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Abstract This paper explores the use of resolution as a meta-framework for developing
various, different deduction calculi. In this work the focus is on developing deduction cal-
culi for modal dynamic logics. Dynamic modal logics arePDL-like extended modal logics
which are closely related to description logics. We show howtableau systems, modal resolu-
tion systems and Rasiowa-Sikorski systems can be developedand studied by using standard
principles and methods of first-order theorem proving. The approach is based on the trans-
lation of reasoning problems in modal logic to first-order clausal form and using a suitable
refinement of resolution to construct and mimic derivationsof the desired proof method.
The inference rules of the calculus can then be read off from the clausal form. We show how
this approach can be used to generate new proof calculi and prove soundness, completeness
and decidability results. This slightly unusual approach allows us to gain new insights and
results for familiar and less familiar logics, for different proof methods, and compare them
not only theoretically but also empirically in a uniform framework.

Keywords deduction calculus synthesis· resolution· tableaux· dual resolution· dual
tableaux· modal resolution· decidability· modal logic

1 Introduction

In this paper we discuss and extend an approach of developingtableaux calculi for modal
logics that has been suggested and followed in our previous work [10, 19, 25, 26, 28, 46, 48].
Although resolution calculi apparently operate considerably differently from tableau calculi,
we have shown that it is possible to linearly simulate many forms of modal logic or descrip-
tion logic tableau calculi with standard techniques of first-order resolution theorem proving.
In [26] we have shown how derivations and search in standard tableau algorithms of the
description logicA L C can be linearly simulated by resolution. This corresponds to lo-
cal satisfiability testing in the basic multi-modal logicK(m). Using redundancy elimination
techniques and a blocking rule we have shown in [25] how to mimic and strengthen stan-
dard tableau algorithms forA L C with respect to non-empty TBoxes. This corresponds to
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local satisfiability in multi-modal logicK(m) with respect to a background theory of modal
logic formulae (that is, a set of non-logical axioms or global assumptions). In [28] details
can be found of how to simulate derivations in the prefixed single-step tableau calculi of
Massacci [32]. These simulation results show that it is possible to use first-order resolution
in a way that it closely simulates modal logic and description logic tableau procedures. The
close connection exhibited in these papers between tableauand a certain instance of res-
olution is exploited in [10] in order to develop a tableau calculus for a logic that has not
been considered before. The logic considered was the dynamic modal logicK(m)(∧,∨,` ).
Dynamic modal logics arePDL-like modal logics in which the parameters of the modal
operators (constructors) can be relational formulae, which are interpreted as actions or pro-
grams inPDL, and are closely related to description logics [47].K(m)(∧,∨,` ) is the multi-
modal logic defined over frames in which the relations are closed under intersection, union
and converse. The logic corresponds to the description logic A L C in which conjunction,
disjunction and converse of roles are allowed. In [10] we have shown how a tableau cal-
culus can essentially be ‘read off’ from the clausal form of the translation of formulae in
K(m)(∧,∨,` ). In [46, 48] we use resolution methods to develop a new translation mapping
(called the axiomatic translation) of traditional style modal logics. This is then used to derive
tableau inference rules, resulting in tableau calculi based on propagation rules rather than
structural rules.

It is this ‘develop via first-order resolution’approach which we explore and extend in
this paper. We consider in more detail how tableau calculi can be developed for modal
logics via a suitable translation to first-order logic and resolution. However we also show
that the approach can be used to develop other kinds of deduction methods. In particular, we
show how the approach can be extended to develop Rasiowa-Sikorski systems. These are
tableau-style calculi for testing the validity of formulae[30, 38]. In addition, we consider
the development of modal resolution systems [1, 13, 15] which operate directly on modal
logic formulae.

We show that all three types of calculi (tableau, Rasiowa-Sikorski, modal resolution) can
be obtained naturally via translation to first-order logic and standard techniques of resolution
theorem proving. Key to the ‘develop via first-order resolution’ approach are three aspects:

1. An effective, sound and complete translation to first-order logic that retains enough in-
formation about the input formula of the source logic so thatthe inference rules can be
read off from the clausal form.

2. A refinement of first-order resolution which performs inferences exactly like the kind of
system we want to develop.

3. If needed, partial pre-saturation and purification of thecharacteristic clauses.

The form and property of the calculus one obtains depends very much on all three aspects
and small modifications result in different variations of calculi and also different styles of
calculi.

In this paper we focus on the development ofground semantic calculi. By this we mean
calculi which operate on labelled modal formulae. For each operator in the logic there is
a decomposition rule which basically ‘breaks down’ formulae into less complex formulae
on the basis of the semantics of the top-level operator in oneof the premises. The labels
are given by constants (or ground Skolem terms) which represent states in the underlying
Kripke model. Currently, ground semantic tableau calculi appear to be the preferred style
of tableau calculus in the area, and many modal and description logic theorem provers are
based on ground semantic calculi.
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In order for the resolution inference steps to be translatable back into inference steps
on modal formulae we need to use a translation to first-order logic that allows us to relate
clauses back to modal formulae. This can be achieved by translation mappings combined
with structural transformation. Structural transformation is a standard techniques in auto-
mated reasoning which introduces new predicate symbols anddefinitions. The cited previous
work shows that ground semantic tableau calculi can be simulated by a structural transfor-
mation into range-restricted clauses in combination with hyperresolution. A clause is range-
restricted if all variables of the clause occur in the negative literals of that clause. Hyper-
resolution on range-restricted clauses has the property that all positive premises are ground
clauses and all conclusions are ground clauses. This is precisely the property which, when
using a structural transformation, allows us to interpret the negative, non-ground premise
as an inference ruleI of the ground calculus. The positive, ground premises of a hyper-
resolution inference step represent then the premises of the rule I , and the conclusions
represent the conclusions of the rule. Combined with splitting, hyperresolution allows us to
simulate and develop ground semantic tableau calculi. We discuss how dual hyperresolution
with splitting allows us to simulate and develop ground semantic Rasiowa-Sikorski calculi.
Furthermore, we see how hyperresolution without a splitting rule produces modal resolution
calculi.

To illustrate the approach we focus on the development of calculi for the dynamic modal
logic K(m)(∧,∨,` ,↿). In K(m)(∧,∨,` ,↿) the additional relational operators are conjunc-
tion, disjunction, converse and domain restriction. This logic was chosen because when
this work was undertaken for [43], which is the short versionof the present paper, it has
not been considered before in the literature and no deduction calculi had been described for
it. K(m)(∧,∨,` ,↿) is subsumed by Peirce logic, the logical version of Peirce algebras [6],
for which tableau calculi are defined in [35, 49]. However, the relational disjunction opera-
tor and the domain restriction operator ofK(m)(∧,∨,` ,↿) are not explicit operators in Peirce
logic. This means there are no tableau rules for these operators in the existing tableau calculi
for Peirce logic. Although sound rules can be easily defined for these operators, on the one
hand, the logic lacks the symmetry that Peirce logic has because of the absence of relational
negation inK(m)(∧,∨,` ,↿). On the other hand,K(m)(∧,∨,` ,↿) is decidable and Peirce logic
is not decidable. Since this work was undertaken, tableau decision procedures have been
developed in [50, 51] for description logics which subsumeK(m)(∧,∨,` ,↿). Since the logic
K(m)(∧,∨,` ,↿) is simple and has not been studied explicitly before, it is nevertheless still
a good candidate for illustrating and exploring the possibilities of synthesising deduction
calculi as an application of resolution.

This paper is of theoretical and practical interest, not only to researchers interested in
modal and description logics, but also anybody interested in proof methods, decision pro-
cedures, the relationship between proof methods and developing such methods, and imple-
menting theorem provers. Novel contributions are the following.

– The simulation of Rasiowa-Sikorski and modal resolution methods by first-order reso-
lution.

– The interpretation of tableau, Rasiowa-Sikorski and modalresolution methods as spe-
cialisations (reductions) of first-order resolution.

– The use of a non-standard approach to developing proof methods and implemented sys-
tems.

– The application of resolution not merely as an automated reasoning procedure, but as a
meta-framework within which it is possible to develop tableau calculi and other styles
of calculi, decision procedures and even implemented provers.
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– A uniform methodology for comparing different calculi, both with respect to theoretical
and practical aspects.

– The transfer of refinements of resolution, such as orderings, to other calculi resulting
in more efficient inference systems. In earlier work [25] we showed that a technique
called absorption [23] used to limit the search space for globally satisfiable formulae in
description logic tableau systems can be strengthened withhyperresolution.

– We show that the notion of redundancy, which is crucial for resolution but virtually
absent in other calculi, carries over to other calculi, resulting in stronger results and
improved inference systems. Similar to resolution, we define redundant formulae and
redundant applications of inference steps in other calculi. In addition, we introduce a
new notion ofredundant rules of inference.

– The characterisation of the relationship between different deduction calculi and proce-
dures in terms of the notions of simulation and reduction. Iftwo calculi or procedures
are correlated by a step-wise simulation and reduction relationship this defines an exact
correspondence and makes clear that derivations in these two calculi are essentially the
same, i.e. their behaviour is the same. As a consequence we may apply all available
knowledge of one calculus (procedure) to infer properties of the corresponding other
calculus (procedure). Of greater significance is that the method allows us to develop
new and improved calculi.

– For the logics under consideration the methodology allows us not only to read off the
inference rules of a calculus, it also allows us to determinea priori the maximum number
of times a particular inference rule of the new calculus would need to be applied in a
derivation for a given input formula. By inspecting the clausal set of the translation it
is possible to say which inference rules are not needed for a given formula, and it is
possible to tell the maximum number of applications of any inference rule.

– It is possible to tailor different styles of deduction approaches for different logics.

The rest of the paper is structured as follows. In the next section we recall standard
definitions of resolution-based theorem proving. Section 3discusses dynamic modal logics
and definesK(m)(∧,∨,` ,↿). Section 4 introduces and analyses the simulation and reduc-
tion mappings which are used to describe the relationship between different deduction ap-
proaches. It also defines the conversion to clausal form thatwe use. Section 5 defines the
notions of simulation and reduction which allow us to transfer soundness, completeness and
termination of hyperresolution to the obtained calculi. InSections 6–8 we describe, in turn,
how ground semantic tableau calculi, ground semantic Rasiowa-Sikorski calculi, and ground
modal resolution calculi can be developed in a systematic way via first-order resolution. The
final section discusses the significance and some consequences of the method and mentions
future work.

Throughout the paper we use the notation and terminology of our previous papers, see,
for instance, the surveys [45, 47]. The paper is an extended and improved version of [43].

2 First-Order Resolution

The resolution calculus operates on sets of clauses. Clauses are quantifier free disjunctions
of literals which may contain function symbols. The variables are implicitly assumed to be
universally quantified. We assume that disjunction is a commutative and associative opera-
tor. This means that clauses are regarded as multisets of literals rather than sets of literals.

Theorem 1 There is a linear reductionCls of any first-order formula to clause logic such
that ϕ is valid in first-order logic, that is|= ϕ , iff Cls(¬ϕ) is unsatisfiable.
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This says that any first-order formula can be transformed efficiently into a satisfiability
equivalent set of clauses. The clausal form is obtained by transformation to conjunctive nor-
mal form, Skolemisation and crucially involves structuraltransformation which introduces
new predicate symbols and definitions. Since resolution is arefutation calculus, instead of
proving theoremhood, resolution attempts to refute the negation of a given formula.

The basic (unrefined) resolution calculus consists of two inference rules, the resolution
rule and the factoring rule, and no axioms. For propositional logic the resolution rule is just
the operation that infers a clauseC∨ D from two clausesC∨ A andD ∨ ¬A. The factoring
rule is a contraction rule, that is, it is a form of simplification which eliminates multiple
copies of the same literal from one clause, that is, it infersC∨ A from C∨ A∨ A. These two
rules provide a sound and refutationally complete calculusfor propositional logic and sets of
ground clauses. We obtain a sound and refutationally complete inference system for full first-
order logic and clause logic, if we augment the rules with unification. This calculus, thebasic
resolution calculus[42], is sound and complete for full first-order logic and clause logic. It is
however very prolific in generating new clauses. This was noticed already in the very early
days of the development of first-order resolution methods. The first papers, by Robinson
and others, on refinements of resolution appeared in the sameyear that Robinson published
his famous paper which introduced resolution. Since the mid-sixties the advances have been
impressive. The current generation of theorem provers, which includeSPASS[53], E [52]
andVAMPIRE [40] (in order of creation), are based on the modern framework of saturation-
based resolution and superposition. In the following, whenwe refer toresolutionwe mean
this framework [3, 36].

The main ingredients of the framework are refinements of the inference rules which re-
strict their applicability and a general notion of redundancy. Refinements of inference rules
are defined in terms of two parameters: an ordering≻ and a selection functionS. The idea
is that inferences do not need to be performed (but can), unless they are on literals maxi-
mal under the given ordering or on (negative) literals selected by the selection functionS.
The selection function can override the ordering. That is, if a literal is selected then it is the
preferred candidate for an inference step even though theremay be ‘larger’ literals in the
clause. The ordering and selection function are used to limit the number of possible infer-
ences. It is clear that, in general, if we can reduce the number of possible inferences without
losing completeness then a refutation proof can be found more quickly as the search space
for the proof is reduced. There is a general completeness proof which requires only weak
conditions for the admissibility of orderings and selection functions [3].

Simplification and deletion rules are important regardlessof the style of deduction one
uses. In the resolution framework these are based on a general notion of redundancy, which
is based on considerations of the model construction which is at the centre of the com-
pleteness proof. Standard simplification rules like elimination of duplicate literals within a
clause, tautology deletion, subsumption deletion (forward and backward subsumption dele-
tion), condensing, etc, are instances of this notion [3].

LetRred
sp be the resolution calculus defined by the rules of Figure 1. (The meaning of ‘red’

in the notation is ‘with redundancy’ and the meaning of ‘sp’ is ‘with splitting’. ⊎ denotes
disjoint union.) In our presentation we distinguish four kinds of rules. The Deduce rules are
the ordered resolution and positive factoring rules. The ordering≻ is a parameter which can
be any admissible ordering andS is any selection function of negative literals. The Delete
and Simplify rules are deletion and replacement rules compatible with the general notion
of redundancy [3]. Essentially, a ground clause is redundant with respect to a setN and the
ordering≻, if it follows from smaller instances of clauses inN. A non-ground clause is
redundant inN if all its ground instances are redundant inN. Testing for redundancy in its
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Deduce:
N

N∪{C}
if C is a factor or resolvent of premises inN.

Delete:
N⊎{C}

N
if C is redundant with respect toN.

Simplify:
N

(N\M)∪M′
if (N\M)∪M′ is satisfiable whenN is satisfiable and every
clause inM is redundant with respect to(N\M)∪M′ .

Split:
N⊎{C∨ D}

N∪{C} | N∪{D}
if C andD are variable-disjoint and both are positive.

Resolvents and factors are computed with these rules.

Ordered resolution:
C ∨ A ¬B∨ D

(C∨ D)σ

provided (i)σ is the most general unifier ofA andB, (ii) no literal is selected inC, andAσ is strictly ≻-
maximal with respect toCσ , and (iii) ¬B is either selected, or¬Bσ is maximal with respect toDσ and no
literal is selected inD. The left (right) premise is called thepositive (negative) premise.

Ordered factoring:
C∨ A∨ B
(C∨ A)σ

provided (i)σ is the most general unifier ofA andB, and (ii) no literal is selected inC andAσ is ≻-maximal
with respect toCσ .

Fig. 1 The resolution calculusRred
sp .

general form is an expensive operation; in first-order logicgeneral redundancy elimination is
undecidable. For this reason one does not find theorem provers that implement redundancy
elimination in full generality, instead only effectively computable instances of the Delete
and Simplify rules are implemented.

The Split rule is a rule familiar from DPLL algorithms and tableau calculi. Instead of
refutingN∪{C ∨ D} one refutes bothN∪{C} andN∪{D} (alternatively, it is possible to
use the complement splitting rule, which means that insteadof refuting N∪{C ∨ D} one
refutes bothN∪{C} andN∪{¬C,D}). The splitting rule is don’t know non-deterministic
and usually requires backtracking. However, in the resolution framework an alternative to
explicit splitting is splitting through new propositionalvariables [9, 39] implemented in the
theorem proverVAMPIRE [40] or the generalisation called separation in [44].

The restriction that only positive clauses are split is not essential for the soundness and
(refutational) completeness results below. The restriction is however important for our ap-
plication.

The calculus without the splitting rule is denoted byR
red andR denotes the calculus

with just the Deduce rules.

Theorem 2 (Bachmair et al [3, 4])Rred
sp , R

red and R are sound and complete refutation
systems for clause sets.

The(ordered) hyperresolution calculusis based on maximal selection of negative liter-
als. This means the selection function selects exactly the set of all negative literals in any
non-positive clause. LetOH

red
sp be the calculus based on maximal selection and an order-

ing ≻, where the Deduce rules are given by the rules in Figure 2. This means the rules are
the hyperresolution rule, positive factoring, redundancyelimination and splitting. Similar
as above,OH

red denotes the calculusOH
red
sp but without the splitting rule,OH denotes the

calculus just consisting of Deduce rules, andOHsp is OH with splitting. For completeness an
ordering refinement is optional. We use the notationH

red
sp , H

red, H andHsp for the unordered
versions.
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Ordered hyperresolution:

C1∨A1 . . . Cn∨An ¬B1∨ . . .∨¬Bn∨D
(C1∨ . . .∨Cn∨D)σ

provided (i) σ is the most general unifier such thatAiσ = Biσ for every i, 1 ≤ i ≤ n, (ii) Aiσ is strictly
≻-maximal with respect toCiσ , and theCi are positive clauses, for everyi, 1≤ i ≤ n, and (iii) for everyi,
1 ≤ i ≤ n, ¬Bi is selected andD is a positive clause. The rightmost premise in the rule is referred to as the
negative premiseand all other premises are referred to aspositive premises.

Ordered factoring:
C∨ A∨ B
(C∨ A)σ

provided (i)σ is the most general unifier ofA andB, and (ii)C is positive andAσ is ≻-maximal with respect
to Cσ .

Fig. 2 The Deduce rules of ordered hyperresolution.

Corollary 1 OH
red
sp , OH

red, OHsp, OH, H
red
sp , H

red, Hsp andH are sound and complete refu-
tation systems for clause sets.

3 Dynamic Modal Logics

A dynamic modal logic is an extension of the multi-modal logic K(m) in which the modal
operators are parameterised by relational formulae [47].

Given countably many propositional variables denoted byp j , and countably many rela-
tional variables, denoted byr i , dynamic modal formulaeandrelational formulaeare defined
inductively as follows. Every propositional variable is a dynamic modal formula and every
relational variable is a relational formula. Ifφ , ψ are dynamic modal formulae andα , β are
relational formulae, then

⊥, ¬φ , φ ∧ ψ , and[α ]φ

are dynamic modal formulae, and

α ∧ β , α ∨ β , α` andα↿φ

are relational formulae. InK(m) the only relational formulae are relational variables.
Thus the language of dynamic modal logics consists of two syntactic types: dynamic

modal formulae and relational formulae. The logical connectives are (i) the connectives of
the basic multi-modal logicK(m) with the difference that the modal operators are indexed
with relational formulae, and (ii) a finite set of relationaloperators. A dynamic modal logic
with relational operators⋆1, . . . ,⋆k is denoted byK(m)(⋆1, . . . ,⋆k).

The semantics of a dynamic modal logic is defined in terms of frames. A frame is a tuple
(W,R) of a non-empty setW (of worlds) and a mappingR from relational formulae to binary
relations overW. A model is given by a tripleM = (W,R,v), where(W,R) is a frame andv
is a mapping from propositional variables to subsets ofW satisfying the conditions (Rα is
the preferred notation forR(α)):

M ,x 6|= ⊥

M ,x |= p iff x∈ v(p),

M ,x |= ¬φ iff M ,x 6|= φ ,

M ,x |= φ ∧ ψ iff both M ,x |= φ andM ,x |= ψ ,

M ,x |= [α ]φ iff (x,y) ∈ Rα impliesM ,y |= φ , for anyy∈W.
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In addition, the following conditions are satisfied:

Rα∧β = Rα ∩Rβ ,

Rα∨β = Rα ∪Rβ ,

Rα` = R`
α ,

Rα↿φ = {(x,y) |(x,y)∈ Rα ∧ M ,x |= φ}.

R` denotes the converse (or inverse) of a relationR. We can define the range restriction
operator byα⇂φ =def (α`↿φ)`.

If M ,x |= ϕ holds thenϕ is (locally) true at x in M andM (locally) satisfiesϕ . A
modal formulaϕ is (locally) satisfiableiff there exists a modelM and a worldx in M such
thatM ,x |= ϕ . A modal formula is(locally) valid iff it is (locally) satisfiable in every world
of all models.

The following result is a consequence of decidability results in [26] and also of the
decidability of the two-variable fragment of first-order logic.

Theorem 3 Let L be a dynamic modal logic with any subset of{∧,∨,` ,↿,⇂} as relational
operators. The local (and global) satisfiability problem inL is decidable.

It follows from [26, 33] that the result remains true when we allow negation as a relational
operator [26], or relational composition and identity [33]. However, adding both relational
negation and relational composition leads to undecidability. More precisely, any dynamic
modal logic with relational conjunction, relational negation and (negative occurrences of)
composition is undecidable [45, 47].

For efficiency reasons and in order to be able to have better control over the resolu-
tion inferences performed on the clausal form, we use astructural version of the relational
translationof dynamic modal logics into first-order logic. The translation is similar to the
one used in [46, 48]; other structural translations have been used in [10, 25, 26, 28], for
instance.

Throughout the paper, we assume that all occurrences of double negation are eliminated
from modal formulae. For any formulaF , let ∼F denoteG if F = ¬G, and¬F otherwise.
Thus,∼F is the complement ofF .

Let Def be the transformation of dynamic modal formulae and relational formulae which
is defined as follows.

Def(ψ) =def ∀x(Qψ(x) → π(ψ ,x))

∧ ∀x(Q∼ψ(x) → π(∼ψ ,x))

∧ ∀x(Qψ(x) →¬Q∼ψ(x))

Def(α) =def ∀xy(Rα(x,y)→ π(α ,x,y))

∧ ∀xy(π ′(α ,x,y)→ Rα(x,y))

Def(ψ) is thedefinitionof Qψ , which is a new predicate symbol uniquely associated with
the modal formulaψ . Similarly, Def(α) is the definition of the new symbolRα uniquely
associated with the relational formulaα . π andπ ′ are defined in Figure 3. Let Def(X) =def

{Def(F) |F ∈ X}, if X denotes a set of modal and relational formulae.
By Sf(F) we denote the set of all modal and relational subformulae ofF .
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π(⊥,x) = ⊥,

π(¬⊥,x) = ¬Q⊥(x),

π(p,x) = ⊤,

π(¬p,x) = ¬Qp(x),

π(ψ ∧ φ ,x) = Qψ (x) ∧ Qφ (x),

π(¬(ψ ∧ φ),x) = Q∼ψ (x) ∨ Q∼φ (x),

π([α ]ψ ,x) = ∀z(Rα (x,z) → Qψ (z)),

π(¬[α ]ψ ,x) = ∃z(Rα (x,z) ∧ Q∼ψ (z)),

π(r,x,y) = π ′(r,x,y) = Rr(x,y),

π(α ∧ β ,x,y) = π ′(α ∧ β ,x,y) = Rα (x,y) ∧ Rβ (x,y),

π(α ∨ β ,x,y) = π ′(α ∨ β ,x,y) = Rα (x,y) ∨ Rβ (x,y),

π(α`,x,y) = π ′(α`,x,y) = Rα(y,x),

π(α↿φ ,x,y) = Rα (x,y) ∧ Qφ (x),

π ′(α↿φ ,x,y) = Rα (x,y) ∧ ¬Q∼φ (x).

In π([α ]ψ ,x) andπ(¬[α ]ψ ,x), zdenotes any variable distinct fromx.

Fig. 3 Definition of the translation mappingsπ andπ ′.

Theorem 4 Let L be a dynamic modal logic defined over the operators in{∧,∨,` ,↿}, and
let ϕ be any modal formula. Suppose N is the set of clauses obtainedfromϕ ′ =def∃xQϕ(x)∧
∧

Def(Sf(ϕ)) by transformation into conjunctive normal form, inner Skolemisation, and
clausifying. Then:

1. Each clause in N is either a unit clause Q(a), for some Skolem constant a, or it is an
instance of a definitional clause given in Figure 4.

2. ϕ is locally satisfiable in L iffϕ ′ is first-order satisfiable iff N is first-order satisfiable.
3. N is computable in linear time.

The markings by+ of some of the literals in Figure 4 can be ignored for now; theyare
explained in Section 6.

In line with [46, 48] the first clause in Figure 4 is called anegative shortcut clause. In-
tuitively, shortcut clauses or shortcut formulae link a formula to its negation. The remaining
clauses are said to bedefinitional clauses associated with the modal subformulaθ in the
index of the first literal.

For efficiency reasons it is sensible to take the polarities of all the occurrences of a
subformula in the input problem into account in the specification of Def. We do not do
this here because the methodology considers all possible clausal forms that can be obtained
for the logic under consideration, so that all possible inference rules for the logic can be
extracted from the clausal forms.

4 Simulation and Reduction

In this section letL1 andL2 denote two logics (not necessarily modal logics). SupposeΠ is
a sound and complete translation of (sets of) formulae inL1 to (sets of) formulae inL2, that
is,N |=1 ϕ iff Π (N) |=2 Π (ϕ) for any setN∪{ϕ} of formulae inL1. In addition we assume
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Subformulaθ Definitional clauses associated withθ
(shortcut) ¬Q¬ψ (x)+ ∨ ¬Qψ (x)+

⊥ ¬Q⊥(x)+

ψ ∧ φ ¬Qψ∧φ (x)+ ∨ Qψ (x)
¬Qψ∧φ (x)+ ∨ Qφ (x)

¬(ψ ∧ φ) ¬Q¬(ψ∧φ )(x)
+ ∨ Q∼ψ (x) ∨ Q∼φ (x)

[α ]ψ ¬Q[α]ψ (x)+ ∨ ¬Rα (x,y)+ ∨ Qψ (y)
¬[α ]ψ ¬Q¬[α]ψ (x)+ ∨ Rα (x, f¬[α]ψ (x))

¬Q¬[α]ψ (x)+ ∨ Q∼ψ ( f¬[α]ψ (x))
α ∧ β ¬Rα∧β (x,y)+ ∨ Rα(x,y)

¬Rα∧β (x,y)+ ∨ Rβ (x,y)
Rα∧β (x,y) ∨ ¬Rα(x,y)+ ∨ ¬Rβ (x,y)+

α ∨ β ¬Rα∨β (x,y)+ ∨ Rα(x,y) ∨ Rβ (x,y)
Rα∨β (x,y) ∨ ¬Rα(x,y)+

Rα∨β (x,y) ∨ ¬Rβ (x,y)+

α` ¬Rα` (x,y)+ ∨ Rα(y,x)
Rα`(x,y) ∨ ¬Rα(y,x)+

α↿φ ¬Rα↿φ (x,y)+ ∨ Rα (x,y)
¬Rα↿φ (x,y)+ ∨ Qφ (x)

Rα↿φ (x,y) ∨ ¬Rα(x,y)+ ∨ Q∼φ (x)

Fig. 4 Definitional clausal forms forK(m)(∧,∨,` ,↿).

thatΠ is computable in linear or polynomial time. LetC1 be a calculus, or proof procedure,
for L1, and letC2 be a calculus, or proof procedure, forL2.

In the previous version of this paper [43] the transfer of soundness and completeness was
based on the notion of p-simulation [8]. Formally,C2 p-simulates(proofs in) C1 (with respect
to Π ) iff the following condition holds: There is a functiong computable in polynomial time
which maps any proof (or refutation) inC1 to a proof (or refutation) inC2. If g maps a proof
to a refutation, or a refutation to a proof, we say thatC2 dually p-simulatesC1.

In the next theorem and subsequently, when we use the notions‘complete’ or ‘com-
pleteness’ in conjunction with a refutational calculus we mean ‘refutationally complete’ or
‘refutational completeness’.

Theorem 5 SupposeC2 (dually) p-simulatesC1 (with respect toΠ ). Then

1. If C1 is complete thenC2 is complete.
2. If C2 is sound thenC1 is sound.

Proof SupposeC1 andC2 are both calculi (procedures) for proving validity. AssumeN |=1

ϕ . Then by completeness ofC1 we have thatN ⊢1 ϕ . This impliesΠ (N) ⊢2 Π (ϕ), sinceC2

p-simulatesC1 with respect toΠ , andΠ is sound and complete by assumption. This proves
completeness. For soundness, assumeN ⊢1 ϕ . This impliesΠ (N) ⊢2 Π (ϕ) as above, and
then by soundness ofC2 we getΠ (N) |=2 Π (ϕ), which impliesN |=1 ϕ . The cases where
one ofC1 andC2, or both, are refutation calculi (procedures) are simple corollaries. ⊓⊔

Corollary 2 If C1 andC2 p-simulate each other (with respect toΠ ), thenC1 is sound and
(refutationally) complete iff so isC2.

The notion of p-simulation is sufficient for obtaining soundness and (refutational) com-
pleteness for the derived calculi from the soundness and refutational completeness of hyper-
resolution. As said, this was done in [43]. It is however moreilluminating to use the stronger
notions ofstep-wise simulation[11] andreduction. These notions can be used to correlate
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any derivations in different calculi, not just successful derivations that are proofs. We need
these notions because our aim is to simulate the search performed by different procedures,
especially decision procedures. This means that all inference steps need to be simulated; not
just those leading to proofs.

By definition, C2 step-wise simulatesC1 (with respect toΠ ) iff there is ann and a
functiongmapping every inference step inC1 to a sequence of at mostn inference steps inC2

which derive the corresponding conclusion. More precisely, if Ni andNi+1 are consecutive
sets in anyC1-derivation thenΠ (Ni+1) can be obtained by at mostn inference steps inC2

from Π (Ni). If rather than ‘N |=1 ϕ iff Π (N) |=2 Π (ϕ)’ we have that ‘N |=1 ϕ iff Π (N) ∧
¬Π (ϕ) is unsatisfiable inL2’, then we sayC2 step-wise simulatesC1 (with respect toΠ ) in
a dual manner(or C2 dually step-wise simulatesC1).

The definition says that, ifC2 step-wise simulatesC1 every inference step inC1 can be
mimicked by a bounded number of inference steps inC2 which produce the corresponding
conclusion. Notice that a simulation in calculusC2 may use more inference steps.

Theorem 6 SupposeC2 (dually) step-wise simulatesC1 (with respect toΠ ). Then

1. If C1 is complete thenC2 is complete.
2. If C2 is sound thenC1 is sound.

The proof is the same as for Theorem 5. Thus, like p-simulation mappings, step-wise
simulation mappings preserve soundness and (refutational) completeness. The more impor-
tant property for the present paper is the transferal of soundness to the simulated calculus
(the second property), because hyperresolution takes the role ofC2.

The notion of a reduction, or specialisation, is a mapping inthe other direction. For-
mally, we say a calculus or procedureC1 is a reduct(or specialisation) of C2 (with respect
to Π ) iff there is ann such that the inference steps in anyC2-derivation can be uniquely and
exhaustively grouped into macro inference steps of maximallengthn that correspond to in-
ference steps inC1. More precisely, any complete or closedC2-derivation can be partitioned
into (possibly interleaving) sequences of sets with length≤ n and there is a functionh which
maps each sequenceNi1, . . . ,Nim (wherem≤ n and i j < ik, if j < k) to one inference step
in C1 with corresponding premises and conclusions.n is the finite bound on the size of a
macro inference step. If rather than ‘N |=1 ϕ iff Π (N) |=2 Π (ϕ)’ we have that ‘N |=1 ϕ iff
Π (N) ∧ ¬Π (ϕ) is unsatisfiable inL2’, then we sayC2 is adual reductof C1 (with respect
to Π ).

Intuitively, an inference step in the reductC1 captures a combination of smaller inference
steps inC2. That is, we can think of the reduct using macro inference steps (or hyperinfer-
ence steps). Inference steps inC2 are finer, while inference steps inC1 are coarser. The
reduct can therefore be viewed as a specialisation of the other calculus.

Theorem 7 SupposeC1 is a (dual) reduct ofC2 (with respect toΠ ). Then

1. If C2 is complete thenC1 is complete.
2. If C1 is sound thenC2 is sound.

Proof Similar to the proof of Theorem 5. ⊓⊔

The preservation of completeness by the reduction mapping is important for our method-
ology.

If C2 (dually) step-wise simulatesC1 (with respect toΠ ) and the inverse of the step-wise
simulation function is a (dual) reduction (with respect toΠ ) then we say thatC1 andC2

(dually) correspondto each other (with respect toΠ ).
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Corollary 3 SupposeC1 and C2 (dually) correspond to each other (with respect toΠ ). If
C2 is sound and complete, thenC1 is sound and complete.

This result is also true for calculi that p-simulate each other. We can prove:

Lemma 1 1. If C2 (dually) step-wise simulatesC1 thenC2 (dually) p-simulatesC1.
2. If C1 is a (dual) reduct ofC2 thenC1 (dually) p-simulatesC2.

The converse is not true in either case, because the p-simulation functions map proofs to
proofs whereas the other two notions map derivations to derivations (i.e. not just derivations
which are proofs). Theorems 6 and 7 are easy consequences of this lemma and Theorem 5.

Lemma 2 If C1 is a (dual) reduct ofC2 (with respect toΠ ) and n in the definition of the
reduction mapping is 1 thenC1 (dually) step-wise simulatesC2 (with respect toΠ ).

We use the next theorem to transfer decidability results to the derived calculi.

Theorem 8 If C1 andC2 (dually) correspond to each other andC2 is a decision procedure,
thenC1 is a decision procedure.

5 Simulating Tableau Systems

Numerous tableau methods have been developed, studied and also implemented for tradi-
tional modal logics, see, for instance, [7, 20, 32]. Tableaumethods for some dynamic modal
logics or logics equivalent to dynamic modal logics can be found in the description logic
literature, see, for instance, [2, 33] and also here [10, 35,49].

In this section, let us first look at how resolution can step-wise simulate ground semantic
tableau for local satisfiability in the basic multi-modal logic K(m) and how tableau can be
viewed as reductions of hyperresolution.

A ground semantic tableau calculus forK(m) is given by the rules in Figure 5. There are
slight differences to similar calculi found in the literature (see, for instance [12, 20]). The
rule (cl) is the closure rule and (contr) is the contraction rule. The remaining inference rules
are called tableauexpansion rules. Often standard definitions do not include contraction
rules. Because we do not assume that conjunction is an idempotent operator, our calculus
does include a contraction rule. Often only one rule for conjunctions and negated box for-
mulae is included in calculi, but for reasons which become obvious, once we look at the
simulation by resolution, we choose the given definitions. Both are insignificant variations.
Observe that instead of introducing constants in the(¬�i) j rules, we can equally well use
Skolem terms.

A tableau derivationis a finitely branching tree whose nodes are sets of labelled for-
mulae. Given thatϕ is a formula to be tested for local satisfiability the root node is the set
{a : ϕ}, wherea denotes a constant. Successor nodes are constructed in accordance with a
set of inference rules. Inference rules have the general form X/X1| . . . |Xn, whereX is the set
of premises and theXi are sets of conclusions. An inference rule is applicable to aselected
labelled formulaF in a node of the tableau, ifF , together with other formulae in the node,
are simultaneous instantiations of all the premises of the rule. Thenn successor nodes are
created which contain the formulae of the current node and the appropriate instances ofXi .

As usual it is assumed that in a derivation no rule is applied twice to the same set of
instances of premises of a rule. We also stipulate that no inference step is performed that
yields a formula already on the current branch.
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(cl)
s : ψ , s : ¬ψ

⊥
(⊥)

s : ⊥
⊥

(∧)1
s : ψ ∧ φ

s : ψ (∧)2
s : ψ ∧ φ

s : φ (¬∧)
s : ¬(ψ ∧ φ)

s : ∼ψ | s : ∼φ

(¬�i)1
s : ¬�iψ
(s,t) : Ri

(¬�i)2
s : ¬�iψ
t : ∼ψ (�i)

s : �iψ , (s,t) : Ri

t : ψ

(contr)
s : ¬(ψ ∧ ψ)

s : ∼ψ

The side conditions of the(¬�i) j rules (j ∈ {1,2}) are thatt is a constant uniquely associated with the
premises : ¬�iψ .

Fig. 5 Tableau calculus forK(m).

Recall thatHsp denotes the unordered hyperresolution calculus with splitting. From now
on we assume that factoring, splitting, and the hyperresolution rule are applied in this order.
This is an important assumption for the simulations and reductions. We also assume that
no inference step is performed that yields a conclusion already present in the current set of
clauses.

Now consider the clausal form of the structural translationof ϕ as defined in Theorem 4,
that is, Figure 4. In particular, supposeN is the clausal form of∃xQϕ(x) ∧

∧
Def(Sf(ϕ)).

The definitional clauses relevant for the basic modal logicK(m) are in the top-half of the
table in Figure 4. Notice that for each of these definitional clauses there is one corresponding
tableau expansion or closure rule in Figure 5, and vice versa. For the contraction rule there
is however no corresponding definitional clause.

The connection between the tableau calculus andHsp is the following. Every applica-
tion of a tableau rule can be step-wise simulated by one or twoHsp-inference steps. Ifϕ
is the input formula, the derivation inHsp starts with an inference with the (only positive)
clauseQϕ(a) (see Theorem 4). This corresponds to the root of the tableau derivation given
by {a : ϕ}. In the tableau derivation we pick a formulas:ψ from a branch and attempt to
apply one of the inference rules to it. If the branch containsa formulas : ∼ψ the closure
rule is applicable and yields⊥. In Hsp this derivation corresponds to resolving the clauses
Qψ(s) andQ∼ψ(s) with the shortcut clause¬Q¬ψ(x)+ ∨ ¬Qψ(x)+ using one hyperresolu-
tion inference step. The resolvent is the empty clause⊥. In a similar fashion we can show
that possible applications of each of the other tableau expansion rules, except for the(¬∧)
rule, can be simulated by one hyperresolution inference step involving the appropriate defi-
nitional clause as negative premise. In the case of negated conjunction we need to follow a
hyperresolution inference step with the corresponding definitional clause by a splitting step.
An application of the contraction rule is simulated by one factoring step inHsp on the con-
clusion of an inference step with the definitional clauses for negated conjunctions of modal
formulae.

Lemma 3 Hsp on the structural transformation defined in Theorem 4 step-wise simulates
ground labelled tableau for local satisfiability in K(m) of Figure 5.

Proof By an inductive proof that shows we can map any tableau derivation to a correspond-
ing Hsp-derivation for the translated problem using an argument assketched above. ⊓⊔

To prove that the inverse of the step-wise simulation mapping is a reduction mapping we
need to show that all steps possible inHsp belong to a group of steps involved in simulating
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tableau steps. We can indeed show that there are noHsp-derivations that contain any steps
that have no counter-part in the corresponding tableau derivation. Therefore:

Lemma 4 The ground labelled tableau for local satisfiability in K(m) of Figure 5 is a reduct
of Hsp on the structural transformation defined in Theorem 4.

We can conclude that:

Theorem 9 There is a linear correspondence between the tableau calculus in Figure 5 and
Hsp on the structural transformation for local satisfiability in K(m).

This strengthens a result in [10]. Related (but different) simulation results have been
shown in [28] (see also [45]) for prefixed single-step tableau calculi ofK, andK extended
with the axiomsD, T andB. (The results are also true for multi-modalK(m) with D, T andB
modalities.) Using the axiomatic translation method [46, 48] the results can be strengthened
to prefixed single-step tableau calculi of other traditional modal logics.

6 Developing Tableau Systems forK(m)(∧,∨,` ,↿)

Let us now illustrate how the principles of the ‘develop via first-order resolution’ approach
can be applied to the dynamic modal logicK(m)(∧,∨,` ,↿).

We can prove the following:

Theorem 10 Let ϕ be an arbitrary K(m)(∧,∨,` ,↿)-formula and let N= Cls(∃xQϕ(x) ∧
∧

Def(Sf(ϕ))) be the clausal form of the structural transformation definedin Theorem 4.
Then:

1. AnyHsp-derivation from N terminates.
2. ϕ is locally unsatisfiable in K(m)(∧,∨,` ,↿) iff theHsp-saturation of N contains the empty

clause.

Proof Part 1 can be shown using an argument similar to the proof of Theorem 6.6 in [28]
and Theorem 7.7 in [10]. Part 2 is a consequence of Theorem 4 and Corollary 1. ⊓⊔

The definitional clauses in the input setN have the form as specified in Figure 4. The
literals selected by the selection function of the calculusHsp are marked with+. The only
other clause in an input set is a ground unit clause of the formQϕ(a), whereϕ is the dynamic
modal formula we want to test for satisfiability. Note thatQϕ (a) is the only positive clause
in N.

A crucial property is that the clauses inN are all range-restrictedclauses, that is, all
variables of a clause occur in the negative part of the clause.1 Hyperresolution on range-
restricted clauses has the property that all conclusions ofhyperresolution and factoring in-
ferences are ground clauses. Positive range-restricted clauses are always ground. This im-
plies that factoring and splitting inHsp are applied only to positiveground non-unitclauses.
Since factoring and splitting are applied before the hyperresolution rule, all non-unit ground
clauses are either factored and then split or just split, before they are used as premises in hy-
perresolution inference steps. This means that the positive premises of any hyperresolution
inference step inHsp are alwaysground unitclauses.

1 Range-restricted clauses and the range restriction operator are not related in any way.
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For the class of clauses we are working with, these ground unit clauses have the form
Qψ(s) or Rα(t,u), whereψ is some dynamic modal formula,α is some relational formula
ands, t,u are ground Skolem terms.Qψ(s) andRα(t,u) translate directly to the labelled for-
mulaes : ψ and(t,u) : α , where thes, t,u are now viewed as constants. We refer tos: ψ and
(t,u) : α as theformulae associatedwith Qψ(s) andRα(t,u). Every hyperresolution infer-
ence step inHsp involves one (or two) positive premisesC1(,C2) and a negative premiseD
from Figure 4. The positive premisesC1 andC2 are ground unit clauses of the formQψ(s)
or Rα(t,u). Following from what we have just said, the conclusion is a positive clause again,
and it is either a ground unit clause of the same form, or it is apositive clause of ground
literals of that form which can be factored or split. We also observe that, sinceQϕ(a) is the
only positive clause inN, the first inference step in anyHsp-derivation is performed with this
clause.

Now it does not take much to see how we can write down the tableau rules which per-
form exactly theHsp-inference steps just described. Take a definitional clauseC = ¬A1[ ∨
¬A2] ∨ D, whereA1,A2 denote atoms andD is the largest positive subclause ofC. If C is a
negative clause we letD =⊥. C contains at most two variables. Substitute these withsandt,
that is, apply the substitutionσ = {x/s,y/t} to C. Now writeCσ as the ruleF1(, F2)/G,
whereF1 andF2 are the labelled formulae associated withA1σ andA2σ . Similarly D be-
comesG, but if G is not a unit clause then disjunction is replaced by|. For example, the
definitional clause for[α ]ψ ,

¬Q[α ]ψ(x)+ ∨ ¬Rα(x,y)+ ∨ Qψ(y), is turned into the rule
s : [α ]ψ , (s, t) : α

t : ψ .

With the exception of the contraction rule, all rules in Figure 6 can be obtained in this
way from Figure 4. The contraction rules are the rules corresponding to factoring steps.
It is not difficult to see that factoring is applicable only tohyperresolvents of an inference
involving either the definitional clauses for negated conjunctions of modal formulae or those
for positive occurrences of disjunctions of relational formulae.

Let Tab be the tableau calculus forK(m)(∧,∨,` ,↿) given by the rules of Figure 4. The
rules for dynamic modal formulae are the same as forK(m). The rules for relational formulae
include two kinds of rules for every operator: an elimination rule and an introduction rule.
The introduction rules are indicated byI .

Lemma 5 Tab is step-wise simulated byHsp with respect to the structural transformation
defined in Theorem 4 and is a reduction of it.

Proof For step-wise simulation we need to define a functiong that maps every inference
step in aTab-derivation to a sequence ofHsp-steps on the corresponding clauses. We just
sketch how one of the relational introduction rules, the(∧)r

I rule, can be simulated. The
unit clauses corresponding to the premises(s, t) : α and(s, t) : β areRα(s, t) andRβ (s, t).
One hyperresolution step with these andRα∧β (x,y) ∨ ¬Rα(x,y)+ ∨ ¬Rβ (x,y)+ generate
the conclusionRα∧β (s, t). The associated formula,(s, t) : α ∧ β , is the conclusion of the
(∧)r

I tableau rule. It remains to check that the side conditions ofthe rule are satisfied inHsp.
The side conditions of the(∧)r

I rule, and the introduction rules (see Figure 6), limit the gen-
eration of formulae in the conclusions to formulae that occur in the input problem. Since the
transformations of a given input problem to first-order logic and clausal form introduce new
symbols only for formulae occurring in the input problem, the side conditions are satisfied
in Hsp-derivations. In this way it is possible to show that every tableau rule can be step-wise
simulated by inference steps inHsp.
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(cl)
s : ψ , s : ¬ψ

⊥
(⊥)

s : ⊥
⊥

(∧)1
s : ψ ∧ φ

s : ψ (∧)2
s : ψ ∧ φ

s : φ (¬∧)
s : ¬(ψ ∧ φ)

s : ∼ψ | s : ∼φ

(¬[·])1
s : ¬[α ]ψ
(s,t) : α (¬[·])2

s : ¬[α ]ψ
t : ∼ψ ([·])

s : [α ]ψ , (s,t) : α
t : ψ

(`)
(s,t) : α`

(t,s) : α (`)I
(t,s) : α
(s,t) : α`

(∧)r
1

(s,t) : α ∧ β
(s,t) : α (∧)r

2
(s,t) : α ∧ β

(s,t) : β (∧)r
I

(s,t) : α , (s,t) : β
(s,t) : α ∧ β

(∨)r (s,t) : α ∨ β
(s,t) : α | (s,t) : β (∨)r

I ,1
(s,t) : α

(s,t) : α ∨ β (∨)r
I ,2

(s,t) : β
(s,t) : α ∨ β

(↿)1
(s,t) : α↿φ
(s,t) : α (↿)2

(s,t) : α↿φ
s : φ (↿)I

(s,t) : α
(s,t) : α↿φ | s : ∼φ

(contr)
s : ¬(ψ ∧ ψ)

s : ∼ψ (contr)r (s,t) : α ∨ α
(s,t) : α

The side conditions of the(¬[·]) j rules (j ∈ {1,2}) are thatt is a constant uniquely associated with the premise
s : ¬[α ]ψ . For the rules(`)I , (∨)r

I , j , (∧)r
I and(↿)I the side conditions are that the relational formulae in the

conclusions, occur as subformulae of a box formula in the input problem.

Fig. 6 Tableau calculus forK(m)(∧,∨,` ,↿).

To prove thatTab is a reduction ofHsp we need to verify that the inverse mappingg−1

is a function. For this we need to verify that there are no inference steps in aHsp-derivation
for the translation of aK(m)(∧,∨,` ,↿)-formula that are not involved in simulating tableau
inference steps. This can be done by considering the possible forms of clauses in anyHsp-
derivation and theHsp-rules applicable to them. We omit the details. ⊓⊔

The proof shows actually something stronger:

Theorem 11 There is a linear correspondence betweenTab andHsp on the structural trans-
formation for local satisfiability in K(m)(∧,∨,` ,↿).

Soundness and refutational completeness ofTab is now a consequence of Theorem 10.2
and Corollary 3.

Theorem 12 A formulaϕ is locally satisfiable in K(m)(∧,∨,` ,↿) iff a tableau derivation
containing a branchB can be constructed inTab such thatB does not contain⊥ and no
more rules are applicable.

It is possible to make the side conditions for the introduction rules ofTab even more
restrictive and thus more efficient. This requires that we use a variation of the translation as
defined in [10]. More specifically, the definition of Def(α) needs to be varied so that dif-
ferent symbols are introduced for positive and negative occurrences of relational formulae.
Then it follows that the introduction rules need only be applied if the formulaβ of the con-
clusions : β occurs as a subformula of a relational formulaγ of a box formulas:[γ ]θ that
occurspositivelyon the current branch. The introduction rules inTab are applied also for
box formulae that occur negatively.
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6.1 Decidability

The calculusTab is unusual for a tableau calculus in that it requires the rules for the rela-
tional operators to be applied in two directions. For modal formulae the calculus uses only
elimination rules but for relational formulae it uses both elimination rules and introduction
rules. Because of the presence of the introduction rules thecalculus can also be viewed as a
restricted form of natural deduction calculus.

In general, uncontrolled use of introduction rules can jeopardise decidability. Termi-
nation of the calculus follows however from the decidability of Hsp on the transformed
problems. As a direct consequence of Theorems 8, 10.1 and 11 we obtain:

Corollary 4 Any (fair) procedure based onTab is a decision procedure for local satisfia-
bility in K(m)(∧,∨,` ,↿).

Consequently, any procedure based onTab is a decision procedure, and no loop detection
mechanism or blocking is necessary to ensure termination.

Notice the side conditions of the introduction rules followfrom the clausal form of the
translated problem and restrict the applications of the rules in such a way that no formulae
are introduced that do not occur in the input problem. The side conditions thus imply that
the calculus has the subformula property.

6.2 Finite Model Generation

The following results are extensions of results in [10, 28].
Let N∞ denote thelimit of a path(N =)N0,N1, . . . in a resolution derivation starting

with N. By definition,N∞ is the set
⋃

j≥0
⋂

k≥ j Nk of persistent clauses in the path.

Lemma 6 Letϕ be any K(m)(∧,∨,` ,↿)-formula. Let N be the clausal form of the structural
transformation ofϕ . Let I be the set of positive ground unit clauses in the limit N∞ of a
complete open branch in aHsp-derivation starting with N. Then:

1. I is a (Herbrand) model of N∞ and N, if N∞ does not contain the empty clause.
2. A K(m)(∧,∨,` ,↿)-model ofϕ can be read off from I.

Theorem 13 1. For any modal formula locally satisfiable in K(m)(∧,∨,` ,↿) a finite model
can be effectively constructed with any (fair) procedure based onHsp.

2. K(m)(∧,∨,` ,↿) has the finite model property.

We can state the following, due to the exact correspondence between clauses and for-
mulae inHsp- andTab-derivations.

Corollary 5 For any modal formula locally satisfiable in K(m)(∧,∨,` ,↿) a finite model can
be effectively constructed with any (fair) procedure basedonTab.

6.3 Redundancy in Tableaux

The ‘develop via resolution’ methodology allows us to enhance the tableau calculus with
notions of redundancy that correspond to redundancy in the resolution framework. We say a
labelled formulaF is redundantin a node, if the node contains labelled formulaeF1, . . . ,Fn
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which are smaller thanF and|=L (F1 ∧ . . . ∧ Fn)→ F (for n≥ 0) [10]. We can base the def-
inition of an ordering on the subformula or subterm ordering, but a more general definition
similar to admissible orderings in the resolution framework (see [3]) may be chosen. For
example, all tautologies inL are redundant according to this definition.

We can use the link to resolution to define a new notion of redundancy, namelyredun-
dant inference rules. By definition, an inference rule isredundant with respect to a set X
of labelled formulae and a calculusC, if the definitional clause associated with the rule is
redundant with respect to the union of all definitional clauses associated with the calculus
(andX), and the clauses associated with the formulae inX. LettingX = /0 gives redundancy
of inference rules. We say an inference rule isredundant in an calculusC, if it is redundant
with respect toX = /0 andC. Observe that, in general, an inference rule which is not redun-
dant in a calculus can be redundant with respect the calculusandsome (derived) formulae.

The application of a rule is defined to beredundantif its conclusions are redundant in the
current node or the rule is redundant (this generalises the definition found in [10, 45]). For
example, if a node includess : ¬p ands : ¬(p∧ q), then the(¬∧) rule need not be applied,
and creating a new branch can be avoided. The inference step is redundant because in the
corresponding hyperresolution derivation the clausesQ¬p(s) andQ¬(p∧q)(s) are present and
the conclusionQ¬p(s) ∨ Q¬q(s) with the definitional clause forQ¬(p∧q) is subsumed by
Q¬p(s) and therefore redundant.

The next result gives justification forany instance of redundancy elimination including
the examples given. It states soundness and completeness ofthe tableau calculus modulo
redundancy. The result extends Theorem 8.1 in [10].

Theorem 14 A formulaϕ is locally satisfiable in K(m)(∧,∨,` ,↿) iff a tableau derivation
containing a branchB can be constructed inTab

red (modulo redundancy) such thatB does
not contain⊥ and each rule application is redundant.

Notice that this formulation of the theorem is significantlystronger and more general than
the soundness and completeness results for tableaux usually found in the literature. It is not
difficult to see that the Corollaries 4 and 5 hold forTab

red (modulo redundancy) as well. In
other words,Tab

(red), with or without redundancy, is a decision procedure and canbe used
to generate finite models forK(m)(∧,∨,` ,↿).

6.4 Aside on Contraction and Factoring

Because of the presence of splitting, factoring is optionalfor completeness ofHsp on range-
restricted clauses. The calculus obtained fromHsp without factoring isTab without the con-
traction rules. It follows then that all the main results above are also true forTab without
the contraction rules (soundness, completeness, and decidability). Without contraction rules
identical branches are however created and potentially considerable work is repeated during
the deduction process. For reasons of efficiency it thus doesmake sense to extendTab with
contraction rules. Yet in the literature contraction rulesare not usually included in the def-
inition of tableau calculi or tableau procedures. However implemented tableau procedures
usually include simplification steps to eliminate such and other redundancies. These sim-
plifications are rewritings which replace obvious redundancies including duplication of the
kind ψ ∧ ψ andα ∨ α . This makes the contraction rules superfluous.

In this paper clauses are assumed to be multisets. If clausesare assumed to be sets, then
factoring is not even needed on range-restricted clauses and the mentioned inefficiency does
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(cl)
s : ψ , s : ¬ψ

¬⊥
(¬⊥)

s : ¬⊥
¬⊥

(¬∧)1
s : ¬(ψ ∧ φ)

s : ∼ψ (¬∧)2
s : ¬(ψ ∧ φ)

s : ∼φ (∧)
s : ψ ∧ φ

s : ψ | s : φ

([·])1
s : [α ]ψ

(s,t) : ∼α ([·])2
s : [α ]ψ

t : ψ (¬[·])
s : ¬[α ]ψ , (s,t) : ∼α

t : ∼ψ

(¬`)
(s,t) : ¬(α`)
(t,s) : ∼α (¬`)I

(t,s) : α
(s,t) : ¬((∼α)`)

(¬∧)r
1

(s,t) : ¬(α ∧ β)
(s,t) : ∼α (¬∧)r

2
(s,t) : ¬(α ∧ β)

(s,t) : ∼β (¬∧)r
I

(s,t) : α , (s,t) : β
(s,t) : ¬(∼α ∧ ∼β)

(¬∨)r (s,t) : ¬(α ∨ β)
(s,t) : ∼α | (s,t) : ∼β (¬∨)r

I ,1
(s,t) : α

(s,t) : ¬(∼α ∨ β)
(¬∨)r

I ,2
(s,t) : β

(s,t) : ¬(α ∨ ∼β)

(¬↿)1
(s,t) : ¬(α↿φ)

(s,t) : ∼α (¬↿)2
(s,t) : ¬(α↿φ)

s : ∼φ (¬↿)I
(s,t) : α

(s,t) : ¬((∼α)↿φ) | s : φ

(contr)
s : ψ ∧ ψ

s : ψ (contr)r (s,t) : ¬(α ∧ α)
(s,t) : ∼α

For the([·]) j rule (j ∈ {1,2}) the side conditions is thatt is a constant uniquely associated with the premise
s : [α ]ψ . For the rules(`)I , (∧)r

I , j , (∨)r
I and(↿)I the side conditions are that the complement of the relational

formulae in the conclusions, occur as subformulae of a box formula in the input problem.

Fig. 7 Rasiowa-Sikorski calculus forK(m)(∧,∨,` ,↿).

not arise. The methodology then produces the calculusTab but without the contraction rules
and the assumption that∧ and∨ are idempotent operators.

7 Rasiowa-Sikorski Systems

The ‘develop via first-order resolution’ approach is not limited to the development of tableau
calculi. In this section we use the approach to develop a calculus for validity testing. More
specifically, we develop a Rasiowa-Sikorski proof calculusfor the dynamic modal logic
K(m)(∧,∨,` ,↿) and show that it is a decision procedure and can be used for generating
counter-models.

Rasiowa-Sikorski proof systems [38] are dual tableau systems [30, 49]. Given a for-
mulaF, they aim to prove its validity, or, ifF is not valid, they aim to construct a counter-
model, that is, a model for the complement of the formula. Starting with the given formulaF ,
this is done by systematic case analysis until fundamental validities are found. Fundamen-
tal validities are obvious validities such as the law of excluded middle (that is,¬F ∨ F).
Rasiowa-Sikorski expansion rules have the same form,X/X1| . . . |Xn, as tableau rules and
are also applied top-down. The definition of a Rasiowa-Sikorski derivation, and its construc-
tion by application of rules, is the same as a tableau derivation. There is a slight variation
in notation though, and crucially the interpretation of therules is different.X,Xi denote sets
of labelled formulae, as in the previous section, but sets offormulae are now interpreted as
disjunctions of formulae, whereas branching is interpreted conjunctively.

A Rasiowa-Sikorski calculus for local validity inK(m)(∧,∨,` ,↿) is presented in Fig-
ure 7. Let the calculus be denoted byRS. Notice that the rules are dual to the rules of the
tableau calculusTab in Figure 6. To see this, inductively define a functiong such that any la-
belled formulae of the forms : ψ or (s, t) : α in aTab-derivation is mapped tog(s) : ∼ψ and



20

(g(s),g(t)) : ∼α in the correspondingRS-derivation. If theTab-derivation is started with
a : ϕ then theRS-derivation is started witha : ∼ϕ . g maps the labels as follows:g(a) = a
and any successor states introduced in the(¬[·]) j rules inTab is mapped to the term intro-
duced by the([·]) j rules inRS. Then extend the definition to a mapping fromTab-inferences
(rules) toRS-inferences (rules).

We can show:

Theorem 15 1. The calculiTab and RS step-wise simulate each other in a dual manner
for local satisfiability/validity in K(m)(∧,∨,` ,↿).

2. There is a linear, dual correspondence betweenTab andRS.

A detailed analysis of the duality between tableau and Rasiowa-Sikorski calculi for Peirce
logic which extendsK(m)(∧,∨,` ,↿) can be found in [49].

Theorem 15 implies that all the properties of the tableau calculus transfer to the Rasiowa-
Sikorski calculus, and vice versa. With the notion of redundancy dualised in the expected
way, we can state:

Corollary 6 A formulaϕ is locally valid in K(m)(∧,∨,` ,↿) iff a RS-derivation containing a
branchB can be constructed (modulo redundancy, and with or without the dual contraction
rules) such thatB does not contain¬⊥ and each rule application is redundant.

Corollary 7 Any (fair) procedure based onRS is a decision procedure for local validity in
K(m)(∧,∨,` ,↿).

Corollary 8 A finite modal counter-model for any modal formula which is locally invalid
in K(m)(∧,∨,` ,↿) can be effectively constructed with any (fair) procedure based onRS.

7.1 Developing Rasiowa-Sikorski Systems via Dual Resolution

It is also possible to obtain the rules of theRS-calculus via resolution; this time we use reso-
lution in dual form. The dual form of resolution is not very well-known but a little reflection
will convince the reader that it is a legitimate alternativeinterpretation of resolution.

Dual resolutioncalculi operate exactly like resolution calculi with the difference that
clauses are obtained by transformation into disjunction normal form and dual Skolemisa-
tion, that is, Skolem terms are used to eliminate universal quantifiers. Also, the dual form of
structural transformation is used. The dual clause form is aset of conjunctions of literals and
the set is interpreted as a disjunction. The empty clause is interpreted as⊤. The definition of
dual ordered resolution with selection is exactly the same asR

red
sp , except that the disjunction

in clauses is viewed as a conjunction and branching in the splitting rule is interpreted con-
junctively. For example the dual resolution rule for propositional logic derivesC ∧ D from
C ∧ A and¬A ∧ D. In fact, all techniques and results of classical resolution carry over to
dual resolution. As a consequence, by simply interpreting clauses dually, and also all trans-
formation and derivation steps as well as all deletion steps, we can use any resolution prover
as a dual resolution prover for testing validity.

Since we are now interested in showing the validity of a problem we need to base our
reduction to first-order logic on the followingdual structural translationof formulae in
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Subformulaθ Definitional dual clauses associated withθ
(shortcut) ¬Q¬ψ (x) ∧ ¬Qψ (x)

ψ ∧ φ ¬Qψ∧φ (x) ∧ Qψ (x) ∧ Qφ (x)
¬(ψ ∧ φ) ¬Q¬(ψ∧φ )(x) ∧ Q∼ψ (x)

¬Q¬(ψ∧φ )(x) ∧ Q∼φ (x)
[α ]ψ ¬Q[α]ψ (x) ∧ ¬Rα (x, f[α]ψ (x))

¬Q[α]ψ (x) ∧ Qψ ( f[α]ψ (x))
¬[α ]ψ ¬Q¬[α]ψ (x) ∧ R∼α(x,y) ∧ Q∼ψ (y)

(shortcut) ¬R¬α (x,y) ∧ ¬Rα (x,y)
R¬α(x,y) ∧ Rα (x,y)

α ∧ β ¬Rα∧β (x,y) ∧ Rα(x,y) ∧ Rβ (x,y)
Rα∧β (x,y) ∧ ¬Rα(x,y)
Rα∧β (x,y) ∧ ¬Rβ (x,y)

α ∨ β ¬Rα∨β (x,y) ∧ Rα(x,y)
¬Rα∨β (x,y) ∧ Rβ (x,y)

Rα∨β (x,y) ∧ ¬Rα(x,y) ∧ ¬Rβ (x,y)
α` ¬Rα` (x,y) ∧ Rα(y,x)

Rα`(x,y) ∧ ¬Rα(y,x)
α↿φ ¬Rα↿φ (x,y) ∧ Rα (x,y) ∧ Qφ (x)

Rα↿φ (x,y) ∧ ¬Rα (x,y)
Rα↿φ (x,y) ∧ Q∼φ (x)

Fig. 8 Definitional dual clausal forms forK(m)(∧,∨,` ,↿)

dynamic modal logic.

Defd(ψ) =def ∀x(π(ψ ,x)→ Qψ(x))

∧ ∀x(π(∼ψ ,x)→ Q∼ψ(x))

∧ ∀x(¬Q∼ψ(x) → Qψ(x))

Defd(α) =def ∀xy(π(α ,x,y)→ Rα(x,y))

∧ ∀xy(Rα(x,y)→ π ′(α ,x,y))

∧ ∀xy(R∼α(x,y) ↔¬Rα(x,y))

The mappingsπ andπ ′ are defined as in Section 3. Here the definitions of relationalformu-
lae include the shortcut equivalence∀xy(R∼α(x,y) ↔ ¬Rα(x,y)) which is needed to turn
problems into range-restricted clauses, we discuss below.

We can prove:

Theorem 16 Let L be a dynamic modal logic defined over the operators{∧,∨,` ,↿}, and
let ϕ be any modal formula. Suppose N is the set of dual clauses obtained fromϕ ′ =def
∧

Defd(Sf(ϕ))→∀xQϕ(x) by transformation into disjunctive normal form, inner dualSko-
lemisation, and clausifying the Skolemised formula. Then:

1. Each clause in N is either a unit clause Q(a), for some Skolem constant a, or it is an
instance of a dual definitional clause given in Figure 8.

2. ϕ is locally valid in L iff |= ϕ ′ iff |= N.

Let DHsp denote the unordered dual hyperresolution calculusDH
red
sp with splitting.

By duality, soundness and completeness (for validity) are aconsequence of Corollary 1
(and also Theorem 2).

Corollary 9 DH
red
sp andDHsp are sound and complete proof systems for sets of dual clauses.
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Subformulaθ Definitional dual clauses associated withθ
(shortcut) ¬Q¬ψ (x)+ ∧ ¬Qψ (x)+

ψ ∧ φ ¬Qψ∧φ (x)+ ∧ Qψ (x) ∧ Qφ (x)
¬(ψ ∧ φ) ¬Q¬(ψ∧φ )(x)

+ ∧ Q∼ψ (x)
¬Q¬(ψ∧φ )(x)

+ ∧ Q∼φ (x)
[α ]ψ ¬Q[α]ψ (x)+ ∧ R∼α(x, f[α]ψ (x))

¬Q[α]ψ (x)+ ∧ Qψ ( f[α]ψ (x))
¬[α ]ψ ¬Q¬[α]ψ (x)+ ∧ ¬Rα(x,y)+ ∧ Q∼ψ (y)
α ∧ β R¬(α∧β)(x,y) ∧ ¬R∼α(x,y)+ ∧ ¬R∼β (x,y)+

¬R¬(α∧β)(x,y)
+ ∧ R∼α (x,y)

¬R¬(α∧β)(x,y)
+ ∧ R∼β (x,y)

α ∨ β R¬(α∨β)(x,y) ∧ ¬R∼α(x,y)+

R¬(α∨β)(x,y) ∧ ¬R∼β (x,y)+

¬R¬(α∨β)(x,y)
+ ∧ R∼α (x,y) ∧ R∼β (x,y)

α` ¬R¬(α`)(x,y)
+ ∧ R∼α (y,x)

R¬(α`)(x,y) ∧ ¬R∼α (y,x)+

α↿φ R¬(α↿φ )(x,y) ∧ ¬R∼α (x,y)+ ∧ Qφ (x)
¬R¬(α↿φ )(x,y)

+ ∧ R∼α (x,y)
¬R¬(α↿φ )(x,y)

+ ∧ Q∼φ (x)

Fig. 9 Definitional dual clausal forms forK(m)(∧,∨,` ,↿) in range-restricted form.

The same result is true for dual ordered hyperresolution andcalculi of dual ordered resolu-
tion with selection calculi.

Looking at Figure 8 we note that the clauses are not all range-restricted. It is in partic-
ular the clause¬Q¬[α ]ψ(x) ∧ R∼α(x,y) ∧ Q∼ψ(y) associated with subformulae of the form
¬[α ]ψ that is not range-restricted.

This issue can be overcome by pre-saturation and purification, and is the reason why the
shortcut equivalence∀xy(R∼α(x,y) ↔¬Rα(x,y)) was added to the definition of Defd(α).
Take the input setN computed in accordance with Theorem 16. With ordered resolution
restricted to inferences which involve at least one of the relational shortcut clauses

¬R¬α(x,y) ∧ ¬Rα(x,y)∗ and R¬α(x,y) ∧ Rα(x,y)∗

as premises we obtain the clauses in Figure 9 as conclusions.We need to use an ordering
under which the binary literals are larger than unary literals, and in the shortcut clauses the
Rα -literals (indicated with a∗) are maximal. As now no more inferences are possible on
these, the relational shortcut clauses and clauses containing Rα -literals can be purified away
(that is, deleted). The clauses obtained are given in Figure9. (It is interesting to note that
this partial pre-saturation corresponds to second-order quantifier elimination, see [16].)

By the way we note that alternatively, a standard shifting transformation can be used.
Shifting switches the signs literals. In particular, we need to use shifting to replaceRα(s, t)-
and¬Rα(s, t)-literals by¬R¬α(s, t)- andR¬α(s, t)-literals, respectively. This transforms the
clauses into range-restricted clauses.

Let N′ denote the ‘partially pre-saturated and purified’ set of clauses obtained fromN as
described above. SinceN′ is dual to the clause set obtained for satisfiability of the negated
problem (compare Figures 8 and 9), we can now state:

Theorem 17 Letϕ be any K(m)(∧,∨,` ,↿)-formula and let N′ be the set of clauses obtained
by the described pre-saturation and purification from the dual clausal form of the dual
structural transformation. Then:

1. AnyDHsp-derivation from N′ terminates.
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2. ϕ is locally valid in K(m)(∧,∨,` ,↿) iff the DHsp-saturation of N′ contains the empty
clause⊤.

Lemma 7 RS is step-wise simulated byDHsp with respect to set N′ obtained as defined in
Theorem 17, and is a reduction of it.

Theorem 18 There is a linear correspondence betweenRS and DHsp on N′ as defined in
Theorem 17.

Using duality and Theorems 10 and 13 we can now give alternative proofs of Corol-
laries 6–8 (i.e. soundness and completeness ofRS, decidability and finite counter-model
generation forK(m)(∧,∨,` ,↿)).

8 Modal Resolution Systems

Refutation calculi without a splitting rule need an explicit representation of disjunction. This
section shows that if we omit splitting from tableau simulating hyperresolution procedures,
we get (labelled) modal resolution calculi. These are of thekind described in Areces et al [1]
for some traditional modal logics. Our approach allows us todevelop such calculi also for
other logics.

We focus again on the dynamic modal logicK(m)(∧,∨,` ,↿). Figure 10 presents a cal-
culus we can read off from the structural encoding in Figure 4, considering that hyperreso-
lution without splitting is used.C andD denote disjunctions, actually multisets, of labelled
modal and relational formulae of the forms:ψ and(s, t):α . Although the labelled formulae
are all unnegated, negative literals have not disappeared.We need to regard literals of the
form s:¬ψ as negative literals. Note that there are no negative relational literals. This is be-
cause the logicK(m)(∧,∨,` ,↿) does not include an relational negation operation. Negative
occurrences of relations are implicit in box formulae and are taken care of by the([·]) rule.

Denote the calculus defined in Figure 10 asRes. For each definitional clause there is
a rule inRes. In addition, there are the two factoring rules( f act) and( f act)r . Comparing
this calculus to the tableau calculus derived earlier (thatis, comparing Figure 6 and Fig-
ure 10), observe how the closure rule(cl) has become a resolution rule, the rule(res). The
(res) rule is an instance of the standard, ground resolution rule.The tableau splitting rules
(¬∧) and(⇂)I have become rewrite rules. With the exception of the resolution rule(res) and
the factoring rules, all rules inRes are in fact rewrite rules.

Lemma 8 Res is step-wise simulated byH (without splitting) with respect to the structural
transformation defined in Theorem 4 and is a reduction of it.

Theorem 19 There is a linear correspondence betweenRes andH on the structural trans-
formation for local satisfiability in K(m)(∧,∨,` ,↿).

The proofs exploit the correspondence between inference steps in theRes-derivation and
theH-derivation on the structural transformation of the given modal formula. All inferences
rules inRes, with the exception of the factoring rules, correspond to hyperresolution steps,
while the factoring rules correspond to factoring on positive ground clauses inH-derivations.
The correspondence between the steps is therefore slightlymore direct than for tableau.

Corollary 10 Res is sound and refutationally complete for testing the local satisfiability of
formulae in K(m)(∧,∨,` ,↿).
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(res)
C ∨ s : ψ , D ∨ s : ¬ψ

C∨ D
(⊥)

C∨ s : ⊥
C

(∧)1
C ∨ s : ψ ∧ φ

C ∨ s : ψ (∧)2
C∨ s : ψ ∧ φ

C∨ s : φ (¬∧)
C ∨ s : ¬(ψ ∧ φ)

C∨ s : ∼ψ ∨ s : ∼φ

(¬[·])1
C ∨ s : ¬[α ]ψ
C∨ (s,t) : α (¬[·])2

C∨ s : ¬[α ]ψ
C ∨ t : ∼ψ ([·])

C∨ s : [α ]ψ , D ∨ (s,t) : α
C∨ D ∨ t : ψ

(`)
C ∨ (s,t) : α`

C∨ (t,s) : α (`)I
C∨ (t,s) : α

C∨ (s,t) : α`

(∧)r
1

C ∨ (s,t) : α ∧ β
C∨ (s,t) : α (∧)r

2
C∨ (s,t) : α ∧ β

C∨ (s,t) : β (∧)r
I

C∨ (s,t) : α , D ∨ (s,t) : β
C ∨ D ∨ (s,t) : α ∧ β

(∨)r C∨ (s,t) : α ∨ β
C ∨ (s,t) : α ∨ (s,t) : β (∨)r

I ,1
C∨ (s,t) : α

C∨ (s,t) : α ∨ β (∨)r
I ,2

C ∨ (s,t) : β
C∨ (s,t) : α ∨ β

(↿)1
C ∨ (s,t) : α↿φ
C ∨ (s,t) : α (↿)2

C∨ (s,t) : α↿φ
C∨ s : φ (↿)I

C∨ (s,t) : α
C∨ (s,t) : α↿φ ∨ s : ∼φ

( f act)
C ∨ s : ψ ∨ s : ψ

C∨ s : ψ ( f act)r C∨ (s,t) : α ∨ (s,t) : α
C ∨ (s,t) : α

The side conditions of the(¬�i) j rules (j ∈ {1,2}) are thatt is a constant uniquely associated with the
premises : ¬�iψ . For the rules(`)I , (∧)r

I ,i , (∨)r
I and(↿)I the side conditions are that the relational formulae

in the conclusions, occur as subformulae of the relational formulaγ of a box formulas : [γ ]ψ in the current
clause set.

Fig. 10 Modal resolution calculus forK(m)(∧,∨,` ,↿).

Proof By Corollary 1, Theorems 4 and Corollary 3. ⊓⊔

These results are an illustration that the step from tableau-style systems to systems with
an explicit resolution rule is not big. The simulation results formally show that on the one
hand modal resolution can be viewed as semantic tableau without splitting. On the other
hand, they formally show that semantic tableau can be viewedas modal resolution with
splitting. At least this is the view we get from the perspective of first-order resolution.

From the perspective of tableau and modal resolution, the essential difference between
the two is the absence of splitting in modal resolution, and the difference in the rules induced
by the negative propositional shortcut clause. In the case of modal resolution the negative
propositional shortcut clause induces the modal resolution rule(res), whereas for tableau it
induces the closure rule (because of the presence of splitting). Thus from the perspective of
tableau and modal resolution the other difference besides the presence of splitting is the use
of a restricted form of resolution, namely the closure rule,in the tableau calculus.

It is interesting to note that, like tableau, the modal resolution calculus uses a kind of
goal-directed approach, initially breaking down the giveninput formula and on-the-fly trans-
forming formulae into first-order clausal form.

One can thus view modal resolution, or semantic tableau without splitting, also as hy-
perresolution with lazy translation to first-order logic, because the expansion rules are just a
facilitation of lazy translation to first-order logic. Similarly, semantic tableau can be viewed
as hyperresolution with lazy translation to first-order logic and splitting.
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8.1 Decidability

What about decidability? We can prove Theorem 10.1 also holds for hyperresolution without
splitting, and any refinement of hyperresolution without splitting.

Theorem 20 Let ϕ be any K(m)(∧,∨,` ,↿)-formula and let N be the clausal form of the

structural transformation. Then anyH-, H
red-derivation from N terminates.

This means that the calculusRes provides a decision procedure as well.

Theorem 21 Any (fair) procedure based onRes is a decision procedure for local satisfia-
bility in K(m)(∧,∨,` ,↿).

Because we view clauses as multisets it is necessary to include the factoring rules. As
clauses are always ground, factoring has the effect of eliminating duplicate literals from
clauses. It is thus easy to see that it is not necessary to add factoring rules if clauses are
viewed as sets.

8.2 Refining modal resolution

An advantage of the ‘develop via first-order resolution’ approach is that it is possible to
transfer any refinements compatible with the simulating resolution procedure to the newly
developed calculus. This may appear to be quite a strong claim, but let us now apply the
‘develop via first-order resolution’ approach by using ordered hyperresolutionOH, instead
of unordered hyperresolutionH, and see which rules ‘fall out’.

Suppose the ordering used is an arbitrary ordering≻ admissible in the sense of [3].
Recall the rules of ordered hyperresolution from Figure 2. Since the selection function over-
rides the ordering, the ordering does not change which literals are resolved upon in a negative
premise. However since no literals can be selected in the positive premises, the ordering re-
stricts inferences to literals strictly maximal with respect to the ordering. These restrictions
transfer as follows to the modal resolution calculus.

Let≻′ be the ordering on labelled modal formulae that correspondsexactly to the order-
ing ≻ used inOH. Let ORes be theordered modal resolution calculusbased on≻′ which
is given by the rules ofRes (see Figure 10) but the rules have side conditions saying that,
for each rule except for the factoring rules, the explicitlygiven literals in every premise are
strictly maximal with respect to≻′. The side conditions of the factoring rules are that the
explicitly given literals are maximal with respect to≻′. This means that any inferences that
do not satisfy these side conditions need not be performed (but can be, as is established in
Corollary 10).

As before, it is possible to transfer any instances of redundancy elimination to the newly
developed calculus. This includes tautology deletion, subsumption deletion, condensing and
other techniques. Similar as for tableau and Rasiowa-Sikorski systems we can define differ-
ent forms of redundancy specifically for the modal resolution calculus. Let us refer to the
extension ofORes with such notions of redundancy asORes

red.

Lemma 9 Let ≻ be an admissible ordering and let≻′ be the corresponding ordering on
labelled formulae.ORes based on≻′ is step-wise simulated byOH based on≻ with respect
to the structural transformation defined in Theorem 4. The same statement is true forORes

red

andOH
red.
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Theorem 22 There is a linear correspondence betweenORes andOH (ORes
red andOH

red)
on the structural transformation for local satisfiability in K(m)(∧,∨,` ,↿).

Theorem 23 ORes andORes
red are sound and refutationally complete for testing local sat-

isfiability of formulae in K(m)(∧,∨,` ,↿).

Theorem 24 Any (fair) procedure based onORes
(red) is a decision procedure for local sat-

isfiability in K(m)(∧,∨,` ,↿).

Analogously, we can write down (unordered and ordered) modal dual resolution calculi
for validity in K(m)(∧,∨,` ,↿) (with or without redundancy) and prove soundness, complete-
ness and decidability by dual arguments. We leave it to the reader to work out the details.

The reader may be wondering how ordering restrictions can beexploited in tableau
and Rasiowa-Sikorski calculi. Since splitting is always applied before hyperresolution, hy-
perresolution is applied to unit clauses only. This means anordering has no effect on the
application of the inference rules. Nevertheless the ordering may be used to restrict the ap-
plication of splitting only to maximal literals and reduce the search space. It is beyond the
scope of this paper to discuss details.

9 Discussion

It is of course possible to come up with the calculi developedin this paper in an independent
way and prove soundness, completeness and decidability based on traditional methods. By
taking a slightly unusual approach we can however obtain newinsights and results for famil-
iar and less familiar logics, and develop new calculi and provers. The ‘develop via first-order
resolution’ approach provides a common framework for this which enables direct compar-
ison of different deduction approaches and the immediate transferal of techniques between
different approaches.

We have seen that small variations in the translation mapping and the resolution re-
finement used, result in notably different styles of calculi. For example, there is only a
very small difference between the tableau calculus and the modal resolution calculus for
K(m)(∧,∨,` ,↿) in the simulations, namely the omission of the splitting rule. Tableau and
resolution methods are typically regarded as quiet opposite, with the difference being not
only the presence of the splitting rule in tableau calculi but also the absence of the reso-
lution rule in tableau calculi. Our analysis however shows (and gives a formal proof) that
the difference between tableau and resolution methods is much smaller than sometimes per-
ceived, in fact they are closely related.

We have seen that by interpreting resolution dually we can even devise calculi for prov-
ing the validity of formulae. The approach allows us to transfer refinements and techniques
such as redundancy elimination to the new calculi, and it enables the formulation of stronger
soundness and completeness results and the definition of better inference systems. Our case
study shows that there is significant flexibility to tailor the approach and control the kind of
calculi which can be derived.

It is interesting to note that we generated all three calculiusing hyperresolution. For
modal resolution we also used hyperresolution and not ordinary resolution as one may have
expected.

All results and observations in this paper forK(m)(∧,∨,` ,↿) hold for all dynamic modal
logics defined over the operators{∧,∨,` ,↿,⇂}.
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We know that the approach can be generalised and applied to more expressive logics
to yield sound and (refutationally) complete special-purpose calculi for many, if not all,
first-order definable (dynamic) modal logics. The approach applies also to other first-order
definable logics and fragments of first-order logic. For example, linear correspondence re-
sults between tableau systems and resolution have been obtained in [19] for decidable frag-
ments of first-order logic which are closely related to the guarded fragment. It is clear that
the ‘develop via resolution’ approach allows us to immediately pull out sound, refutation-
ally complete and terminating tableau procedures for the generalisations obtained in the
paper [19]. Similarly, tableau decision procedure can be defined for the solvable classBU
introduced and studied in [18].

Soundness and completeness of the extracted calculi is in general automatic as long
as the translation to first-order logic and the refinement used have the properties identi-
fied in the Introduction so that correspondence results can be proved. Apart from finding
a suitable combination of a translation, refinement and pre-saturation (if needed), the main
challenge is to develop ways to guarantee termination and prove decidability. In the case
of K(m)(∧,∨,` ,↿) there are existing decidability results for hyperresolution which we have
extended and then used to show the developed calculi providedecision procedures.

The starting point of the methodology in this paper is the semantic specification of a
logic which provides the basis for the translation to first-order logic. The translation is a
combination of the standard relational translation methodand structural transformation. It
is possible to derive in a systematic way sound and complete calculi via other, non-standard
translation methods, for instance, translations based on functional translation approaches
or the axiomatic translation approach. (See [37, 47] for surveys of different translation ap-
proaches and [46, 48] for the axiomatic translation.) If we use the functional translation or
the optimised function translation then what we obtain are prefix tableau calculi. In prefix
tableau calculi the formulae are also labelled modal formulae but the labels are strings of
constants, or prefixes. With the axiomatic translation we can generate modal tableau calculi
in a form that are currently popular for traditional modal logics and mainstream description
logics with non-empty TBoxes. Without splitting new modal resolution calculi are produced.

It is in fact also possible to use the methodology to obtain calculi from Hilbert axiomati-
sations of modal logics. In [46, 48] we use resolution theorem proving techniques to obtain
tableau calculi in a systematic and semi-automatic way fromthe Hilbert axiomatisations of
traditional modal logics. Although not explicitly stated as such, the approach followed there
can be seen to be an instance of the ‘develop via first-order resolution’ approach. There is
actually a lot of flexibility and potential in the approach which we have not explored due to
lack of time and space.

There are good reasons why the methodology introduced in this paper is based on first-
order resolution. Currently no other proof method exhibitsthe level of sophistication that the
resolution framework has. It combines and integrates numerous principles and techniques
that have been developed over many years in the area of automated reasoning. Previous
work has shown that the available concepts of refinement and redundancy, in particular,
mean that it is well suited for developing decision procedures for non-classical logics and
expressive solvable fragments of first-order logic; see thesurveys [14, 29, 47]. Furthermore,
the framework is well suited for developing and studying model builders; see, for instance [5,
14, 17]. As we have seen in this paper refinements and redundancy are crucial ingredients
of the ‘develop via first-order resolution’ approach.

One of the attractions of situating the methodology in the framework of resolution is
that it is easy to implement procedures based on the extracted calculi with existing first-
order resolution theorem provers. Hyperresolution, or essentially equivalent refinements,
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are standardly implemented in all of the well-known first-order resolution theorem provers.
Moreover, ordering restrictions can be flexibly defined in these and splitting is currently
available in at least (M)SPASS[27, 53] andVAMPIRE [40]. With modest implementation ef-
fort it is therefore possible to use these provers as essentially modal tableau provers, modal
Rasiowa-Sikorski provers, or modal resolution provers. All that is necessary, is to imple-
ment the appropriate structural transformations and then choose the correct combination of
flag settings so that the prover uses the simulating refinement. This provides a simple ap-
proach of implementing special-purpose procedures. All these basic ingredients are already
implemented in (M)SPASS[27, 53, 54].

In addition, such simulating implementations permit experimental evaluation and com-
parison of different deduction approaches in a uniform framework. Examples of empirical
studies undertaken following essentially this approach can be found in [5, 28]. Such ex-
periments tend to provide more reliable indicators of the suitability of different calculi, or
different styles of deduction, for specific applications and logics than experiments based on
the comparisons of independently implemented provers [24,25, 28].

Further work consists of generalising the methodology and applying it to other forms
of tableaux (e.g. set-labelled tableaux with global caching [21] or free variable tableaux), to
other styles of deduction methods, to other logics, and other forms of inference problems.
We are presently investigating the simulation and development of natural deduction calculi
for modal logics and first-order logic [41]. It would also be of interest if a resolution prover
can be used directly as a special-purpose prover without anyextra implementation effort.
Ultimately it is our aim to realise the approach as a tool thatcan take the specification of a
logic as input and output a deduction calculus which is sound, complete and terminating, if
possible. Independent student projects at Manchester haveshown that it is indeed possible to
use resolution theorem provers as tableau provers for propositional and modal logics. These
projects use resolution theorem provers as suggested in this paper and back-translate the
derived clauses into tableau derivations [22, 34]. Anotherstudent project has developed a
tableau inference rule generator in Prolog [31]. We are alsoworking on using the approach
to generate tableau calculi for more expressive dynamic modal logics, in particular, our aim
is to generate calculi such as the ones in [50, 51] which use only elimination rules and rules
that operate only on dynamic modal formulae but not relational formulae.
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20. R. Goré. Tableau methods for modal and temporal logics.In M. D’Agostino, D. Gabbay,
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