
A Graphical XQuery Language
Using Nested Windows

Zheng Qin, Benjamin Bin Yao, Yingbin Liu, and Michael McCool

University of Waterloo
School of Computer Science, Waterloo, Ontario, Canada N2L 3G1

{zqin, bbyao, ybliu, mmccool}@uwaterloo.ca

Abstract. A graphical XQuery-based language using nested windows,
GXQL, is presented. Definitions of both syntax and semantics are pro-
vided. Expressions in GXQL can be directly translated into correspond-
ing XQuery expressions. GXQL supports for, let, where, order by and
return clauses (FLWOR expressions) and also supports predicates and
quantifiers. This graphical language provides a powerful and user-friendly
environment for non-technical users to perform queries.

1 Introduction

XML is now being used extensively in various applications, so query languages
have become important tools for users from many different backgrounds. How-
ever, the use of query languages can sometimes be difficult for users not having
much database training. A graphical query language can potentially be very
helpful. With a graphical interface, users do not have to remember the syntax
of a textual language, all they need to do is select options and draw diagrams.

In this paper, a graphical XQuery-based language is described. Early graphi-
cal query languages for XML included G [7], G+ [8], G+’s descendant Graphlog
[6], G-Log [11], WG-Log [4], and WG-Log’s descendant XML-GL [3,5]. In these
visual languages, a standard node-edge graphical tree representation is used to
visualize the hierarchical structure of XML documents. The nodes represent el-
ements and attributes in the documents, and the edges represent relationships
between the nodes. Research has also been performed into form-based query
languages, such as Equix [2], and nested-table based query languages, such as
QSByE (Query Semi-structured data By Example) [9]. The BBQ language used
a directory tree visualization of the XML tree [10].

Most of these visual languages were developed before XQuery. A recent
graphical XQuery-based language, XQBE (XQuery By Example) [1], extends
XML-GL to XQuery, and also overcomes some limitations of XML-GL. The
XQBE query language is good at expressing queries, but there are some prob-
lems with it. First, XQBE defines many abstract symbols. For instance, there are
two kinds of trapezoids, lozenges of two different colors, circles of two different
colors, and so on. It is difficult to remember which abstract symbol represents
what concept. Second, all relationships are mapped onto a uniform tree struc-
ture. This is also true of other systems otherwise similar to ours (such as BBQ).

X. Zhou et al. (Eds.): WISE 2004, LNCS 3306, pp. 681–687, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

682 Z. Qin et al.

Representing all relationships with a common visual formalism can lead to con-
fusion. For instance, when a node points to another node via an edge, does it
mean a parent-child relation, a cause-result relation, or an attribute relation?
Third, there are some XQuery expressions that cannot be easily expressed by
XQBE, for example, quantifiers.

We have designed a nested window XQuery-based language, called GXQL
(Graphical XQuery Language). GXQL has fewer symbols than XQBE, and these
symbols are visually suggestive. We use nested windows to represent parent-child
relationships. Child elements and attributes are also visually distinguished. The
visualization of a document in GXQL in fact resembles a real document. The
query interface in GXQL is user-friendly. Users do not have to input everything
textually or need to draw queries from scratch. Like BBQ, in our visual notation
windows and icons can be dragged around to construct new nodes or copy nodes.
The interface also allows users to visualize only the parts of the document struc-
ture they need to perform a query. GXQL is also more expressive than XQBE.
Some queries hard to express in XQBE are easy in GXQL, and some queries
impossible to express in XQBE are possible in GXQL. For instance, in XQBE
predicates of a node in a return clause can only affect its parent node, whereas
in GXQL, predicates can affect arbitrary nodes.

Since we want to compare GXQL directly with XQBE, the sample XML
document and the example queries in this paper are taken from the XQBE
paper [1]. Due to space limitations only two simple examples are included here;
the rest of the examples are available in a technical report [12].

2 Visualization Interface

The schema of the sample document we will be using for our example queries is
represented by GXQL in Figure 1 (a). Each rectangle represents an element that
can have a URI, attributes and subelements. The URI indicates the location of
the document. In the sample document, element <bib> is at the outermost level,
and element <book> includes attribute year and some children.

Rectangles representing children are enclosed completely in their parent rect-
angle. The borders of these rectangles can be drawn in various styles. These will
be explained in the next section.

Initially, only the parent node and its immediate children are represented.
However, users can expand elements inline by double clicking on them. Already
expanded elements can be zoomed to fill the window by double-clicking on them
again. When an attribute is expanded, information about that attribute, such as
its data type, will be added to the representation. When an element is expanded,
it will remain the same width but will get longer, and its attributes and children
will be drawn nested inside it. If an element is zoomed, its corresponding rect-
angle and all its children will zoom out to fill the window. If the window is not
big enough to display all its elements, a scroll bar will be added to the window
and users can scroll to view all the elements. Right clicking on an attribute or
element will pop up a right click menu. Choosing the “predicate” menu item

A Graphical XQuery Language Using Nested Windows 683

Fig. 1. (a) GXQL representation of the sample document. (b) Query interface of
GXQL. Retrieval is on the left, construction is on the right.

will bring up a window showing information (such as name, type and full path)
about that attribute or element and allows the entry of predicates.

Drag actions are also used as part of the query interface, but these are dis-
tinguished from the clicking actions described above because in a drag action,
the button up event happens outside the window.

3 Query Interface

The query interface of GXQL looks like Figure 1 (b). There are three parts
in the main window. On the left, the retrieval pane represents the schema or
input document. It allows users to select the subset of the input they want to
query. In the middle, the construction pane allows users to structure the query
results. On the very right of the interface there is a symbol bar containing all
the symbols used in GXQL. These are used to create new elements from scratch
in the construction pane.

In the retrieval pane, when users choose a document or document schema,
GXQL will visualize its structure. At first, only the outermost node and its
children are shown, but users can zoom into or expand subelements to see detail.
We chose this design because we want the interface to give users some way to
browse the document structure, so they do not have to remember the names of
elements and attributes, but we do not want to overwhelm them with detail.
Our design also allows large documents to be visualized incrementally.

We will call elements or attributes “nodes”. Users can select (or deselect)
any node by left clicking on it. Selecting nodes by clicking avoids errors caused
by misspelling. By default, all nodes are first drawn with a light blue color

684 Z. Qin et al.

indicating that they exist, but have not been selected yet. Selecting nodes will
change their color to black. After users set up a query, clicking on the “confirm”
button executes the query. All selected nodes will participate in the query, while
unselected elements will be ignored.

When users want to input predicates for nodes, they need to right click on a
node. A window will pop up asking for the predicate, and will provide a menu
of options. After the predicates are confirmed, each predicate will be shown in a
panel. Both the retrieval pane and construction pane have their own predicate
panel.

In the construction pane, there are two ways to construct a node: either by
dragging a symbol from the symbol bar, or by dragging a node from the retrieval
pane. After dragging a symbol from the symbol bar, the new element is empty,
and the user must input the name for it. When dragging a node from the retrieval
pane, the node (including all its descendants) are dragged into the construction
pane, forming a new node there. Users can then select the nodes they want or
delete (by a right click menu selection) the ones not needed. Users can also drag
the nodes around and switch their order. The results will be given based on this
order. The frame border of nodes can also be changed via a right click menu.

Some rectangles have single-line frames and some have shadowed frames.
Other frame styles are possible; a complete set of symbols representing the rela-
tions between nodes used in GXQL is given in Figure 2. Each frame style has a
specific meaning suggested by its visual design. Symbol 1 indicates that node B
is the single immediate child of node A. Symbol 2 indicates there are multiple B
subelements wrapped within one A node, and all Bs are immediate children of
A. Symbol 3 has the same meaning as symbol 2, except when users set up pred-
icates for B, only some elements B satisfy the predicates. Symbol 4 indicates
that the B subelements are descendants of A. There may be multiple Bs that
are descendants of A. They do not have to be immediate children of A. Symbol 5
has the same meaning as symbol 4, except that when users set up predicates for
B, only some elements B satisfy the predicates. Symbol 6 indicates that the B
subelements are descendants of A with only one intermediate path in between.
There may be multiple Bs that are descendants of A. Symbol 7 has the same
meaning as symbol 6, except that when users set up predicates for B, only some
elements B satisfy the predicates. Symbol 8 has the same meaning as symbol 1,
except that when users set up predicates for B, they want the complement of
the results. This is just one example of complementation. Any symbol from 1 to
7 can be complemented in the same way.

4 Examples

The sample XML document and the example queries used in this paper are
taken from the XQBE paper [1]. We are going to show how two of these queries,
1 and 5, are expressed in GXQL, with modifications in Query 5 to demonstrate
queries not supported by XQBE. The rest of the queries are demonstrated in
our technical report [12].

A Graphical XQuery Language Using Nested Windows 685

Fig. 2. Symbols used in GXQL.

Query 1: List books published by Addison-Wesley after 1991, including their
year and title.

This query shows how to represent “for” “where” and “return” in GXQL. In
the XQuery textual language, this query can be expressed as follows:

<bib>
{ for $b in document("www.bn.com/bib.xml")/bib/book

where $b/publisher="Addison-Wesley" and $b/@year>1991
return <book year="{$b/@year}"> { $b/title } </book> }

</bib>

Fig. 3. GXQL expressions for queries 1 and 5.

Query 1 is represented by GXQL as in Figure 3 (a). In the retrieval pane,
users first zoom into <book>, so the attribute year and all subelements will show
up. Right clicking on year will pop up a window. This window will show the
name (with full path) and data type of the attribute and will prompt for pred-
icates. Once a predicate is set, the predicate object will show up in a predicate
panel below the main figure. Predicates can be combined together by Boolean
operations. All Boolean operations are supported, such as or and not. This
cannot be done in XQBE, which can only represent and relations.

To express the example query, in the construction pane users first drag an
icon with a single frame from the symbol bar to create a new element <bib>,

686 Z. Qin et al.

then drag an icon with a shadowed frame for element <book>. Then users can
drag year and <title> from the retrieval pane to the construction pane. When
the “confirm” button is clicked, appropriate textual XQuery language will be
generated and passed down to the processing pipeline. The query should be read
from the outermost rectangle toward the innermost rectangles.

Query 5: List all the books in element <bib> and wrap them within one
<results> element.

We modified this example so that it uses the let clause. The let clause is not
supported in XQBE, so there is no example using let in the XQBE paper.
XQBE can wrap multiple elements within a single element, but the query is
always translated into for clause. The modified XQuery is given as follows:
let $b := document("www.bn.com")/bib/book,
return <results> { $b } </results>

Query 5 is represented by GXQL in Figure 3 (b). In this example, the <book>
element is first dragged from the retrieval pane to the construction pane. Note
that the <book> rectangle has a shadowed frame. This means all the retrieved
<book> elements will be wrapped together in one <results> element in the
result.

5 Semantics

To implement a query in GXQL, we have to translate a given GXQL diagram
into a corresponding XQuery FLWOR expression. In the construction pane, when
users set up rectangles by dragging icons from the symbol bar, it corresponds to
constructing new nodes in the result. In the retrieval pane, each shaded double-
line frame, if not dragged to the construction pane, corresponds to a “for” clause
with a “//” path, e.g. “for $b in bib//book”. If such a frame is dragged to the
construction pane, it corresponds to a “let” clause, e.g. “let $b = //book”,
and the result of “$b” is wrapped within a single parent tag. Each double-line
unshaded frame works the same way as shaded double-line frame, except that it
represents the path “/*/”. Each shadowed frame, if not dragged to the construc-
tion pane, also corresponds to a “for” clause with a path containing only “/”,
e.g. “for $b in bib/book”. If such a frame is dragged to the construction pane,
it corresponds to a “let” clause, e.g. “let $b = /bib/book”, and the result of
“$b” is wrapped within a single parent tag. Each single-line frame corresponds
to a child “/”, e.g. “$f = bib/book”. If a frame has a dashed border, it corre-
sponds to use of the “some” quantifier, e.g. “some $b in //book satisfies”.
If a rectangle is crossed, it corresponds to the use of “not” in all predicates, e.g.
“not ($b = ‘‘Jack’’)”.

So to perform translation, the construction pane should be analyzed first to
find out what nodes are new and which nodes are copied from the retrieved
results. The next step is to analyze the retrieval pane, going from the outermost
rectangle to the innermost rectangle and binding variables to expressions ac-
cording to how they are going to be used in the “return” clause. The last step
is to construct FLWOR expressions based on the construction pane.

A Graphical XQuery Language Using Nested Windows 687

6 Conclusions

In this paper, we have described the design of GXQL, a graphical query language
using nested windows to visualize hierarchy. Representations in GXQL can be
directly translated into corresponding “FLWOR” clauses. GXQL also supports
predicates, different path patterns, and quantifiers. GXQL is also easy to expand
to support more XQuery features.

More features of XQuery might eventually be supported in GXQL, such as
conditional expressions, type casting, functions, and so on. However, being both
powerful and clear is a challenge to graphical languages. The system should not
have so many features added to it that it becomes too difficult for a user to
learn. For future work, we need to complete the implementation and perform
user testing to validate our design.

We would like to thank Frank Tompa for suggesting that we submit this
paper for publication. He also suggested the notation for negation.

References

1. D. Braga and A. Campi. A Graphical Environment to Query XML Data
with XQuery. In Fourth Intl. Conf. on Web Information Systems Engineering
(WISE’03), pp. 31–40, 2003.

2. S. Cohen, Y. Kanza, Y. A. Kogen, W. Nutt, Y. Sagiv, and A. Serebrenik. Equix
Easy Querying in XML Databases. In WebDB (Informal Proceedings), pp. 43–48,
1999.

3. S. Comai, E. Damiani, and P. Fraternali. Computing Graphical Queries over XML
Data. In ACM Trans. on Information Systems, 19(4), pp. 371–430, 2001.

4. S. Comai, E. Damiani, R. Posenato, and L. Tanca. A Schema Based Approach to
Modeling and Querying WWW Data. In Proc. FQAS, May 1998.

5. S. Comai and P. di Milano. Graph-based GUIs for Querying XML Data: the
XML-GL Experience. In SAC, ACM, pp. 269–274, 2001.

6. M. P. Consens and A. O. Mendelzon. The G+/GraphLog Visual Query System.
In Proc. ACM SIGMOD, 1990, pp. 388.

7. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A Graphical Query Language
Supporting Recursion. In Proc. ACM SIGMOD, 1987, pp. 323–330.

8. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. G+: Recursive Queries without
Recursion. In 2nd Int. Conf. on Expert Database Systems, pp. 335–368, 1988.

9. I. M. R. Evangelista Filha, A. H. F. Laender, and A. S. da Silva. Querying
Semistructured Data by Example: The QSByE Interface. In 2nd Int. Conf. on
Expert Database Systems, pp. 335–368, 1988.

10. K. D. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for Inte-
grated Browsing and Querying of XML. In 5th IFIP 2.6 Working Conf. on Visual
Database Systems, 2000.

11. P. Peelman, J. Paredaens and L. Tanca. G-log: A Declarative Graph-based Lan-
guage. In IEEE Trans. on Knowledge and Data Eng., 1995.

12. Z. Qin, B. B. Yao, Y. Liu and M. McCool. A Graphical XQuery Language Us-
ing Nested Windows. Technical Report CS-2004-37, School of Computer Science,
University of Waterloo, August, 2004.

	Introduction
	Visualization Interface
	Query Interface
	Examples
	Semantics
	Conclusions

