +

∫ b

bL
f L
P , (2.8a)∫ bR

a
f +

∫ b

bR
f R
P , (2.8b)∫ b

aL
f −

∫ a

aL
f R
P , (2.8c)∫ b

aR
f −

∫ a

aR
f L
P . (2.8d)

Consider the left option (2.8a). There are two cases: eitherbL ≤ a or bL > a.
If a≤ bL < b, thenf L

i (t,ki ,ki+1) < g(t) for t ∈ (ki ,ki+1) for eachi, so I can

apply the inductive hypothesis, and obtain
∫ b

bL f L
P <

∫ b
bL g.
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If a > bL, then the conclusion becomes∫ b

bL
f L
P <

∫ b

a
g +

∫ a

bL
f .

Let Q = P∪{a}, let f L
Q
′ as in lemma2.4. Then, ifQ1 (if Q2) is the restriction ofQ

to [a,b] (to [bL,a]),∫ b

bL
f L
P ≤

∫ b

bL
f L
Q
′ =

∫ b

a
f L
Q1

′+
∫ a

bL
f L
Q2

′
<

∫ b

a
g +

∫ a

bL
f .

where, again, I have used the inductive hypothesis for the last inequality.
Consider now the left option (2.8b). This is the step where I use the fact that

f = g (and not merely thatf ≤ g ). Then,

∫ bR

b
f R >

∫ bR

b
g

by induction onf , and ∫ bR

a
f =

∫ bR

a
g

by induction onb, and the conclusion follows.
The case (2.8c) is treated in a similar way to (2.8b), and (2.8d) to (2.8a).
It remains to prove the casef ≤ g. But then, by axion2, eitherf = g , and I

have just discussed it, or I can findP[a,b] such thatf (t) < g(t) in each interval
(ki ,ki+1), and the conclusion follows from the< case. �

For the remainder of this thesis, I will need that the integral is monotone and
that every function inA∪

{
f
}

is either constant, or has only finitely many zeros.
As I have shown above, these are consequences of axiom2.

I will now consider the problem of good definition of integral.
Consider a simple example:f (x) = x2. Remember that(

x2)o = xo− (x−xL)α(x−xR)β , 0≤ α ≤ 2, α +β = 2,

F (0) = 0 and 1= 〈0 | 〉.

(
F (1)

)o = ∑
i

∫ ki+1

ki

t2− (t−ki)
αi (t−ki+1)

βi dt.

I claim that I can takeki rational for everyi. The reason is the following.
Fix P[0,1] = (k0, . . . ,km) andα0, . . . ,αm−1 and callzP the resulting option of

F (1).
If I refine P by adding a single point that differs from eachki by a non infinites-

imal amount, I obtain a partitionQ such that the corresponding approximationzQ
is better thanzP by a non infinitesimal amountρ.
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For each pointhi ∈Q I substitute it by a rational numberh′i : in this way, I obtain
a partitionQ′ and an approximationzQ′ of F (1) which is slightly worse thanzQ by
a certain amountε. However, choosinghi suitably, I can make thisε smaller than
any fixed positive real, and in particular smaller thanρ. So,zQ′ is better thanzP,
and I can discardzP altogether. Therefore,F (1) is well defined.

Of course, I could have proved this using Tarski’s theorem(4), but, for an arbi-
trary functionf I do not have such a theorem.

For the rest of this section, I will suppose that axiom3 is true.

Lemma 2.8. LetK⊆ No be an initial elementary substructure(5) of No, let x∈K,
and suppose thatK is α-saturated, whereα is a cardinal number greater or equal
to `(x).

ThenF (x) :=
∫ x

0 f (t) is defined, and is inK.

Proof. Simple case:x = 1, f has only one left optionf L and one right optionf R.
Let P[0,1] be anm-partition of[0,1], and let

gL(P) := gL(k0, . . . ,km) :=
∫ 1

0
f L
P (t, t o, f (t o))dt

and similar forgR.
I have to prove that there existsz∈ K such thatgL(P) < z< gR(P′) for every

P,P′[a,b]. These conditions induce a typeT(z) (in this case, without parameters),
given by formulae

ψ
L
m(z) := ∀k0 = 0 < k1 < · · ·< km = 1

(
gL(k0, . . . ,km) < z

)
,

and similarly forψR
M(z).

First, I will prove thatT(z) is consistent. Suppose not. Then, for somem∈ N,

No |= ∀z¬
(
ψ

L
m(z) & ψ

R
m(z)

)
.

Let
zL = sup

{
gL(k0, . . . ,km) : ki ∈ No

}
,

and similarly forzR. By axiom3, zL andzR are inNo. By K � No, zL andzR are
in K. We know alreadyzL ≤ zR. By inconsistency, it must bezL = zR = gL(P)
for someP[0,1] (or zL = zR = gR(P)). Note that if axiom3 were not true, it could
happen thatzL = zR∈ NoD \No, and in that caseF (1) would not be defined.

But f L
P (t,ki ,ki+1) < f (t) on(ki ,ki+1) for eachi, so there is an interval(a′,b′)⊆

(0,1) andε > 0 such thatf L
P < f −ε. Again by elementary equivalence, I can take

ε,a′,b′ ∈K. Therefore, ∫ 1

0
f L
P <

∫ 1

0
f R
Q (t)− ε(b′−a′)

(4)The theory of real closed fields is complete and model complete in the language of ordered rings.
(5)In the languageL , defined in axion3.
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for everyQ[0,1] andzR−zL ≥ ε(b′−a′), which is a contradiction.
So,T(z) is consistent, and, becauseK is saturated (over the empty set), it has

a realisation inK. The simplest such realisation isF (1).
For a genericx ∈ K and arbitraryf , I proceed similarly, using saturation of

K over the parametersxo and F (xo), asxo varies among the options ofx, and
induction onx. The fact thatf has at least one right option ensures thatzL < +∞
(and similarly for left options). �

For the proof previous lemma, it is not necessary thateveryL -definableS⊂
No has a supremum: it suffices that subclasses definable using existential formulae
only have it.

For other properties of the integral, I will need further assumptions.

Axiom 4 (Intermediate value). Let f : No→ No, a < b∈ No. Supposef (a) <
0 < f (b) or f (a) > 0 > f (b). Then there existsc∈ (a,b) such thatf (c) = 0.

In the rest of this section, I will assume that axioms1, 2 and4 (beside axiom1
and the consequences of axiom2 mentioned above). Moreover, I define

F (x) :=
∫ x

0
f (t)dt.

Lemma 2.9 (Rolle). Let a< b ∈ No. SupposeF (a) = F (b). Then there exists
c∈ (a,b) such thatf (c) = 0.

Proof. Suppose not. Then eitherf (t) > 0 or f (t) < 0 in (a,b). But F (b)−F (a) =∫ b
a f (t)dt, so, by monotonicity,F (b) > F (a) in the first case, andF (b) < F (a) in

the second. �

Corollary 2.10. Let a< b∈ No. F has only finitely many zeros in(a,b).

Lemma 2.11.Let a< b∈No. F can change sign only finitely many times in(a,b).

Proof. As in the proof of lemma (2.9), between two sign changes ofF there must
be a zero off : i.e. if c < d < e and F (c),F (e) < 0 < F (d) then there exists
f ∈ (c,e) such thatf ( f ) = 0. But by axiom2, eachf ∈ A can have only finitely
many zeros in(a,b). �

The following theorem needs also axiom3.

Theorem 7 (Intermediate value). Let F (x) :=
∫ x

0 f (t). Let a,b,d ∈ No such that
a < b andF (a) < d < F (b). Then there exists c∈ No such that a< c < b and
F (c) = d.

Wrong proof.Let’s do the cased = 0. By the lemma2.11, w.l.o.g. I can suppose
that there existsζ ∈NoD such thatF (t) < 0 in [a,ζ ) andF (t) > 0 in (ζ ,b]. I must
prove thatζ ∈ No. I will give an inductive definition ofζ .
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Let us solve the equation (inc) F (c) = 0, a < c < b. It is necessary and suffi-
cient thatF (c)L < 0 < F (c)R, i.e. I have to solve inequalities of the kind:

F (cL)+
∫ c

cL
f L
P (t, t o, f (t o))dt < 0, i.e.

F (cL)+∑
i

f L
i (t,ki ,ki+1)dt < 0

I will give the options ofc. First, I must saya < c < b, i.e. a is among the left
options, andb among the right ones.

Suppose that I have already found some optionscL,cR such thata≤ cL < ζ <
cR≤ b. Fix P[cL,cR], and supposekn < ζ < kn+1. Let

g(x) = F (cL)+
∫ x

cL
f L
P (t, t o)dt :=

F (cL)+ ∑
i<n

∫ ki+1

ki

f L
i (t,ki ,ki+1)dt +

∫ x

kn

f L
n (t,kn,kn+1)dt

wherex∈ (kn,kn+1).
g(x) < F (x), andF (x) < 0 in (a,ζ ), so g(t) has only finitely many zeros in

(kn,kn+1).
Let cL′ be the rightmost zero ofg beforeζ , and letcR′ be the leftmost zero after

ζ (if they exists, otherwise usea or b respectively). Then, by induction onf , g(t)
does not change sign in(cL′,cR′). Sog(t) < 0 in (cL′,cR′).

Add cL′ to the left options ofc andcR′ to the right ones. It follows that, at the
end of this process,F (c) = 0. The problem is that I am adding an option for every
partitionP[a,b], and there is a proper class of partitions, therefore I cannot be sure
thatc∈ No. �

I will give now the correct proof, using axiom3.

Correct proof. By lemma2.11, I can suppose that there existsζ ∈NoD , the Dede-
kind completion ofNo, such thatF (t) < d in [a,ζ ) andF (t) > d in (ζ ,b].

I recall thatF is not in the languageL , and that the cutζ in general is not
definable inL . I must prove thatζ ∈ No. I will prove the lemma by induction on
f andd.

I need to give the options ofc. First of all,a < c < b, soa is a left option,b a
right one. Solving the equationF (c) = d is equivalent to solving the inequalities

F (c)L < d F (c)R > d (2.9a)

F (c) < dR F (c) > dL. (2.9b)

Consider (2.9b), for instanceF (c) < dR. F (c) < d < dR in [a,ζ ), thereforeF (c) =
dR has at most finitely many solutions. LetcL (let cR) be the rightmost (the
leftmost) solution smaller (greater) thanζ , if it exists. By inductive hypothesis,
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F (x)−dR does not change sign in(cL,cR), thereforeF (x) < dR in (cL,cR), and I
can add them as left and right options ofc.

Consider now (2.9a), for instanceF (c)L < d. Suppose that I have already
found some optionscL,cR∈K, with a≤ cL < ζ < cR≤ b. Fix m∈ N, anm-tuple
of left options~f L and a left optioncL. Let~k = (k0, . . . ,km) be a partition of[a,b],
and, say,kn ≤ cL < kn+1 andkl ≤ x < kl+1. Define

gL
~f L(x,~k,c

L) := F (cL)+
∫ x

cL

~f L(t, t o, f (t o))dt =

= ∑
n<i<l

∫ ki+1

ki

f L
i (t,ki ,ki+1)dt+

+
∫ kn+1

cL
f L
n (t,kn,kn+1)dt +

∫ x

kl

f L
l (t,kl ,kl+1)dt.

(2.10)

I give analogous definitions for right optionscR of c or if ~f R is anm-tuple of right
options. I want now to add some extra options toc, ensuring thatgL

~f L
(c,~k,cL) < d

is true (and similarly withcR or~f R).
Notwithstanding its complicated aspect,gL(x) = d is an equation simpler than

F (x) = d, therefore the conclusion of the lemma holds for it. It follows that ifcR′

is the leftmost solution afterζ of such equation,gL(x) < d in the interval(cL,cR′).
In fact, gL(x) < F (x) in (cL,b) andF (x) < d in (cL,ζ ). cR′ depends on the “old”
optioncL, on them-partition~k, beside them-tuple of options~f L.

Now, apparently, I can addcR′ to the options ofc, and at the end of this process
obtainF (c) = d.

Unfortunately, in this way of definingc I use a whole class of options (instead
of a proper set), andc may not exist inNo. I’ll do something better. Let

hR
~f L(c

L,~k) = inf
{

x∈ No : cL < x < b & ∃k0, . . . ,kmgL
~f L(x,~k,c

L)≥ 0
}

.

By axiom3, hR exists. Now, I can takehR as new right options ofc. hR depends
only on the “old” optioncL, besidesmand the chosenm-tuple of options~f o. There-
fore, once I fix the “old” optioncL, I am adding only a proper set of “new” options
(one for everym∈ N and every possible choice of~f o), and now I can say that at
the end of the processc∈On. �

Lemma 2.12 (O-minimality). Let A be a family of functions, constructed induc-
tively. Suppose that axiom1 is true for everyf in A and that the structure onNo
induced byA is o-minimal. Then for everyf ,g ∈ A if f < g (on an interval(a,b))
thenf < g provably.

Proof. In fact, for everyx∈ (a,b) there existsf R
x right option off or gL

x left option
of g andxL,xR options ofx such that either

f R
x (x,xR,xL, f (xL), f (xR))≤ g(x) or f (x)≤ gL

x (x,xR,xL,g(xL),g(xR)).
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Let

Vx =
{

t ∈ (a,b) : ∃t ′, t ′′ t ′ < t < t ′′ & f R
x (t, t ′, t ′′, f (t ′), f (t ′′))≤ g(t)

}
,

and similarlyUx for gL
x andf . Vx depends only onf R

x , not onx itself, so the class
of Vxs andUxs is actually a proper set. By o-minimality, everyVx andUx is a
finite union of intervals with extremes inNo, therefore, by lemma1.51, there exist
x1, . . . ,xn such that

No = Vx1
∪·· ·∪Vxn∪Ux1

∪·· ·∪Uxn.

The conclusion easily follows (via axiom1). �

Axioms 3 and the saturation ofNo (sufficient for the existence of the integral)
are also immediate consequences of o-minimality. Iff is continous,(6) axiom4 is
also true. Therefore, if I know that the hypothesis of the previous lemma holds, the
only hypothesis in this section that needs to be checked is the second consequence
of axiom2 (i.e. that a function is either constant, or has finitely many zeros). For
instance, it is true for analytic functions.

2.5 Integral of partial functions

Let A be a set-bounded convex subclass ofNo,(7) and letf : A→ No be a function.
Givenf is recursive (over some family of functionA), I want to define its integral.

Let a be the simplest element ofA, and letx∈ A. The options of
∫ x

a f (t)dt are
of the form ∫ xo

a
f (t)dt +

∫ x

xo
f o(t, t o, f (t o)dt,

wherexo varies among the canonical options ofx with respect to A.
Let x,y∈ A. Then, ∫ y

x
f :=

∫ y

a
f −

∫ x

a
f .

Note that ifA = No, the definition given here coincides with the one in§ 2.1.

Example2.13. f (x) = 1/x. The domain off can be partitioned into two set-bounded
convex subclasses:

domf = (−∞,0)t (0,+∞).

This allows us to define
∫ x

1
1/t dt for x > 0. In § 5.1 we will see that it is equal to

logx.

The propositions, proved in this and the following chapter for total functions,
hold, with the same proof, for funtions with domain a set-bounded subclass ofNo.

However, the value of
∫

f may depend on the choice of the interval of definition
of f ; namely, ifB⊂ A, then the value of

∫
f computed with repect toA might be

different from the one computed w.r.t.B. For instance, one can easily construct
example of this phenomenon usingf (x) = expx (see§ 5.2).

(6)I recall that every function in an o-minimal structure is piece-wise continous.
(7)see§ 1.4for the definition.
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2.6 Concluding remarks

S. Norton and M. Kruskal have already defined an integration onNo that is similar
to what has been defined here.(8) I do not know enough about their work to tell
how much it differs from the treatment presented in this thesis.

Let A be a family of functions (containing all the constants, the identity func-
tion and+), and

∫
be an integral over it. As I said before, iff is recursively defined

overA, I will suppose that axiom1 holds. Moreover, from what I have proved, it
is reasonable to suppose that the integral is monotone and additive on the interval
of integration, and this will always be the case in the following chapters. IfA is a
vector space, I will also suppose that

∫
is linear.

On the other hand, I will not make uses of the other axioms, unless explicitly
specified.

These properties alone are enough to prove the following theorem.

Theorem 8. Suppose thatf : No→ No is continuous at the point a∈ No. Then,

lim
x→0

∫ a+x
a f (t)dt

x
= f (a).

Proof. Without loss of generality, we can supposea= f (a)= 0. LetF (x) :=
∫ x

0 f (t)dt.
By definition, for everyε > 0 there existsδ > 0 such that|f (t)| < ε for everyt
such that|t|< δ . Therefore, by monotonicity, in the interval[0,δ ),∫ x

0
−ε dt ≤ F (x)≤

∫ x

0
ε dt,

and similarly in the interval(−δ ,0]. We use lemma2.3 to compute the integral
of constant functions. So,|F (x)| < ε|x| for |x| < δ , implying that|F (x)

x | < ε for
0 6= |x|< δ . �

The previous theorem is the analogue of the fundamental theorem of calculus.
However, in this context it is much less powerful than for the reals, becauseNo,
like every other non Archimedean ordered field, is totally disconnected, therefore
we do not have uniqueness of the primitive of a function.

(8)See the note on pag. 38 of [6]. The story, as I have understood it, is that Norton gave a definition
of an integral, that produces the desired result for the function1/t, but lacks some of the other “good”
properties of an integral. Kruskal later improved his definition. However, as far as I know, none of
this has been published.



Chapter 3

Integration by parts

In this chapter I will prove the integration by parts formula. It is a natural extension
of the arguments of previous chapter; however, the hypothesis will be simpler and
the computations more involved.

3.1 Definition of multiple integral

Given a functionf = 〈 f L | f R〉, what is the meaning of
∫∫

f (t)dt ?
The reason of this question is that, iff is in the familyA,

∫
f needs not to

be recursive overA according to definition in chapter1.3, because I used a whole
class of functions to define it.

ConsiderF (x) :=
∫ x

0 f (t)dt.(
F (x)

)o = F (xo)+
∫ x

xo
f o(t,ki ,ki+1)dt = F (xo)+∑

i

∫ ki+1

ki

f o(t,ki ,ki+1)dt.

If I define F o(t, t o,F (t o)) accordingly to the previous expression, i.e.

F o(t, t o,F (t o) = F (t o)+
∫ t

t o
f o(s,so, f (so))ds,

what is the meaning of ∫ x

xo
F o(t, t o,F (t o))dt ? (3.1)

GivenP anm-partition of(xo,x),
∫ x

xo FP(t o) has the usual meaning:

∫ x

xo
FP(t o) =


∑

0≤i<m

F (ki)(ki+1−ki) or

∑
0≤i<m

F (ki+1)(ki+1−ki)

Giveny∈ (ki ,ki+1) andf o
P anm-tuple of options off , let

hi(y) :=
∫ y

ki

f o
i (t,ki ,ki+1, f (ki), f (ki+1))dt, (3.2)

63
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for every 0≤ i < m. hi is the integral of the functionf o
i , which is simpler thanf ,

therefore I can suppose that
∫ ki+1

ki
hi(t)dt has already been defined. Then define

(∫ x

0
F (t)dt

)o
:=

∫ xo

0
F (t)dt +

∫ x

xo
FP(t o)dt +∑

i

∫ ki+1

ki

hi(t,ki ,ki+1)dt

=
∫ xo

0
F (t)dt +

∫ x

xo
FP(t o)dt +∑

i

∫ ki+1

ki

∫ t

ki

f o
i (s,ki ,ki+1)dsdt.

Analogous definitions work for other kinds of double integrals, such as
∫

g(t)F (t)dt.

3.2 Integration by parts

I will prove the formula of integration by parts. I have to suppose thatA is a family
of functions inductively constructed, thatf ,g are recursive over it, that

∫
is defined,

additive, monotone and linear on theNo-vector space generated byA∪{f ,g}. I
start withf = 〈 f L | f R〉, g = 〈gL | gR〉, and define

F (x) :=
∫ x

0
f (t)dt G(x) :=

∫ x

0
g(t)dt

The proof is done by induction overf ,g and over the extremes of integration: in
particular, I will suppose that the integration by part formula is true for(f o,g)
wheref o is any option off , and similarly for(f ,g o).

Theorem 9. Let f ,g : No→ No, a,b∈ No. Then (F G)’ = f G+ F g , i.e.

F (b)G(b)−F (a)G(a) =
∫ b

a

(
f (t)G(t)+F (t)g(t)

)
dt (3.3)

Proof. Suppose I have proved (3.3) for a = 0. Then,

F (b)G(b)−F (a)G(a) =

=
∫ a

0
f (t)G(t)dt+

∫ a

0
F (t)g(t)dt−

∫ b

0
f (t)G(t)dt+

∫ b

0
F (t)g(t)dt

=
∫ b

a

(
f (t)G(t)+F (t)g(t)

)
dt. (3.4)

So, I have to prove that

F (x)G(x) =
∫ x

0
f (t)G(t)dt+

∫ x

0
F (t)g(t)dt. (3.5)
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(
F (x)G(x)

)o = F (x)oG(x)+F (x)G(x)o−F (x)oG(x)o =

=
[
F (xo)+

∫ x

xo
f o(t, t o, f (t o))dt

]
G(x)+

+
[
G(xo′)+

∫ x

xo′
g o(t, t o,g(t o))dt

]
F (x)−

−
[
F (xo)+

∫ x

xo
f o(t, t o, f (t o))dt

][
G(xo′)+

∫ x

xo′
g o(t, t o,g(t o))dt

]
= F (xo)G(x)+F (x)G(xo′)−F (xo)G(xo′)+

+(G(x)−G(xo′))
∫ x

xo
f o(t, t o, f (t o))dt +(F (x)−F (xo))

∫ x

xo′
g o(t, t o,g(t o))dt−

−
∫ x

xo
f o(t, t o, f (t o))dt

∫ x

xo′
g o(t, t o,g(t o))dt, (3.6)

wherexo,xo′ are options ofx. Fix xo,xo′ and partitionsP[xo,x] = (h0, . . . ,hm) and
Q[xo′,x] = (k0, . . . ,km′), fix f o

P andg o
Q tuples of options off andg . If t ∈ [hi ,hi+1)

andt ′ ∈ [ki ,ki+1), define

h(t) := f o
i (t,hi ,hi+1, f (hi), f (hi+1)) (3.7)

k (t ′) := g o
i (t ′,ki ,ki+1,g(ki),g(ki+1)); (3.8)

h ,k are defined on[xo,x] and [xo′,x] respectively. LetH (y) =
∫ y

xo h(t)dt and
K (y) =

∫ y
xo k (t)dt. (3.6) becomes

F (xo)G(x)+F (x)G(xo′)−F (xo)G(xo′)+

+(G(x)−G(xo′))H (x)+(F (x)−F (xo))K (x)−H (x)K (x)

= F (xo)G(x)+F (x)G(xo′)−F (xo)G(xo′)+

+G(x)H (x)−G(xo′)H (x)+K (x)F (x)−K (x)F (xo)−K (x)H (x). (3.9)

Now I use induction onf ,g andx: I can apply (3.3) to various products in (3.9),
obtaining

F (xo)G(x)+F (x)G(xo′)−F (xo)G(xo′)−
−G(xo′)H (x)−K (x)F (xo)−K (x)H (x)+

+
∫ x

xo
(gH + hG)+

∫ x

xo′
(Kf + kF ) (3.10)

Suppose now thatxo andxo′ are both left options ofx, f o is a left option off and
g o is a left option ofg (there are 16 cases in total). I have to prove that (3.10) is
strictly less than ∫ x

0
(fG +Fg)(t)dt.

W.l.o.g. I can suppose thatxo = xo′ = a. Then, I apply again (3.5) to K (x)H (x)
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and (3.10) becomes

F (a)G(x)+F (x)G(a)−F (a)G(a)+

+
∫ x

a

(
g(t)H (t)+(G(t)−G(a))h(t)+

+ f (t)K (t)+(F (t)−F (a))k (t)− k (t)H (t)−K (t)h(t)
)

dt (3.11)

However,F (t)−F (a)−H (t) > 0 andf (t) > h(t) for t ∈ (a,x), and similarly for
g ,k , therefore (3.11) is strictly less than

F (a)G(x)+F (x)G(a)−F (a)G(a)+

+
∫ x

a

(
g(t)H (t)+(G(t)−G(a)−K (t))f (t)+f (t)K (t)+(F (t)−F (a)−H (t))g(t)

)
dt

= F (a)G(x)+F (x)G(a)−F (a)G(a)+

+
∫ x

a
g(t)F (t)+G(t)f (t)dt +G(a)(F (a)−F (x))+F (a)(G(a)−G(x))

=
∫ x

a
(gF +Gf )dt +F (a)G(a) =

∫ x

0
(gF +Gf )dt, (3.12)

where I have used once again the inductive hypothesis in the last line.
The same kind computations works in the other cases, as long asxo andxo′ are

on the same side ofx (i.e. both left options or both right options). It remains to treat
the cases when they are on opposite sides. W.l.o.g., I can supposexo < x < xo′.

It is better to treat in uniformly all cases. I re-start from (3.9), this time without
assuming thatxo = xo′. To increase readability, I writea = xo, b = xo′. Let us call
Λ := F (a)G(x)+F (x)G(b)−F (a)G(b)−

∫ x
0 (Fg +Gf ).

Claim 3.1. Λ =
∫ x

a

(
(G(b)−G(t))f (t)+(F (a)−F (t))g(t)

)
dt.

Proof of claim.

Λ = F (a)G(a)+
∫ x

a
F (a)g(t)dt +F (a)G(b)+

+
∫ x

a
G(b)f (t)dt−F (a)G(b)−

∫ x

0
Fg +Gf

= F (a)G(a)+
∫ x

a
F (a)g(t)+G(b)f (t)dt−

∫ x

0
(Fg +Gf )

=
∫ a

0
(Fg +Gf )+

∫ x

a
F (a)g(t)+G(b)f (t)dt−

∫ x

0
(Fg +Gf )

=
∫ x

a

(
(F (a)−F (t))g(t)+(G(b)−G(t))f (t)

)
dt, (3.13)

where I have used the inductive hypothesis on to computeF (a)G(a). �
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I am interested in the sign of the expression (3.9) minus
∫ x

0 (Fg +Gf ), which is
equal to

Λ+G(x)H (x)−G(b)H (x)+K (x)F (x)−K (x)F (a)−K (x)H (x)

=
∫ x

a

(
(G(b)−G)f +(F (a)−F )g +Gh + gH −G(b)h

)
+

+
∫ x

b

(
Kf + kF −F (a)k

)
−K (x)H (x)

=
∫ x

a

(
(G(b)−G)f +(F (a)−F +H )g +(G −G(b))h

)
+

+
∫ x

b

(
Kf + kF −F (a)k

)
−K (x)H (x) =

=
∫ x

a

(
(G(b)−G)(f −h)+(F (a)−F −H )g

)
+

∫ x

b

(
Kf +kF −F (a)k

)
−K (x)H (x),

(3.14)

where I have used the inductive hypothesis to computeH (x)G(x) andK (x)F (x).
Let I the smallest interval containinga,b andx. Extendh,k to all I by choosing
some options off ,g . Suppose now again thata = xo andb = xo′ are both left
options ofx and thath ,k are left options off ,g respectively. Then,h < f , k < g ,
K (t)+G(b) < G(t) andH (t)+F (a) < F (t) on I . Therefore, (3.14) is strictly less
than

∫ x

a

(
−K (f − h)+(F (a)−F −H )g

)
+

∫ x

b

(
Kf + kF −F (a)k

)
−K (x)H (x)

=
∫ a

b
Kf +

∫ x

a

(
Kh +(F (a)−F +H )g

)
+

∫ x

b
(F −F (a))k −K (x)H (x)

=
∫ a

b
(Kf +Fk )−

∫ x

b
F (a)k +∫ x

a

(
Kh +(F (a)−F +H )g +Fk

)
−K (x)H (x) (3.15)

which is is strictly less than

F (a)K (a)−F (a)K (x)−K (x)H (x)+
∫ x

a

(
Kh +(F (a)−F +H )k +Fk

)
= F (a)K (a)−F (a)K (x)−K (x)H (x)+

∫ x

a

(
Kh +Hk +F (a)k

)
=

−K (x)H (x)+
∫ x

a
(Kh +Hk ) = 0 (3.16)

where I have used again induction to computeH (x)K (x). The other cases (i.e.
a > x or b > x or h > f or k > g ) are similar.
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On the other hand, w.l.o.g.(∫ x

0
f (t)G(t)dt+

∫ x

0
F (t)g(t)dt

)o

=

=
∫ xo

0
fG +

∫ x

xo

(
fG

)o +
∫ x

0
Fg

=
∫ xo

0
(fG +Fg)+

∫ x

xo

(
f oG + fG o− f oG o)+

∫ x

0
Fg (3.17)

By induction onx, ∫ xo

0
(fG +Fg) = F (xo)G(xo).

As before, fix a partitionP[xo,x] and tuplesf o
P , g o

P of options off ,g . Let h(t) =
f o
i (t,ki ,ki+1, f (ki), f (ki+1) for t ∈ [ki ,ki+1), and similarly fork . LetK (y)=

∫ y
xo k (t)dt

and similarly forH (y). Then, (3.17) becomes

F (xo)G(xo)+
∫ x

xo

(
Fg + hG +(f − h)(G(xo)+K )

)
= F (x)G(xo)+

∫ x

xo

(
Fg + fK + h(G −K −G(xo))

)
(3.18)

Suppose now for simplicity thatxo < x is a left option ofx, and thath,k are left op-
tions of f ,g respectively. I have to prove that (3.18) is strictly less thanF (x)G(x).

By inductive hypothesis,∫ x

xo
hG = H (x)G(x)−

∫ x

xo
Hg ,

and similarly forfK andhK . So, (3.18) is equal to

F (x)G(xo)+F (x)K (x)+H (x)G(x)−H (x)K (x)+
∫ x

xo

(
Fg−Fk −Hg +Hk −hG(xo)

)
= F (x)G(xo)+F (x)K (x)+H (x)G(x)−H (x)G(xo)−H (x)K (x)+

∫ x

xo
(F −H )(g−k )

= F (x)(G(xo)+K (x))+H (x)(G(x)−G(xo)−K (x))+
∫ x

xo
(F −H )(g − k )

= F (x)G(x)−(F (x)−F (xo)−H (x))(G(x)−G(xo)−K (x))+
∫ x

xo
(F −H −F (xo))(g−k )

(3.19)

Call

m(y) := f (y)− h(y) M (y) :=
∫ x

xo
m(t)dt = F (x)−F (xo)−H (x)

n(y) := g(y)− k (y) N (y) :=
∫ x

xo
n(t)dt = G(x)−G(xo)−K (x).
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I have to prove that (3.19) is strictly less thanF (x)G(x). This is equivalent to

M (x)N (x)−
∫ x

xo
M (t)n(t)dt > 0.

i.e. ∫ x

xo
(M (x)−M (t))n(t)dt > 0 (3.20)

But m > 0 andn > 0 in the interval(xo,x); therefore,M (x) > M (t) and the con-
clusion follows. �

3.2.1 Error checking

There are some methods to easily check whether there is any mistake in the alge-
braic manipulations like the ones in the previous proof; they do not guarantee the
correctness of the computations, however they can detect many errors.

The first one is dimensional argument: ift is of dimension[t], f and h of
dimension[ f ], g andk of dimension[g], thenFG has dimension[ f gt2] and can
only be added to or compared with quantities of the same dimension; moreover the
dimension must be preserved by algebraic manipulations. For instance, if I start
with FG I cannot end with an expression containinghG among its summands.

The second method is more specific to the surreal numbers. Take an option of
xy: xoy+ xyo− xoyo. If I substitutex instead ofxo and anything instead ofy, I
obtain the productxy itself. Same thing can be said for the sumx+ y. Therefore,
if I start from a composition of sums and products (i.e. a polynomial)p(x,y), and
consider an optionp(x,y)o = q(x,y,xo,yo), I must have thatq(x,y,x,z) = p(x,y) =
q(x,y,z,y). And this must remain true after any algebraic manipulation ofq .

For the integral, something even stronger can be said: if I considerF (x) =∫ x
0 f (t)dt and I take an optionF (x)o = g(x,xo, f o) then not onlyg(x,x, f o) = F (x),

but alsog(x,y, f ) = F (x).
But what happens after applying some theorem, like theorem9, to an option?

I can still use the previous trick, bearing in mind that I will obtain an identity only
if theorem9 is true. For instance, consider the expression (3.10), which has been
obtained from an option ofF (x)G(x). If, say, I substituteh = f (and therefore
H = F −F (a)), I obtain the expression

F (a)G(a)+F (x)G(a)−F (a)G(a)+

+
∫ x

a

(
g(F −F (a))+(G −G(a)f )+ fK +(F −F (a))k − k (F −F (a))−Kf

)
= F (a)G(a)+F (x)G(a)−F (a)G(a)+

∫ x

a

(
g(F −F (a))+(G −G(a)f )

)
,

(3.21)

which, integrating by parts, is equal toF (x)G(x): this independently from the
value ofa and ofk .
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What if I have applied instead some inequality, for instanceh < f ? If the
expression is an optionz= λ o and at the end the new expressionz′ satisfiesz≤
z′ ≤ λ , then I can apply the same trick to check the validity of the manipulation.
On the other hand, if instead I obtainz′ < z< λ , often this trick fails: but usually
I do not need to find az′ which is a worse approximation ofλ thanz in the first
place.

3.3 Concluding remarks

It is now natural to ask about other formulae known for the Riemann integral over
the reals. For instance, one may wonder whether about the validity onNo of the
formula for composite functions corresponding to

(G ◦F )′ = (g ◦F )f .

While it is true forf andg both polynomials, we will see that in the general case it
fails even for the simplest kind of functions; for example,

f (x) = x+c, c∈ No.



Chapter 4

Polynomials and analytic
functions

In this chapter I will give recursive definitions for polynomials inNo[x].
I will also give a recursive definition for germs of analytic functions inR[[x]], for
infinitesimal values ofx∈ No.

Moreover, I will compute their integral, and prove that it is equal to the “for-
mal” integral.

Finally, I will give generalisations of some closure theorems from polynomials
to recursively definable functions.

4.1 Polynomials

Let p(X) ∈ No[X] be a polynomial,x ∈ No. I want to give an explicit inductive
formula forp(x).

If we write

p(X) =
n

∑
i=0

aiX
i

then, by definition of sum,

p(x) = 〈 ∑
0≤i≤n
i 6=m

aix
i +(amxm)L | ∑

0≤i≤n
i 6=m

aix
i +(amxm)R〉0≤m≤n

or, more concisely,
p(x)o =

(
∑

0≤i≤n
i 6=m

aix
i)+(amxm)o (4.1)

It remains to treat the case wherep(X) is a monomial, i.e.p(X) = aXn. By defini-
tion of product,

(xy)o = xoy+xyo−xoyo,

71
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i.e.
xy− (xy)o = (x−xo)(y−yo).

It follows that for anyx1, . . . ,xn ∈ No

x1 · · ·xn− (x1 · · ·xn)o = (x1−xo
1) · · ·(xn−xo

n)

In particular,
(axn)o = axn− (a−ao)(x−xo

1) · · ·(x−xo
n)

wherexo
1 , . . . ,xo

n are options ofx. By cofinality, I can choose amongxo
1 , . . . ,xo

n the
‘best’ left optionxL (i.e. the greatest) and the ‘best’ right option (i.e. the smallest),
and say that

(axn)o = axn− (a−ao)(x−xL)α(x−xR)β (4.2)

where 0≤ α ≤ n andα + β = n. Clearly, (4.2) is a left option if and only ifβ is
even andao < a, or β is odd andao > a.

Putting4.1and (4.2) together, we obtain:

p(x)o = p(x)− (am−ao
m)(x−xL)α(x−xR)β (4.3)

where 0≤m≤ n andα +β = m. Moreover I can always takeα = 0,1,n−1 orn.

4.2 Analytic functions

Let (ai)i∈N be a sequence of real numbers. Letx∈No be an infinitesimal (positive)
surreal number. Then it is possible to give a meaning to the expression

f (x) = ∑
i

aix
i ,

using the fact thatNo can be identified canonically withR((No)), the generalised
power series field with real coefficients and surreal exponents. It is not obvious that
f can be defined recursively, and that the corresponding integral coincides with the
integration term-by-term.

I will give the recursive formula off (x) (for x > 0). The proof will be post-
poned.

If f is a polynomial, we know already how to define it. Otherwise, givenx∈No
infinitesimal, givenxo an option ofx which is infinitesimal too, we can consider
the Taylor expansion off atxo, truncated at thenth term for anyn∈ N,

pn(x,xo) := ∑
i≤n

f (i)(xo)
i!

(x−xo)i (4.4)

and say thatf (x) is more or lesspn(x,xo). This means that ifε is any positive real
then

pn(x,xo)− ε(x−xo)n < f (x) < pn(x,xo)+ ε(x−xo)n (4.5)
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if xo is a left option, and similarly for right options. This, because(
f (t)− pn(t, t0)

)
/(t− t0)

n

is infinitesimal if t andt0 are both infinitesimal (because all the coefficients off
are real numbers). It suffices to definef (x) using the formula (4.5), taking into
consideration thatf (n)(0) = an/n!, and lettingε vary among all possible positive
real (or rational) numbers. The only difficulty is that I need to definef , f ′, f ′′, . . .
all at the same time (because to computepn I need them), but this is not a problem.

Note that to definef (x) I use only the values off (n)(xo) wherexo is an in-
finitesimal option ofx: for instance, the only infinitesimal option ofc = 1

ω
is 0, so

I can computef (c) directly from the Taylor expansion in 0:

f (c) = 〈∑
i≤n

aic
i − εcn | ∑

i≤n

aic
i + εcn〉

Moreover, the definition off (x) is uniform.
Concluding, I have the formula(

f (x)
)o = pn(x,xo)± ε(x−xo)n. (4.6)

4.2.1 Justification of the definition for analytic functions

Let
f (X) = ∑

i∈N
aiX

i

be a power series with real coefficients,x > 0 ∈ No be an infinitesimal surreal
number,x = ∑ j<α

r jω
c j be its normal form. I will prove that (4.6) definesf (x),

using induction onx.
If f is a polynomial, the conclusion is a consequence of formula (4.3).
Otherwise, letz be the surreal number defined by (4.6). (4.5) implies that

z� f (x).
Conversely,

f (x) = ∑
i∈N

j1,..., j i<α

si, j i ,..., j i
ω

c j1
+···+c ji = ∑

k<δ

tkω
dk,

for someδ ∈On, si,~, tk ∈ R, dk ∈ No.
If δ is a limit ordinal, then

f (x)o = ∑
k≤β

tkω
dk± εω

d
β

for someβ < δ andε > 0∈ No. Therefore,|f (x)− f (x)o| ' εω
d

β . Moreover,

d
β

= c j1
+ · · ·+c j i

≥ ic
λ
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for somei ∈ N, j1, . . . , j i < α andc
λ

:= min
{

c j1
, . . . ,c j i

}
. Therefore,

|f (x)− f (x)o| ≥ εω
ic

λ

for somei ∈ N, 0< ε ∈ R, λ < α.
If δ = γ +1,

|f (x)− f (x)o|= |tγ − t o
γ ||ωdγ −

(
ω

dγ

)o| ≥ εω
dγ ≥ εω

ic
λ

for someε > 0∈ R, i ∈ N, λ < α.
Using (4.6), I obtain that for everyn ∈ N, ε > 0 ∈ R there existzR and zL

options ofz such that
|zR−zL| ≤ ε|x−xo|n.

If α is a limit ordinal, I can suppose|x−xo| < εωc
λ . If α = γ +1, I can suppose

|x−xo| ≤ sωcγ for somes> 0∈ R.
In both cases,

∆(f (x))≥ inf
{

εω
ic

λ : i ∈ N,ε > 0∈Q,λ < α
}

.

So, for our representation〈zL | zR〉 of z,

inf
{
|zR−zL| ≤ ∆(f (x))

}
.

Moreover, by equation (4.5), zL < f (x) < zR, therefore, by remark1.86, z= f (x).

4.3 Integral of polynomials

The integral of a polynomial is what we expect:

Theorem 10. Letp(x) = ∑n
i=0aix

i be a polynomial in one variable with coefficients
in No. Then, ∫ x

0
p(t)dt =

n

∑
i=0

ai

i +1
xi+1.

Proof. I call the expression on the right the formal integral ofp. By linearity of
∫

,
it is enough to prove the lemma forp(x) = xn. I will use induction onn, the degree
of the polynomial, and onx.

Let F (x) =
∫ x

0 tndt. I want to proveF (x) = xn+1/(n+1). As usual, for some
P[xo,x] = (k0, . . . ,kn),

F (x)o = F (xo)+
∫ x

xo

(
tn)o

dt

=
(xo)n+1

n+1
+∑

i

∫ ki+1

ki

(tn− (t−ki)
α(t−ki+i)

β )dt,

where I have used the formula (4.2) and the induction onx.
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We know thatNo is an ordered domain, soxn satisfies all universal formulae
true inR (of course, we know more than that: but this is enough for our purpose);
in particular,y := xn+1/(n+1) is in the correct cut in order to be the integral ofxn.
I.e. if F (xo) = (xo)n+1/(n+1), for everyxo option ofx, thenF (x)� y.

It remains to show thaty� F (x). To prove it, I can use the cofinality theorem.
Thus, it is enough to prove thatF (x)o−y is small, i.e. for everyyo≺ y there exists
F (x)o such that|y−yo| ≥ |y−F (x)o| andF (x)o is on the same side ofy asyo.

The integrand is a polynomial int of degree less thann, so I can apply the
inductive hypothesis, and say that its integral is equal to the formal integral.

I use the following formula (which can be proved in many different ways: for
instance, integrating by parts):∫ b

a
(t−a)α(t−b)β dt =

(−1)β (b−a)n+1

(n+1)
(n

α

) (4.7)

wheren := α +β , and
∫

is the formal integral of polynomials.
In the following, I will supposexo < x (the other case is similar). Apply (4.7)

to obtain:

F (x)o = y+∑
i

(−1)β+1

(n+1)
(n

α

)δ
n+1
i , (4.8)

whereδi := ki+1−ki .
Call ∆ := |x−xo|. Choose them-partition such thatδi = δ = ∆/m for everyi.

Then

|F (x)o−F (x)|= ∆n+1

mn(n+1)
(n

α

) = q∆n+1

whereq > 0 is a rational number that can be chosen as small as we want, simply
taking a smallerδ , i.e. refining the partition.

On the other hand, by (4.2), puttinga = 1/(n+1)

|y−yo| ≥ |a−ao||x−xo|n (4.9)

wherexo (whereao) is a canonical option ofx (of a)(1). But ε = |a−ao| is positive
real (becausea is real), so we can find a partition of(xo,x) such that 0< q < a,
and the theorem follows.

I should also prove thatyo can be found to lie on the same side ofy asF (x)o,
but this follows from the fact that we need only to change the parity ofβ to switch
side ofy, as is obvious from (4.8). �

4.3.1 Example

As an example, let us compute directly

c :=
∫

ω

0
x+1dx.

(1)This means that for everyyo ≺ y we can findao ≺ a andxo ≺ x such that (4.9) holds.
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I will assume that I have already computed
∫ b

a xdx for arbitrarya,b, and
∫ n

0 x+1dx
for n∈ N.

I have to prove thatc= ω2

2 +ω. No is a real closed field, thereforec� ω2

2 +ω.
Conversely, a right option ofc is

cR :=
∫ n

0
x+1dx+

∫
ω

n
xR+1dx

=
n2

2
+n+ ∑

0≤i<m

∫ ki+1

ki

ki+1 +1dx

=
n2

2
+n+ ∑

0≤i<m

(ki+1−ki)(ki+1 +1).

with n∈ N and(k0, . . . ,km) a partition of(n,ω). Define∆ := ω−n, andδ := ∆/m.
Chooseki+1−ki = δ , i.e. ki = n+ iδ . Then,

cR =
n2

2
+n+δ ∑

0≤i<m

(n+δ (i +1)+1)

=
n2

2
+n+mδ (n+δ +1)+δ

2(
m2−m

2
)

= δ
2(

m2 +m
2

)+δ (mn+1)+
n2

2
+n

=
∆2

2
(1+

1
m

)+O(∆)

=
ω2

2
(1+

1
m

)+O(ω).

wherey = O(z) means thatv(y) ≤ v(z). Therefore, by cofinality, we can choose
cR = ω2

2 (1+ 1
m).

A left option ofc is

cL :=
n2

2
+n+ ∑

0≤i<m

∫
ω

n
(x+1)L dx

=
n2

2
+n+∑

i∈I

∫ ki+1

ki

ki +1dx+∑
i∈J

∫ ki+1

ki

xdx

=
n2

2
+n+∑

i∈I

(ki +1)(ki+1−ki)+∑
i∈J

k2
i+1−k2

i

2
.

whereI tJ = {0,1, . . . ,m}. Chooseki as above. Then,

cL = · · ·= n2

2
+n+

∆2

2
+n∆+ |I |(1− δ

2
).

The best left options are obtained by setting|I | = 0 (this is what we expected,
because fori ∈ I we chosexL +1 as a left option ofx+1, while for i ∈ J we chose
x, and the latter should be a better approximation ofx+1). Therefore,cL = ω2

2 +n2.
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In conclusion,

〈 ω2

2
+n2 | ω2

2
(1+

1
m

)〉 � c

and one can check that the expression on the left is equal toω2

2 +ω.

4.4 Integral of analytic functions

Let
f (X) = ∑

i∈N
aiX

i ,

ai ∈R, be an analytic function (defined forX infinitesimal). The formal integral of
f is

G(X) := ∑
i∈N

aiX
i+1

i +1

Theorem 11.For f ,G as before, the integralf is equal toG , i.e. for x infinitesimal,∫ x

0
f (t)dt = G(x).

Proof. The proof is by induction onx.
If f is a polynomial, the conclusion follows from theorem10.

Otherwise, callF (x) :=
∫ x

0 f (t)dt.

F (x)o = F (xo)+
∫ x

xo
f o(t, t o)dt.

By (4.6), f o = pn(t, t o)± ε(t− t o)n, wherepn is the Taylor series expansion of
f atxo. By definition,G (i+1) = f (i), therefore

G(x)o = qn(x,xo)± ε(x−xo)n,

where

qn(x,xo) := ∑
0≤i≤n

G (i)(xo)(x−xo)i

i!
= G(xo)+ ∑

0≤i≤n−1

f (i)(xo)(x−xo)i+1

(i +1)!

is the Taylor series expansion ofG atxo.
By inductive hypothesis,

F (x)o = G(xo)+
∫ x

xo
pn−1(t, t

o)± ε(t− t o)n−1dt

(I have supposed, for simplicity, that the partition of(xo,x) has length 1). But the
integrand is a polynomial int, therefore I can apply theorem10, and obtain that the
previous is equal to

G(xo)+ ∑
0≤i≤n−1

f (i)(xo)(x−xo)i+1

(i +1)!
± ε(x−xo)n =

(
G(x)

)o
,
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so
(

F (x)
)o =

(
G(x)

)o
. In particular,G(x)� F (x).

If the partition of(xo,x) has length greater than 1, I can apply the elementary
equivalence ofNo with R in the languageLan to obtain the every option ofF (x)
is also an option ofG(x), obtainingF (x)� G(x). �

4.5 Real closure

I will give a proof of the fact thatNo is a real closed field, starting from the knowl-
edge that it is an ordered domain. First, I recall the definition of real closed field.

Definition 4.1. An ordered fieldK is real closed iff

1. Every positive element has a square root.

2. Every polynomial of odd degree has a root.

Theorem 12. LetK be an ordered domain. The following are equivalent:

• K is a real closed field.

• K is elementarily equivalent toR in the language of ordered rings(0,1,+, ·,<
).

• K is a field and every polynomialp(x)∈K[x] satisfies the intermediate value
property:

∀a < b∈K p(a) < 0 < p(b)→∃c∈K a < c < b & p(c) = 0.

• K is maximal, i.e. every ordered domain containingK and algebraic over it
coincides withK itself.

• K[i] is an algebraically closed field, where i=
√
−1.

The real closure ofNo is a proper class definable by a certain formula. The
next lemma shows that it coincides withNo itself.

Lemma 4.2. Let K be a real closed field containingNo. Let p(x) ∈ No[x] be a
polynomial with a rootζ ∈K. Thenζ ∈ No.

Proof. Order the polynomials inNo[x] using the lexicographic order induced by�,
with monomials of higher degree more important than monomials of lower degree.
This gives a well-founded partial order onNo[x]. I will prove the lemma using
induction onp.

First, I can suppose there arel < r ∈No∪{±∞} such thatζ is the only root of
p(x) in K in the interval(l , r). In fact, between two roots ofp there is always a root
(in K) of its derivativep′, andp′ is simpler thanp, therefore its roots are inNo.

I will define c = 〈cL | cR〉 such thatp(c) = 0 andc ∈ (l , r). I will give the
options ofc. First of all, I wantl < c < r, sol is a left option,r a right one.
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In order to havep(c) = 0 it is necessary and sufficient to have

p(c)L < 0 < p(c)R

for every left and right option ofp(c). Let

p(x) =
n

∑
i=0

aix
i . (4.10)

By formula (4.3),

p(c)o = p(c)− (am−ao
m)(c−cL)α(c−cR)β

Fix ao
m≺ am. Suppose I have already found some optionscL andcR of c: I want to

give some other options ensuring that (4.10) is true. Let

q(x) := p(x)− (am−ao
m)(x−cL)α(x−cR)β .

q(x) ∈No[x] is strictly simpler thanp(x), because the coefficients of degree greater
thanm are unchanged, while them-coefficient isao

m, which is strictly simpler than
am. Therefore, I can apply induction, and say that all its roots are inNo. Suppose,
for instance, thatp o = pL is a left option ofp. Let cR′ be the leftmost greater than
ζ , or cR if there is none. Thenq(x) < p(x) in (cL,cR), p(x) < 0 in (cL,ζ ) andq(x)
does not change sign in(ζ ,cR′) (becauseK is real closed), soq(x) < 0 in (cL,cR′).

Consequently, if I addcR′ to the right options ofc, I ensure thatq(c) < 0,
namelyp(c)L < 0.

A minor problem: the lexicographic order onNo[x] induced by� is not set-
like: therefore, it seems that I might be giving a proper class of options forc. But
when I do the inductive step I do not take an arbitrary polynomial simpler thanp,
but one which is an option ofp, and this ensures that I never add more than a set of
options forc. �

Example4.3. Conway’s proof thatNo is a field follows from applying the previous
proof to the polynomialax−1.

Proof. Let p(x) = ax−1. Then,q(x) in the previous proof is in one of the following
forms:

q(x) =
{

(ax−1)− (a−ao)(x−co) = aox+(a−ao)co−1 (4.11)

ax. (4.12)

(4.12) yields the left option 0 forc. (4.11) produces the option

co′ =
1+(ao−a)co

ao

if ao 6= 0. If ao = 0, (4.11) becomes the constant functionaco−1, which gives no
options forc. �
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Example4.4. Clive Bach’s algorithm for finding
√

a in [6] is the application of the
proof tox2−a.

Proof. Let p(x) = x2−a. Then,

q(x)L =

{
x2−aR (4.13)

x2−a− (x−co)2 = 2xco− (co)2−a (4.14)

and

q(x)R =

{
x2−aL (4.15)

x2−a− (x−cL)(x−cR) = (cL +cR)x−cLcR−a. (4.16)

(4.13) and (4.15) yield the options
√

aR and
√

aL respectively. (4.14) and (4.16)
give respectively

cR′ =
a+(co)2

2co (4.17)

and

cL′ =
a+cLcR

cL +cR , (4.18)

where none of the denominators can be 0. Instead of (4.17), Bach uses

a+cLcL∗

cL +cL∗ or
a+cRcR∗

cR+cR∗ ,

wherecL,cL∗ are “old” left options (andcR,cR∗ “old” right options) ofc, but I can
always take the best amongcL,cL∗ instead. �

Example4.5. Other polynomials do not yield to such simple algorithms. For in-
stance, to solve the polynomialx3−a, I need to solve first polynomials of the kind

x3− (x−cL)α(x−cR)β −a,

whereα +β = 3, beside of course polynomials of type

x3−ao.

Remark4.6. Let S be an initial subset ofNo. Let L < R be subsets ofS, and let
x = 〈L | R〉. Then, every ancestor ofx is in S.

Proof. Let z≺ x. Without loss of generality,z< x. By the inverse cofinality the-
orem, there existsy ∈ L such thatz≤ y < x. Thereforez� y, but y ∈ S andS is
initial, soz∈ S. �
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Lemma 4.7. Let S,R be initial subsets ofNo. Then the sets

S+R := {x+y : x∈ S,y∈ R} and−S:= {−x : x∈ S}

are initial subsets ofNo.
If S,R are also additive subgroups ofNo, then 〈SR〉, the additive subgroup

generated by SR:= {xy : x∈ S,y∈ R}, is an initial subset ofNo.
The additive subgroup and the subring ofNo generated by S are initial subsets

of No.

Proof. The fact that−S is initial is obvious.
Suppose for contradiction thatS+ R is not initial. Let (x,y) the simplest el-

ement of in the cardinal productS×R such that∃z≺ x+ y z /∈ S+ R. Without
loss of generality,z< x+y. Let x = 〈xL | xR〉 andy = 〈yL | yR〉 be their canonical
representations. Thenx+y = 〈xL +y,x+yL | xR+y,x+yR〉. By the inverse cofi-
nality theorem, there existxL (or yL) such thatt := xL +y (or t := x+yL) satisfies
z≤ t < x+y. Therefore,z� t. But, by minimality of(x,y), every ancestor oft is
in S+R, and in particularz∈ S+R, a contradiction.

Suppose thatS,R are subgroups ofNo, and that, for contradiction,〈SR〉 is not
initial. An element ofw∈ 〈SR〉 is of the formw = w1 + · · ·+wn for somen∈ N,
wi ∈ SR i= 1, . . . ,n.

Consider again the order≺ on the cardinal productS×R. Let

G := (S×R)(N)

be the symmetric power ofS×R with the induced order, defined in1.64. There is
a surjective mapψ : G→ 〈SR〉

Ψ((x1,y1), . . . ,(xn,yn)) := x1y1 + · · ·+xnyn.

Letg := ((x1,y1),(x2,y2), . . .)∈Gminimal such thatw := ψ(g) has an ancestor
not in〈SR〉. Let n∈N be the cardinality of the support of(x1y1,x2y2, . . .). Without
loss of generality, I can supposexiyi 6= 0 if i ≤ n, while xi = yi = 0 if i > n.

If n> 1, leta := x1y1, b := x2y2+· · ·+xnyn. w= a+b. LetA := { t ∈ No : t � a},
B := { t ∈ No : t � b}. By definition,A,B are initial subsets ofNo, thereforeA+B
is an initial subset ofNo. Moreover, the minimality ofg implies thatA,B⊆ 〈SR〉,
so A+ B ⊆ 〈SR〉. w ∈ A+ B and A+ B is initial, so all ancestors ofw are in
A+B⊆ 〈SR〉, a contradiction.

If n = 1, g = ((x,y)), i.e. w = xy; let x = 〈xL | xR〉 andy = 〈yL | yR〉 be their
canonical representations. Without loss of generality,z< xy. A left option ofxy is
t := xyL + xLy− xLyL or t := xyR+ xRy− xRyR. By the inverse cofinality theorem
there existst such thatz≤ t < xy, soz� t. But ((xo,y),(x,yo),(xo,yo)) is strictly
simpler than(x,y), therefore all the ancestors oft are in〈SR〉, a contradiction.

Finally, the additive subgroup generated byS is the union of initial subsets of
No, so it is an initial subset ofNo, and similarly for the subring. �
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It is not true in general that ifS,R are initial subgroups ofNo, thenSRis an
initial subclass ofNo. For instance, takeS= R to be the subgroup generated byZ
andω. Then,ω2 +ω = ω(ω +1) ∈ SR, butω2 +1 /∈ SR.

Corollary 4.8. Let K be an initial subring ofNo. Let L< R be subsets ofK, and
let c := 〈L | R〉. Then,K[c] is also an initial subring ofNo.

Proof. K∪{c} is an initial subset ofNo, therefore the ring generated by it is initial
too. �

GivenK⊆Noa subring ofNo, its real closure is the class of all surreal numbers
that are algebraic overK.

Lemma 4.9. Let K be an initial subring ofNo. Let K ⊂ No be its real closure.
Then,K is an initial subfield ofNo.

Proof. Let F be the union of all initial subsets ofK; it is obviously initial, and by
lemma4.7 it is a subring ofK. I want to prove thatK = F.

Following the proof of4.2, I introduce onF[x] the lexicographic order induced
by≺. Let p ∈ F[x], let c∈K be a root ofp(x). I have to prove thatc∈ F. Suppose
that I have already proved it for every polynomial simpler thanp(x). I want to find
L < R∈ F such thatc = 〈L | R〉; then, by remark4.6, c∈ F. Let us computeL,R
using the procedure of lemma4.2. First, I put in them the roots of the derivative
p′(x), which is simpler thanp(x): therefore, all these roots are inF. Then, given
cL,cR “old” options of c (which I can suppose are inF), I construct “new” options
d as roots of the polynomial

q(x) := p(x)− (am−ao
m)(x−cL)α(x−cR)β ,

wheream is themth coefficient ofp(x) andao
m ≺ am. Therefore,q(x) is simpler

thanp(x). Moreover, its coefficients are inF, becauseam ∈ F, ao
m is simpler than

am, and therefore inF, cL andcR are inF. Therefore,d is a root of a polynomial in
F[x] simpler thanp(x), sod ∈ F. �

Corollary 4.10. If S is an initial subset ofNo, then the smallest real closed field
containing it is an initial subfield ofNo.

Proof. Q is an initial subset ofNo, thereforeS∪Q is initial too, so, by lemma4.7,
the ring generated by it is also initial, and its real closure is initial by the previous
lemma. �

The statements and the proofs of the previous lemmas work also for initial
classes instead of sets.

If instead of consideringall polynomials with coefficients inK, I consider only
the polynomial up to a fixed degreen ∈ N, the lemma and the corollary are still
true (with the same proof). For instance, if I taken = 1, I can say that the smallest
field containing an initial subset ofNo is initial.

The following theorem was proved with different methods in [7]
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Theorem 13. LetK be a real closed field and a proper set. Then,K is isomorphic
to an initial subfield ofNo.

Proof. If K = Q, it is true.
If F real closed and an initial subfield ofNo andK is (isomorphic to) the real

closure ofF(a) for somea transcendental overF, let (L,R) be the cut overF of
a. If c∈ (L | R), thenF(c) is isomorphic toF(a), and the real closure ofF(c) is
isomorphic toK. If I take c = 〈L | R〉, thenF∪{c} is an initial subset ofNo, and
the conclusion follows by corollary4.10.

In general, let(c
β
)

β<α
be a transcendence basis ofK overQ, letK0 be the real

closure ofQ, and for 0< β < α let

K
β

:=

{
the real closure ofKγ(cγ) if β = γ +1⋃

γ<β
Kγ if β is a limit ordinal.

By the previous case and induction onβ , for everyβ < α K
β

is isomorphic to an
initial subfield ofNo, and the conclusion follows. �

It is not true that every ordered field (which is also a set) is isomorphic to an
initial subfield ofNo. For instance, takeK := Q(

√
2+ 1/ω) ⊂ No. Suppose, for

contradiction, that there exists an isomorphism of ordered fieldsψ betweenK and
an initial subfield ofNo. Let z= ψ(

√
2+ 1/ω). Then,

√
2≺ z, but

√
2 /∈ ψ(K).

Conjecture4.11. Let G be an initial ordered subgroup ofNo, and letK be an
ordered field. Assume thatK, with the natural valuation, is an Henselian and with
value groupG. Then,K is isomorphic to an initial ordered subfield ofNo.

Note that the value group of every initial subfield ofNo is also initial.
The main problem with the proof of lemma4.2is that I have to know in advance

the existence of a real closed fieldK embeddingNo: it is used twice, once to assure
the existence of a rootζ of p ‘somewhere’, and second to assure that a polynomial
q does not change sign between two consecutive roots. Of course, this is not a
problem for polynomials, but becomes an issue for other kinds of functions.

Let me rephrase the lemma using the following

Definition 4.12. I say that a functionf : No→ No satisfies the intermediate value
property atd ∈ No iff for all a < b ∈ No such thatf (a) < d < f (b) there exists
c∈ (a,b) such thatf (c) = d.

f satisfies the I.V.P. iff it satisfies the I.V.P. at everyd ∈ No.

I will now prove that every polynomial satisfies the I.V.P: while this is not very
interesting for polynomials, it is for other kind of recursively defined function.

Proof. It suffices to prove the cased = 0. Let

p(x) =
n

∑
i=0

aix
i .
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Again, I do induction onp.
I can suppose thatζ ∈NoD , the Dedekind completion ofNo, is such thatp(x) <

0 in [a,ζ ) andp(x) > 0 in (ζ ,b]. I will give options forζ .
First, a,b are left and right options. Then, ifq(x) andcR′ as in the proof of

lemma4.9, I can apply the inductive hypothesis, and conclude thatq(x) does not
change sign in the interval(ζ ,cR′). The fact thatp(c) = 0 follows trivially. �

The following is a weak form of axiom2

Axiom 5. Let g : No→No. Eitherg is constant or∀c∈No ∀a′ < a′′ ∈No ∃m∈N
∃a0, . . . ,am∈ NoD such thata′ = a0 < a1 < · · ·< am = a′′ and fori = 0, . . . ,m−1
g�(ai ,ai+1) < c or g�(ai ,ai+1) > c.

Now I can adapt this proof to recursive functions.

Lemma 4.13. Suppose thatA is a family of functions satisfying axiom5, and
such that every function in it satisfies the I.V.P. at0. Suppose thatf is uniformly
recursive overA. Then,f satisfies the I.V.P. at0.

Proof. Proceed as in the previous proof. LetcL,cR be “old” options ofc. Let

g(x) := f o(x,cL,cR, f (cL), f (cR))
ζ := sup

(
{x∈ [a,b] : f (x) < 0}∪{b}

)
for somef o option of f . By axiom5, g has only finitely many zeros in(cL,cR),
therefore I can takecL′ the rightmost beforeζ andcR′ the leftmost afterζ , and by
hypothesisg does not change sign in the intervalI = (cL′,cR′).

Say thatf o = f L. Then, by uniformity,c∈ (cL,cR)⇒ g(c) < f (c). Moreover,
f (c) < 0 if c < ζ , thereforeg(x) < 0 in I . The rest of the proof is the same as
before. �

Example4.14. Consider the integer part function[x]− 1/2. Why cannot I apply the
previous proof to it? I.e. take the equation[x] = 1/2. We know that[−1] =−1< 1/2

and[2] = 2 > 1/2. So, if [x] did satisfy the I.V.P. at 1/2, I would findx∈ (−1,2)
such that[x] = 1/2.

Fake proof.This is equivalent to solving:

x >−1 x < 2 (4.19a)

[x] > 0 [x] < 1 (4.19b)

x−1 <
1
2

x+1 >
1
2

(4.19c)

(4.19c) plus (4.19a) produce
−1
2

< x <
3
2
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Let us solve (4.19b) using the method in the previous proof: I have to find the
maximum of the set

{x∈ No :−1 < x < 2 & [x] = 0} .

Howeverthis set has no maximum: [x] = 0 on(−1,1), but [1] = 1. �

I can say something more.

Definition 4.15. Let n ≥ 0 ∈ N. A function g : Non+1 → No satisfies the sup
property iff for every~b∈ Non, a′ < a′′ ∈ No∪{±∞}, c∈ No the infimum and the
supremum of the class{

x∈ No : a′ < x < a′′ & g(x,~b)≤ c
}

are inNo∪{±∞}, and the same with≥ instead of≤.

Theorem 14. LetA be a family of functions, such that everyg ∈A satisfies thesup
property. Letf be a function uniformly recursive overA and satisfying axiom5.

Then,f satisfies thesupproperty.

Proof. Let a′,a′′,c∈ No. Let

ζ := sup
{

x∈ No : a′ < x < a′′ & f (x)≤ c
}
∪{a′′} ∈ NoD .

By axiom5 w.l.o.g. I can suppose thatf (x) < c in the interval[a′,ζ ), andf (x) > c
in the interval(ζ ,a′′].

I will prove thatζ ∈ No by induction onc.
I will construct ad ∈ No “as near as possible” toζ ; I will give the options of

such ad. First,a′ < ζ < a′′, thereforea′ is a left option,a′′ a right one.
Given a representationc = 〈cL | cR〉 and givenx = 〈xL | xR〉 ∈ No, f (x)≤ c is

equivalent to

f (x) < cR and (4.20)

f L(x,xo, f (xo)) < c (4.21)

for everyxo option ofx, cL, cR options ofc andf L, f R options off .
Let dR′ be the infimum of the class{

x∈ No : f (x)≥ cR & a′ < x < a′′
}
∪{a′}.

By inductive hypothesisdR′ ∈ No. Moreover,∀x < ζ f (x) < c < cR, therefore
dR′ ≥ ζ . If dR′ = ζ , I have proved the conclusion; otherwise, adddR′ to the right
options ofd.

Let dL′ be the supremum of the class{
x∈ No : f (x)≤ cL & a′ < x < a′′

}
∪{a′′}.
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Again, dL′ ∈ No. Moreover,∀x > ζ f (x) ≥ c > cL, thereforedL′ ≤ ζ . If dL′ 6= ζ ,
adddL′ to the left options ofd.

Fix dL,dR “old” options ofd. Let dR′′ be the infimum of the class{
x∈ No : f L(x,dL,dR, f (dL), f (dR))≥ c & dL < x < dR}

∪{dR}.

By hypothesisdR′′ ∈ No. Moreover, by uniformity

∀x∈ (dL,dR) f L(x,do, f (do)) < f (x)

and∀x < ζ f (x) < c, thereforedR′′ ≥ ζ . Again, if dR′′ = ζ I have proved that
ζ ∈ No, otherwisedR′′ is a “new” right option ofd.

Proceed similarly for

dL′′ = sup
{

x∈ No : f R(x,dL,dR, f (dL), f (dR))≤ c & dL < x < dR}
∪{dL}.

If the construction was not broken byζ being equal to some of the “new”
options ofd, I obtain in this way ad ∈ No such thatd � ζ (with the simplicity
relation onNoD induced by the one onNo). Moreover,f (d) = c anda′ < d < a′′,
therefored = ζ . �

Let f : No→ No be as in the previous theorem.

Corollary 4.16. f can be extended in a unique way to f: NoD → NoD such that
f continuous at everyζ ∈ NoD \No;

f (ζ ) := limsup
x→ζ−

x∈No

f (x) = lim
x→ζ

x∈No

f (x)

Corollary 4.17. If moreoverf is continuous, thenf satisfies the intermediate value
property.

Example4.18. Let f (x) = ωx. It is not continuous at anyx∈ No. Nevertheless,f
can be extended toNoD . For instance,

ω
η = sup{ω

x : v(x) < 1}= inf {ω
x : v(x)≥ 1}= inf

{
ω,ω

1/2,ω
1/4, . . .

}
.

The sign expansion ofωη is given by the sign expansion ofω
1/ω followed by

infinitely many pluses;ωη = ω
1/ω :+∞.

Example4.19. Let f (x) = x− [x]. On the interval(1/2,3/2), f satisfies the hypoth-
esis of theorem14. Let us see how the proof works forc = 1/2. Let

ζ = sup

{
x∈ No : f (x) >

1
2

&
1
2

< x <
3
2

}
.

I must show thatζ ∈ No. f (x) = 〈xL− [x],−1 | xR− [x],1〉. f (x) = 1/2 iff

xL− [x] <
1
2

< xR− [x] and

0 < f (x) < 1.

However,f (x) = 1 in the interval(1/2,3/2) iff x = 1 andζ = 1.
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I can also generalise lemma4.7.

Definition 4.20. GivenS⊆ No and a functiong : Non → No, I say thatS is closed
underg iff g(Sn)⊆ S. Given a family of functionsA, I say thatS is closed underA
iff it is closed under everyg ∈ A. The closure ofSunderA is SA, the intersection
of all subclasses ofNo closed underA and containingS.

Note that if bothSandA are sets, thenSA is also a set.

Theorem 15. Suppose thatA is a family of functions and thatf : Non → No is
recursive over it.(2)

Suppose that for every S⊂ No initial subset ofNo, SA is also initial. Then for
every R⊂ No initial subset ofNo, RA∪{f } is also initial.

Proof. Let T be the maximal initial subset ofNo contained inRA∪{f }. By hypoth-
esis,T is closed underA. I have to prove thatT is also closed underf . Given
~a∈ Tn, an option off (~a) is of the form

g(~a,~ao, f (~ao)),

whereg ∈ A and~ao is a vector of options of~a, i.e.

~ao = (a1, . . . ,ai−1,a
o
i ,ai+1, . . . ,an),

with ao
i a standard option ofai for everyi = 0. . . ,n. Hence,~ao ≺~a in the order of

Non induced by� via bnd. Therefore, by induction I can suppose to have already
provedf (~ao) ∈ T. It follows thatg(~a,~ao, f (~ao)) ∈ T. Then, every options off (~a)
is in T, so, by remark4.6, f (~a) ∈ T. �

Definition 4.21. Let S⊂ No, andg : Non+1 → No. I say thatS is closed under
solutions ofg iff for every~a∈ Sn and everyc∈ S, every isolated zero ofh(x) :=
g(x,~a)− c (in No) is in S. The closure ofS under solutions ofg is the smallest
subclass ofNo closed underg and under solutions ofg .

Lemma 4.22. Let A be a family of functions satisfying axion5 and the I.V.P. Let
f : No→ No be non-constant and uniformly recursive overA, satisfying axiom5
and the I.V.P.. Suppose that for every S initial subset ofNo, the closure of S under
solutions ofA and underf is also initial. Then R, the closure of S under solutions
of A∪{f }, is initial.

Proof. Usual procedure. LetT be the maximal initial subset ofR. By hypothesis,
T is closed underf and under solutions ofA. I have to prove thatT is also closed
under solutions off . Let c∈ T, a be a zero off (x)−c. By axiom5, there are only
finitely many zeros off (x)−c. I will prove the lemma by induction onc.

(2)not necessarily uniformly
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I will give L < R⊆ T such thata = 〈L |R〉, implying thata∈ T. Let f = 〈 f L |
f R〉. Then,f (a) = c iff

f L(a,ao, f (ao)) < c < f R(a,ao, f (ao)) (1)

cL < f (a) < cR. (2)

Let aL,aR∈ T be “old” options ofa.

1. Let aL′ ∈ No be the the rightmost zero beforea of

g(x) := f L(x,ao, f (ao))−c,

and letaR′ the leftmost one after it. By the I.V.P. onA, g(x) does not change
sign in (aL′,aR′), andg(a) < f (a)− c = 0, thereforeg(x) < 0 in (aL′,aR′).
Moreover, by hypothesis onT, aL′,aR′ ∈ T. Add aL′,aR′ to the options ofa.
Do the same forf R.

2. Let aL′ be the rightmost zero beforea of

g(x) := f (x)−cL,

and letaR′ be the leftmost after it. By the I.V.P. onf , g(x) does not change
sign in the interval(aL′,aR′), and, by induction ona, aL′,aR′ ∈ T. Again,
addaL′,aR′ to the options ofa.

At the end of the process, we obtaina′ ∈ T such thatf (a′) = c. But we cannot
be sure thata′ = a. However, if for instancea′ > a, we can restart the whole
algorithm addinga′ to the right options ofa. Becausef (x) = c has only finitely
many solutions, the process must terminate ata. �

Question4.23. Let f : Non+1 → No be uniformly recursive over a family of func-
tionsA. Suppose that for every~a∈ Non ∃!c∈ No f (c,a) = 0. Call h : Non → No
the function such thatf (h(~x),~x) = 0. Under which hypothesis (onf and onA)
can we prove thath is uniformly recursive overA∪{f }? A related question: is it
possible to generalise lemma4.22to functions of many variables?

Using techniques similar to those employed here, one can prove that the con-
catenation functionx : y is not uniformly recursive over any familyA satisfying
axiom5 and the I.V.P. In particular, it is not uniformly recursive over the family of
polynomial functions.(3)

(3)See also [13] and remark1.20.



Chapter 5

Other functions

I will prove that the integral of1/x is logx. On the other hand, I will show that in
general

∫ a
0 expt dt 6= expa−1.

5.1 Logarithm

A variation of the following lemma is attributed to M. Kruskal in [6].

Lemma 5.1. Let x> 0∈ No. Then,

(1
x

)o =
1− (1− x

xL )α(1− x
xR)β

x
, (5.1)

where xL and xR are positive options of x, and
(

1/x
)o

is a left option iffα is even.

Note that, after cancellation of the denominator with the numerator, (5.1) is a
polynomial inx.

Proof. I already know thatNo is an ordered field (lemma4.2). Call y the number
defined by (5.1).

First, I prove thaty is a number: it is sufficient to prove thatxyL < 1 < xyR, i.e.

1− (1− x
xL )α(1− x

xR)β < 1

iff α is even (and greater iffα is odd), namely

(xL−x)α(xR−x)β ≷ 0

iff α is even (odd), which is obvious.
Then, I want to prove thatxy= 1. First, I prove that 1� xy, i.e. that 0< xy.

But if I take α = β = 0, I obtainy > 0, which impliesxy> 0.
Then, I prove thatxy� 1, i.e. that(xy)L < 1 < (xy)R.

(
xy

)o = xoy+(x−xo)yo = xoy+(x−xo)
1− (1− x

xL )α(1− x
xR)β

x
.

89
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Suppose for instance thatα is even andxo < x. Then, I have to prove that the
previous expression is< 1, i.e.

xoy <
x− (x−xo)+(x−xo)(1− x

xL )α(1− x
xR)β

x
i.e.

y < 1− (1− x
xo)(1− x

xL )α(1− x
xR)β .

The lemma is a consequence of the following

Claim 2. If xo
1 , . . . ,xo

n is a tuple of options ofx, then

y >
∏i(1− (1− x

xo
i
))

x
(5.2)

iff α, the number of left options, is even, and less otherwise.

In fact, let xR and xL be the best left and right approximations ofx among
xo

1 , . . . ,xo
n . It is then easy to see that ifα is even, then (5.1) is greater or equal than

(5.2) (and less or equal ifα is odd). �

I will now consider the integral of1/x. In [10], Gonshor defines the logarithm,
and proves that it is the compositional inverse of exp.

Definition 5.2 (Logarithm). Let z> 0∈ No. The definition of logz is the follow-
ing.

Suppose thatz= ωa, a = 〈aL | aR〉 ∈ No. Then,

logz= 〈 log(ωaL
)+n, log(ωaR

)−ω
aR−a

n | log(ωaR
)−n, log(ωaL

)+ω
a−aL

n 〉n∈N.
(5.3)

If z∈ R, logz coincides with the logarithm for real numbers.
If z= 1+ ε, whereε ∈ No is infinitesimal, logz is defined by the power series

expansion of log at 1.
Every z> 0 ∈ No can be written in a unique way asz= xry, wherex = ωa,

r > 0∈ R andy = 1+ ε, with ε ∈ No infinitesimal.

logz := logx+ logr + logy.

Gonshor proves various properties of logz, in particular the following:

Lemma 5.3. • log satisfies the functional equationlog(xy) = logx+ logy.

• log : No+ → No is surjective.

• logx < x1/n for every n∈ N and for every x infinite.

• For x = ry, where r> 0∈ R and y= 1+ ε, ε ∈ No infinitesimal,logx coin-
cides with the corresponding analytic function.

• x > y implieslogx > logy.
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By [19] (see also [18]), the previous lemma is enough to prove the following.

Corollary 5.4. R is an elementary substructure ofNo in the languageLan(log).

I will prove that logx coincides with the integral of1/t. Before I need the
following technical tool.

Lemma 5.5. Let 0 < a < b∈ No, c > 0∈ No, P = (k0, . . . ,km) be a partition of
(a,b), (α1 . . . ,αm), (β1, . . . ,βm) tuples of natural numbers.

Define cP:= (ck0, . . . ,ckm) partition of (ca,cb), and

∫ b

a

(1
t

)o
Pdt := ∑

i

∫ ki+1

ki

1− (1− t
ki
)α(1− t

ki+1
)β

t
dt

and similarly for
∫ cb

ca

(
1/t

)o
cPdt. Then,

∫ b

a

(1
t

)o
Pdt =

∫ cb

ca

(1
t

)o
cPdt.

Proof. It is enough to prove the lemma form= 1. Then,
∫ b

a

(
1/t

)o
Pdt is the integral

∫ b

a

1− (1− t
a)α(1− t

b)β

t
dt.

But the integrand is a polynomial int, and for polynomials the integral is equal to
the formal integral. Therefore I can apply the change of variables= ct, obtaining

∫ b

a

(1
t

)o
Pdt =

∫ cb

ca

1− (1− cs
a )α(1− cs

b )β

cs
cds=

∫ cb

ca

(1
s

)o
cPds. �

Theorem 16. Let x> 0∈ No. Then,

logx =
∫ x

1

1
t

dt.

Proof. Call f (x) :=
∫ x

1
1/t dt. I will prove thatf (x) = logx by induction onx. Note

that takingα = β = 0 in (5.1), I obtain 0 as a left option of1/x, takingα = 0,β = 1,
I obtain1/xR as a left option, andα = 1,β = 0 yields1/xL as a right option.

By inductive hypothesis,

f (x)L = log(xL)+
∫ x

xL

(1
t

)L
dt,

(and similarly withxR or
(

1/t
)R

). The integrand is a polynomial int, therefore
previous expression, by corollary5.4, is less than logx, so I have proved thatf (x)�
log(x).

The other direction logx� f (x) is more difficult.
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First, suppose thatx = ωa, a∈ No. Then,xo = rωao
, wherer > 0∈ R. Con-

sider ∫ x

xL

(1
t

)o
dt = ∑

0≤i<m

∫ ki+1

ki

1− (1− t
ki
)αi (1− t

ki+1
)βi

t
dt.

Takeαi = 0, βi = 1 for everyi to obtain the left option off (x)

log(xL)+∑
i

∫ ki+1

ki

1
ki+1

dt = log(xL)+m−∑
i

ki

ki+1
.

Now take
ki = xL( x

xL

) i
m ,

i.e.
ki

ki+1
=

( x
xL

)−1/m
,

yielding the left option

log(xL)+m−m
( x

xL

)−1/m
.

If x= ωa andxL = rωaL
, it follows that

(
x
xL

)−1/m
is infinitesimal, therefore for every

n∈ N
f (x) > log(xL)+n.

On the other hand, takingα = 1, β = 0, ki as before, I obtain the right option

log(xL)+m
( x

xL

)1/m−m,

which implies

f (x) < log(xL)+
( x

xL

)1/n
.

The other two kind of options in5.3are obtained takingxR instead ofxL.
Now suppose thatx is log-bounded, i.e. thatx = r + ε, wherer > 0∈ R, and

ε ∈ No is infinitesimal. It is easy to see that logr = f (r). Moreover,
1
x

is analytic

in a neighbourhood ofr, therefore its integral coincides with the formal integral as
a power series, which is equal to logx.

Suppose thatz= xry, wherex, r,y are as in the definition5.2. To conclude the
lemma it remains to prove that

f (z) = f (x)+ f (r)+ f (y) = logz.

I will prove it by induction onx, r,y. First, suppose thaty = 1. If r = 1 I have
already proved it. Otherwise,

zL =
(
xr

)L = ω
arL +s(r− rL)ωaL

,
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and similarly for right options, wheres> 0∈R andrL ∈R is some positive option
of r (positive because we are working in the domainNo>0). Note that

zL = rL
ω

a(1+(s(
rL

r
−1)ωaL−a)

)
= xrLy′,

wherey′−1 is infinitesimal, so I can apply the inductive hypothesis tozL. There-
fore, by lemma5.5

f (z)L = f (zL)+
∫ z

zL

(1
t

)L
dt = log(xrLy)+

∫ z

xrLy′

(1
t

)L
dt

= log(xr)+ log(
rL

r
y′)+

∫ 1

rL
r y′

(1
t

)L
dt. (5.4)

Note thatw := rL

r y′ < 1 is log-bounded, therefore logw = f (w), and

f (z)L = log(xr)+
∫ 1

w

(1
t

)L−
(1

t

)
dt < log(xr).

Similar reasoning for other options.
If y 6= 1, then

zo = xr(yo),

whereyo = 1+ ε o. Again, I can apply the inductive hypothesis tozo and lemma
5.5, obtaining

f (z)o = log(xr)+ log(yo)+
∫ xry

xryo

(1
t

)o
dt = log(xry)+ log(yo/y)+

∫ 1

yo/y

(1
t

)o
dt.

But yo

y −1 is infinitesimal, therefore log(yo/y) = f (yo/y), and I can conclude as
before. �

5.2 Exponential

5.2.1 Translation invariance

Lemma 5.6. Suppose thatK is a field,f : (K,+)→ (K, ·) is a homomorphism of
groups withf (1) 6= 1, and

∫ y
x g(t)dt (defined on some family of functions containing

f ) is a functional satisfying

1. For every a,b,c∈K ∫ b

a
g +

∫ c

b
g =

∫ c

a
g .

2. For everyλ ∈K, ∫ b

a
λ g = λ

∫ b

a
g .
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3. For every c∈K ∫ b

a
g(t +c)dt =

∫ b+c

a+c
g(t)dt.

4.
∫ 1

0
f (t)dt = f (1)−1.

Call F (x) :=
∫ x

0 f (t)dt. Then,F (x) = f (x)−1 for every x∈K.

Note thatK is not assumed to be an ordered field. I call property3 translation
invariance of

∫
.

Proof. Call e := f (1).∫ x

0
f (t +1)dt =

∫ x

0
f (1)f (t)dt = eF (x).

On the other hand, by translation invariance of
∫

,

∫ x

0
f (t +1)dt =

∫ x+1

1
f (t)dt = F (x+1)−F (1) = F (x+1)−e+1

= F (x)+
∫ x+1

x
f (t)dt−e+1 = F (x)+ f (x)(e−1)−e+1

Therefore,
eF (x) = F (x)+ f (x)(e−1)−e+1,

so
F (x)(e−1) = (f (x)−1)(e−1). �

If we apply the previous result toK = No, f = exp and
∫

the integral onNo,
we see that if

∫
is translation invariant, thenF (x) :=

∫ x
0 expt dt = expx−1. But

this is not true: we shall see thatF (ω) = exp(ω). Therefore,
∫

is not translation
invariant.

5.2.2 Integral of exp

The exponential function exp has been defined in [10]. It is the inverse of the
logarithm log. I recalled its recursive definition in section1.5.

Let A be the field of rational functions onNo.
By lemma5.1, 1/x is recursive over polynomials functions. However, the def-

inition of rational functions is not recursive. For instance, one can check that the
options of1/x2 are at least as much complicated as the function1/x2 itself.(1) This
means that the partial order on the field of rational functions induced by the rela-
tionship “f is an option ofg ” is not well-founded, implying that this field isnot

(1)This does not mean that someone else might not find a true recursive definition for rational
functions. Only that the definition we can extract from lemma5.1 is not recursive.



5.2. EXPONENTIAL 95

an inductively constructed family. However, even in this case, the definition of
∫

makes sense, not as a definition, but as a requirement: we are imposing that
∫ x

0 f is
the simplest element in a certain convex set.

The integral onA given by the formal integral(2) satisfies the previous require-
ment.

The exponential function exp is (uniformly) recursive overA, therefore I can
defineF (x) :=

∫ x
0 expt dt, and see ifF (x) = expx−1. It is easy to see that ifx∈R,

F (x) = expx−1. The function expx is analytic, therefore the answer is affirmative
for x bounded.

On the other hand, we will prove(3) thatF (ω) = expω.

Proof. I recall that expω = ωω , the simplest surreal number greater thanωn for
every naturaln.

For n∈ N, let

[x]n :=
n

∑
i=0

xi

i!

be the Taylor expansion of expx. [x]n is a polynomial, therefore we know how to
compute its integral: ∫ x

0
[t]ndt = [x]n+1−1.

Moreover,[x]n is a left option of expx, thereforeF (x) > [x]n+1−1, in particular
F (ω) > ωn for all n∈N, soωω � F (ω). To obtain the conclusion, it is enough to
check that every right option ofF (ω) is greater thanωω .

Claim 1. Let n∈ N, a < b∈ No such thata is finite andb is infinite. Then,∫ b

a

expb
[b− t]n

dt− (expb−expa)

is positive infinite.

It is enough to prove that∫ b

a

1
[b− t]n

dt−1+exp(a−b)

is positive non infinitesimal. By hypothesis, the integral is a function ina,b de-
finable inLan(exp). Therefore, I can make the change of variablet ′ = b− t. Call
c := b−a; c is infinite, so exp(−c) is infinitesimal, and the claim becomes

v
(∫ c

0

1
[t]n

dt−1
)
≥ 0.

(2)The formal integral of a rational function is a combination of rational functions, log and arctan.
Moreover, arctan is definable inLan. Therefore, it is defined onNo.

(3)Thanks to prof. O. Costin for having pointed this out.
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Moreover,R is an elementaryLan(exp)-substructure ofNo, therefore it is enough
to prove inR that ∫ +∞

0

1
[t]n

dt > 1.

But for t > 0, 1/[t]n > exp(−t), so∫ +∞

0

1
[t]n

dt >
∫ +∞

0
exp(−t)dt = 1.

The only right options ofF (ω) are of the form

zR := F (q)+
∫

ω

n

(
expt

)R
Pdt,

for someq∈N andP = (k0, . . . ,km) partition of(q,ω). Let ı̄ < mbe such thatkı̄ is
finite, whilekı̄+1 is infinite. Calla = kı̄, b = kı̄+1. The right option(expt)R of expt
in the interval(a,b) are of the form either expb/[b− t]n or expa/[a− t]2n+1, with
[a− t]2n+1 positive. But the second case cannot happen, because[a− t]2n+1 < 0 for
any infinitet ∈ (a,b), therefore we have only right options of the first kind. Let

∆ :=
∫ b

a

expb
[b− t]n+1

dt− (expb−expa).

By the claim,∆ is positive infinite. Therefore, for everyr ∈ R,

zR > (expq−1)+(r +expb−expa)+∑
i 6=ı̄

∫ ki+1

ki

expR
i (t)dt ≥

≥ r +expq−1+∑
i

(expki+1−expki) = r +expω−1.

This proves that every right optionzR is greater thanωω . �

A similar phenomenon happens at every infinite power ofω.
If a > 0∈ No, thenF (ωa) = exp(ωa). Loosely speaking, 1 is too small w.r.t.ωa,
and the approximation with which exp has been defined is not good enough to
detect it. More precisely,∆(F (ωa)) is infinite.

5.2.3 Recursive definition of exp

Let A be the family of functions definable overNo (with parameters) in the lan-
guageLan. Obviously, exp is recursive overA, andf (x) := 1+expx is recursive
overA∪{exp}. But f (x) is not recursive overA. I will sketch the proof of this
fact.

Instead ofA, considerA′, the family of functions definable inLan without
using any parameter. It is easy enough to define recursively overA′ a functiong(x)
which coincides withf (x) for x bounded. Take any such recursiveg . Suppose, for
contradiction, thatf = g and considera := g(ω). Let T be the type off (ω) =
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ωω +1 overR in the languageLan. If x∈ R, g(x) = 1+expx∈ R. Therefore,a
would be equal to the simplest surreal number inT. But the simplest element inT
is ωω , sog(ω) 6= f (ω).

For the general case, in the recursive definition off only a setA′′ of elements
from A can be involved, i.e. only a setSof parameters fromNo can be involved.
Let K be an initial elementaryLan-substructure ofNo containingS and which is
set. Letg be any function recursive overA′′, such thatg(x) = f (x) for everyx∈K.
Let c := 〈K | 〉 the simplest surreal number greater thanK. As before,g(c) 6= f (c).

5.2.4 Other exponential functions

Let c= ∑i<α
r iω

ai . Then,c is purely infiniteiff ai > 0 for all i. Theorem5 gives the
value of expc for c purely infinite. Forc finite, we can usee(x) the power series
expansion of expx to compute expc. In general, everyc ∈ No can be expressed
uniquely as a sumc = c′ + c′′, with c′ purely infinite andc′′ finite. Therefore,
expc = (expc′)e(c′′).

Consider now the function 2x := exp(xlog2). If x = x′ + x′′ is the decompo-
sition of x into purely infinite and finite part, definek (x) := (expx′)2x′′ . Finally,
definef (x) := k (x/ log2).

It is easy to see thatf satisfies the following properties:

• f (x+y) = f (x)f (y).

• f (x) = e(x) for x finite.

• f : No→ No>0 is surjective.

• f (x) > xn for x large enough.

Therefore,Noan(f ) is elementary equivalent toNoan(exp), whereNoan is the canon-
ical Lan-structure onNo. However,f 6= exp.

Of course, all the previous construction can be done taking any real number
instead of 2 to definef , obtaining a whole family of different “exponential func-
tions”.

5.2.5 An alternative definition of integral

Define (
−
∫ b

a
f (t)dt

)o =−
∫ b

a
f o(t, t o, f (t o))dt.

With this definition, the integral is linear, monotone, invariant under translations
and satisfies the integration by part formula. However, it is not additive, i.e. it does
not satisfy

−
∫ b

a
f +−

∫ c

b
f =−

∫ c

a
f .

Note that every option of−
∫

is an option also of
∫

, therefore this integral is worse
than the one I have used until now.
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Conclusion

The central themes of this thesis are the functions on the Surreal Numbers uni-
formly recursive (over some family of functions) and their integral.

In chapter4, we saw that being recursive has some non-trivial consequences,
such as the sup property.(4)

The guiding idea is to define the integral for functions definable in Tan(exp),
in such a way that the resulting structure onNo is an elementary extension of the
corresponding structure on the reals.

The definition given here of integral for such functions, mimicking the Rie-
mann integral for real functions, is satisfactory for polynomials and restricted an-
alytic functions. Moreover, it has many of the properties we expect, as shown in
chapters2–4. I recall the ones I deem the most important: monotonicity, additivity,
linearity and integration by parts.

However, one of the fundamental properties of the integral, namely the trans-
lation invariance, is missing in general, and this gives problems when we try to
integrate the exponential.

Finally, here are some of the open problems and unsolved questions.

• A “natural” definition of integral that gives the right answer for the exponen-
tial function; it is the main open problem of this thesis.

• The “implicit function theorem” for recursive functions, already mentioned
in question4.23. Given a recursive functionf (x,y) such that∀x∃y f (x,y) = 0,
is it possible to find a functionh(x), recursive over a suitable family, such
that f (x,h(x)) = 0 for all x? For instance, the function

√
x is recursive over

the rational functions;(5) I would like a general theorem ensuring that func-
tions obtained as solution of certain equations are recursive.

• A simpler form of the axioms in the second chapter. While axiom1 seems a
natural choice, the other axioms are less convincing.

• Given a family of functionsA, which kind of functionsf can be recursively
defined over it? The results in chapter4 give some properties forf , while

(4)See definition4.15.
(5)See example4.4

99
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§5.2.3and the concatenation function produce some counterexamples. Can
we give some more conditions on recursive functions?
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