The Computational Complexity
Column

by

Jacobo Toran

Dept. Theoretische Informatik, Universitdt Ulm
Oberer Eselsberg, 89069 Ulm, Germany
toran@informatik.uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

ISOMORPHISM TESTING: PERSPECTIVE
AND OPEN PROBLEMS

V. Arvind* Jacobo Toran |

Abstract

For over three decades the graph isomorphism problem has tan-
talized researchers in algorithms and complexity. The study of this
problem has stimulated a lot of research and has led to the discovery
of important concepts in the area. In this article we take a fresh look
at isomorphism problems and highlight some open questions.

*Institute of Mathematical Sciences, C. I. T. Campus, Chennai 600 113, India
Email: arvind@imsc.res.in

tAbt. Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, 89069 Ulm, Ger-

many. Email: toran@informatik.uni-ulm.de

1 Introduction

The graph isomorphism problem, GI, consists in deciding whether two given
graphs are isomorphic. In other words, the problem is to test whether there
is a bijective function mapping the vertices of the first graph to the nodes
of the second graph and preserving the adjacency relation. GI has received
considerable attention since it is one of the few problems in NP that is nei-
ther known to be computable in polynomial time nor to be NP-complete. GI
is the best-known example of a family of isomorphism problems on algebraic
structures like groups and rings that have a similar intermediate status, be-
tween P and NP-complete. Isomorphism questions have proved in the past to
be an important tool for exploring the tight interplay between computational
problems and complexity classes. Often, these problems do not quite fit in
standard complexity classes, in terms of completeness for example. The study
of this peculiarity has motivated important advances in complexity theory:
Arthur-Merlin games, lowness, interactive proof systems, counting classes or
derandomization. From an algorithmic perspective, the attempts at discov-
ering a polynomial-time algorithm for graph isomorphism has enriched the
field with algebraic techniques, particularly from the theory of permutation
groups.

In this column we briefly survey the status of some important open ques-
tions related to isomorphisms of graphs (also rings and groups). We do not
attempt to be comprehensive. Rather, our goal is to focus on a few topics
and to identify interesting open questions for which, hopefully, the answers
do not lie too far beyond reach. In a brief survey of this nature it is difficult
to touch upon ramifications of the area in computational group theory, which
is a subject by itself. Also, a certain bias due to our research interests in
complexity theory is unavoidable.

2 Preliminaries

By graphs we mean finite simple graphs, usually denoted by X = (V, E),
where V is the vertex set and £ C (‘2/) We say two graphs X; and X,
are isomorphic if there is a bijection ¢ : V; — V5 such that (u,v) € E; iff
(p(u), p(v)) € Ey. We write X1 = X, and call ¢ an isomorphism. An au-
tomorphism of a graph X is an isomorphism from X to X. Automorphisms
are permutations on the set V, and the set of automorphisms Aut(X) forms
a group under permutation composition. More precisely, if |V| = n then
Aut(X) is a subgroup of S, the symmetric group on n elements. It is well

known that graph isomorphism testing is polynomial time equivalent to find-

ing a polynomial-size generator set for the automorphism group of a graph.
We now recall some relevant permutation group theory.

In general, Sym(2) denotes the symmetric group on the finite set .
A permutation group on € is a subgroup of Sym(2). For || = n, we let
2 = [n] and simply write S,, of all permutations on [n] = {1,2...,n} to
denote Sym(2). Given g € S, and i € [n], we denote by ¥ the image of
¢ under permutation g. This a convenient notation to express the left to
right composition g;go of permutations g;, g, € S,. More precisely, we can
write 9192 = (191)92 for all i € [n]. For A C [n] and g € S, we write AY
for its image under g: A9 = {j | j = i9}. For A C [n], G®) denotes the
subgroup of G that fixes each element of A, and Ga denotes the subgroup
{g€ G| A=A}

The permutation group generated by a subset A of S, is the smallest
subgroup of S, containing A and is denoted (A). We assume that subgroups
of S, are presented by generator sets. Since any finite group G has a generator
set of size log |G|, subgroups of S, have generator sets of size polynomial in
n. The identity permutation is denoted by 1 (we use 1 to denote the identity
of all groups).

For a subgroup G of S, (denoted G < S,,) the set i = {i9 | g € G} for
i € [n] is the G-orbit of 4, and G is transitive on [n] if ¢ = [n] for i € [n)].
Let G < Sym(f2) be transitive on 2. A G-block is a subset A of [n] such
that for every g € G either AY = A or AYNA = (). For a transitive group G,
the set [n] and the singleton sets {i}, i € [n] are trivial blocks. A transitive
group G is primative if it does not have any nontrivial blocks otherwise it is
called imprimitive.

Let G'; and G5 be two finite groups. We say that G; and G5 are isomorphic
if there is a bijection ¢ : G; — G, that preserves the group operation.
Likewise, for two finite rings R; and R,, we say that they are isomorphic if
there is a bijection ¢ : Ry — Ry that preserves the ring operations. As
for graphs, automorphisms are isomorphisms from an algebraic structure to
itself, and the automorphisms form a group under the composition operation.

We briefly recall the definitions and notation for some standard com-
plexity classes. Details can be found in a textbook like [14]. Let P denote
the class of languages (decision problems) that are accepted by deterministic
Turing machines in time bounded by a polynomial in input size, and NP de-
note the class of languages accepted by nondeterministic Turing machines in
polynomial time. We denote the class of functions computable in polynomial
time by FP.

A function f:{0,1}* — N is said to be in the counting class #P if there
is a polynomial time nondeterministic Turing machine M such that f(z) is
the number of accepting paths of M on input x.

A function f in the class FP? is computable by polynomial-time deter-
ministic oracle Turing machine M which has access to oracle A: M can
enter a special query state and query the membership of a string y in A.
We can similarly define FP/ for a function oracle f. Let C be a relativizable
complexity class. A language A is said to be low for C if C* = C.

3 Hardness

GI has several properties that are not known to hold by NP-complete prob-
lems. For example, the counting version of GI is reducible to its decision
version [28]. Moreover, it is known that graph non-isomorphism, the com-
plement of GI, belongs to the class AM of decision problems whose “yes”
instances have short membership proofs in a probabilistic sense [7]. This
implies that if the problem were NP-complete, then the polynomial time hi-
erarchy would collapse to its second level |15, 34]. Because of these facts, we
do not believe that GI is NP-complete. On the other hand GI is not known
to be in P and we might ask what is the largest complexity class C for which
we can prove that GI is hard for C? Or more specifically:

Problem 1. Is GI hard for P?

The first hardness results for GI were given in [20] where it was shown
that GI is hard for NC' the class of problems computable by uniform cir-
cuit families of polynomial size and logarithmic depth, and for L, logarithmic
space. The hardness for NC' is proved by essentially “simulating” a logarith-
mic depth circuit with AND and OR gates by an isomorphism question. For
each gate g in the circuit, a pair of graphs (G, H,) is constructed in such a
way that the graphs are isomorphic if and only if the gate has value 1. This
is easy to do for the input gates. For the circuit gates, the AND and OR
functions for GI are used. An AND function for a problem A is a function f
that is easy to compute and such that on input z,y, f(z,y) € A if and only
if t € A AND y € A. The OR function is defined analogously. It is known
that GI has AND and OR functions. This property can be used as sketched
above to finally build a pair of graphs (G, H) corresponding to the output
gate, such that they are isomorphic if and only if the circuit outputs 1. A
natural question is: why cannot this method be applied to similarly “simu-
late” polynomial-size monotone circuits? If this were possible it would follow
that GI is hard for P. Unfortunately, the difficulty lies with the known OR
function construction for GI: the OR function doubles the size of its inputs.
Therefore, in order to keep the output of the reduction polynomial in size,
the above method can only be applied to for circuits having a logarithmic

number of OR-gates in any path from an input to the output gate. A natural
question in this context is the following.

Problem 2. Does graph isomorphism have an efficiently computable OR
function f such that f(z,y) has size at most c(|z| + |y|), where ¢ < 279

The hardness results for GI from [20] were improved in [35] to other
complexity classes using a different method. In order to simulate a certain
kind of circuit gate g with inputs x and y, a graph gadget is constructed
having some vertices related to the inputs of g and some vertices related to
the outputs. An automorphism in the gadget graph with certain restrictions
encoding the input values of g is forced to map the nodes related to the
output in a way encoding ¢g(z,y). An example of such a gadget encoding a
parity gate is given in Figure 1.

Figure 1: A graph gadget simulating a parity gate.

For the @-gate considered in the figure, the input values can be encoded in
the gadget graph automorphism as follows: if = has value a € {0, 1} then we

restrict the set of considered automorphisms to those mapping vertex xy to
Zq, and the same for y. It is not hard to see that any automorphism mapping
Zo to x, and Yy to y, for a,b € {0, 1}, must map 2y to 2z, thus computing
the output of the gate. A gadget is constructed for each gate and they are
connected as in the circuit. The constructed graph has an automorphism of
the kind encoding the input values of the circuit and mapping the output
vertex to a vertex encoding value 1 if and only if the value produced by the
circuit is 1. This question can be reduced to GI. In [35] it is shown that such
graph gadgets can be constructed for every modular addition gate. More
generally, for any commutative group this gadget can simulate the group
operation. But this does not seem to suffice for capturing the whole class P.
It is known that the circuit value problem for polynomial size circuits with
gates computing multiplication in S5, the group of permutations over five
elements, is complete for P. But S5 is not an abelian group, and therefore
the technique from [35] cannot be applied here.

The largest complexity class known to be reducible to GI is DET [35],
the class of problems that are NC! reducible to computing the integer de-
terminant [16]. DET belongs to NC? and therefore there is still a large gap
for proving hardness of GI for P. An immediate and natural open question is
whether GI is hard for LOGCFL (LOGCFL is the subclass of NC? consisting
of problems that are logspace reducible to a context-free language).

Problem 3. Is graph isomorphism hard for LOGCFL?

A different approach to make progress on this problem is to consider iso-
morphism of other algebraic structures (see Section 6 where we consider some
of these in detail). Problems like ring isomorphism and group isomorphism
appear to be harder than GI. It should be easier to show that these are hard
for P.

Problem 4. Are the isomorphism problems for rings, permutation groups or
black-box groups hard for P?

4 Graph Isomorphism for Restricted Classes

The graph isomorphism problem for certain special classes of graphs is known
to have polynomial-time algorithms. One such restriction that is well-studied
is the bounded color multiplicity graph isomorphism problem (BCGI,): for a
pair of vertex-colored graphs (G, G2) such that there are at most a constant
b many vertices of any given color in each graph, test if there is a color-
preserving isomorphism between G; and Gs.

Luks in [26] gave a remarkable NC algorithm for the BCGI, problem. On
the other hand, we can see that several of the hardness results for GI [35]
(see Section 3) are hardness results for BCGI,. More precisely, it is known
that BCGI, is AC’-many one hard for the logspace counting class Modk for
each constant k. The construction in [35] requires b to be k?. Building on
[26], in [5] the gap between the upper and lower bound results for BCGI, is
in some sense closed by proving that BCGI, is in Modk hierarchy and noting
that the hardness results for BCGI, extend to the Modk hierarchy, where the
constant k£ and the level of the hierarchy in which BCGI sits depends on b.

Tight characterizations are also known for tree isomorphism in two dif-
ferent representations (see e.g. [20] for this and other examples).

This opens up similar complexity-theoretic questions for other classes of
graphs for which GI has a polynomial-time algorithm. The problem is to
precisely classify the restricted problem inside P by giving matching upper
and lower bounds. Recall that inside P there is a rich tapestry of natural
complexity classes. Particularly, natural problems like computing integer de-
terminant abound within NC?; the classification of these problems are mainly
a result of insights into logspace counting classes (see e.g. the survey article
[2]). Thus it is natural to seek the precise classification of restricted versions
of GI. Notable examples are (i) graphs of bounded degree [25], (ii) graphs of
bounded genus [29], and (iii) graphs of bounded eigenvalue multiplicity [11]
which all have polynomial time algorithms for GI.

Of these, we focus on graph isomorphism for bounded degree graphs
(BDGI), where the maximum degree of the input graphs is bounded by a
constant. Luks in [25] gave a polynomial-time algorithm for this problem.
This paper was a major breakthrough, introducing methods from permuta-
tion group theory which have since become central techniques in the area of
isomorphism testing as well as in the design of permutation group algorithm.
However, it is still open if BDGI is in NC (or even RNC).

Luks has observed in [26] that BDGI can be NC reduced to the set-
stabilizer problem for groups in I';. We recall the definitions to introduce
the ideas involved.

Definition 1. A finite group G is said to be in the class Iy if for any com-
position series G = Go> Gy ...> Gy =1 each composition factor G;/Giy1 18
either abelian or is isomorphic to a subgroup of Sy.

The class I'y of finite groups is algorithmically important. It has played
an important role in proving time bounds for several permutation group
algorithms, including the current best algorithm for the graph isomorphism
problem (e.g. see |27]).

Given a permutation group G < S, by a generating set A and a subset A
of {1,2,--- ,n}, the set stabilizer problem is to compute a generating set for
the stabilizer group Ga. Set stabilizer is of interest because GI is reducible
to it. To see it note that it suffices to show that finding the automorphism
group is reducible to set stabilizer. For a graph X = (V| E), let G = S, act
on the pairs (1) where |V| = n. Clearly, for A = E we have G4 is Aut(X).

2

Proposition 2. Graph isomorphism is polynomial-time reducible to set sta-
bilizer.

A more involved reduction in [26] shows that BDGI is NC reducible to
permutation groups in [';. Therefore, one way to put BDGI in NC would be
to show that the set stabilizer problem is in NC.

Problem 5. Precisely classify the complexity of the set stabilizer problem for
groups in Ty (or even solvable groups).

It follows from the results of Babai, Luks, and Séress [11, 8| that graph
isomorphism for the bounded eigenvalue multiplicity case is in NC.

Problem 6. Classify the complexity of graph isomorphism for graphs with
bounded eirgenvalue multiplicity.

5 Graph Canonization

Let G,, denote the set of all simple undirected graphs on n vertices. A can-
onizing function for G, is a function f from G, to G, such that

e For any graph G € G, f(G) is isomorphic to G.
e For G1,Gs € G, f(G1) = f(Gs) if and only if G; is isomorphic to Go.

In other words, a canonizing function assigns a canonical form to each iso-
morphism class of graphs.

For example, the function f such that f(G) is the lexicographically least
graph in the isomorphism class containing G is a canonizing function. How-
ever, as observed in [10, 27|, this canonizing function is NP-hard. Notice that
this function can be computed in FPYY by a simple prefix search algorithm.

The intriguing open question is whether there is some canonizing func-
tion for graphs that can be computed in polynomial time. No better upper
bound than FPY? is known for general graphs (for any canonizing function).
Thus, it is a basic complexity-theoretic question to classify the complexity of
canonization. Is this problem low for any level of the polynomial hierarchy?

We note that obtaining canonical forms for algebraic objects is a natural
and fruitful pursuit in mathematics. For instance, we have the Jordan Canon-
ical Form for matrices under similarity transformations. Likewise, we have
the Hermite Normal Form for lattices under unimodular transformations.
These normal forms can play an important role in the design of efficient
algorithms for problems.

On first sight it would appear that graph canonization is closely related
to the problem of isomorphism testing. Indeed, for one direction we can
observe that isomorphism testing for graphs is polynomial-time reducible to
graph canonization. How about the converse?

Problem 7. Is graph canonization polynomial time reducible to graph iso-
morphism?

There is interesting evidence supporting a positive answer in the results
of Babai and Luks [10]. Building on the earlier seminal work of Luks [25],
Babai and Luks take an algebraic approach to the canonization problem. We
recall some definitions before we explain a key result in their paper.

First we can assume by encoding that we are working with strings (over
a finite alphabet, say {0,1}) as our objects instead of graphs. Let G < S,
be a subgroup of the symmetric group acting on {0,1}" as follows: for a
permutation g € G and x = z129-- -z, € {0,1}", g maps z to y (denoted
x9 = y), where y = x;, x;, - - - x;, such that i, = k9 for 1 < k < n.

Now, the general problem can be stated as follows: We say that two
strings « and y are G-isomorphic if 29 = y for some g € G. We say that
f:{0,1}" — {0,1}" is a canonizing function w.r.t. the group G, if f(x) and
x are G-isomorphic for all z and f(z) = f(y) iff and y are G-isomorphic.
In any case, lexicographic canonization remains hard even for very simple
groups G.

Proposition 3. [10] The lezicographic canonizing function w.r.t. arbitrary
groups G for strings is NP-hard even if G is restricted to be an elementary
abelian 2-group.

The idea of the proof is to give a polynomial-time reduction from the
maximum clique problem to the lexicographic canonization problem.

More important, on the positive side, Babai and Luks give an algorithm
for computing a canonizing function that depends on the structure of the
group (. This algorithm is based on a divide-and-conquer strategy along the
same lines as developed by Luks in [25]: the divide and conquer is done on the
group G based on its internal structure (transitive constituents, primitivity
and imprimitivity structure).

If G is a permutation group in the class 'y, it turns out that this canon-
ization algorithm runs in polynomial time. Crucially, the fact that primitive
groups in 'y are of size at most n?@ is used for this analysis. To summarize:

Theorem 4. [10] Given a group G < S, such that G € Ty, there is an n°?
algorithm that computes a canonizing function for G,.

In [10] it is also shown that for general graphs there is a ¢ canon-

izing algorithm which closely matches the running time of the best known
isomorphism test for general graphs. However, from a complexity-theoretic
point of view the relative difficulty is not clear even for the problem of G-
isomorphism testing for a group G € I'y. In particular, we would like to know
an answer for the following question. We conjecture that the answer should
be positive.

Problem 8. Let G < S,, be a permutation group that is in T'y. Is the prob-
lem of testing if two strings x and y are G-isomorphic NC' equivalent to the
corresponding canonization problem? We can also ask a similar question for
solvable permutation groups, which is a subclass of T'y.

A more general problem is the following.

Problem 9. For different restricted graph classes considered in Section 4,
what is the relative complexity of isomorphism and canonization?

We next briefly discuss canonization for finite groups and rings. What is
the appropriate notion for groups? For abelian groups, the structure theorem
decomposing any finite abelian group into a direct product of cyclic groups
is a natural canonical form and it can be used to test the isomorphism of
two abelian groups. Thus, the problem of canonization for finite abelian
groups boils down to computing the cyclic group decomposition. Of course,
the question arises whether there could be canonical forms that are easier
to compute. For nonabelian groups, it does not appear that there is any
such intrinsic canonical form. It is tempting to use the composition series
(or some other series for groups) but these are only partial isomorphism in-
variants. Of course, the lexicographic canonical form can always be defined
for finite groups (and rings). But one would suspect that it is NP-hard to
compute. Turning to finite rings, we can try to use Wedderburn’s decompo-
sition theorem for semisimple rings to define canonical forms. To summarize,
we have the following open-ended question.

Problem 10. What are the suitable canonical forms for finite groups and
rings and what s complexity of computing these canonical forms?

6 Ring and Group Isomorphism

We look now at the complexity of isomorphism testing for rings and groups.
These questions have evoked interest due to the recent work by Kayal and
Saxena [21] relating the complexity of ring isomorphism to both graph iso-
morphism and integer factoring. More recently, Agrawal and Saxena in a
fascinating article [1] have highlighted the importance of finite rings and
their automorphisms for computational problems in algebra with various ex-
amples.

We discuss the main results about ring isomorphism and automorphism
from [21]. Alongside, we make some new observations for the group isomor-
phism problem to draw comparisons and formulate open questions.

Recall that a ring (R, +,.) with unity is a commutative group under the
addition operation with 0 as identity and is a monoid under multiplication
with 1 as multiplicative identity, together with multiplication distributing
over addition.

The complexity of isomorphism problems might change depending on the
way the input instances are represented. We first consider the representation
of a finite ring R. One way is to describe R explicitly by its addition and
multiplication tables. This table representation is of size O(k|R|?), where
elements of R are encoded as strings of length £.

A more compact basis representation would be to describe R by giving a
basis for R. The basis is an independent generating set {ej, ey, - -, e} for
the additive group (R,+). Clearly, (R,+) has generating sets of size m =
O(log |R|). Additionally, to describe the multiplicative structure, “structural
constants” of the ring a4, € Z,1 < 4,5,k < m are given, where ¢; - ¢; =
>k Qijkex. Since the characteristic of R is bounded by |R|, each structural
constant is m bits long. Now, suppose that the elements of R are encoded
as strings of length k. Clearly the entire representation is of size O(km?).

Likewise, consider finite groups G whose elements are encoded as strings
of length k. We could describe G by the table representation by giving the
multiplication table of size O(k|G|?). Again, a more compact representation
for finite groups would be to give a generating set {gi, 92, -, gx} for G,
where the multiplication operation is implicitly described by a “black-box”
[13, 9]. The “black-box” model introduced by [13, 9] is a convenient setting to
study the complexity of group-theoretic problems that do not take advantage
of the actual group operation (permutation groups or matrix groups etc).

A third possibility for representing finite abelian groups by giving inde-
pendent generating sets. Whether an arbitrary generating set can be trans-
formed to an independent generating set in polynomial time is open. It is
related to membership testing and the discrete log problem. However, this

transformation can be done by a polynomial time quantum algorithm. In-
deed, isomorphism testing for abelian black-box groups given by generating
sets can be done in quantum polynomial time (see [31] for example).

Problem 11. What is the complexity of converting a generator representa-
tion to a basis representation for finite rings?

Notice that the basis representation for finite rings is more structured
than the generator representation for finite groups. The nicer representation
is basically due to the fact that the additive group of a finite ring is commu-
tative. Indeed, if a finite group G is given by a generator set (g, ga, - - - , gk),
in general it is not possible to express an arbitrary element ¢ € G as a
polynomial-size product []7", g;;! However the reachability lemma of [13]
shows that it is possible to express g as a polynomial-size straight-line pro-
gram over the generators.

In this section we focus on the basis and generator representation for rings
and groups. We will discuss the table representation for these problems in
Section 7.

Kayal and Saxena [21] study the complexity of ring isomorphism. We
recall their main results here. For rings input in the basis representation, it is
shown in [21] that the problems of finding a ring automorphism, counting ring
automorphisms, ring isomorphism testing, and finding a ring isomorphism
are all essentially in AM N coAM. More precisely, the functional versions
of these problems are in FPAMMAM = Cyriously, the problem deciding if a
ring has a nontrivial automorphism is in P [21]. This is essentially because
those finite rings that do not have nontrivial automorphisms have a nice
mathematical description which can be tested in polynomial time.

In [21] the connection between ring isomorphism and integer factoring is
also studied. It is shown that counting the number of ring automorphisms
is harder than integer factoring and finding a nontrivial automorphism is
equivalent to integer factoring (via randomized reductions).

It is interesting to compare these results with the situation for group iso-
morphism. A basic difference between the two problems is in the description
of an isomorphism. A ring isomorphism between two rings R; and Ry in
basis representation can be described by an invertible integer matrix (after
suitably modifying the bases in polynomial time). However, in the case of an
isomorphism ¢ between two finite groups G and H given by generator sets,
there seems no mathematically explicit way to describe a group isomorphism.
We can only describe ¢ by taking each generator g; of G and expressing ¢(g;)
as a straight-line program over the generators of H.

Nevertheless, it is shown in [9] that black-box group isomorphism is in
AM N coAM. In the case of permutation group isomorphism, where the two

input groups are permutation groups and hence more amenable, the group
isomorphism problem is shown to be in NP N coAM.

Since the isomorphisms (or automorphisms) of finite groups given by gen-
erators do not have explicit mathematical descriptions, we do not have an
FPAMAcoAM hound for counting the number of group automorphisms (equiv-
alently isomorphisms). However, suppose a mapping ¢ : G — H is given by
©(g:) as a straight-line program over the generators of H for each generator
g; of G. Then testing if ¢ defines an isomorphism is in AM N coAM due
to the order-verification interactive protocol of Babai [9]. Using this we can
give a #P~" upper bound: Suppose elements of G and H are encoded as
strings of length m. For the generators g1, go, - - - , gx, the #P oracle machine
guesses the images ¢(g;),1 < i < k as strings of length m. Using an NP
oracle, it then computes the straight-line programs for each ¢(g;), over the
generators of H. Now, a new group K is formed, that is generated by the
pairs (g;, ©(g;))- Notice that K is a subgroup of G x H. The order verifica-
tion AM protocol of [9] can now be used to compare the orders of G and K
and to accept if and only if their orders are equal. Clearly, this upper bound
also holds for the complexity of computing the number of automorphisms of
G. Since #P3AM = #PAM — LPNP we have the following:

Proposition 5. Computing the number of isomorphism between two groups
G and H given by generating sets is in P " .

Problem 12. Tightly classify the complexity of computing the number of
group tsomorphisms, when the groups are in the generator representation.
More precisely, for a finite group G given by generators in the black-box

model, is the problem of computing the number of automorphism in G low
for any level of PH?

In contrast note that counting ring automorphisms is low for AMNcoAM.
However hardness questions remain.

Problem 13. Is counting ring automorphisms harder than discrete log? Is
ring isomorphism (decision or search version) harder than discrete log?

We next consider the question of rigidity. Rigid finite groups are finite
groups with no nontrivial automorphism. We note that the algorithmic prob-
lem is trivial here.

Proposition 6. There are no rigid groups except groups of order 1 and 2.

Proof. Clearly the groups of order 1 and 2 are rigid. Let G be a finite
group of size more than 2. If G is nonabelian then let ¢ € G such that g

does not commute with all elements of G. Then the inner automorphism 7,
defined as: 7, : * — gxg~' is clearly a nontrivial automorphism. On the other
hand if G is abelian, then we use the structure theorem of abelian groups to
decompose G as a direct product of cyclic groups G; x Gy X - - - X G,.. Suppose
|G;| =t > 2 for one of the cyclic groups G;. Let a € G; be a generator. Then
a* is also a generator of G; for each k such that ged(k,t) = 1. It is easy to see
that a — a* is an automorphism of G; if and only if ged(k,t) = 1. If ¢t > 2
there is at least one such £ > 1 so that a — a* is a nontrivial automorphism
of G;. This can be extended easily to a nontrivial automorphism of G. On
the other hand, if |G;| = 2 for each i, then G is a vector space over Fy of
dimension r. Hence any nonsingular r x r matrix different from identity over
F, is a nontrivial automorphism of G. m

It is shown in [21] that all rigid rings have a simple structure that can
be easily recognized. The above proposition implies that group rigidity is
even easier to test than testing rigidity of rings. We recall that the rigidity
question for graphs is not known to be in P.

We now show that computing the number of group automorphisms is also
harder than integer factoring (analogous to the result for ring automorphisms
in [21]). In the case of group automorphisms the hardness is easy to show.
Consider (Z,,+), the additive group of integers modulo n. The group is
cyclic with 1 as generator, and 1 — j defines an automorphism if and only if
ged(j,n) = 1, since j € Z, is a generator iff it is relatively prime to n. Thus,
(Z,, +) has precisely ¢(n) generators, where ¢ is the Euler ¢-function. It fol-
lows that computing #Aut(Z,) implied computing ¢(n) which is equivalent
to integer factoring w.r.t. randomized polynomial-time reductions.

Proposition 7. Integer factoring is reducible to computing the number of
automorphism for a finite group G given by generators.

It would be interesting to know if the same result holds for permutation
groups.

Problem 14. Is integer factoring reducible to computing the number of au-
tomorphism of a permutation group G < S,, given by generators?

In |21] it is shown that finding a nontrivial ring automorphism is equiv-
alent to integer factoring. Interestingly, for the case of groups the situation
is quite different. Let G be a group given by generators. We can check if
it is nonabelian (simply by checking if the generators commute with each
other). If G is nonabelian, we will find a generator g such that gg; # g;g for
some other generator g; of G. Clearly, the inner automorphism 7, defined by
7,0 T+ grg ' is a nontrivial automorphism.

Proposition 8. There is a polynomial-time algorithm for finding a nontrivial
automorphism of a nonabelian group given by generator set.

Abelian groups dot have inner automorphisms. On the other hand if G
is an abelian group given by an independent generating set (g1, ga, - - , gk),
and a multiple n of |G| is known, then it is easy to find a nontrivial automor-
phism applying the ideas of Proposition 6. If each g; has order 2 then G is
vector space over F, and any nonsingular £ X k£ matrix is an automorphism.
Otherwise, if g; has order more than 2 then pick a positive integer a > 1
such that ged(a,n) = 1 by randomly picking @ € [n — 1]. Then, with high
probability g; # ¢ and g; and g have the same order. Now, g; — ¢} and
gj = gj,j # 1 defines a nontrivial automorphism.

However, if an abelian group G is given by a generating set (not neces-
sarily independent) then the complexity of the problem is open.

Problem 15. For abelian groups, is the problem of finding a nontrivial au-
tomorphism harder than integer factoring? Is it harder than discrete log?

Another observation is that the problem of group isomorphism testing is
harder than the decision version of discrete log: given a,b € Z}, the problem
is to check if a is in the cyclic group generated by b (i.e. a € (b)). Clearly,
a € (b) iff (a, b) is isomorphic to (b). More generally, the membership testing
problem for groups reduces to group isomorphism.

For both ring and group isomorphism the relative complexities of search
and decision remains open. In the case of graph isomorphism, search is
polynomial-time reducible to decision. The reduction uses graph gadgets to
guide a prefix search. It is not clear how to build similar gadgets for groups
and rings.

Problem 16. Is search polynomial-time reducible to decision for group iso-
morphism and ring isomorphism?

7 Derandomization

Babai classified in [7| the graph non-isomorphism problem in AM, a ran-
domized version of NP that can be described in terms of Arthur Merlin
protocols. Several authors (e.g. [3, 22, 30]) have studied derandomization
of AM to NP under suitable hardness assumptions, thus showing that GI
belongs to NP N coNP. This derandomization works for the entire class AM.
It is natural to ask if the AM protocol for graph non-isomorphism can be
unconditionally derandomized.

Problem 17. Can the AM protocol for graph non-isomorphism be deran-
domized unconditionally? Or under weaker hardness assumptions that those
used in [3, 22, 30]?

We considered in [6] the question of whether the group isomorphism prob-
lem (for the case of groups given by multiplication tables) lies in NP N coNP.
This might be easier to show than for the case of GI since group isomorphism
in the table representation appears to be an easier problem. Following the
same approach as it has been done for the case of GI we showed that group
non-isomorphism has an Arthur-Merlin protocol with the property that on
input groups of size n, Arthur uses O(log6 n) random bits and Merlin uses
only O(log” n) nondeterministic bits. For the case of solvable groups we could
derandomize this restricted protocol applying two different methods showing
that:

e there is a nondeterministic polynomial time algorithm for the group
non-isomorphism problem restricted to solvable groups that is incorrect
for at most 208°"'n inputs of length n, and

e under the assumption EXP ¢ ioPSPACE! the group isomorphism prob-
lem restricted to solvable groups is in NP N coNP.

The restriction to solvable groups comes from the fact that for the de-
randomization, an easy to compute succinct representation for the groups
is needed. This exists for the case of solvable groups, but it is an open
question whether it exists for general groups (related to a form of the short
presentation conjecture known to be true for almost all finite simple groups).

Problem 18. Do the above derandomization results hold for the case of
general groups?

As mentioned in [6] the derandomization does work for general groups
assuming the short presentation conjecture.

Turning to ring isomorphism in the table representation the above prob-
lem is easy to resolve. As the additive group is abelian, rings have succinct
representations of the appropriate type of polylogarithmic size in the number
of ring elements. Therefore Problem 18 can be answered affirmatively for the
case of rings with addition and multiplication tables given explicitly. Thus,
one would expect that the following problem is easier than for groups. For
rings given in this way we can ask the general question.

Problem 19. Is the ring isomorphism problem in the table representation in
NP N coNP?

1 A language L is in ioPSPACE if there is a PSPACE machine that is correct on L for
infinitely many input lengths.

8 Quantum Computing

In this section we describe the attempts at a quantum algorithmic solution
to the graph isomorphism problem and the difficulties in this approach. The
generic problem that underlies the discrete log problem, integer factoring
and graph isomorphism is the hidden subgroup problem. We explain the
hidden subgroup problem and summarize the progress made on it. Then
we discuss some interesting connections between quantum polynomial time
and counting complexity classes. First, we recall the definition of the hidden
subgroup problem.

Definition 9. The input instance of the hidden subgroup problem HSP is
a finite group G given by a generator set. Additionally, a function f from
G to some finite set X is given as an oracle, such that f is constant and
distinct on different right cosets of some subgroup H of G. The problem is
to determine a generator set for H.

The hidden subgroup problem is a generic problem which captures several
questions. We explain how it captures graph isomorphism. Let X be a finite
graph. Now, letting G be the permutation group S, we define the “hiding
function” f: S, — G, as f(m) = X™, where X™ is the graph obtained from
X by permuting its vertices with the permutation 7. It is easy to see that
the hidden subgroup is the automorphism group Aut(X) of X. Determining
the automorphism group of a graph is polynomial-time equivalent to graph
isomorphism.

Shor’s quantum algorithms for integer factoring and discrete log are es-
sentially solutions of suitable HSP’s where the group G is abelian. Indeed,
Shor’s technique [33] yields a polynomial-time quantum algorithm for HSP
when G is abelian (see e.g. [31]). However, the status of HSP is open for gen-
eral nonabelian groups, except for some special cases (see, e.g. |18, 19, 32]).
In particular, for G = §,,, it is not known if HSP has quantum polynomial
time algorithms.

For ring isomorphism (in the basis representation) it is easy to formulate
the problem of computing the automorphism group of a commutative ring
of characteristic d as a hidden subgroup problem, where the group G would
be the finite group consisting of matrices of a suitable dimension invertible
modulo d. Again, such a matrix group is nonabelian in general (it even
contains S,,) which makes the corresponding HSP a hard problem.

The hidden subgroup approach to designing an efficient quantum algo-
rithm for graph isomorphism seems to have limitations: very little progress
has been made on the nonabelian hidden subgroup problem. It appears that
some new quantum algorithmic techniques are required. But there might

be restricted glaph classes of for which it is posible to test isomorphism in
quantum polynomial time with the present techniques.

Problem 20. Is there a restricted class of graphs for which the isomorphism
problem (not known to be in P) has polynomial time quantum algorithms?

GI has another connection with the class BQP of problems computable in
quantum polynomial time. Fortnow and Rogers [17] have shown that BQP is
low for PP, i.e. any problem is BQP is is powerless as oracle for PP. This is in
fact the best known upper bound for BQP in terms of complexity classes. In
|23] it is shown that graph isomorphism and several other permutation group
problems are also low for PP. This was strengthened in [4] where it is shown
that the hidden subgroup problem for permutation groups (and hence graph
isomorphism) is in a more restricted counting complexity class. However,
similar questions are open for ring and (nonabelian) group isomorphism.

Problem 21. Is the ring isomorphism problem low for PP? Is the group
isomorphism problem for nonabelian groups low for PP?

References

[1] M. Agrawal and N. Saxena. Automorphisms of Finite Rings and Applications
to Complexity of Problems. Proc. Symp. Theoretical Aspects of Computer
Science, LNCS 3404, 1-17, Springer Verlag, Feb 2005.

[2] E. Allender. Arithmetic Circuits and Counting Complexity Classes. Quaderni
di Matematica series, Edited by Jan Krajicek, 2004.

[3] V. Arvind and J. Kébler, On resource bounded measure and pseudorandom-
ness, Proc. 17th FSTT Conference Lecture Notes in Computer Science 1346
Springer Verlag, 235-249, (1997).

[4] V. Arvind and P. P. Kurur. Graph Isomorphism is in SPP. Proc. Foundations
of Computer Science, 743-750, 2002.

[5] V. Arvind, P. P. Kurur, and T.C. Vijayaraghavan. Bounded color multiplic-
ity graph isomorphism is in the #L Hierarchy. In Proceedings of the 20th
Conference on Computational Complexity, 2005, to appear.

[6] V. Arvind and J. Toran. Solvable group isomorphism is almost in NP N coNP.
Proc. 19th IEEE Conference on Computational Complezity, 91-103, 2004.

[7] L. Babai. Trading group theory for randomness. Proc. 17th ACM Symposium
on Theory of Computing, 421-429, 1985.

[8] L. Babai. A Las Vegas-NC Algorithm for isomorphism of graphs with bounded
multiplicity of eigenvalues. Proc. Foundations of Computer Science, 303-312,
1986.

19]

[10]

[11]

[12]

[14]

[15]

[16]

L. Babai. Bounded round interactive proofs in finite groups. SIAM journal of
Discrete Mathematics, 5(1):88-111, February 1992.

L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, pages 171-183,
1983.

L. Babai, E. M. Luks, and A. Seress. Permutation Groups in NC. Proceedings
Symp. Theory of Computing, 409-420, 1987.

L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and
a hierarchy of complexity classes. Journal of Computer and System Sciences,
36:254-276, 1988.

L. Babai and E. Szemeredi. On the complexity of matrix group problems
I. In Proceedings of the 24" IEEE Foundations of Computer Science, pages
229-240, 1984.

J. Balcazar, J. Diaz, and J. Gabarr6. Structural Complexity I & II. ETACS
monographs on theoretical computer science. Springer-Verlag, Berlin, 1988
and 1990.

R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive
proofs. Information Processing Letters, 25:127-132, May 1987.

S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64(1):2-22, 1985.

L. Fortnow and J. D. Rogers. Complexity limitations on quantum compu-
tation. In IEEE Conference on Computational Complexity, pages 202-209,
1998.

S Hallgren, A Russel, and A Ta-Shma. Normal subgroup reconstruction and
quantum computing using group representation. In Proceedings of the 32"¢
ACM Symposium on Theory of Computing, pages 627-635, Portland, Oregon,
21-23 May 2000.

G. Ivanyos, F. Magniez, and M. Santha. Efficient quantum algorithms for
some instances of the non-abelian hidden subgroup problem. In 13** ACM
Symposium on Parallel Algorithms and Architectures, pages 263-270, 2001.

B. Jenner, J. Kobler, P. McKenzie, J. Toran. Completeness results for graph
isomorphism. J. Comput. Syst. Sciences, 66(3): 549-566, 2003.

N. Kayal and N. Saxena. On ring isomorphism and automorphism problems.
In Proc. 20th IEEE Conference on Computational Complexity, June 2005, to
appear.

A. Klivans and D. van Melkebeek, Graph Isomorphism has subexponential
size provers unless the polynomial time hierarchy collapses. In Proc. 31st ACM
STOC, 1999, 659-667.

23]
[24]

[25]

[26]

[34]

[35]

J. Kobler, U. Schoning, and J. Tordn. Graph isomorphism is low for PP.
Computational Complexity, 2(4):301-330, 1992.

Johannes Ko6bler, Uwe Schoning, and Jacobo Toran. The Graph Isomorphism
Problem: Its Structural Complexity. Birkhauser, 1993.

E. M. Luks. Isomorphism of Graphs of Bounded Valence can be Tested in
Polynomial Time. Journal of Computer and System Sciences, 25(1): 42-65,
1982.

E. M. Luks. Parallel algorithms for permutation groups and graph isomor-
phism. In Proceedings of the IEEE Foundations of Computer Science, IEEE
Computer Society, 292-302, 1986.

E. M. Luks. Permutation groups and polynomial time computations. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 11:139—
175, 1993.

R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8:131-132, 1979.

G. L. Miller. Isomorphism of k-Contractible Graphs. A Generalization of
Bounded Valence and Bounded Genus. Information and Control, 56(1/2):
1-20, 1983.

P.B. Miltersen and N. Vinodchandran, Derandomizing Arthur-Merlin games
using hitting sets, in Proc. 40th IEEE Symposium on Foundations of Com-
puter Science, 1999, 71-80.

M. Mosca. Quantum Computer algorithms. PhD thesis, Oxford University,
1999.

M. Rotteler and T. Beth, Polynomial-Time Solution to the Hidden Subgroup
Problem for a Class of non-abelian Groups. ArXiv preprint quant-ph /9812070,
1998.

P. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484—
1509, 1997.

U. Schéning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37:312-323, 1988.

J. Toran. On the hardness of graph isomorphism, SIAM J. Comput. 33(5):
1093-1108, 2004.

