

Simpson Gumpertz & Heger Inc.

2006 Higgins Paper - NASCC

Acknowledgement

A portion of the work reported in this presentation was developed under Cooperative Agreement DAAD19-02-2-0028 under the Vanadium Technology Program

- Advanced Technology Institute
- Corps of Engineers, Civil Engineering Research Laboratory

CH.

Acknowledgement

Dr. Andrew Whittaker, SE, State University of NY at Buffalo

Mr. Donald Dusenberry, PE Simpson Gumpertz & Heger, Inc.

What is Progressive Collapse? A small, localized initiating event leads to a chain of failures resulting in large scale failure and collapse Since nearly all collapse is progressive in nature Any structure will collapse if subjected to a sufficiently large event Design goal is to prevent small events from initiating large scale failures "disproportionate failure"

Nonlinear static procedure is also incorrect Impact factor of 2 is excessively conservative when nonlinear behavior is directly accounted for

Summary

2006 Higgins Paper - NASCC

- The same types of pushover techniques used in performance-based earthquake engineering can be used to more accurately characterize the risk of progressive collapse than standard linear procedures
- The procedure does not require sophisticated software
- It can not account for catenary action nonlinear dynamic analysis is required to evaluate this effect

SGH

2006 Higgins Paper - NASCC

Summary

- The "strong floor concept" can be used to economically provide collapse resistant structures without substantial cost or schedule premium
- The Devil is in the Details (connections)
- As an industry, we still do not have good understanding of the vulnerability of various types of connections to impact induced fracture

SGH

Simpson Gumpertz & Heger Inc.

2006 Higgins Paper - NASCC

Conclusions

- Steel framing has excellent ability to provide collapse resistance in structures
- The most common method of analysis used today is not adequate, but simple design approaches can be used to evaluate collapse resistance
- Collapse resistance can be provided with negligible increase in steel tonnage, cost or schedule.
- Connections are key
 - Ability of frame to provide collapse resistance
 - Relative cost of collapse resistance
- Testing of various connection technologies to demonstrate adequate robustness is urgently needed

SGH