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Abstract. Attribute importance measures for supervised learning are
important for improving both learning accuracy and interpretability.
However, it is well-known there could be bias when the predictor at-
tributes have different numbers of values. We propose two methods to
solve the bias problem. One uses an out-of-bag sampling method called
OOBForest and one, based on the new concept of a partial permutation
test, is called pForest. The existing research has considered the bias prob-
lem only among irrelevant attributes and equally informative attributes,
while we compare to existing methods in a situation where unequally
informative attributes (with or without interactions) and irrelevant at-
tributes co-exist. We observe that the existing methods are not always
reliable for multi-valued predictors, while the proposed methods compare
favorably in our experiments.
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1 Introduction

Attribute importance measures for supervised learning are important for improv-
ing both learning accuracy and interpretability. There are well known attribute
importance measures such as information-based measures, chi-squared, and so
forth. However, the bias problem for multi-valued attributes has been recognized
for these methods. We refer to the number of distinct values of a attributes as its
cardinality. [2] noted that attribute selection with Gini gain measure is biased in
favor of those attributes with higher cardinality. [11] showed that there are biases
in information-based measures adopted by decision tree inductions. [4] showed
that attribute selection biases not only exist in information gain measures such
as the Gini index, but also in others such as the distance measure in Relief [5],
etc.

For solving the multi-valued problem, [7] introduced a normalization into the
attribute selection measure known as the gain ratio. However, attributes with
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very low information values then appeared to receive an unfair advantage [11,
4]. Also [11] experimented with discrete, uniformly distributed attributes with
different number of levels. They concluded that chi-squared could be used for
the multi-valued problem. [4] proposed a minimum description length principle
to alleviate the feature selection bias, but also mentioned that there are still
slight decreases in the importance measure with the increasing cardinality.

Recently, a conditional inference framework [3] was proposed to solve the
overfitting and attribute selection bias problems. [9] showed that this method
(referred to as cForest) demonstrated promising results in both null and power
cases. In the null case, all predictor attributes are irrelevant with different car-
dinality. In the power case, only one predictor attribute is informative, all other
attributes are irrelevant with different cardinality [9]. Though these research
methods have successfully discovered and alleviated the multi-valued problem
to some degree, we observe that there are still some important problems that
are unresolved.

A permutation importance measure (PIMP) was introduced by [1]. It per-
mutes the target attribute and a p-value can be used to measure importance.
However, PIMP fits the importance score with a prior probability distribution.
Though specifying a prior distribution is not necessary, [1] used prior probability
distributions in their experiments. One of our proposed algorithms (pForest) also
uses permutation importance, but there are substantial differences. pForest per-
mutes the predictors, and more importantly, make use of a partial permutation
strategy for better efficiency. Furthermore, pForest does not need prior probabil-
ity distributions to be specified. Here we focus on non-parametric methods and
thus compare our methods to cForest in the later experiments.

Most experiments from the existing research are limited to some idealized
situations. For example, [11] considered the multi-valued problem only for ir-
relevant attributes, while [9] considered irrelevant attributes and only one in-
formative attribute. [4] considered irrelevant and equally informative attributes.
However, there can exist both irrelevant and unequally informative attributes
with different cardinalities. Furthermore, the informative attributes may interact
with each other.Therefore, it is important to consider the multi-valued problem
under more realistic scenarios.

We propose two new solutions for these problems. We focus on two-class clas-
sification (a common supervised problem), but our methods can be extended. We
also focus on tree-based ensembles because of their capability to generate robust
models that can handle nonlinearities, interactions, mixed (categorical and nu-
merical) attributes, missing values, attribute scale differences, etc. However, our
second method is not limited to a certain type of classifier. It is a meta approach
that can be applied to improve feature selection algorithms. Furthermore, we
contribute a more comprehensive simulation framework for studying the prob-
lem that integrates multiple cardinalities, and where non-equally informative
attributes (with or without interactions) and irrelevant attributes co-exist. Such
a framework can provide a useful benchmark to compare alternatives. Section 2
briefly summarizes some widely used importance measures. Section 3 describes
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our proposed attribute importance methods. Section 4 describes our simulation
framework and our experimental results, while Section 5 provides conclusions.

2 Attribute importance measures

Random forest (RF) [6] is a commonly-used feature selection tool. It allows for
not only nonlinear models, but also attribute interactions. However, it can suffer
from the multi-valued problem because it is based on an information criteria.
Consequently, a remedy for RF’s problem is important.

RF builds an ensemble of decision trees. Each tree is built on a bootstrap
sample (random, with replacement) from the original training data. Also, at
each node only a subset of attributes is selected from the full set of attributes
and the split is calculated only from members of this subset. The objective is to
decrease the correlation between trees in the ensemble in order to decrease the
final model variance. RF uses the Gini impurity criterion for scoring attribute
importance. Denote Imp(Xk, τ) as the importance of a attribute Xi at a single
tree τ , then Imp(Xk, τ) =

∑
t∈τ △Gini(Xk, t) where △Gini(Xk, t) is the Gini

impurity decrease at a node t where Xk is the splitting attribute. The Gini index
at node t is defined as Gini(t) =

∑
j p

t
j(1 − ptj) where ptj is the proportions of

cases of class j at node t. The importance of Xk is obtained from the sum of the
importance scores from trees τm,m = 1, . . . ,M in a RF. For every tree τ in the
ensemble, the instances not selected in the bootstrap sample are referred to as
out of bag (OOB) and these cases can be considered to be a test sample for tree
τ . These samples are used in our proposed importance measure.

A conditional inference framework [3] was proposed to solve the overfitting
problem and attribute selection bias problem. [9] used the method to measure im-
portance for multi-valued attributes in a model similar to a RF. In this method,
for each node, first the attribute to be split is selected by minimizing the statisti-
cal p value of a conditional inference independence test. Then the splitting value
is established by an appropriate splitting criterion. The separation of attribute
selection and splitting criterion is the key to handle the cardinality bias [3].

3 Attribute importance from OOBForest and pForest

In this section we introduce new methods to score attribute importance. An
OOBForest uses the training samples to find the best splitting value on each
attribute in the same manner as for a RF (with the Gini index as the default
information measure). But, instead of discarding the OOB samples when build-
ing a tree, the OOB samples are used to select the best splitting attribute at
a node. That is, the Gini index is recomputed for the OOB samples based on
the split value obtained from the training data at each node. Furthermore, the
importance measure Imp(Xi, t) uses only the OOB samples. The principle here
is similar to a conditional inference framework. The attribute selection criterion
and splitting criterion are separated. The role of OOB samples was discussed
for model improvements in [10], here we propose to use it to specifically solve
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the bias problem in measuring attribute importance. Computationally, the extra
work over a RF is to calculate the split score from the OOB samples at each
node in the forest. Because the OOB samples for a tree are typically smaller
than the original training data less time is needed (approximately 2/3 less) than
to generate a second RF (and the basic RF algorithm is fast [6]).

Next consider the pForest. Denote Xk, k = 1, ...,K as the predictors and
T as the target. [8] used permutation tests to obtain the statistical p value
for dependency between an Xk and T . Then the inverse of the p value was
used as the importance of the attribute. However, this method only measures
the dependency of T over a single attribute Xk and the interactions between
predictors are not considered. Permutation tests for feature selection was also
used by [10]. Their method first randomly permutated each attribute Xk, k =
1, ...,K and then compared importance score of an attribute to the distribution
of scores from the irrelevant variables obtained from the permutations to obtain
the corresponding attributes Zk, k = 1, ...,K.

Our proposed algorithm also uses permutations, but an attribute is only
compared to permuted version of itself. Furthermore, we introduce the concept of
partial permutations. In each replicate r, by applying an importance method f(.)
(such as RF) to {Xk, Zk, T, k = 1, ...,K}, the importance score of Xk, Zk, k =
1, ...,K, that is, Impr(Xk) and Impr(Zk) can be obtained. A feature Xk is
compared directly to its permuted version Zk in each replicate to match the
cardinality between Xk and Zk (and this differs from [10]). Next consider the
measure

Imp(Xk) =
1

R

R∑
r=1

I[Impr(Xk) > Impr(Zk)] (1)

where I(.) denotes the indicator function. It can be seen that equation (1) is
proportional to a binomial distribution B(R, pk), where pk is the probability
that Imp(Xk) > Imp(Zk). It is not feasible to compute the true pk over all
possible permutations in most practical situations. Therefore, [8] suggested a
bounded number of permutations to achieve a significance level of 0.05.

The basic approach described so far is effective to distinguish informative
from noninformative attributes. However, to rank informative attributes a more
subtle refinement is used. In order to better detect finer importance relation-
ships we propose partial permutations. That is, Zk is obtained from permuting
a fraction of the rows of Xk (a fraction δ selected randomly in each replicate).
Consequently, as δ is decreased Xk and Zk are more similar and it is more dif-
ficult for Impr(Xk) > Impr(Zk). Our default choice is δ = 20% and in our
experiments with the default δ, along with R = 200 replicates, we can achieve
good results. We refer to this partial permutation method to attribute impor-
tance, with importance scores obtained from a RF, as the pForest.

Computationally, pForest is more demanding than OOBForest because each
replicate requires another RF to be generated. However, the speed of a RF
enables even hundreds of replicates to be computed in minutes for moderate
data sets. Finally, note that although we focus on decision-tree ensembles, the
permutation strategy to solve the multi-valued problem can be applied to any
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feature selection method f(.). One would simply replace the score Impr(Xk) with
another method and still average I[Impr(Xk) > Impr(Zk)] over the replicates.

Algorithm 1: pForest importance measure

Input: R = number of permutation replicates; δ = percentage of rows permuted;
training data D = {(xi, ti)|i = 1, . . . , N} with K features F = {X1...XK}
f(F,D) is a function that provides importance scores for attributes in F with data D (default is RF)
for r = 1, . . . , R do
Zk ← randomly select and permute δ ∗N rows of Xk, for k = 1...K
set F ′ ← F ∪ {Z1, . . . , ZK}
Impr(F

′) = f(F ′, D)
end for

Imp(Xk) =
1
R

∑R
r=1 I(Impr(Xk) > Impr(Zk)), for k = 1...K

Output: Imp(Xk), for k = 1...K

4 Experiments

Similar to [11, 4, 9], the experiments are setup as simulations so that the ”ground
truths” for attribute importance are known. The relationships between the pre-
dictors and the target are shown in Figure 1. Here T1 and T2 are the target
attributes with and without interactions present in the model, respectively.
All other attributes are predictors. The generation and properties for these at-
tributes are summarized as follows:

– Generate X1 ∼ Normal(0, 10), and then discretize (equal-frequency) into
X2, X3, X4, X5, X6 with different cardinalities shown in Figure 1. Randomly
permutate 30% of the rows of X5, and 50% of the rows of X6. This injects
different amounts of noise into X5, X6 so that they are unequally informative
concerning the target.

– Generate Yk, k = 1, ..., 6 independent from Xk, k = 1, ..., 6. The generation
procedure is similar to the generation of Xk, k = 1, ..., 6.

– Generate U1 ∼ Uniform(−10, 10), and then discretize (equal-frequency)
into U2, U3, U4, U5, U6 with different cardinalities.

– Generate the binary target T1 as P (T1 = X4) = 0.95, P (T1 ̸= X4) = 0.05.
– Generate the binary target T2 as P (T2 = XOR(X4, Y4)) = 0.95, P (T2 ̸=

XOR(X4, Y4)) = 0.05 (where XOR is the exclusive or).

Two experiments are derived from the relationships among the attributes.
First T1 is the target and {Xk, Uk, k = 1, ..., 6} are the predictors and then
T2 is the target and {Xk, Yk, Uk, k = 1, ..., 6} are the predictors. In the second
experiment the true model for T2 includes interactions from the XOR function.
In each experiment, 50 replicates of data sets are simulated, with 5120 = 10 ∗ 29
rows of data in each data set (so that all values of an attribute have the same
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Fig. 1. Relationship between predictors and targets along with cardinalities. Here T1

and T2 denote the target attributes for the experiments with and without interactions,
respectively.

number of rows). For example, for a two-value attribute, values 0 and 1 each
have 2560 rows.

By designing such experiments, the order of the importance scores for the pre-
dictor attributes is known. In the first experiment: Imp(X1) = . . . = Imp(X4) >
Imp(X5) > Imp(X6) > Imp(U1) = . . . = Imp(U6). Therefore, there are four
groups and attributes from the same group have equal information regarding
T1. In the second experiment: Imp(X1) = . . . = Imp(X4) = Imp(Y1) = . . . =
Imp(Y4) > Imp(X5) = Imp(Y5) > Imp(X6) = Imp(Y6) > Imp(U1) = . . . =
Imp(U6). Therefore, there are still four groups and attributes from the same
group have equal information regarding T2. A attribute importance measure
should be able to indicate such orders of importance. We applied the original
RF, chi-squared, OOBForest [10], cForest [9, 3] and pForest to each data set.
Each forest used 200 trees. For the pForest test, we set δ = 20% and R = 200.
Because chi-squared works only for categorical attributes, the continuous pre-
dictors were removed before chi-squared importance measures were applied.

For the experiment without interactions Figure 2(a) illustrates the expected
pattern. For basic RF in Figure 2(b), the importance measure prefers higher at-
tributes for both informative and irrelevant attributes. Also, it can’t discriminate
between X5 and X6. Furthermore, the continuous attribute X1 has the greatest
importance score among the informative attributes. However, for the irrelevant
attributes, the importance scores of the categorical attributes increase as the
cardinality increases, and exceed the importance score of the X1 when the cardi-
nality equals 64. For cForest in Figure 2(c), there is no bias among the irrelevant
attributes, which is consistent with the null case in [9]. cForest can also discrim-
inate informative attributes from irrelevant attributes (though the differences
between Imp(X5), Imp(X6) and the Uk are not obvious), which is also consis-
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tent with the power case in [9]. However, for the informative attributes, cForest
prefers higher cardinality attributes. Furthermore, it can not discriminate X5

from X6. For chi-squared in Figure 2(d), a concern is that higher-cardinality
attributes are preferred for irrelevant attributes. For this experiment, it is able
to rank informative attributes higher than irrelevant attributes and there is no
obvious multi-valued problems for informative attributes. For both OOBForest
in Figure 2(e) and pForest in Figure 2(f) there is no bias in both informative
and irrelevant attributes. The expected orders among all predictor attributes are
well preserved. Therefore, OOBForest has good performance here.

For the experiment with interactions Figure 2(g) illustrates the expected pat-
tern. For RF in Figure 2(h)), the bias is even more severe than in the first exper-
iment. RF cannot even discriminate irrelevant attributes from some informative
attributes. The importance of U2 is only less than X2 and Y2. Therefore, the at-
tribute importance scores from RF are extremely unreliable here. Chi-squared in
Figure 2(i) cannot even distinguish between the informative attributes and the
irrelevant attributes. This is expected because chi-squared does not consider the
interactions and this observation can clearly be extended to other methods (such
as information gain), which only consider dependency between a single predictor
and the target. For cForest in Figure 2(j) there is no obvious bias among the
irrelevant attributes and cForest can also discriminate the informative attributes
from the irrelevant attributes (although the importance difference between X6

and Uis is not obvious). However, there is multi-valued problem in the informa-
tive attributes. In contrast to the previous experiment, cForest now prefers lower
cardinality attributes. For OOBForest in Figure 2(k), there is no bias among the
irrelevant attributes. The four groups can be discriminated. There are some mi-
nor importance differences among the most informative attributes. For pForest
in Figure 2(l), there is no bias in both informative and irrelevant attributes. The
expected orders among all predictors are well preserved.

From the experiments, RF is not reliable when predictors have different car-
dinality (prefers high cardinality attributes). cForest performs well for those
irrelevant attributes with different cardinality. However, it is not reliable enough
for the importance of informative attributes with different cardinalities. Without
interactions, chi-squared prefers higher-cardinality ones for irrelevant attributes.
More importantly, chi-squared is not reliable when interactions are present. The
results of pForest are much better than RF. OOBForest also performs well in
both experiments.

5 Conclusion

The bias of attribute importance measures is an important problem, and the
common use of RF for attribute importance is shown to be a concern. We propose
one method based on out-of-bag samples, while a second method uses the new
concept of a partial permutation test to refine the attribute importance scores.
The second method can be easily adapted to other feature scoring algorithms.
We use a simulation framework that integrates different cardinalities, and where
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(f) pForest

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 U1 U3 U5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

expected patterns
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(h) Random forest
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(k) OOBForest
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Fig. 2. Feature importance for experiments without (Figures 2(a) to 2(f)) and with
(Figures 2(g) to 2(l)) interactions. The X axis represents attributes, and the Y axis
provides importance scores. Figures 2(a) and 2(g) illustrate the expected pattern for
the no interaction and interaction cases, respectively (only relative expected measures).

non-equally informative attributes (with or without interactions) and irrelevant
attributes co-exist. Our proposed methods are compared directly to two existing
solutions for multi-value bias: chi-squared and a conditional inference framework
and we observe that the existing methods are not always reliable for multi-valued
predictors, while the proposed methods compare favorably in our experiments.
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