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Chapter 1

Introduction

Udite, udite, o rustici

attenti non fiatate...

Dulcamara

L’elisir d’amore

Symmetry enters in theoretical physics with at least two different meanings. It can enters
at a very fundamental level as a manifestation of the properties of space-time (principle of
relativity) or it can appear as a property of dynamical processes themselves. To illustrate
the difference, consider the fact that euclidean space is rotation invariant but this is not
the case for a generic field of forces defined over it. For the sake of definitiveness we will
distinguish this two kind of symmetries by calling kinematical the former and dynamical
the latter. In any case, whichever meaning we give to the word symmetry the basic objects
needed are a group G and a representation of G in a Hilbert spaceH. Let us briefly illustrate
how these concepts enter into the picture.

When trying to formalize the principle of relativity, two basic concepts come into play.
The first is the geometry. By this we mean a space-time V4 whose mathematical structure
depends on the theory we are considering. It is Cartan space-time if the theory is Newtonian
mechanics, it is Minkowski space-time if we are in the setting of special relativity. In any
case each observer relativizes V4 with respect to his own reference frame. Roughly speaking
this establishes a correspondence V4 ≃ R4. On the other hand, we known from quantum
mechanics that each observer describes a quantum system by the projective space P whose
points are the one-dimensional subspaces of a separable complex Hilbert spaceH. Associated
to the state space P is the corresponding group of automorphisms, whose elements are simply
the maps

Σ : P −→ P

preserving the transition probabilities: tr (Σ(P1)Σ(P2)) = tr (P1P2). The mathematical
implementation of the principle of relativity consists in the assumption that each transfor-
mation of the group G relating different frames of reference is represented at the quantum
level by a corresponding automorphism of P relating the different descriptions of the quan-
tum systems. In other words the second ingredient we need in order to define a symmetry is
simply a group homomorphism between the group G and the group Aut(P ). Suppose now
G connected, Wigner theorem asserts that, if dimH > 2, then each such homomorphism is

1



2 CHAPTER 1. INTRODUCTION

equivalent to conjugation by a unitary operator defined overH. Such an operator is uniquely
defined modulo a phase. Summarizing this discussion, a symmetry turns hence out to be a
(projective) representation of the group G on the Hilbert space H.

Dynamical symmetries are more difficult to be described. Somewhat simplifying we can
think that a dynamical symmetry is a representation of a group G in the Hilbert space H
commuting with the Hamiltonian of the system. This does not reflect, in principle at least,
any particular property of the geometry of the system, nevertheless it has consequences on
the spectrum of the theory.

The scheme just described is very general and completely adequate for treating non rel-
ativistic quantum mechanics, and most of the problems arising in QFT. Nevertheless, it
was realized during seventies, that if it would have been possible to introduce a symmetry
capable of exchanging bosons and fermions then some difficulties encountered by the stan-
dard model of elementary particles could have been solved. Among these let us mention, for
example, the problems of naturalness and hierarchy. In the historical development of these
ideas a great role was played by an argument due to Coleman and Mandula concerning the
most general form a symmetry of the S matrix of a quantum field theory can have. Let
us briefly discuss this result. A scattering process can be described by the Hilbert space
of single particles, the corresponding Fock space space F , a representation of the Poincarè
group P on H, and unitary operator S called the S-matrix of the theory . The physical
content of the operator S is encoded in the “matrix elements” {(φ, Sψ)}. More precisely
(φ, Sψ) is the probability that given the entering system of particles ψ, the outgoing states
φ is detected. A symmetry of the S-matrix is an (unbounded) operator B on H commuting
with S, satisfying the Leibniz rule1. The rigorous version of Coleman Mandula argument
then says that, if H is the sum of strictly positive mass representations of P and under ap-
propriate conditions on S, the most general symmetry of S is a (representation of a) direct
product of the Poincarè algebra and a reductive Lie algebra. This excludes the possibility of
symmetries transforming bosons into fermions and viceversa.

The point is that in order to have a symmetry that can exchange bosons and fermions
it is necessary that both concepts appear on equal footing in the geometry. This is not the
case in usual geometry since everything at sight there commutes. In other words, for creat-
ing a symmetry that exchange bosons and fermions it is necessary to introduce fermions in
the geometry. Once this was realized, physicists and mathematicians faced the problem of
creating a new geometrical framework where usual commuting coordinates and “new” anti-
commuting ones can coexist. Somewhat simplifying the story, we can say that the problem
was solved by Berezin and Kostant with the creation of supermathematics ([Ber87],[Kos77]).
The basic facts of supergeometry are treated in chapter 3. There the notions of supermani-
fold and differential calculus over them are quickly reviewed. As it is pointed out in chapter
2, once the category of supermanifolds is constructed the definition of supergroup arise in a
natural way. They are simply groups objectsin the category of supermanifolds. Super groups
are the main device for implementing supersymmetry and their basic properties are treated
in chapter 4. In that chapter, it is shown that many classical constructions carry over to
the super setting. For example, the basic notion of infinitesimal symmetry (Lie algebra) is
generalized in a natural way to supergroups leading to the concept of a super Lie algebra.
Exactly as in ordinary Lie group theory, the super Lie algebra associated to a supergroup
is defined as the vector space of left invariant vector fields. There is a large amount of
literature devoted to the study of super Lie algebras. We quote at least the work of Kac
([Kac77]) on th classification of simple super Lie algebras, the classical work of Scheunert

1By this we mean that B can be extended to an operator on the Fock space such that B(X ⊗ Y ) =
B(X) ⊗ Y + x ⊗ B(Y ).
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[Sch79] and references therein.
Up to our knowledge the theory of representation of super Lie groups is much less de-

veloped than the corresponding theory for super Lie algebras. One of the reasons for this
is surely the fact that a super Lie group is a quite difficult object to be treated. Let us
now sketch where some of the difficulties arise. When one tries to introduce anticommuting
variables θi, the first difficulty one encounters is that such θi are nilpotent of degree two
(i.e. θ2i = 0). In other words, the quest for supersymmetry forces us to consider spaces
on which “functions” are defined whose square is zero. In order to avoid confusion with
ordinary real valued functions we will call such “functions”, sections over the superspace
M . If we leave for a while apart anticommutativity, we can notice that a similar situation
is not new in mathematics. Grothendieck’s revolution in algebraic geometry (the theory of
schemes) consists exactly in this. Grothendieck realized that the geometry of a space can be
enriched by allowing the existence of nilpotent elements among the sections defined over it.
A supermanifold is then defined as an ordinary manifold M0, called the reduced manifold,
together with an algebra of sections locally isomorphic to C∞ (M0)⊗ Λ

(
θ1, ..., θq

)
. Clearly

the value of such nilpotent sections at a given point x of M is not defined. This has as a
consequence that it is possible to consider spaces having the same set of points but with dif-
ferent geometries. For example, in Grothendieck’s conception of space, the equations y = 0
and y2 = 0 describe the same set of points but endowed with different geometric structures.
This corresponds to the heuristic picture of viewing y2 = 0 as a “double” line.

If we accept this point of view, we have to admit that points of a supermanifold are
not important. The geometrical content is encoded in the algebra of sections defined over
the supermanifold . Nevertheless such superalgebra has no simple algebraic structure (for
example, due to topological subtleties, it is not a an Hopf algebra). This forces us to a deep
study of the structure of supergroups. Such a study is the object of chapters 5 and 6.

In chapter 5, we review a fundamental result due to Kostant which is of fundamental
importance for all subsequent developments. We prove that the category of supergroups is
equivalent to the category of super Harish-Chandra pairs. Roughly speaking proving that
two categories are equivalent means that each problem in one of the two categories can be
translated in a completely equivalent one in the other and, moreover, that each solution
to a given problem in one category gives a corresponding solution to the corresponding
problem in the other category. This is a widely used approach in theoretical physics. For
example whenever one substitutes a connected and simply connected Lie group with the
corresponding and more manageable Lie algebra. This is similar to what happens in the case
we are interested in. In fact Kostant proved that we can substitute a supergroup G with a
pair consisting of the associated reduced Lie group G0 and the super Lie algebra g associated
toG. Such a pair is what is called a super Harish-Chandra pair (see [DM99a]). This approach
is the corner stone of our approach to representation theory of super semidirect products
developed in the second part of the thesis. The first part ends with chapter 6. In such a
chapter we establish a precise connection between two constructions: the functor of points
approach to supergroups and an approach to supergroups that first appeared, actually in a
very sketchy way, in the seminal work of Berezin [Ber87]. The main idea lying at the heart
of the approach through the functor of points consists in associating to a supermanifold M
a family {M(S)} of sets, where

M (S) := Mor (S,M)

consists of all the supermanifold morphisms between S and M , S varying over the whole
category of supermanifolds. Quite remarkably, it turns out (Yoneda’s lemma) that knowing
the functorial family {M(S)} is equivalent to knowing M . Even more is true. If G is a



4 CHAPTER 1. INTRODUCTION

supergroup, then each G(S) is a set-theoretical group and, in this case, the family of groups
{G(S)} completely determines the structure of the super Lie group G. In some sense this
construction reduces the theory of super Lie groups to the theory of functorial families of
ordinary set-theoretical groups. In this chapter it is shown that if S = R0|q is a super-point
then G

(
R0|q

)
can be endowed with a Lie group structure and that the functorial family of

ordinary Lie groups
{
G
(
R0|q

)}
is rich enough for reconstructing the super Lie group G. It

is also shown that

Lie
(
G
(
R0|q

))
≃ (g⊗ Λq)0

where g is the super Lie algebra associated to G and Λq is the Grassmann algebra in q
generators. This result is quite interesting, since it allows to establish a link between this
approach and other constructions. Let us briefly give some details. Suppose g a super Lie
algebra. If we consider the even tensor product

g (Λ) := (g⊗ Λ)0

with the bilinear form

[X ⊗ θ, Y ⊗ ξ] = (−1)p(ξ)p(θ) [X,Y ]⊗ θξ

then g (Λ) is an ordinary Lie algebra. It is well known (see [DM99a] and [Var04]) that
the knowledge of g is equivalent to the knowledge of the functorial family {g (Λ)}. Such a
trick of introducing auxiliary odd parameters for making computations is commonly used
by physicists and it is known under the name of even rules principle. We hence obtain that
the group we get by exponentiating each g (Λ) is exactly the Lie group G

(
R0|q

)
. Such result

allows to replace the super Lie group G with the functorial family G
(
R0|q

)
. The advantage

with respect to the functor of points approach being in the fact that we have now at disposal
the power of ordinary Lie theory. How this approach can be useful is quickly explained in
9.0.11.

As it was already said, Part II of the thesis is devoted to the development of a represen-
tation theory for super Lie groups and it is based on [CCTV06]. The language adopted, as
explained above, is that of super Harish-Chandra pairs. In chapter 7, we present the basic
definitions and tools for such a program. In particular the concept of unitary representation
of a super Harish-Chandra pair (G0, g) on a super Hilbert space H is defined. This is, at
least formally, a pair (π, ρπ) consisting of a unitary representation π of G0 and a represen-
tation ρπ of g satisfying appropriate compatibility relations. Nevertheless this step already
presents some difficulties. It is in fact well known that if π is a unitary representation of the
Lie group G0 in an infinite dimensional Hilbert space then the differential (dπ) (X), X ∈ g0

is an unbounded operator. The fact that, given X and Y in g1

[ρπ(X), ρπ(Y )] ⊆ dπ0 ([X,Y ])

implies that, in general, g1 is also represented by unbounded operators. These considerations
make apparent that great care is needed in defining infinite dimensional representations since
the choice of an appropriate dense subspace is required. In this circle of ideas a major role is
played by theorem 41. Such a theorem shows that each natural choice of a dense core for the
operators {ρπ (X)} with X ∈ g1 is actually equivalent to the choice of the subspace C∞ (π)
of smooth vectors for the unitary representation π. In other words it is the even part of the
representation that takes care of the functional analytical subtleties due to unboundedness of
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operators. The chapter ends proving the super version of Schur’s lemma on the commutant
of an irreducible representation.

In chapter 9 we address the problem of obtaining the UIRs of a class of groups large
enough to cover some examples of interest for theoretical physics. In particular we consider
the class of super-semidirect products. These are, by definition, super Lie groups whose
reduced Lie group is an ordinary semidirect product

G0 ≃ T0 ⋊ L0

T0 being an abelian group, and such that

[g1, g1] ⊆ t0

Super Poincarè groups in arbitrary dimensions are in this class. In developing the theory it
is useful to keep in mind the route followed in the classical theory (see, for example,[Mac57],
[Mac58] and [Mac76]) The basic ideas for determining the UIRs of a classical semi-direct
product consists in associating to each UIR a corresponding transitive system of imprimi-
tivity. Once this is done, the classical Imprimitivity theorem allows a complete geometrical
classification of all transitive systems of imprimitivity and hence of all UIRs. In mathe-
matical literature this method is called Mackey’s machine while in the Physics literature
the name little group method is often used. Like in the classical case, it can be shown that
given a UIR of the SHCP (G0, g) in the super Hilbert space H, then it is induced (in a
proper sense) by a representation of the stability group (or little group) that fixes some
character of T̂0. It is from this point on that the SUSY theory acquires its own distinctive
flavor. In the first place, unlike the classical situation, Theorem 7 stipulates that not all
orbits are allowed, only those belonging to a suitable subset T+

0 . We shall call these orbits
admissible. These are the orbits where the little super group admits an irreducible unitary
representation which restricts to a character of T0. These representations will be called
admissible. These orbits satisfy a positivity condition which we interpret as the condition
of positivity of energy. This condition is therefore necessary for admissibility. However it
requires some effort to show that it is also sufficient for admissibility, and then to determine
all the irreducible unitary representations of the little super Lie group at λ (Theorem 8).

In section 9.0.10 we discuss the case of the super Poincaré groups. We consider space-
times of Minkowski signature and of arbitrary dimension D ≥ 4 together with N -extended
supersymmetry for arbitrary N ≥ 1. In this case, we finally reach the conclusion that the
super particles are parametrized by the admissible orbits and irreducible unitary represen-
tations of the stabilizers of the classical little groups, exactly as in the classical theory. The
positive energy condition Φλ ≥ 0 becomes just that λ, which we replace by p to display the
fact that it is a momentum vector, lies in the closure of the forward light cone. Thus the
orbits of imaginary mass are excluded by supersymmetry (Theorem 10). Our approach en-
ables us to handle super particles with infinite spin in the same manner as those with finite
spin because of the result that the odd operators of the little group are bounded (Lemma
20).
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Chapter 2

Abstract Nonsense

Or dunque seguitando quel discorso

Che non ho cominciato...

Dandini

La Cenerentola

The aim of this chapter is to show that it is possible to develop a quite general “theory
of groups and group representations” in which all usual theories embeds. Though rather
abstract this approach presents some advantages. For example whenever new geometrical
structures arise (like, for example, super manifolds) it is possible to say immediately what
a group and a group representation are in the new context. It can also be useful in order
to point out the similarity between the theory of super Lie groups with other more known
theories.

2.1 C-groups and formal groups

In this section we give the basic definitions in the theory of formal groups. Let C be a
category. It is quite natural to say that G ∈ Obj (C) is a group object in the category C
or briefly a C-group if there exist morphisms µ, e and i which obey the usual rules for
multiplication, unit and inverse respectively. More precisely:

Definition 1 Let C be a (locally little) category with finite products and a final element e.
We say that (G,µ, i, e) is a group object in C if the following conditions are satisfied:

1. G is an object of C

2. µ ∈MorC (G×G,G), i ∈MorC (G,G) and e ∈MorC (e,G)

3. the above morphisms satisfy the following commutative diagrams:

7



8 CHAPTER 2. ABSTRACT NONSENSE

G×G×G

id×m

��

m×id
// G×G

m

��

G×G
m

##FF
FF

FF
FF

F
G×G

m

##FF
FF

FF
FF

F

G

〈idG,ê〉
;;xxxxxxxxx idG //

〈ê,idG〉
##FF

FF
FF

FF
F G G

〈idG,i〉
;;xxxxxxxxx ê //

〈i,idG〉
##FF

FF
FF

FF
F G

G×G m
// G G×G

m

;;xxxxxxxxx

G×G

m

;;xxxxxxxxx

where ê denotes the composition of the identity e : e −→ G with the unique map G −→ e.
〈ψ, φ〉 denotes the map ψ × φ ◦ diag, diag : G −→ G×G being the canonical diagonal map.

When no confusion is possible we will denote the C-group (G,µ, i, e) simply by G.
Before giving some examples, we briefly comment about the hypothesis on C required

by the above definition. All of them are satisfied in usual applications so we will be very
concise. To say that a category is locally little means that Mor (X,Y ) is a set for each X
and Y in C. The existence of finite products means essentially that given two objects X and
Y there exists an object X × Y obeying the usual universal property of products. Finally,
an object ê in a category C is said final if for each object X in C there exists a unique
morphism in Mor (X, ê). It is easily shown that a final element if it exists is unique modulo
isomorphisms.

Example 1 If C is the category Set of sets, T op of topological spaces or Man of differ-
entiable manifolds then a group object in C is a group, a topological group or a Lie group
respectively.

Example 2 If C is the category of super manifolds SM, then a group object G is called a
super (or graded) group.

We will of course return to example 2 in the following sections and chapters.
If C is a sub-category of C′, then a C-group G can be considered also as a C′ group, the

difference being in the morphisms. For example, if G is an algebraic group, it can also be
considered as a Lie group or a topological group or a Set group. In a sense the structure of
an object in a category is determined by morphisms. Next section shows a different approach
to the theory of C groups which stresses the approach through morphisms.

2.2 The functor of points approach

We now show that, given a C-group G, it is possible to construct a contravariant functor
from the category C to the category of Set-groups. Conversely given a functor constructed
in this way it is possible to recover the C-group G. This result is of fundamental importance
in developing the theory since it allows to replace the C-group G with the corresponding
functor and this corresponds to the usual way in which computation are done in practice.

Let hence M be an object in C and consider the maps

C −→ Set

S 7−→ M (·) := MorC (S,M)

and

MorC (S, T ) −→ MorSet (M (T ) ,M (S))

ψ 7−→ M (ψ) := (f 7→ f ◦ ψ)
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It is easy to see that they define a functor M (·) from C to the category of sets.

Definition 2 Given a category C and an object M in C, the functor

C −→ Set

S 7−→ M(S)

is called the functor of points associated to M .

The elements xS of M(S) = MorC (S,M) are called the S-points of M . If for example, we
consider the category of manifolds Man and we take for S the manifold given by a single
point pt, then the pt points of M are the usual set theoretical points of M . Clearly the
knowledge of such point is not enough in order to determine the differentiable structure
of M , but the following discussion will show that the knowledge of all S-points is in fact
sufficient for this.

Next paragraph is devoted to discuss a very simple lemma which is nevertheless of fun-
damental importance for the development of the theory.

Yoneda lemma We have insofar defined an application that assigns to each object in the
category C a functor from C to Set:

M (·) : C 7−→ Set

Moreover if we define the map

MorC (M,N) −→ MorSet (M(S), N(S))

ψ 7−→ (xS 7−→ ψ ◦ xS)

we have that each morphism in C induces a natural transformation between the correspond-
ing functors of points. Since functors between two categories form by themselves a category
with natural transformations as morphisms, it is easy to check that the above construction
defines a covariant functor

Υ : C −→ [C,Set]

Such functor is called Yoneda’s embedding. In fact we have:

Lemma 1 (Yoneda) There is a bijection between MorC (M,N) and MorSet (M(S), N(S))
which is functorial in S.

Proof. (Sketch) Let ψ ∈MorC (M,N) and define

ψ(S) : M(S) −→ N(S)

xS 7−→ ψ ◦ xS

It is easy to check that ψ(·) is a natural transformation between M(·) and N(·).
Conversely let F be a natural transformation between the two functors of points, consider

F (M) : M (M) −→ N (M)

and define

ψF := F (M) (idM ) ∈ MorC (M,N) .
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Again, it is not difficult to show that

(ψF ) (·) = F

From this we get, for example, the fact that the functor of points of an object M brings
essentially the same information as the object M itself.

Since we are interested in C-groups let us now specialize to the case in which M is in fact
a C-group and let us denote it by G. Each G(S) inherits from G a group structure. Consider
in fact the multiplication morphism m of G. Due to functoriality this gives a morphism

m(S) : (G×G) (S) −→ G(S)

that, due to the identification

(G×G) (S) ≃ G(S)×G(S)

gives a map

m(S) : G(S)×G(S) −→ G(S)

Similarly we get maps

i(S) : G(S) −→ G(S)

e(S) : ê −→ G(S)

Due to functoriality all commutative diagrams of definition 1 are brought in analogous
diagrams for G(S), thus showing that (G(S),m(S), i(S), e(S)) is a Set-group.

Yoneda’s embedding is not, in general, surjective. A functor F from C to Set is said to
be representable if it is naturally equivalent to a functor in the image of Υ or in other words
we say that F is representable if there exists M in C such that M (·) and F are naturally
equivalent.
It should be now evident that a C-group is the same thing as a representable functor F from
C to Set such that each F (M) is a Set-group in a functorial way.

2.3 The category of C-groups

We now define (in a rather natural way) the sub-categoryGC of C-groups for a fixed category
C. The objects of GC are clearly the C-groups. Concerning morphisms, let G and G′ be
C-groups. We say that ψ is in MorGC (G,G′) if ψ ∈MorC (G,G′) and the following diagram
commutes

G×G
ψ×ψ

//

m

��

G′ ×G′

m

��
G

ψ
// G′

Passing to the corresponding functor of points we obtain that ψ : G −→ G′ is a morphism
of C-groups if and only if ψ(S) : G(S) −→ G′(S) is a functorial family of morphisms of
abstract groups.



Chapter 3

Supergeometry

Ecco qua: cos̀ı stupendo,

s̀ı balsamico elisire...

Dulcamara

L’elisir d’amore

In this chapter we are concerned with the description of the category SM of superman-
ifolds. In the first part we introduce the basic concepts of super differential geometry. Since
the literature on the subject is rich of many comprehensive treatments no attempt is made
of completeness and the first sections are only devoted to fix notations. A good knowledge
of basic facts of the matter is assumed. The reader who need to know more can consult
[Lĕı80], [Man97], [DM99a], [Var04].

3.1 Supermanifolds

Supermanifolds can be defined using the language of (graded) ringed spaces.

Graded ringed spaces Let M0 be a topological space and denote by τM0 (or simply by
τ , when no confusion is possible) the topology of M0. We view τ as a category in which
Morτ (U, V ) is defined to be the inclusion iU,V : U →֒ V if U ⊆ V , and empty otherwise.
Let g −Alg denote the category of associative, graded commutative, unital and real graded
algebras.

Definition 3 Consider a topological space M0. Let

OM : τM0 −→ g −Alg

be a contravariant functor and let

ρV,U = OM (iU,V ) iU,V ∈Morτ (U, V )

OM is called a pre-sheaf over M0 and ρV,U are called the structural or restriction maps.
The elements of OM (U) are called sections over U .
OM is called a sheaf over M0 if it is a pre-sheaf and the following two conditions are satisfied

11
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i) given U open in M0, an open cover {Uα} of U and sections s and s′ in O (U) then

ρU,Uα
(s) = ρU,Uα

(s′) ∀α

implies s = s′.

ii) given {Uα} open cover of the open set U ⊆ M0 and a family of sections {sα} with
sα ∈ O (Uα) ∀α, such that

ρUα,Uβ∩Uα
sα = ρUβ ,Uβ∩Uα

sβ ∀α, β

then there exists a section s in O (U) such that ρU,Uα
s = sα

Remark 1 If s is a section in OM (U), and V ⊂ U is open, the restriction of s to V is also
denoted by s |V .

When no ambiguity is possible OM (U) will simply be denoted O(U). Moreover OM (M0)
will be often abbreviated in O (M). We will call a pair M = (M0,OM ) a (graded) ringed
space1.

The local structure of a graded ringed space is encoded in the next construction. For
each x ∈ M0, one can consider the set Sx of sections defined in a neighborhood of x with
the equivalence relation

s ∼ s′ ⇐⇒ ∃U ∋ x such that s |U = s′|U

The quotient space

O (M)x := Sx/ ∼

is called the stalk of the sheaf at x . Elements of the stalk are equivalence classes of sections
coinciding in an arbitrary neighborhood of x.

Suppose that (M0,OM ) and (N0,ON ) are ringed space and let ψ0 : M0 −→ N0 be a
continuous mapping, then the push-forward of OM on N0 is the sheaf over N0 defined by:

(ψ0∗OM ) : τN0 −→ g −Alg

U 7−→ OM
(
ψ−1

0 (U)
)

Definition 4 Let (M0,OM ) and (N0,ON ) be graded ringed spaces. A morphism of (M0,OM )
in (N0,ON ), with reduced morphism ψ0, is a a natural transformation between ON and
ψ0∗OM . A morphism of (graded) ringed spaces ψ : M → N is a pair ψ = (ψ0, ψ

∗) con-
sisting of a continuous map ψ0 : M0 → N0 and a morphism ψ∗ with reduced morphism
ψ0.

In order to define super manifolds we need first to define local models for them.

Superdomains and their morphisms. Let U be an open subset of Rp with the usual
relative topology. We define the super domain Up|q of dimension (p, q) as the ringed space
whose topological manifold is U and whose sheaf of sections is given by

O (V ) = C∞(V )⊗ Λ
(
θ1, ..., θq

)

1This terminology is misleading since the elements of the sheaf are not only rings but also algebras.
Nevertheless we stick to this convention.
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where V is an open set in U . If we consider cartesian coordinates x1, ..., xp on V , then the
system x1, ..., xp, θ1, ..., θq is called a canonical super coordinate system on V . The

{
xi
}

are

called even coordinates while the
{
θj
}

are called odd coordinates.
A morphism of super domains

φ : Up|q −→ V r|s

is defined as a morphism of graded ringed spaces φ = (φ0, φ
∗):

φ0 : Up −→ V r

φ∗ : OV −→ φ0∗ (OU )

Theorem 1 below shows that φ0 is completely determined by φ∗ and that it is automatically
smooth.

Remark 2 In the non graded setting (i.e. q = s = 0) it is well known that φ0 and φ∗

determine each other. Due to the presence of nilpotent elements this is no longer true in the
super context.

For each x ∈ Up|q one can also define the evaluation map at x as

δx : O
(
Up|q

)
−→ R

∑

I

sIθ
I 7−→ s0(x)

The following criterion is widely used in order to prove that a given section is zero.

Proposition 1 Let Up|q be a superdomain with coordinates x1, ..., xp, θ1, ..., θq. Let Ix be
the ideal in O

(
Up|q

)
generated by

x1 − δx(x
1), ..., xp − δx(x

p), θ1, ..., θq

then for every section f ∈ O
(
Up|q

)
and any integer k ≥ 0, there exists a polynomial Pk in

the coordinates x1, ..., xp, θ1, ..., θq such that

f − Pk ∈ Ik+1
x

Proof. See [Lĕı80].

Supermanifolds, reduced manifolds and morphisms At this point next definition is
quite natural.

Definition 5 A supermanifold M (also called graded manifold) of dimension (p, q) is a
ringed space (M0,OM ) such that

i) M0 is a Hausdorff, locally compact, second countable topological space;

ii) ∀x ∈M0 there exists an open neighborhood U ∋ x such that

OM (U) ≃ O(V p|q)

where V p|q is a superdomain.
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Remark 3 Historically graded and super manifolds originated as different objects. Both
were created in order to give a geometrical framework for supersymmetry. Graded man-
ifolds were created in analogy with (commutative) algebraic geometry (see, for example,
[Ber87], [Kos77], [Man97], [DM99a], [Var04]) while super manifolds were defined following
the pattern of classical differential geometry (see [Bat79]). Eventually Batchelor proved (see
[Bat80]) that there is an equivalence between the two categories. Actually we are exposing
here the graded point of view, nevertheless we will use freely also the “super” prefix.

Definition 6 A morphism φ : M −→ N of super manifolds is simply a morphism (φ0, φ
∗)

of the corresponding ringed spaces.

Next theorem is of fundamental importance in handling morphisms, since it says that a
morphism is completely determined by its action on coordinates.

Theorem 1 Let Up|q be a super domain with graded coordinate xi, θj, and let (M0,OM ) be
a supermanifold. If ψ : M −→ Up|q is a morphism of supermanifolds then there are sections
{fi}

p
i=1 ∈ O (M)0 and {ξj}

q
j=1 ∈ O (M)1 such that

{
ψ∗(xi) = f i

ψ∗(θj) = ξj
(3.1)

Conversely for each element
{
f i, ξj

}
in O (M)p0 ⊕ O (M)q1 there exists a unique morphism

(ψ0, ψ
∗) of Up|q into M such that 3.1 holds.

Proof. See [Lĕı80] or [Var04].

Let M = (M0,OM ) be a supermanifold. For each x ∈ U define the map

δx : O (M) −→ R

s 7−→ s̃(x)

where s̃(x) is defined as the unique real number such that s− s̃(x) is not invertible in any
neighborhood of x. It is easily shown that δx is a graded algebra morphism and it moreover
descends to a morphism

δx : O (M)x −→ R

This means that

Jx = ker δx

is a graded ideal of O (M).
For each open set we can hence define

˜: OM (U) −→ C∞(U)

s 7−→ (x 7−→ s̃(x))

whose kernel JM (U) is given by the ideal of nilpotent elements in OM (U). Locally such an
ideal is generated by OM (U)1. Hence

C∞(U) ≃ OM (U)/JM (U)
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It can be shown that M̃ =
(
M0, ÕM

)
is a purely even manifold called the reduced

manifold associated to M . One has a natural inclusion of M̃ into M defined by

i0 = idM0

and

i∗ : OM (U) −→ OM (U)/JM (U) ≃ C∞(U)

Suppose now ψ is a morphism of graded manifolds. Due to the fact that

ψ∗ (JN ) ⊆ JM

we have a corresponding morphism of the associated reduced manifolds defined by

C∞(N) ≃ O (N) /J (N) −→ O (M) /ψ∗ (JN ) −→ O (M) /JM −→ C∞(M)

A straightforward calculation shows that

φ̃ ◦ ψ = φ̃ ◦ ψ̃

1̃M = 1fM

Summarizing we have

Proposition 2 The assignment

SM −→ Man

M 7−→ M̃

φ 7−→ φ̃

which assigns to a supermanifold the corresponding reduced manifold defines a functor.

3.2 Super vector spaces as supermanifolds

The reader can be confused by the fact that there does not seem to exist any relation between
a super vector space and a super manifold. In particular a super vector space is a purely
algebraic object with no sheaf of sections defined over it. Nevertheless we use the same
notation Rp|q to indicate both a super vector space and a supermanifold. We now show
how it is possible to associate in a canonical way to each super vector space a corresponding
supermanifold.

Let V = V0 ⊕ V1 be a super vector space and consider the contravariant functor

FV : SM −→ Set

defined by

Obj (SM) −→ Obj (Set)

S 7−→ (O (S)⊗ V )0
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and by

Mor (S, T ) −→ Mor (FV (T ),FV (S))

ψ 7−→ ψ∗ ⊗ id

In the remaining part of this section, we will show that such a functor is represented by the
super manifold

V̂ := (V0, C
∞(V0)⊗ Λ (V ∗

1 ))

Indeed, if we fix a homogeneous basis
(
e∗i , f

∗
j

)
and define the maps

V̂ (S) := Mor
(
S, V̂

)
−→ FV (S) = (O (S)⊗ V )0

ψ 7−→
∑

ψ∗(e∗i )⊗ ei +
∑

ψ∗(f∗
j )⊗ fj

it turns out, due to theorem 1, that all such maps are bijections. Suppose now that a
morphism of graded vector spaces

f : V −→ W

is given. The map

FV (S) −→ FW (S)

(O (S)⊗ V )0
id⊗f
7−→ (O (S)⊗W )0

is a natural transformation that, due to Yoneda’s lemma, descends to a morphism of the
representing supermanifolds:

f : (V0, C
∞(V0)⊗ Λ (V ∗

1 )) −→ (W0, C
∞(W0)⊗ Λ (W ∗

1 ))

Remark 4 Due to this result, we will henceforth use the same letter to indicate the super
vector space and the corresponding super manifold.

Example 3 Consider the graded vector space R1|1. We endow it with the structure of a
super algebra (with identity e) defining

m : R1|1 × R1|1 7−→ R1|1 (3.2)

(e, e) 7−→ e (3.3)

(f, f) 7−→ −e (3.4)

(e, f) 7−→ f (3.5)

where (e, f) is the canonical basis of R1|1. According to our previous discussion, an easy
calculation shows that the morphism induced at the super manifold level is given by:

m∗ : O
(
R1|1

)
7−→ O

(
R1|1 × R1|1

)
(3.6)

e∗ 7−→ (e∗ ⊗ e∗ + f∗ ⊗ f∗) (3.7)

f∗ 7−→ (e∗ ⊗ f∗ + f∗ ⊗ e∗) (3.8)

(3.9)
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3.3 Tangent structures

Vector fields over a supermanifold M are defined in complete analogy with the classical case.

Definition 7 Let M be a supermanifold. A vector field X of degree p(X) over M is a family
of maps

XU : OM (U) −→ OM (U)

such that

XU (ss′) = XU (s)s′ + (−1)p(X)p(s)sXU (s′)

and compatible with restrictions.

Vector fields dfine a sheaf of OM -modules called the tangent sheaf and denoted by T (M).
If Up|q is a superdomain then

∂

∂xi

(
∑

I

sIθ
I

)
:=

∑

I

∂sI
∂xi

θI

∂

∂θj


∑

j /∈I

sIθ
I +

∑

j /∈I

sjIθ
jθI


 :=

∑

j /∈I

∂sjI
∂θj

θI

are respectively even and odd vector fields. It can be proved that T (M) is a locally free
OM -module locally isomorphic to OM (U)

p
0 ⊕ OM (U)

q
1 for which

{
∂
∂xi

}
and ∂

∂θj form a
homogeneous basis.

Definition 8 A tangent vector v at x in M of degree p(x) is a derivation of the stalk O (M)x
i.e. a linear map

v : O (M)x −→ R

such that

v ([f ] [g]) = v ([f ]) g̃(x) + (−1)p(v)p(f)f̃(x)v ([g])

Remark 5 Notice that the minus sign in the last formula is rather useless, since if f is
odd, its value at x is zero.

If X is a vector field defined in a neighborhood of x, then

(X)x = δx ◦X : [f ] −→ X̃ (f)(x)

is a tangent vector at x of the same parity as X . Clearly a vector field X is not determined
by its a values at points. It can be proved that tangent vectors at x form a super vector
space Tx (M) of the same dimension as M and that

{(
∂

∂xi

)

x

}p

i=1

{(
∂

∂θj

)

x

}q

j=1

define a homogeneous basis of Tx (M).
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3.4 The sheaf OM

In this section we want to collect some results concerning the sheaf of sections over a super
manifold M . We will state and prove some technical results like the existence of partition
of unity over M and we will also show that it is possible to endow each super algebra O(U)
with a topology in such a way that it becomes a Fréchet algebra. We will end this section
showing that it is possible to reconstruct the sheaf of M knowing the super algebra of global
sections.

3.4.1 Differential operators

We define the differential operators D (M) ⊂ EndR (O (M)) over a super manifold
M . Following [Kos77], the space Dk (M) of differential operators of degree k is defined
by induction on the degree. In particular D0 (M) ≃ O (M) is the space of multiplicative
operators, while

Dk (M) = {D ∈ EndR (O (M)) | [D, f ] ∈ Dk−1 (M) , ∀f ∈ O (M)}

where [D, f ] denotes the commutator in EndR (O (M)), that is

[D, f ] = Df − (−1)p(D)p(f)fD

or

[D, f ] (s) = D(fs)− (−1)p(D)p(f)fD(s)

One has

Dk−1 (O (M)) ⊆ Dk (M)

and by definition

D (O (M)) :=

∞⋃

k=0

Dk (M)

It is easily shown that D (M) is a sub superalgebra of EndR (O (M)). In particular

D1 (O (M)) = O (M)⊕ T (M)

where T (M) are, by definition, the vector fields over M . Moreover the assignment

U 7−→ D (U) U ⊂ M̃ open

is a sheaf of OM - modules. It is possible to show that, if U is an open set with coordinate
(xi, θj), then every D ∈ D (M) admits a unique expression of the form

D =
∑

I,J

aI,J
∂|I|

∂xI
∂|J|

∂θJ
aI,J ∈ O (U)

where I = (i1, ..., ip), ir ∈ N and J = (j1, ..., jq), jr ∈ Z2.
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3.4.2 Partitions of unity

Let us abbreviateOM (U) by O (U). Like in classical differential geometry partitions of unity
will be useful in reducing arguments to coordinate neighborhoods. Suppose s to be a section
over U and consider the set of points x ∈ U for which there exists an open neighborhood
V ⊆ U such that the restriction of s to V is zero. This is an open set whose complement is
called the support of s. The proof of the following proposition is given in [Kos77].

Proposition 3 Let {Ui}i∈I be an open covering of M0 then there exist a locally finite re-
finement {Vj} where each Vj is a coordinate open set and a family {ψj} of sections such
that

i) ψj ∈ O (M)0

ii) suppψj ⊂ Vj for each j

iii)
∑
ψj = 1 and ψ̃j ≥ 0 for each j

We will put at work partition of unity already in the next section

3.4.3 Topology of O (M)

O (U) is an (infinite dimensional) super algebra over R and we want to define a topology
over it.

Suppose M is an ordinary manifold, one of the most common choices is given by the
open compact topology which is defined as follows. Let us denote by K the set of compact
subset of M and by D the space of differential operators over M (see [Var84], for example).
Define the map

pD,K : O (M) −→ R

f 7−→ sup
x∈K
|Df |

with D ∈ D and K ∈ K. It is well known (see [War83]) that each pD,K is a seminorm
and that if we endow O (M) with the topology defined by the family {pD,K}D∈D,K∈K

then O (M) becomes a Fréchet algebra that is a locally convex, metrizable, complete and
Hausdorff algebra. Endowed with this topology, O (M) acquires some pleasant property:

i) C∞c (M) is dense in O (M)

ii) differential operators are continuous

iii) the topological dual of O (M) is the space of compactly supported distributions

iv) it is well behaved with respect to Cartesian products, in the sense that (see [Gro52])

O (M ×N) = O (M)⊗O (N)

The generalization of these results to the super setting presents no difficulty and we sketch
it now very briefly.

Let hence M denote a super manifold, K the set of compact subset of M0 and by D the
space of differential operators over M . Similarly to (3.10), we define the maps

pD,K : O (M) −→ R

f 7−→ sup
x∈K

∣∣∣D̃f(x)
∣∣∣
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where D ∈ K and D ∈ D.

Lemma 2 The family {pD,K}D∈D,K∈K is a separating family of seminorms

Proof. It is immediate from the fact that K ⊆ K ′ implies pD,K ≤ pD,K′ and using local
coordinates.

This lemma tells us that the family {pD,K}D∈D,K∈K defines a locally convex Hausdorff

topological space structure on O (M). Metrizability follows in the usual way from paracom-
pactness of M0 (see [War83]).

We now show that it is possible to describe quite explicitly the topology of O (M).

Proposition 4 Let {U}α be an open cover of M̃ and let {sn} ⊂ O (M) be a sequence.

i) {sn} converges to s in O (M) if and only if, for each Uα,
{
sn |Uα

}
converges to s |Uα

in O (Uα).

ii) {sn} is a Cauchy sequence if and only if, for each Uα,
{
sn |Uα

}
is a Cauchy sequence.

Proof. It is not restrictive to suppose that sn converges to zero. The necessity is obvious.
Let D ∈ D (M) and K compact subset of M̃ . Let {Vβ} be a finite open cover of K such
that each Vβ is a compact closure open set with Vβ ⊆ Uα, for some α. If

{
sn |Uα

}
converges

to zero on each Uα, then also pD,K(sn) goes to zero since

pD,K(sn) ≤
∑

β

pK∩Vβ ,D
(sn)

The second part of the proposition is similar.

Finally we have

Proposition 5 OM (U) is complete for each U .

Proof. Let {sn}n be a Cauchy sequence in OM (U) and fix a denumerable cover {Vα}
of coordinate neighborhoods. Due to prop. 4,

{
sn |Vα

}
is Cauchy for each Vα. Since

C∞(Vα) ⊗ Λq is clearly complete in the open compact topology we have that there exists
sα ∈ OM (U) such that

{
sn |Vα

}
−→ sα

By continuity of the restricted maps, on overlaps we have

{
sn |Vα |Vα∩Vβ

}
−→ sα|Vα∩Vβ{

sn |Vα∩Vβ |Vα

}
−→ sβ|Vα∩Vβ

But sn |Vα |Vα∩Vβ
= sn |Vβ |Vα∩Vβ

= sn |Vα∩Vβ
, and we are done

It is clear that all differential operators are continuous in such a topology. The following
results are proved in detail in [Bal05].
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Proposition 6 i) If ψ : M −→ N is a morphism of supermanifolds then the correspond-
ing pull-back

ψ∗ : O (N) −→ O (M)

is continuous.

ii) Vector fields, tangent vectors and differential operators are continuous.

Proposition 7 O (M)⊗O (N) is dense in O (M ×N).

We end this section with a conceptually important result. We show that the knowledge
of the graded algebra O (M) of global sections allows to reconstruct the whole sheaf OM .
Actually even more is true: the knowledge of O (M) is equivalent to the knowledge of the
manifold M itself so that the well known duality between manifolds and sections also holds
in the graded setting.
Suppose the global sections O (M) of a super manifold M are given, and let U denote an
open subset of M0. Let us define

SU = {s ∈ O (M)0 | s̃(x) 6= 0 ∀x ∈ U}

Consider the Cartesian product O (M)× SU , define the equivalence relation

(f, s) ∼ (f ′, s′) ⇐⇒ ∃s′′ ∈ SU such that s′′ (s′f − sf ′) = 0

and denote

O (M)S−1
U = O (M)× SU/ ∼

Proposition 8 The localization map

ℓ : O (M)S−1
U −→ O (U)

(f, s) 7−→ f |U

(
s |
)−1

is a graded algebra isomorphism.

Proof. We follow the proof given in [BBHR91]. Let us start proving injectivity. Suppose

hence f |U

(
g |U

)−1
= 0. This is equivalent to f |U = 0 and we are reduced to prove that there

exists g ∈ SU such that gf = 0. Cover M with a family {Vα} of coordinate neighborhoods
and let {ψα} be a subordinate partition of unity

f =
∑

fψα =
∑

fα

For each Vα ∩ U define a section gα ∈ C∞(Vα ∩ U) ⊗ Λ ≃ O (Vα ∩ U) such that gα > 0 on
Vα ∩ U and suppgα = Vα ∩ U . Finally define

g =
∑

α

ψαgα

g is strictly positive on U by construction, and zero on M \ U , hence gf = 0.
We now come to surjectivity. Let f be a section in OM (U). We want to express f as a

ratio of an element g ∈ O (M) with an element h ∈ SU .
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Let {Uα}α∈I be an open cover of U such that Uα ⊂ U for each α. Due to Lindeloff, it is not
restrictive to assume I equal to N. Let ψn be even sections such that

{
suppψn ⊂ Un
ψn > 0 on Un

Let us define

∑

n

cnψnf

We look for constants cn such that

g = lim
n→∞

∑

n

cnψnf ∈ O (M)

h = lim
n→∞

∑

n

cnψn ∈ SU

Let us consider the first equation. Being O (M) complete, convergence can be checked using
Cauchy criterion: fix an increasing family of seminorms {pj} defining the topology of O (M),

pj

(
k+r∑

i=k

ciψif

)
≤

k+r∑

i=k

|ci| pj(ψif)

This suggests to define

ci =
1

2i
·

1

di + pi(ψif)

so that

pj

(
k+r∑

i=k

ciψif

)
≤

k+r∑

i=k

1

2n
pj (ψif)

di + pi (ψif)

If now di are numbers greater than 0, due to the fact that pj ≤ pi definitively, the above
sequence is Cauchy and hence converges. Analogously the second equations suggests to
define

ci =
1

2i
·

1

d′i + pi(ψi)

and hence

g = lim
n→∞

∑

n

1

2n
·

1

1 + pn(ψn) + pn(ψnf)
ψnf

h = lim
n→∞

∑

n

1

2n
·

1

1 + pn(ψn) + pn(ψnf)
ψn

have the required properties.

Next proposition says that morphisms of supermanifolds are determined by the pull-backs
on global sections.
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Proposition 9 Let ψ : O (N) −→ O (M) be a mapping of supermanifolds, then there exists
a unique

φ : M −→ N

such that φ∗ = ψ

Proof. (sketch) Define the map

φ∗0 : O (N) /JN (N) −→ C∞(M)

From classical theory φ∗0 determines a unique φ0 : M̃ −→ Ñ and

φ∗ : ON (U) ≃ O (N)S−1

φ−1
0 (U)

−→ OM (U) ≃ O (M)S−1
U

(f, s) 7−→ (ψ(f), ψ(s))

3.5 O◦M : the space of distribution with finite support

We will not need the general theory of distribution over a super manifold M . We content
ourselves to characterize the distributions with finite support. More precisely we want to
characterize those elements in the algebraic dual O (M)∗ of O (M) whose support is finite.
We recall that the support of an element T in O (M)

∗
is the complement of the set of those

points in M0 for which there exists an open neighborhood Ux such that

〈T, φ〉 = 0

for each φ ∈ O (M) with support in Ux.
Denote by

(O◦
M )x

the subspace of distributions with support at x and suppose that

T : O (M) −→ R

belongs to (O◦
M )x. Let U be a coordinate neighborhood of x. It is easy to check that T

descends to a continuous linear functional on O (U) ≃ C∞ (U)⊗ Λq. Consequently we have
that (O◦

M )x ≃ C
∞ (U)x ⊗ Λq∗ where C∞ (U)x denotes the space of classical distributions

with support at x. It is well known that the elements of C∞ (U)
′

with support at x are
exactly the derivatives of the delta distribution at x0 (see, for example, [Hor66]). We can
hence write

(O◦
M )x ≃ S (Tx (M0))⊗ Λq∗

and

O◦
M ≃

⊕

x∈M0

(O◦
M )x ≃

⊕

x∈M0

S (Tx (M0))⊗ Λq∗

We now want to study in some detail the algebraic structure of O◦
M . Let ∆ denote the

adjoint of the multiplication operator m : O (U)⊗O (U)→ O (U), we have:
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Proposition 10 (O◦
M ,∆, η) is a graded co-commutative co-algebra.

Proof. Since O◦
M is canonically identified with a subspace of the dual of O (M) it is enough

to prove that O◦
M is stable under the adjoint of m, that is that for each Xx in O◦

M there
exists ∆Xx in O◦

M ⊗O
◦
M such that

〈∆(Xx), f ⊗ g〉 := 〈Xx,m (f ⊗ g)〉

Nevertheless due to Leibniz rule, 〈Xx,m (f ⊗ g)〉 can be written as a (finite) linear combi-
nation of terms like

(
∂|P |

∂xP
f

)

x

(
∂|Q|

∂xQ
g

)

x

=

〈(
∂|P |

∂xP

)

x

⊗

(
∂|Q|

∂xQ

)

x

, f ⊗ g

〉

Moreover it is easily checked that

η (Xg) = Xg(1)

is a co-unit. Also graded commutativity and the appropriate commutative diagrams are
easily checked. They come directly from the fact that O (M) is a graded algebra.

The fact that O◦
M is a graded co-commutative colagebra follows also easily from next section

and abstract graded co-algebra theory 2.

3.6 An algebraic approach to finite support distribu-

tions

In [Kos77] it is stated that the space of distributions with finite support over a graded

manifold M identifies with the Sweedler dual O (M)
(s)

of the graded algebra O (M). In this
section we prove this result.

Definition 9 Let A be a graded algebra and denote by A∗ the corresponding algebraic dual.
The Sweedler dual of A is defined as

A(s) = {X |X ∈ A∗, kerX contains an ideal of finite co-dimension}

The necessity for defining A(s) comes from the fact that if an algebra A is not finite dimen-
sional then the adjoint of the multiplication

〈∆X, a⊗ b〉 := 〈X, a · b〉

does not turn A∗ into a co-algebra since

(A⊗A)
∗ ) A∗ ⊗A∗

On the other hand, it can be proved that A(s) is a co-algebra with respect to the operation
∆ defined above and co-unit

η : A(s) −→ R

X 7−→ 〈X, 1〉

(see [Swe69]).

2The standard reference for results on Hopf algebras is the book of Sweedler ([Swe69]). There all results
are given for non graded co-algebras, nevertheless we omit the proofs of the analogous results in the super
setting whenever this is a trivial extension of the classical proofs.
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Proposition 11 The co-algebra of distribution with finite support coincides with the Sweedler
dual of O (M):

O◦
M ≃ O (M)

(s)

Since each point distribution has a kernel that contains an ideal of finite co-dimension we

have that O◦
M ⊆ O (M)(s). Moreover, since it is well known that elements of O (M)∗ that

annihilates some Jnx are finite support distributions, we are reduced to prove the following

Proposition 12 Each ideal I of finite co-dimension of a stalk O (M)x contains an ideal of
the form Jkx for some k ∈ N.

We need the following important lemma.

Lemma 3 (Nakayama) Let A be a local (graded) commutative ring with maximal homo-
geneous ideal m. Let E be a finitely generated module for the ungraded ring A then if H is
a submodule of E such that E = mE +H then E = H.

Proof. See [Var04].

We can now prove the proposition
Proof. First let us notice that Jx is an O (M)x-module finitely generated by the p+ q

monomials
{
xi, yj

}
. Consider then the chain of ideals

O (M)x ⊇ Jx + I ⊇ J2
x + I ⊇ ...

Since I has finite co-dimension, we have that there exists k such that

Jkx + I = Jk+1
x + I

Hence

Jkx ⊆ Jk+1
x + I

Suppose U and W graded vector spaces, and V a graded vector subspace of U , then
(V +W ) ∩ U = U + (W ∩ U). Then

Jkx =
(
Jk+1
x + I

)
∩ Jkx = Jk+1

x + I ∩ Jk+1
x

Due to Nakayama lemma we have I ∩ Jk+1
x = Jkx
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Chapter 4

Super groups

Questo è un gruppo rintrecciato.

Chi sviluppa più inviluppa,

Chi più sgruppa, più raggruppa;

Ed intanto la mia testa

Vola, vola e poi s’arresta;

Vo tenton per l’aria oscura,

E comincio a delirar.

La Cenerentola

In the previous chapter, we have defined the category SM of supermanifolds. In this
chapter we examine more closely the category of SM-groups. SM-groups are commonly
called super groups or graded groups.
All the material presented here, with the exception of section 4.2, is well known. In particular
section 4.4 follows almost word by word the discussion in [Kos77] (see also [Bou98]). The
result about the triviality of the sheaf of sections over a super Lie group G (sec. 4.2) is well
known (see [Kos77] and [Bry87]) but, up to our knowledge, the proof presented is original,
explicit and much more elementary than the others.

We start specializing definition 1 to our context.

Definition 10 A real super group G is a real smooth super manifold G together with three
morphisms

µ : G×G −→ G

i : G −→ G

e : R0|0 −→ G

called multiplication, inverse, and unit respectively satisfying the following commutative di-

27
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agrams:

G×G×G

id×µ

��

µ×id
// G×G

µ

��

G×G
µ

##FF
FF

FF
FF

F
G×G

µ

##FF
FF

FF
FF

F

G

〈idG,ê〉
;;xxxxxxxxx idG //

〈ê,idG〉 ##FF
FF

FF
FF

F G G

〈idG,i〉
;;xxxxxxxxx ê //

〈i,idG〉 ##FF
FF

FF
FF

F G

G×G µ
// G G×G

µ

;;xxxxxxxxx

G×G

µ

;;xxxxxxxxx

where ê denotes the composition of the identity e : R0|0 −→ G with the unique map G −→
R0|0. 〈ψ, φ〉 denotes the map ψ × φ ◦ diag, diag : G −→ G×G being the canonical diagonal
map.

Remark 6 As we have already discussed in the previous chapter, morphisms in the previous
definition are actually graded algebras morphisms

µ∗ : O (G) −→ O (G×G)

i∗ : O (G) −→ O (G)

e∗ : O (G) −→ R

while diagrams have to be dualized

Remark 7 Let us also notice that to each super group is associated a Lie group G. Indeed
it is defined as the underlying manifold G0 and the ”reduced morphisms”

µ0 : G0 ×G0 −→ G0

i0 : G0 −→ G0

e0 : R0 −→ G0

Since the map φ 7−→ φ0 is functorial, it is immediate that G0, µ, i0, e0 is a Lie group.

4.1 The Lie superalgebra of a super Lie group

Exactly as in the classical case one can define the notion of left-invariant vector fields on a
graded manifold M . As usual care is needed since only definitions involving the algebra of
sections give correct generalizations.

Definition 11 A derivation X : OM −→ OM is called left invariant if

(1⊗X) ◦ µ∗ = µ∗ ◦X

Clearly if X and Y are left invariant then easy calculations show that also aX + bY is left
invariant for all a and b in R as well as the graded commutator

[X,Y ] = X ◦ Y − (−1)p(X)p(Y )Y ◦X

One can state these results as

Proposition 13 Denote by Lie (G) the set of left invariant vector fields over G. Lie (G) is
a graded Lie algebra.
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Exactly as in ordinary Lie theory one has

Proposition 14 There is a vector space isomorphism

Lie (G) −→ Te (G) (4.1)

X 7−→ Xe (4.2)

Proof. Let us first show that a left invariant vector field is uniquely determined by its value
at the identity:

X 7−→ Xe := δe ◦X

Let us notice that 1⊗ δe ◦ µ∗ = id. Hence

X = 1⊗ δe ◦ 1⊗X ◦ µ∗ = 1⊗Xe ◦ µ
∗ (4.3)

so that the map 4.1 is injective.
Conversely given a vector Xe ∈ Te (G), eq. 4.3 defines a left invariant vector field, thus

proving surjectivity.

From this proposition, it follows that we can endow Te (G) with a Lie algebra structure in
such a way that the map 4.1 become a graded Lie algebra isomorphism. Te (G) endowed
with such structure is denoted by g. We thus have

Corollary 1 There is a graded Lie algebra isomorphism

Lie (G) −→ g

X 7−→ Xe

whose inverse is given by

g −→ Lie (G)

Xe 7−→ 1⊗Xe ◦ µ
∗

Lie (G0) is clearly a graded Lie algebra. We now want to identify its even part.

Proposition 15 Let G and H be graded Lie groups and let φ : G −→ H be a morphism of
graded Lie groups. The map

(dφ)e : g −→ g′

is a Lie algebra homomorphism.

Proof. It is straightforward that:

(dφ)e [X,Y ] = [X,Y ]e ◦ φ
∗

= δeG
◦ 1⊗ [X,Y ] ◦ µ∗

G ◦ φ
∗

= δeH
◦ 1⊗ ([X,Y ] ◦ φ∗) ◦ µ∗

H

But

X ◦ Y ◦ φ∗ = 1⊗Xe ◦ µ
∗1⊗ Ye ◦ µ

∗ ◦ φ∗

= 1⊗Xe ◦ µ
∗ ◦ φ∗ ◦ 1⊗ dφeYe

= φ∗ ◦ 1⊗ dφeXe ◦ µ
∗ ◦ 1⊗ dφeYe

= φ∗ ◦
(
(dφeXe)

L ◦ (dφeYe)
L
)

so that the thesis easily follows.

From this it follows the next
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Corollary 2 The even part of the graded Lie algebra Lie (G) canonically identifies with
Lie (G0).

Proof. The thesis is immediate considering the canonical inclusion

j : G0 −→ G

and previous proposition.

4.2 Splitting of the sheaf

In this section we prove the following result

Proposition 16 Let G be a SLG and g = g0 ⊕ g1 the corresponding SLA. If U is an open
set in G0 then

O (U) ≃ C∞ (G0)⊗ Λ (g∗1)

Taking in the above proposition U = G0, we obtain that the super algebra of global sections
over a SLG splits into C∞ (G0)⊗Λ (g∗1). We will also exhibit an explicit form of the graded
isomorphism i : O (G) → C∞ (G0) ⊗ Λ (g∗1). As a byproduct of the above proposition we
will also obtain a local diffeomorphism from the SLA g to the SLG G.

The construction we will exhibit is actually a particular case of the graded version of
Frobenius theorem (see, for example [DM99a]). Fix a basis {Xi}i of g1 and consider the
associated set of left invariant vector fields XL

i . Let U be an open set in G0 and consider
also the super manifold

g1 × U

with the odd differential operators

{
1⊗XL

i

}

defined over it. If {X∗
i } denote the dual basis of {Xi}, we can define the even derivations

Di = X∗
i ⊗X

L
i . Each Di is clearly nilpotent, and so is

D =
∑

i

Di

Notice also that D does not depend on the choice of coordinates in g1.
Define the map

exp (D) : Λ(g∗1)⊗O (U) −→ Λ(g∗1)⊗O (U) (4.4)

f 7−→
∞∑

n=0

1

n!
Dn(f) (4.5)

=

dim g1∑

n=0

1

n!
Dn(f) (4.6)

Lemma 4 The map exp (D) is an automorphism of Λ (g∗1) ⊗ O (U) which defines an iso-
morphism of the super manifold g1 × U into itself.
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Proof. Due to theorem 9, it is enough to show that exp (D) is an automorphism of the
super algebra O (U). In commutative algebra this is a very well known fact and the proof
extends immediately to the super setting. In fact:

exp (D) (f) exp (D) (g) =
∑

k

1

k!
Dkf

∑

p

1

p!
Dpg

=
∑

n

∑

p+k=n

1

p!k!
DpfDkg

=
∑

n

1

n!

∑

k

(
n
k

)
DkfDn−kg

The explicit form of exp (D) is easily recognized to be:

exp (D) =
∑

n

1

n!

(
∑

i

X∗
i ⊗X

L
i

)n

=
∑

n

1

n!

∑

|I|=n

(
X∗
I ⊗X

L
I

)

where I is the usual multi-index notation and |I| the corresponding length.
Let us now proceed heuristically. The above formula shows that exp (D) is compatible with
the projection

pr : g1 × U −→ U

so that we obtain a map

g1 × U
exp(D)
−→ g1 × U

pr
−→ U

The key observation is now that U0 →֒ U is a subsupermanifold which is transversal in each
point to the distribution spanned by the left invariant vector fields XL

i so that

g1 × U0
i
→֒ g1 × U −→ U

is actually an isomorphism of super manifolds whose form is given by

τ : O (U) −→ O (U) (4.7)

f 7−→
∑

n

1

n!

∑

|I|=n

(
X∗
I ⊗ X̃

L
I (f)

)
(4.8)

In order to prove carefully the result we need the following proposition (see [Kos77]).

Proposition 17 Let ψ : O (M) −→ O (N) be an algebra morphism. ψ defines a diffeomor-
phism of graded manifolds if and only if

i) ψ0 is a diffeomorphism

ii) (dψ)x is an isomorphism for each x ∈M0
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In this case we have

ψ : g1 × U0
id×i
−→ g1 × U

(expD)
−→ g1 × U

pr
−→ U

and hence the reduced morphism is given by

U0
i
−→ {pt} × U0

(expD)0
−→ {pt} × U0

i
−→ U0

which is clearly a diffeomorphism. In order to determine the action of (dψ)x, we first notice
that, for the super manifold

U := (U0, C
∞ (U0)⊗ Λ (g∗1))

one has the identification:

Tx (U) ≃ Tx (U0)⊕ g1

Let {Xi} be a basis of Tx (U0) and {Yj} a basis of g1. We have

(dψ)xXi (f) = Xi

(
f̃
)

(dψ)x Yi (f) = Ỹ Li (f)(x)

= (lx−1∗Yi) (f)

4.3 The action of G0 on G

The reduced Lie group G0 acts on G in a natural way. Since this action is a basic ingredient
of future development of the theory we shortly describe it.

Since G is a super group, it acts on itself through group multiplication

G×G −→ G

Fix an element

g : R0|0 −→ G0 −→ G

in G0 and define

lg : R0|0 ×G
g×id
−→ G0 ×G

i×id
−→ G×G

m
−→ G

It is easily seen that this induces an action

l : G0 ×G −→ G

which we call left multiplication by G0. At the level of sections we have

l∗gf = δg ⊗ 1 ◦m∗ (f) (4.9)
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4.4 The convolution product on Oo
G

It is possible to use the group structure of G for defining an algebra structure on OoG. Let
us first examine the case in which G is an ordinary Lie group. In this case it is well known
that given two distribution Xg and Yg in OoG, we can define the convolution product Xg ∗Yg
as

(Xg ∗ Yg) (f) =

∫
dYg(y)

∫
dXg(x)f(xy)

:= 〈Xg ⊗ Yg, µ
∗(f)〉

This product possesses the following remarkable properties:

δg ∗Xg = lg∗Xg (4.10)

Xg ∗ δg = rg∗Xg (4.11)

where lg and rg denote the usual push-forward of left and right translations respectively.
Let us now come back to the super setting, we are led to define the convolution product
according to

(Xg ∗ Yg) (f) = 〈Xg ⊗ Yg, µ
∗(f)〉

where of course now f ∈ OoG and µ is the super group multiplication.
Returning to the super setting, we can now use the action of G0 on G described in the

previous section. If Xg denotes a distribution on G concentrated in g, we have

〈lg∗Xg, f〉 =
〈
Xg, l

∗
gf
〉

= 〈Xg, δg ⊗ 1 ◦m∗ (f)〉

= (δg ∗Xg) (f)

We have thus obtained the desired generalization of 4.10:

lg∗Xg = δg ∗Xg

rg∗Xg = Xg ∗ δg

It is quite interesting now to examine more closely the algebraic structure of OoG. In fact
we know that OoG is a graded co-algebra from prop. 10 and a graded algebra with identity
δe from the previous discussion. It is natural to ask if the two structure are compatible.

Proposition 18 If we endow OoG with the algebraic structures of the previous discussion
we have that both co-multiplication and co-unit are algebra homomorphisms.

We need the following calculus lemma.

Lemma 5 Let cM,N : M ×N −→ N ×M the flip map. The following diagram commutes

G×G
µG // G

diag
// G×G

OOOOOOOOOOOO

OOOOOOOOOOOO

G×G
diag×diag

// (G×G)× (G×G)
1×c×1

// G×G×G×G
µ×µ

// G×G

that is

µ∗
G (st) = µ∗

G ◦ diag∗G (s⊗ t) = diag∗G ⊗ diag∗G ◦ (1⊗ c∗ ⊗ 1) ◦ µ∗ ⊗ µ∗(s⊗ t) ∀s, t ∈ O (G)
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Proof. Straightforward.

Proof. We have to show that co-multiplication and co-unit are graded algebra morphisms.
Let us start with co-multiplication. Consider

〈∆(Xg ∗ Yh), s⊗ t〉 = 〈Xg ⊗ Yh, µ
∗
G ◦ (s · t)〉

(by lemma 5) = 〈Xg ⊗ Yh, diag∗G ⊗ diag∗G ◦ (1⊗ c∗ ⊗ 1) ◦ µ∗ ⊗ µ∗(s⊗ t)〉

= 〈∆(Xg) ∗∆(Yh), (1⊗ c
∗ ⊗ 1) ◦ µ∗ ⊗ µ∗(s⊗ t)〉

= 〈∆Xg ∗∆Uh, s⊗ t〉

and

〈∆δe, s⊗ t〉 = 〈δe ⊗ δe, s⊗ t〉

Consider now the co-unit. We have:

〈η (Xg ∗ Yg), s〉 = 〈Xg ⊗ Yh, µ
∗ ◦ δe(s)〉

= δe(s)Xg(1)Yh(1)

= δe(s)η (Xg) η (Yh)

This proves (see, for example, [Swe69]) that OoG is a bi-algebra. Actually even more is true.

Proposition 19 OoG is a graded Hopf algebra.

Proof. It simply follows from the fact that δe is a unit for the convolution product.

We end this section pointing out an interesting structure of OoG which parallels a general
structure theorem on Hopf algebras (see again [Swe69]).

4.4.1 Oo
G as a smash product

Let us examine more closely the product law in OoG. Fix hence a distribution Xg in OoG.
Each such element can be canonically written as the convolution product of a distribution
concentrated on the identity e of the supergroup with the “element” g of G0 on which it is
concentrated:

Xg = δg ∗
(
δg−1 ∗Xg

)
= δg ∗ lg−1∗Xg (4.12)

Thus each element in OoG can be written as a product δg ∗X , with X ∈ OoG concentrated at
e.

In order to simplify notations we introduce the symbol Xe as a shortcut for lg−1∗Xg so
that the previous relation becomes Xg = δg ∗Xe. Next proposition gives a caracterization
of the distributions with support in e.

Proposition 20 The space of distributions concentrated at the identity e of the supergroup
G is isomorphic, as an algebra, to the enveloping algebra E (g) of the super Lie algebra g

associated with the group.

Proof. It goes exactly as in the classical case.
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Due to decomposition 4.12, we can now define a map

ψ : OoG −→ R (G0)⊗ E (g) (4.13)∑

i

Xgi
7−→

∑

i

gi ⊗ (Xe)i

where, of course, (Xe)i = lg−1
i ∗Xgi

. By proposition 20, the above map is a bijection.

We can hence transport all the algebraic structures defined over OoG to corresponding
structures over R (G0)⊗ E (g). In this way R (G0)⊗ E (g) becomes a graded Hopf algebra.
The coalgebra structure is easily seen to be the one induced by the coalgebra structures of
R (G0) and E (g), namely

∆R(G0) : δg 7−→ δg ⊗ δg

∆g : Xe 7−→ Xe ⊗ δe + δe ⊗Xe ∀Xe ∈ g

More interesting is the algebra structure induced through the map 4.13. We now want to
spell out this product.

(g ⊗X) (g ⊗ Y ) := ψ ◦
[
ψ−1 (g ⊗X)ψ−1 (g ⊗ Y )

]
(4.14)

= ψ (Xg ∗ Yg) (4.15)

= ψ
(
δgg ∗

(
Xg−1

∗ Y
))

(4.16)

that we can rewrite as

(g ⊗X) (g ⊗ Y ) =
(
gg ⊗XgY

)
(4.17)

where Xg−1

clearly denotes the adjoint action of G0 on g.
Since this formula resembles the one for semi-direct products, it is costumary in the

literature to denote R (G0)⊗E (g), endowed with the hopf algebra structure just described,
with

R (G0) ⋊ E (g)

This is called the smash product of R (G0) with E (g) (see [Swe69]).
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Chapter 5

Harish-Chandra pairs

Questa o quella per me pari sono...

Duca di Mantova

Rigoletto

In the previous chapter we have associated to each super groupG the graded Hopf algebra
OoG of finite support distributions over G. We have also shown that it can be written as a
smash product

OoG = R(G0) ⋊ E(g)

In this chapter, following [Kos77], we define the Lie-Hopf algebra (LHA) E (G0, g) associated
to a super group G as the graded Hopf-algebraOoG in which G0 is endowed with its Lie group
structure. Clearly the Lie-Hopf algebra associated to a super Lie group G is completely
determined once the triple

(G0, g, α)

consisting of the reduced Lie group G0, the super Lie algebra g = g0 ⊕ g1 and the adjoint
action α of G0 on g is given. According to [DM99a], each triple (G0, g, α) with

i) G0 Lie group,

ii) g super Lie algebra such that g0 ≃ Lie (G0)

iii) α action of G0 on g such that α |g0
= Ad

is called a super Harish-Chandra pair (SHCP). This also gives the general definition of
a Lie-Hopf algebra, as the smash product constructed starting from a generic SHCP. We
show that, given such a LHA E (G0, g), a supergroup G can be constructed in terms of the
algebraic dual E (G0, g)

′
. The LHA of G turns out to be exactly the given one. Once defined

morphisms between SHCP we have the category SHC of super Harish-Chandra pairs. The
category LH of Lie-Hopf algebras is then automatically defined.

The aim of this chapter is to show that the functor

SGrp −→ LH ≃ SHC

is an equivalence of categories. This is of central importance for our approach to the rep-
resentation theory of super Lie groups. The detailed proof of the equivalence we will give
follows [BT06].

37
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5.1 Lie-Hopf algebras and super Harish-Chandra pairs

Let G be a super group. As we have seen in the previous chapter, the space of finite-support
distributions OoG is canonically isomorphic to the smash-product R (G0) ⋊ E (g). Clearly,
one has

OoG →֒ O (G)
′

where O (G)
′
denotes the algebraic dual of O (G).

Lemma 6 OoG separates the points of O (G), that is

〈f − h,Xg〉 = 0 ∀Xg ∈ O
o
G =⇒ f = h

Proof. Let f ∈ O (G) be a non null section over G, and let U be an open coordinate
neighborhood such that

f |U =
∑

I

fIθ
I 6= 0

Clearly there exist fJ and x ∈ U such that fJ(x) 6= 0. Consider the element of OoG given by(
∂
∂θJ

)
x
, the thesis easily follows.

Proposition 21 Each morphism of supergroups ψ : G → H uniquely determines a mor-

phism of graded Hopf algebras φ∗ : OoG → O
(o)
H

Proof. Let ψ ∈ Mor (G,H) with ψ = (ψ0, ψ
∗) and denote ψ∗ with φ. We now show that

the adjoint of φ defines a morphism of Lie-Hopf algebras. We have

〈f, φ∗ (Xg)〉 = 〈φ(f), Xg〉

where φ∗ (Xg) belongs to the algebraic dualO (H)′ ofO (H). Nevertheless due to proposition
6 we have

〈φ∗(fn), Xg〉 −→ 0 if fn
n→∞
−→ 0

and moreover it is easy to see that if

supp f ∩ ψ0(g) = ∅

then 〈f, φ∗ (Xg)〉 = 0. The injectivity of the map ψ 7→ ψ∗ is an easy consequence of the fact
that OoG separates sections.

The above proposition hence establish that the map

Mor (G,H)
∗
−→ Mor (OoG,O

o
H)

is injective. Nevertheless, in general, the above map is not bijective since if ψ ∈Mor (OoG,O
o
H)

then ψ∗ (O (H)) ⊆ (O (G))
′
. In order to obtain a bijection we now give more structure to

OoG so to restrict the class of morphisms.

Definition 12 We say that (G0, g) is a super Harish-Chandra pair (SHCP) if

• G0 is a classical Lie group
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• g = g0⊕g1 is a super Lie algebra such that g0 is isomoprphic to the Lie algebra of G0;

• the adjoint representation of g0 on g exponentiates to a representation of G0.

If G is a supergroup, the pair (G0, g) given by the reduced Lie group G and the super Lie
algebra g is a super Harish-Chandra pair. A morphism of SHCPs is simply a couple of
morphisms ψ =

(
ψ0, ρ

ψ
)

preserving the SHCP structure.

Definition 13 Let (G0, g) and (H0, h) be SHCP. A morphism between the two is defined as
a couple (ψ0, ρ

ψ) such that

i) ψ0 : G0 → H0 is a Lie groups homomorphism

ii) ρψ : g→ h is a super Lie algebra homomorphism

iii) ψ0 and ρψ are compatible in the sense that:

ρψ|g0
= dψ0

Given a morphism φ : G −→ H of super Lie groups, then it determines the morphism of the
corresponding super Harish-Chandra pairs

(φ0, (dφ)e)

It is now natural to give the following

Definition 14 A Lie-Hopf algebra E (G0, g) is defined as the smash product

R (G0) ⋊α E (g)

where (G0, g, α) is a super Harish-Chandra pair.

Of course one can give the following natural definition.

Definition 15 Let E (G0, g) and E (H0, h) be Lie-Hopf algebras. We say that ψ : E (G0, g) −→
E (H0, h) is a morphism of Lie-Hopf algebras if

i) φ is a morphism of graded Hopf algebras

ii) φ |G0
is a Lie group morphism

iii) φ |g0
= dφ0

We have thus defined two strictly related categories. The category SHC of super Harish-
Chandra pairs and the category LH of Lie-Hopf algebras. As it may be expected, we have:

Proposition 22 SHC and LH are equivalent categories.

Proof. Straightforward.

These simple considerations can be summarized saying that we have defined a functor F
from the category of super Lie groups to the category of super Harish Chandra pairs. This
chapter will be devoted to prove the following

Theorem 2 The category of super Lie groups is equivalent to the category of super Harish
Chandra pairs.
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Roughly speaking this theorem says that each problem in the category of SLG can be
reformulated in an equivalent problem in the language of SHCP. We will put at work this
approach when we will study representation theory of SLGs.
Before embarking in the proof of the theorem let us outline the road we will follow. Proving
categorical equivalence means showing that the functor F defining the equivalence is

i) bijective on the objects

ii) bijective on morphisms

A moment of thought makes clear that in our case this means showing that

i) given a (G0, g) there exists a SLG G having (G0, g) as corresponding SHCP

ii) given a morphism f : (G0, g) → (H0, h) there exists a unique morphism ψ of corre-
sponding SLG from which f arises.

5.2 Reconstruction of the Lie super group from the

Harish-Chandra pair

Let (G0, g) be a super Harish-Chandra pair and consider the corresponding Lie-Hopf alge-
bra as defined in section 5.1. The algebraic dual E (G0, g)

′
is naturally endowed with the

structure of a left E (g)-module by defining Z.φ for Z ∈ E(g), φ ∈ E (G0, g)
′
as

〈xX,Z.φ〉 = 〈xXZ, φ〉 ∀x ∈ G0, X ∈ E(g)

Clearly if E (G0, g) comes from a super Lie group G then E (G0, g) ⊂ O (G)
′

and we
have a map

i : O (G) −→ E (G0, g)
′

Moreover, since E (G0, g) is non singularly paired with O (G) (prop. 6), the above map
is injective and the action of E (g) on i (O (G)) is the usual action through left invariant
differential operators. The evaluation map is defined by

˜: E (G0, g)′ −→ RG0

φ 7−→ φe : (x 7→ 〈x, φ〉)

Define hence the super vector space

A (G) =
{
φ ∈ E (G0, g)′ | (Z.φ)e∈ C∞(G0) and (ZX.φ)e= X (Z.φ)e∀Z ∈ E (g) , X ∈ g0

}

We have

Proposition 23 If (G0, g) is a super Harish-Chandra pair, then (G0, A (G)) is a super Lie
group with operations

µ∗ = m∗
E(G0,g) |A(G)

i∗ = s∗|A(G)

e∗ = η∗|A(G)

where m, s amd η are multiplication, antipode and co-unit in E (G0, g). Moreover the super
Harish-Chandra pair associated to (G0, A(G)) is precisely (G0, g).
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Proof. We divide the proof into the following steps:

i) A (G) is a graded algebra

ii) the maps µ∗, i∗ and e∗ are graded algebra morphisms with respect to which A (G) is
a Hopf algebra.

iii) (G0, A (G)) is a super Lie group

iv) the Harish-Chandra pair associated to (G0, A(G)) is (G0, g).

Notice that iii) follows at once from i), ii), and prop. 9.

First step We start showing that A(G) is a graded algebra and in order to establish
this we have to prove that it is stable by the adjoint of the co-multiplication map. In
fact the identity is given by the adjoint of the counit, and the fact that the appropriate
commutative diagrams hold follows dualizing the co-algebra diagrams of E (G0, g). In other

words we have to prove that if φ, ψ ∈ A(G), then (Z. (φ · ψ))
e∈ C∞(G0) for all Z ∈ E(g)

and (XZ. (φψ))e= X (Z. (φψ))e for each X ∈ g0. Let hence be Z ∈ E (g)

Z. (φ · ψ)
e
(x) = 〈x, Z. (φ · ψ)〉

= 〈(x⊗ x) ∆ (Z), φ⊗ ψ〉

= (−1)Z(2)φ
〈
xZ(1), φ

〉 〈
xZ(2), ψ

〉

= (−1)Z(2)φZ(1).φ
e(x) · Z(2).ψ

e(x)

then (Z. (φ · ψ))
e∈ C∞(G0).

Let now X ∈ g0.

(
XZ. (φ · ψ)

)e
(x) =

〈
∆
(
xXZ

)
, φ⊗ ψ

〉

=
∑〈

xXZ(1) ⊗ xZ(2) + xZ(1) ⊗ xXZ(2), φ⊗ ψ
〉

=
∑

(−1)p(φ)p(Z(2))
[〈
xXZ(1), φ

〉 〈
xZ(2), ψ

〉
+
〈
xZ(1), φ

〉 〈
xXZ(2), ψ

〉]

=
∑

(−1)p(φ)p(Z(2))X
((
Z(1).φ

)e(
Z(2).φ

)e)
(x)

= X (Z. (φ · ψ))e(x)

Second step We have to prove that the maps defined in the proposition preserve A (G).
The necessary commutative diagrams then automatically follow from the analogous diagrams
for E (G0, g). We begin with the inverse:

〈xX, i∗ (φ)〉 = 〈s (xX), φ〉 ∀xX ∈ E (G0, g)

If Z ∈ E (g) then

(Z.i∗ (φ))
e
(x) = 〈xZ, i∗(φ)〉

=
〈
x−1s (Z)x, φ

〉

= (s (Z)
x
.φ)

e
(x−1) ∈ C∞(G0)



42 CHAPTER 5. HARISH-CHANDRA PAIRS

Suppose now X ∈ g0, then

(
XZ.i∗(φ)

)e
(x) =

〈
xXZ, i∗(φ)

〉

=
〈
x−1

[
X, s (Z)

]x
, φ
〉
−
〈
x−1X

x
s (Z)x, φ

〉

=
d

dt

[(
s (Z)

xexp(tX) φ
)e(
x−1

)]∣∣∣∣
t=0

−
d

dt

[
(s (Z)

x
.φ)

e(
exp

(
tX
)
x−1

)]∣∣∣∣
t=0

=
d

dt

[(
s (Z)xexp(tX) φ

)e(
xexp

(
tX
))]∣∣∣∣

t=0

= X (Z.i∗(φ))e(x)

We now consider the adjoint of the multiplication in E(G0, g). Notice that A (G×G) is
defined as a a subspace of E (G0 ×G0, g⊕ g)

′
and that E (G0 ×G0, g⊕ g) ≃ E (G0, g) ⊗

E (G0, g). We have to prove that µ∗ defines a map from A(G) to A(G × G). Let hence
φ ∈ A(G), x and x′ in G0 and Z ⊗ Z ′ ∈ E (g⊕ g) ≃ E(g)⊗ E(g), then

〈x⊗ x′, (Z ⊗ Z ′) .µ∗(φ)〉 =
〈
xx′Zx

′−1

Z ′, φ
〉

=
(
Zx

′−1

Z ′.φ
)e

(xx′)

From this it follows that [(Z ⊗ Z ′)µ∗(φ)]
e∈ C∞(G0 ×G0).

Let now X ⊗ 1 ∈ g0 ⊕ g0 ⊂ E (g0 ⊕ g0) ≃ E (g0)⊗ E (g0). We have:

[(
X ⊗ 1

)
(Z ⊗ Z ′)µ∗(φ)

]e
(x, x′) =

〈
xx′X

x′−1

Zx
′−1

Z ′, φ

〉

= X
x′−1 (

Zx
′−1

Z ′.φ
)e

(xx′)

=
d

dt

[(
Zx

′−1

Z ′.φ
)e(
xexp

(
tX
)
x′
)]∣∣∣∣

t=0

=
(
X ⊗ 1

)
[(Z ⊗ Z ′)µ∗(φ)]

e
(x, x′)

Finally, if 1⊗X ∈ g0 ⊕ g0, then

[(
1⊗X

)
(Z ⊗ Z ′)µ∗(φ)

]e
(x, x′) =

〈
xx′Zx

′−1

XZ ′, φ
〉

=
〈
xx′

[
X,Zx

′−1
]
Z ′, φ

〉
+
〈
xx′XZx

′−1

Z ′, φ
〉

=
d

dt

[(
Zx

′exp(tX)−1

Z ′.φ
)e

(xx′)

]∣∣∣∣
t=0

+
d

dt

[(
Zx

′−1

Z ′.φ
)e(
xx′exp

(
tX
))]∣∣∣∣

t=0

=
(
1⊗X

)
[(Z ⊗ Z ′)µ∗(φ)]

e
(x, x′)

We end this part of the proof showing that each Y in g acts as a superderivation of the same
parity as Y . Let X denote a generic element of E (g), then

〈xX, Y. (φ · ψ)〉 = 〈∆(xXY ), φ⊗ ψ〉

=
〈
xX,

[
(Y.φ) · ψ + (−1)p(φ)p(Y )φ · (Y.ψ)

]〉



5.2. RECONSTRUCTION OF THE LIE SUPER GROUP FROM THE HARISH-CHANDRA PAIR43

Last step Let us consider linear map

Φ : C∞(G0)⊗ Λ (g∗1) −→ A (G)

defined over decomposable elements according to

Φ (f ⊗ ω∗) = φfω∗

with φfω∗ ∈ E (G0, g)
′
defined by

〈xXλ(ω), φfω∗〉 := Xf(x) 〈ω, ω∗〉

where λ is the isomorphism E (g0)⊗Λ (g1) ∋ X⊗ω 7−→ Xλ(ω) ∈ E (g) defined in appendix
A. According to such isomorphism we will express each element in E(g) as a product
Xλ(ω) with X ∈ E(g0) and ω ∈ Λ(g1). Let us first verify that φfω∗ is in A(G). Given
Y = Xλ(ω) ∈ E (g) and X ∈ g0, we have:

(Y.φfω∗)
e
(x) = 〈xXλ(ω), φfω∗〉

= Xf(x) 〈ω, ω∗〉

and
(
XY.φfω∗

)e
(x) =

〈
xXXλ(ω), φfω∗

〉

= XXf(x) 〈ω, ω∗〉

= X (Y.φfω∗)e(x)

showing that Φ is well defined taking values in A(G). We now pass to show that Φ :
C∞(G0) ⊗ Λ (g∗1)

opp −→ A (G) is a super-algebra morphism, where Λ (g∗1)
oppis Λ (g∗1) with

multiplication law ∨ defined by

ω ∨ τ := τ ∧ ω ∀ω, τ ∈ Λ (g∗1)

Clearly Φ is an even linear map, hence it is sufficient to prove that

i) Φ (fg ⊗ 1) = Φ (f ⊗ 1) · Φ (g ⊗ 1) for each f, g ∈ C∞(G0)

ii) Φ (f ⊗ ω∗) = Φ (f ⊗ 1) ·Φ (1⊗ ω∗) for each f ∈ C∞(G0) and ω∗ ∈ Λ (g∗1)

iii) Φ (1⊗ Z∗ ∨ ω∗) = Φ (1⊗ Z∗) ·Φ (1⊗ ω∗), for all Z∗ ∈ g∗1, ω
∗ ∈ Λ (g∗1)

In fact, if the above properties hold true, then

Φ
(
(f ⊗ Z∗

1 ∨ ... ∨ Z
∗
k) ·

(
g ⊗ Z∗

k+1 ∨ ... ∨ Z
∗
n

))
= Φ (fg ⊗ 1) · Φ (Z∗

1 ∨ ... ∨ Z
∗
n)

= Φ(f) · Φ(g) · Φ (Z∗
1 ∨ ... ∨ Z

∗
k) ·Φ

(
Z∗
k+1 ∨ ... ∨ Z

∗
n

)

= Φ (f ⊗ Z∗
1 ∨ ... ∨ Z

∗
k) ·Φ

(
g ⊗ Z∗

k+1 ∨ ... ∨ Z
∗
n

)

We now verify i). We will use formula A.1 in appendix A for evaluating ∆λ; moreover, in
order to simplify notations, we will write ∆(X) = X(1) ⊗X(2).

〈xXλ(Z1 ∧ ... ∧ Zk), φf · φg〉 = 〈(x⊗ x)∆ (X)∆ (λ (Z1 ∧ ... ∧ Zk)), φf ⊗ φg〉

=

k∑

r=0

∑

J ⊂ {1...k}
increasing order

|J | = r

(−1)p((1,...,k)→(J,J)) 〈xX(1)λ (ZJ), φf
〉
×

×
〈
xX(2)λ (ZJ), φg

〉

= 〈xXλ (Z1 ∧ ... ∧ Zk), φfg〉



44 CHAPTER 5. HARISH-CHANDRA PAIRS

moreover

〈xXλ(1), φf · φg〉 = 〈(x⊗ x) ∆ (X), φf ⊗ φg〉

= X(1)f(x)X(2)f(x)

= X (fg) (x)

= 〈xXλ(1), φfg〉

Consider now ii). It is not restrictive to suppose ω∗ ∈ Λn (g∗1) with n > 0.

〈xXλ (Z1 ∧ ... ∧ Zk), φf · φω∗〉 =

k∑

r=0

∑

J ⊂ {1...k}
increasing order

|J | = r

(−1)p((1,...,k)→(J,J)) 〈xX(1)λ (ZJ), φf
〉 〈
xX(2)λ (ZJ), φω∗

〉

=
〈
xX(1), φf

〉 〈
xX(2)λ (Z1 ∧ ... ∧ Zk), φω∗

〉

= Xf(x) 〈Z1 ∧ ... ∧ Zk, ω
∗〉

= 〈xXλ (Z1 ∧ .... ∧ Zk), φfω∗〉

and

〈xX, φf · φω∗〉 = 0 = 〈xX, φfω∗〉

We finally come to iii). With the same notations as above:

〈xXλ (Z1 ∧ ... ∧ Zk), φZ∗ · φω∗〉 =
k∑

r=0

∑

J ⊂ {1...k}
increasing order

|J | = r

(−1)p((1,...,k)→(J,J)) ×

×
〈
xX(1)λ (ZJ)⊗ xX(2)λ (ZJ), φZ∗ ⊗ φω∗

〉

=

k∑

j=1

(−1)p((1,...,k)→(j,1,2,...,j−1,j+1,...,k))(−1)k−1×

×
〈
xX(1)λ (ZJ), φZ∗

〉 〈
xX(2)λ

(
Z(1,2,...,j−1,j+1,...,k)

)
, φω∗

〉

Now, if X belongs to g0E (g0), then by the last formula

〈xXλ (Z1 ∧ ... ∧ Zk), φZ∗ · φω∗〉 = 0 = 〈xXλ (Z1 ∧ ... ∧ Zk), φZ∗∨ω∗〉

If X = 1, then

= (−1)k−1
k∑

j=1

(−1)j+1 〈Zj , Z
∗〉
〈
Z(1,2,...,j−1,j+1,...,k), ω

∗
〉

= (−1)k−1 〈Z∗
y (Z1 ∧ ... ∧ Zk), ω

∗〉

= 〈(Z1 ∧ ... ∧ Zk), ω
∗ ∧ Z∗〉

= 〈xλ (Z1 ∧ ... ∧ Zk), φω∗∧Z∗〉

We have to prove that Φ is an isomorphism. Φ is clearly injective. Suppose hence that φ is
an element in A (G). Define ϕ : G0 −→ Λ (g∗1) as

〈ω, ϕ(x)〉 := 〈xλ(ω), φ〉 ∀ω ∈ Λ (g1)
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ϕ can be identified with an element ϕ ∈ C∞(G0)⊗ Λ (g∗1) since

〈ω, ϕ(x)〉 = (λ(ω).φ)
e
(x)

Moreover Φ (ϕ) = φ. In fact:

〈xXλ(ω),Φ(ϕ)〉 = 〈ω,Xϕ(x)〉

= X (λ(ω).φ)
e
(x)

= (Xλ(ω).φ)e(x)

= 〈xXλ(ω), φ〉

To end the proof, we show that each X ∈ g is a left invariant vector field. From this
follows that g is the Lie algebra of G. Let Y ∈ E (g), then, given φ ∈ A (G),

〈xY , [(id⊗ δe) ◦ (id⊗ Z) ◦m∗] (φ)〉

= 〈xY ⊗ eZ,m∗(φ)〉

= 〈xY , Z.φ〉 =

so that

(id⊗ δe) ◦ (id⊗ Z) ◦m∗ = Z
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Chapter 6

The Weil-Berezin functor

...Tu sei quell’albero

D’onde germoglieranno

Per forza matematica

Sei germi in men d’un anno

Con gran felicità.

Si sa, si sa, si sa.

Buralicchio

L’equivoco stravagante

In this chapter we analyze the “fine” structure of a super manifold by means of a nice
device invented by A. Weil ([Wei53]) in the purely even context (for a complete and beautiful
treatment of Weil’s ideas, we remand to [KMS93]). Eventually we will establish a link
between this approach and a construction that first appeared in [Ber87].

The idea is quite simple. Since, as we have seen, the geometrical structure of a super
manifold M is completely encoded in in the graded algebra of sections, the local differential
structure near a point x has to be enclosed in the stalk O (M)x at x.

This is an object with a peculiar algebraic structure and it is natural that in order to
study it one has to use objects of the “same kind”. This naturally leads to introduce the
category Loc of local algebras (section 6.1), and to consider the space

MA :=
⋃

x∈M

g −Alg (O (M)x , A) = g −Alg (O (M) , A)

of superalgebra morphisms from O (M) to the local algebra A. The elements of MA are
called A-near points of M . It is interesting to note that the super algebra of sections over a
super-point R0|s forms a local algebra isomorphic to a Grassman algebra Λs in s generators

. MR
Λs

can hence be interpreted as the analysis of the supermanifold M through the
super-points R0|s. In section 6.2, we show that MA can be endowed with the structure of a
a purely even manifold fibered over the reduced manifold M̃ . As one may expect the above
construction exhibits a nice functorial behavior in the sense that it defines a bi-functor

SM×Loc −→ Man

(M,A) 7−→ MA

47
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This is proved in section 6.3.

One of the more beautiful aspects of the A-near points theory is that it allows to develop
the differential calculus on manifolds using algebraic techniques that resemble very closely
the original method of “infinitesimal numbers” due to Fermat. Consider in fact the (even)
local algebra Rǫ = R ⊕ Rǫ where ǫ2 = 0, and let M be a classical manifold. As noticed by
Weil, the set of Rǫ-point of M canonically identifies with the tangent bundle over M . Such
construction extends without difficulty to the super context (section 6.4). This approach
allows to compute all the differential structures over MA we are interested in. In doing this,
the transitivity theorem 30 plays a crucial role. The section ends showing that also vector
fields over M can be prolonged to vector fields over MA.

Finally, in section 6.5, we apply the above results to the case in which M is a supergroup
G. In such a case, each GA acquires a Lie group structure in a functorial way so that we
get a functor

Loc −→ LG

A 7−→ GA

from the category of local algebras to the category of Lie groups that can be “restricted” to
a functor

B : PLoc −→ LG

Λ 7−→ g −Alg (O (G) ,Λ)

where PLoc denotes the full subcategory of Loc whose objects are the algebras of sections
over some super-point. PLoc clearly identifies with the category of Grassman algebras. We
call B, the Weil-Berezin functor. Due to prop. 9, we have that there is a bijection

g −Alg (O (G) ,Λ) ←→ MorSM

(
R0|s, G

)

The Weil-Berezin functor is hence a relative of the functor of points G(·), but it differs
from it in the following two aspects:

i) it is defined only on the subcategory of super-points;

ii) it takes values in the category of Lie groups.

Such a functor determines the supergroup G uniquely. With respect to this point, notice
that if B were only the restriction of G(·) to super-points then this fact would not have
been true. In fact there would have been no possibility of recovering the smooth structure

of G. Nevertheless, in our case, being true point ii), we have that GR
0|0

is a Lie group that
actually identifies with the reduced group G0. Moreover using the results of section 6.4, we
can “differentiate” the Weil-Berezin functor and obtain a functor

PLoc −→ LA (6.1)

Λ 7−→ Te
(
GΛ
)

= (g⊗ Λ)0 (6.2)

This actually was the starting point of Berezin construction. It is well known (see [DM99a])
that the functor 6.1 determines uniquely the super Lie algebra g, so that B brings complete
information about the SHCP (G0, g) and hence about the super group G.
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6.1 Local algebras

In this section we extend the theory of A near points over a manifold (see [Wei53]) to the
graded setting. In what follows we will call local (graded) algebra a graded algebra A
which is also finite-dimensional, commutative, unital and with a graded ideal J = J0 ⊕ J1

such that

i) dimA/J = 1

ii) J is nilpotent, i.e. there exists n ∈ N such that Jn = 0

Example 4 Let (M,O (M)) be a graded manifold. Fix a point x ∈ M0. If Ix denotes the
ideal of sections f vanishing at x we have that for each p = 0, ...

O (M) /Ip+1
x

is a local algebra with nilpotent ideal Ix/I
p+1
x .

Example 5 Another fundamental example of local algebra is given by the sections over a
point pt. Clearly it identifies with some exterior algebra in N generators ΛN = R⊕ ΛN+ .

Example 6 Consider the graded vector space Rǫ,θ = (R + Rǫ) ⊕ Rθ with ǫ ∈
(
Rǫ,θ

)
0
, θ ∈(

Rǫ,θ
)
1

and relations ǫ2 = θ2 = ǫθ = 0. Rǫ,θ is clearly a local algebra and J = Rǫ⊕Rθ. We

will also denote by Rǫ the even algebra
(
Rǫ,θ

)
0
.

Notice that last example shows that for a local algebra, J0 need not to be the ideal
generated by J1.

The smallest integer n such that Jn = 0 is called the height of J . Since A is unital, R
canonically embeds in A and moreover it splits into the direct sum

A = R⊕ J (6.3)

Hence we define the evaluation map

˜: A −→ R

a 7−→ ã := prR(a) = amodJ

ã is also called the finite part of a.
Consider the algebra of “graded polynomials” in r|p variables.

P (r|p) = R
[
x1, ..., xr

]
⊗ Λ

(
θ1, ..., θp

)

For each choice of a r|p-tuple

i1, ..., ir ∈ J0

j1, ..., jp ∈ J1

the map

ψ : Rr|p ∋ P 7−→ P [i1...ir, j1...jp] (6.4)

sends Rr|p into A and it is a mapping of graded algebras.
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Lemma 7 The map 6.4 is onto if and only if i1, ..., ir, j1, ..., jp span J/J2.

The lemma shows that local algebras are finite dimensional quotient of the algebra of formal
power series over R. In particular are local algebras all algebras of the form

Rn|m/Jp+1

where J is the ideal of those element which evaluated are zero. This is a local algebra of
height p. We omit the proof since it goes exactly as in the classical case and we will not
need such a result.

6.2 A-near points

Definition 16 Let A be a local algebra, M be a graded manifold and x ∈ M0. We call
A-point near to x in M0 every homomorphism

xA ∈ g −Alg (O (M) , A)

such that

x̃A (f) = f̃(x) ∀f ∈ O (M)

Notice that if xA is a point near to x then

x̃A := prR ◦ x
A ∈ g −Alg (O (M) ,R)

and such morphism corresponds to the evaluation at x. This allows to construct a projection

π : MA −→ M (6.5)

xA 7−→ x̃A (6.6)

Remark 8 If A is an exterior algebra Λ then it can also be interpreted as the sheaf of
sections of a super manifold of the form R0|s. In this case the map R0|s −→M given by

{
ψ0 (pt) = x̃A

ψ∗ = xA

is a morphism of super manifolds.

Definition 17 We define the set of A near points to a super manifold M as

MA := g −Alg (O (M) , A)

Next proposition says that an A-point xA is local in the sense that it depends only on
germs of sections near x̃A.

Lemma 8 If f ∈ O (M) vanishes in a neighborhood of x̃A then xA(f) = 0

Proof. Let U be the neighborhood of x̃A on which f vanishes, and V be a neighborhood of
x̃A such that V ⊂ U . Let φ ∈ O (M)0 be such that φV = 1 and suppφ ⊂ U . Since φf = 0

0 = xA(fφ) = xA(φ)xA(f)

and, due to the fact that xA(φ) is invertible in A, we are done.

From this, next results follow easily:



6.2. A-NEAR POINTS 51

Proposition 24 xA(f) depends only on the germ of f at x̃A.

This proposition says that an A-point xA can actually be viewed as an element of

O (M)Ax := g −Alg (O (M)x , A) (6.7)

Proposition 25 Let xA be an A-point near x̃A, then xA is uniquely determined by the
elements

xA(xi) ∈ xi(x̃A) + J0

xA(yj) ∈ J1

{
xi, yj

}
being graded coordinates near x̃A. Moreover to each assignment of this kind there

corresponds a unique A-point near x̃A.

Proof. Fix xA and define

xA(xi) = fi = xi(x̃A) + fi ∈ A0

xA(yj) = Fj ∈ A1

Consider the morphism xf which is defined as xA on coordinate sections, and extend it to
a generic section using formal Taylor development (this is meaningful due to the nilpotency
of the sections). Define also the morphism

xA − xf ∈ Hom(O (M) , A)0

and notice that
(
xA − xf

)
(xi) =

(
xA − xf

)
(yj) = 0 ∀i, j

Due to proposition 1, given s ∈ O (M) and an integer k, there exists a polynomial P k
x̃A

such

that
(
s− P k

x̃A

)
∈ Jk+1

x̃A

From this the first part follows easily. The second is clear.

Manifold structure We will devote this section to show that MA can be endowed with
a manifold structure. As a preliminary remark let us note that every section in O (M)
determines a map

fA : MA −→ A (6.8)

defined as

fA
(
xA
)

= xA (f)

If we fix a basis in A we can write

fA(xA) =
∑〈

xA(f), a∗k
〉
ak

=
∑

fAk (xA)ak

where fk : MA → R. We endow MA with a manifold structure such that the maps fk
become smooth.
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Proposition 26 Let M be a n|m-dimensional graded manifold and A a local algebra en-
dowed with its natural vector space topology. The set MA can be given a smooth structure
canonically determined by the condition that each f ∈ O (M) is smooth when considered as
a map from MA to A. The triple

(
MA, π,M

)
is a fiber bundle.

Proof. We use theorem 1 in Appendix. The first step consists in defining a denumerable
family of subsets UAα of MA with corresponding maps

hα : UAα −→ Rn

To this end consider a denumerable open cover of M through coordinate neighborhoods
(Uα). Using the projection π defined by eq. 6.5 we can lift each open set Uα to the set

UAα = π−1(Uα)

Clearly
{
UAα
}

is a cover of MA. Let xA ∈ UAα and let xi, yj be a graded coordinate system
on Uα. Due to prop. 25, xA is completely determined by its action on xi, yj , We have

xA(xi) =

r∑

k=0

〈
xA(xi), a∗k

〉
ak

=

r∑

k=0

xik(x
A)ak

= xi(x̃A) + ni

xA(yj) =

r∑

k=1

〈
xA(yj), a∗k

〉
ak

=

r∑

k=1

yjk(x
A)ak = N j

hence each xA in UAα is completely determined by the value of the functions

{
xik, y

i
k

}

Define the map

hα : UAα −→ Uα × R(dimA0−1)·n × RdimA1·m

xA 7−→
(
x1

0(x
A), ..., ymdimA(xA)

)

Using again prop. 25, it is straightforward that the above map is a bijection.
Let now Uβ be another chart and let

xi =
∑

P

xiP (x1, ..., xn)yP i = 1, ..., n

yj =
∑

Q

yjQ(x1, ..., xn)yQ j = 1, ...,m

be the transition functions on Uα ∩ Vβ . We have

xik =
〈
xA(xi), a∗k

〉
=

∑

P

〈
xA
(
xiP (x1, ..., xn)yP

)
xA
(
yP
)
, a∗k
〉
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and hence
〈
∑

P

xiP
(
x1 + n1, ..., xn + nn

)
NP , a∗k

〉
=

∑

P,F

∂|F |xiP
∂xF

(x1, ..., xn)
〈
nF ·NP , a∗k

〉

where
〈
nF ·NP , a∗k

〉
=

〈
nF1

1 ...nFn
n NP1

1 ...NPm
m , a∗k

〉

=

〈(∑
x1
kak

)F1

...
(∑

xnkak

)Fn

·
(∑

y1
kak

)P1

...
(∑

ymk ak

)Pm

, a∗k

〉

Since this last expression is polynomial in xik and yjk, we obtain that the transition functions
are smooth. All other conditions in Proposition B are easily seen to be satisfied, so that
MA is endowed with a smooth structure. Such a structure can in principle depend on the
choice of the atlas {Uα} of M and on the choice of the basis of A. Nevertheless calculations
completely similar to that already done clarify that this is not the case.

Remark 9 The bundle structure described by the above proposition can be seen, using the
identification given by eq.6.7, as corresponding to the decomposition

MA ≃
⋃

x∈M

O (M)
A
x

Using previous proposition and remembering the discussion in section 3.2, one easily proves
the following

Corollary 3
(
R1|1

)A
is diffeomorphic to A with the canonical vector space topology through

the map (
R1|1

)A
−→

(
R1|1 ⊗A

)
0

−→ A
xA 7−→ e⊗ xA(x) + f ⊗ xA(θ) 7−→ xA(x) + xA(θ)

where e, f denote the canonical basis of R1|1. More generally if V is a graded vector space
one has that V A and (V ⊗A)0 are diffeomorphic through

(V )
A −→ (V ⊗A)0

xA 7−→
∑

ei ⊗ x
A(e∗i ) +

∑
fj ⊗ x

A(f∗
j )

Proof. As a set we have:
(

R1|1
)A

≃ g −Alg
(
O
(

R1|1
)
, A
)

≃ A0 ⊕A1

where xA ∈
(
R1|1

)A
is identified with (a′0, a

′
1) =

(
xA(x), xA(θ)

)
∈ A0 ⊕ A1. The smooth

functions on A are easily identified through

xk
(
xA
)

=
〈
xA(x), a∗k

〉

= 〈a′0, a
∗
k〉

θk
(
xA
)

=
〈
xA(θ), a∗k

〉

= 〈a′1, a
∗
k〉
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with the functions generated by the Cartesian coordinates on A. The proof of the last part
is similar.

Remark 10 Notice that
(
R1|1

)A
and A are identified as classical manifolds.

Remark 11 Due to the previous proposition we have that each element of O (M) ⊗ A∗

identifies with the smooth function on MA defined by

f ⊗ a∗(xA) =
〈
xA(f), a∗

〉

Moreover such functions determines the smooth structure on MA since they contain an atlas
over MA.

6.3 The functor of A-near points

Extension of morphisms Let M and N be a graded manifold and let ψ : M −→ N be
a morphism of graded manifold. For each local algebra A ψ induces a morphism

ψA : MA −→ NA

xA 7−→ ψA(xA) := xA ◦ ψ∗

We call ψA the extension or the prolongation of ψ.

Proposition 27 Let M,N and ψ be as above, then ψA : MA −→ NA is smooth. Moreover

(ψ ◦ φ)
A

= ψA ◦ φA

Proof. We show that
(
ψA
)∗

(f ⊗ a∗) is a smooth function on MA. But this follows imme-
diately from

[(
ψA
)∗

(f ⊗ a∗)
]
(xA) = (f ⊗ a∗) (ψA(xA))

= (f ⊗ a∗)
(
xA ◦ ψ∗

)

= xA ◦ ψ∗(f)⊗ a∗

= ((ψ∗) (f)⊗ a∗) (xA)

which is smooth.
For the last part, we note that

(ψ ◦ φ)
A

(xA) = xA ◦ (ψ ◦ φ)
∗

= xA ◦ φ∗ ◦ ψ∗

= φA(xA) ◦ ψ∗

= ψA ◦ φA(xA)

Suppose now that a morphism of local algebras σ : A −→ B is given and define

σM : MA −→ MB

xA 7−→ σ ◦ xA
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Proposition 28 Let M,A,B and σ be as above, then σM : MA −→ MB is a smooth
mapping and

σM ◦ τM = (σ ◦ τ)M

Proof. The proof goes as the previous one. Let fB ⊗ b∗ be a smooth function on MB then

σM∗(f ⊗ b∗)(xA) = (f ⊗ b∗) ◦ σM (xA)

= f ⊗ b∗(σ ◦ xA)

= xA(f)⊗ σ∗(b∗)

= [f ⊗ σ∗(b∗)] (xA)

which is clearly smooth.

We can summarize the content of propositions from 26 to 28 in the following theorem.

Theorem 3 The assignments

Obj (SM)×Obj (Loc) −→ Obj (Man)

(M,A) 7−→ MA

and

MorSM ×MorLoc −→ MorMan

(ψ, σ) 7−→ σM ◦ ψA

defines a bi-covariant bi-functor

SM×Loc −→ Man

Moreover we have

Proposition 29 The functor

SM −→ Man

M 7−→ MA

is product preserving in the sense that

(M ×N)
A ≃MA ×NA

where the identification is settled by

ψ : MA ×NA −→ (M ×N)A(
xA, yA

)
7−→ mA ◦

(
xA ⊗ yA

)

Proof. Let us first of all notice that both MA × NA and (M ×N)
A

are fibered over the

cartesian productM×N and that ψ is fibered over the identity. Consider
(
x̃A, ỹA

)
∈M×N ,

let U ∋ x̃A be a coordinate neighborhood with coordinate xi, θj and let V ∋ ỹA be a
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coordinate neighborhood with coordinate yr, ηs. The bijectivity and the smoothness of ψ
follows from

mA ◦
(
xA ⊗ yA

)
(xi ⊗ 1) = xA(xi)

mA ◦
(
xA ⊗ yA

)
(1⊗ yr) = yA(yr)

mA ◦
(
xA ⊗ yA

)
(θj ⊗ 1) = xA(θj)

mA ◦
(
xA ⊗ yA

)
(1 ⊗ ηs) = yA(ηs)

Next lemma shows that the A-near point functor is well behaved with respect to algebra
tensor products. From now on we use freely the results in section 3.2.

Lemma 9 Let A be a graded algebra and B a local algebra. According to corollary 3, there
exists a canonical diffeomorphism

i : (A)
B −→ (A⊗B)0

Moreover i preserves multiplication in the sense that if m denotes the multiplication in A
and mB the corresponding prolongation, then

i
(
mB

(
xB, yB

))
= i

(
xB
)
· i
(
yB
)

where · is the canonical product law in (A⊗B)0. Moreover if R1|1 is endowed with the
super algebra structure given in section 3.2, then also the identification

(
R1|1 ⊗A

)
0
≃ A, as

ungraded algebras, preserves the product law.

Proof. The diffeomorphism follows from corollary 3. In order to show that multiplication
is preserved let us write explicitly the identification

i : AB −→ (A⊗B)0

xB 7−→
∑

ak ⊗ xB
(
a∗k
)

Moreover multiplication in A and co-multiplication in A∗ are related according to

mA (ai ⊗ aj) =
∑

p

cpijap

mA∗
(
a∗k
)

=
∑

ij

ckija
∗i ⊗ a∗j

Hence, we have:

∑

kij

ak ⊗ c
k
ijm

B
(
xB
(
a∗i
)
⊗ xB

(
a∗j
))

=
∑

ij

(
∑

k

ckijak

)
⊗ xB

(
a∗i
)
· xB

(
a∗j
)

=
∑

ij

ai · aj ⊗ xB
(
a∗i
)
· xB

(
a∗j
)
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Remark 12 Great care has to be paid to the following fact . In what follows A appears with
two roles: as a super vector space that can also be viewed as a super manifold (see 3.2) or

as the result of an “exponentiation” (like in the case
(
R1|1

)A
) In this case A is regarded as

~

an even manifold since the Weil functor takes values in the category of classical manifolds.
In order to simplify notation we have avoided to explicitly indicate this fact hoping that the
context will make it clear.

We briefly stop in order to check the consistency of the notations1. If f is a section in
O (M) then we can canonically define a morphism of graded manifolds φf : M −→ R1|1

through

φ∗(x) = f0

φ∗(θ) = f1

Viceversa, to each morphism ψ : M −→ R1|1 we can associate the section fψ = ψ∗(x)+ψ∗(θ).
Due to prop. 1, this is a bijection. Hence, it is natural to denote f and φf with the same
letter. According to our previous proposition, given a local algebra A we can define a map

fA : MA −→
(
R1|1

)A

Nevertheless the same symbol fA was already used in eq 6.8 to denote the map

fA(xA) = xA(f)

but, using lemma 9, we have

fA : MA −→
(

R1|1
)A
−→ A

xA 7−→ xA ◦ f∗ 7−→ xA (f∗(x)) + xA (f∗(θ)) = xA(f)

Transitivity Given a graded manifold M we can form the manifold MA of A-points of

M . We can further iterate the process constructing the manifold of B-points
(
MA

)B
,

nevertheless since MA is a purely even manifold it is clear that

(
MA

)B
≃
(
MA

)B0

In this paragraph we prove the following

Proposition 30
(
MA

)B
=
(
MA

)B0
is diffeomorphic to MA⊗B0 through

τ :
(
MA

)B0
−→ MA⊗B0

(
xA
)B

7−→ xA⊗B0 :
(
f 7−→ i

[(
fA
)B (

xA
)B])

where i is the identification
[(

R1|1
)A]B

−→ A⊗B0. τ has the following properties:

1We can quote here what Godement wrote about classical differential geometry ([God04]). “ La théorie
des variétés est remplie d’identifications canoniques et de construction functorielles qui, théoriquement,
soulèvent à chaque pas des questions de compatibilité destinées à rassurer le lecteur sur le caractère non
contradictoire des notions et abus de langage introduits. ... On n’est pas sur la Terre pour s’amuser. ”
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i) τ
((
xA
)B
·
(
yA
)B)

= τ
((
xA
)B)
· τ
((
yA
)B)

ii)
(
τ
((
xA
)B))

(f) =
(
xA
)
(f)⊗ 1B + ξ where ξ ∈ JA ⊗B0

iii) τ ◦
(
ψA
)B

= ψA⊗B0 ◦ τ

Remark 13 Before proving the proposition notice that, in order to avoid heavy notations,

we have adopted the convention that the image of
(
xA
)B

under the identification is obtained
”lowering B”.

Proof. Let f be a section in O (M). As already discussed f can be identified with a

morphism f : M −→ R1|1 and hence extended to fA : MA −→ A and again to
(
fA
)B

:(
MA

)B0 −→ AB0 ≃ A⊗ B0 Let us now consider the correspondence which assigns to each(
xA
)B0

the mapping

O (M) 7−→ A⊗B0

f 7−→
(
fA
)B0

(
xA
)B0

Using lemma 9, such a map is easily seen to be an A⊗B0-point near to MA⊗B0 , so that we
have

(
MA

)B0
−→ MA⊗B0

We now prove that the above correspondence is a diffeomorphism. Being a result local in
M we can suppose M = Rp|q:

((
Rp|q

)A)B
= (Ap0 ⊕A

q
1)⊗B0

= Rp ⊗A0 ⊗B0 ⊕ Rq ⊗A1 ⊗B0

=
(

Rp|q
)A⊗B0

There remain points ii) and iii). Point ii) follows immediately noticing that

xA⊗B0 =
∑

k

ak ⊗
((
fA
)B (

xA
)B)

(a∗k)

= xa(f) +
∑

k

ak ⊗ bk

Point ii) is a consequence of

ψA⊗B0τ
[(
xA
)B]

(f) = τ
[(
xA
)B]

ψ∗(f)

=
[
ψ∗ (f)

A
]B (

xA
)B

=
[
τ
(
ψA
)B (

xA
)B]

(f)
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From the above propostion it is easy to show that

(
xA
)B0

(f ⊗ a∗) = a∗yxA⊗B0(f) (6.9)

Let us briefly sketch how2. Previous proposition gives the equality

xA⊗B0(f) =
∑

k

ak ⊗
((
fA
)B

(xA)B
)

(a∗k)

so that

a∗yxA⊗B0(f) =
((
fA
)B

(xA)B
)

(a∗)

Nevertheless
[(
fA
)B

(xA)B
]
(a∗) = (xA)B

[〈
fA(·), a∗

〉]

= (xA)B [〈(·)(f), a∗〉]

= (xA)B(f ⊗ a∗)

and the equality follows.

Due to 6.3, every element xA of MA can be written as

f(xA) = f(x) + L(f)

where f(x) ∈ R and L (f) ∈ J . Writing down the condition that x′ is a graded algebra
morphism we get easily

L (fg) = f(x)L(g) + L(f)g(x) + L(f)L(g)

suppose now that J has height 1 (that is J2 = 0) then

L(fg) = L(f)g(x) + f(x)L(g)

where L(·) belongs to J . This suggests a way to construct algebraically the differential
structures (tangent vectors, jets,...) over a manifold. We devote next paragraph to this
topic.

6.4 Differential calculus with A-near points

Tangent structure Let xA ∈ g − Alg (O (M) , A). Due to the decomposition of A into
R⊕ J we can write xA as

xA = x̃A + LxA

where x̃A ∈ g −Alg (O (M) ,R). It is easy to check that

LxA(fg) = LxAfg(x) + f(x)LxAg + LxA(f)LxA(g) (6.10)

2We do not keep track of all the identifications made.
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Suppose now that A = Rǫ,θ and write

LxA(f) = Lǫ(f)ǫ+ Lθ(f)θ

Notice also that clearly Lǫ (resp. Lθ) vanishes on odd (resp. even) sections. 6.10 is hence
equivalent to

Lǫ(fg) = Lǫfg(x) + f(x)Lǫg

Lθ(fg) = Lθfg(x) + f(x)Lθg

From this it follows that each xRǫ,θ canonically identifies a tangent vector at x = ˜xRǫ,θ .
Conversely given a tangent vector v = v0 + v1 at x one easily verify that

δx + v0ǫ+ v1θ

is an element in MA. Clearly if M is a manifold then MR
ǫ,θ

= MR
ǫ

. As one may expect

Proposition 31 Let M be a (purely even) manifold. MR
ǫ

endowed with the smooth struc-
ture defined in prop. 26 is isomorphic to the tangent bundle over M

Right now we have seen that if N is a manifold then NR
ǫ

is the tangent bundle on N .
Suppose now N has the form MA (which is by no means restrictive) then, due to prop. 30,
we have an isomorphism

τ : T (MA) ≃ (MA)R
ǫ

−→ MA⊗R
ǫ

(6.11)

Due to point ii) of prop. 30 one has that if
(
xA
)Rǫ

= δxA + ǫVxA with VxA ∈ TxA

(
MA

)

hence xA⊗R
ǫ

= τ
(
xA
)Rǫ

= δxA + ǫvxA

where vxA : O (M)→ A satisfies the following rule:

vxA(fg) = vxA(f) · xA(g) + xA(f) · vxA(g)

In general, let M be a supermanifold, A a superalgebra and let

ψ : O (M) −→ A

be a morphism of graded algebras. One defines the space of ψ-linear derivations of M (ψ
derivations for short) as the A-module

Derψ (O (M) , A) :=
{
X |X ∈ Hom(O (M) , A) , X(fg) = X(f)ψ(g) + (−1)p(f)p(X)ψ(f)X(g)

}

Hence we have that each tangent vector at xA canonically identifies a xA-derivation.
Clearly such derivation sends even sections (resp. odd) into the even (resp. odd) subspace
of A. Conversely each such derivation canonically identifies a tangent vector at xA. Hence
we have

Proposition 32 The tangent space at xA in MA canonically identifies with

DerxA (O (M) , A)0
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We now need some insight into the structure of DerxA (O (M) , A)0. The following propo-
sition describes it explicitly.

Let M be a right A-module and let N be a left B-module for some algebras A and B.
Suppose moreover that an algebra morphism ψ : A −→ B is given. One defines the tensor
product M ⊗ψ N as the vector space M ⊗N with the equivalence relation

m · a⊗ n ∼ m⊗ ψ(a)n

Proposition 33 Let M be a supermanifold and let x ∈M . Denote with Tx (M) the germs
of vector fields at x. One has the identification of left A-modules

A⊗xA T
x̃A (M) ≃ DerxA (O (M) , A) (6.12)

The theorem is clearly local so that it is enough to prove it in the case M is a superdomain.
Next lemma do this.

Proposition 34 Let M be a superdomain of dimension (p, q) with coordinate system
{
xi, yj

}

and let A a local algebra. To any set of elements

f = {fi, Fj} i = 1, ...p j = 1, ..., q; fi, Fj ∈ A

there corresponds a ψ-derivation

Xf : O (M) −→ A

given by

Xf(h) =
∑

i

fiψ

(
∂h

∂xi

)
+
∑

j

Fjψ

(
∂h

∂yj

)

Xf is even (resp. odd) if and only if {fi} are even (resp. odd) and {Fj} are odd (resp.

even). Moreover any ψ-derivation is of this form for a uniquely determined set of functions
f .

Proof. That Xf is a ψ-derivation is clear. That the family f is uniquely determined is also
immediate from the fact that they are the value of Xf on the coordinate functions.
Let now X be a generic ψ-derivation, Define

f i = X
(
xi
)

(6.13)

F j = X
(
yj
)

(6.14)

and

Xf = f iψ∗

(
∂

∂xi

)
+ F jψ∗

(
∂

∂yj

)

Let

D = X −Xf

Clearly

D
(
xi
)

= D
(
yj
)

= 0
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We now show that this implies D = 0. Let h ∈ O (M). Due to proposition 1 for each m ∈M
and for each integer k ∈ N there exists a polynomial P ∈ Pm,k such that

h− P ∈ Ik+1
m

Due to Leibniz rule

D (h− P ) ∈ Jk

where J is the nilpotent ideal in A, while due to 6.13

D (P ) = 0

hence D(h) is in Jk for arbitrary k and we are done.

Collecting the above results we get the following important result.

Theorem 4 We have the identification

TxAMA ≃
(
A⊗xA T

x̃A (M)
)
0

Push-forwards

Proposition 35 Let M and N be super manifolds, A and B local algebras. Consider mor-
phisms ψ : M −→ N and σ : A −→ B. The push-forward of the map

σN ◦ ψA : MA −→ NB

xA 7−→ σ ◦ xA ◦ ψ∗

is given by

(
σN ◦ ψA

)
∗xA : TxA

(
MA

)
−→ TψA(xA)

(
NB

)

vxA 7−→ σ ◦ (vxA) ◦ ψ∗

where the identification given by prop. 32 is assumed.

Proof. We calculate the push-forward of ψA, the calculation for σM being completely
similar. The thesis follows by composition.

Keeping in mind point iii) of proposition 30 we have:

τ
[(
ψA
)
∗
(VxA)

]
= τ

[(
ψA
)
∗

[(
xA
)Rǫ]

− xA
]

= τ
[((

xA
)Rǫ

− xA
)
◦
(
ψA
)∗]

= τ
[(
ψA
)Rǫ ((

xA
)Rǫ

− xA
)]

= ψA⊗R
ǫ
[
τ
((
xA
)Rǫ

− xA
)]

= τ
((
xA
)Rǫ

− xA
)
◦ ψ∗
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Extension of vector fields It is possible to use prop. 33 in order to extend vector fields
on M to vector fields on MA. Indeed if X is a vector field on M of parity p(X), then for
each a ∈ Ap(X) one can define the vector field on MA

aXA : xA 7−→ a⊗xA X

For example if a = 1 and X is an even vector field on M , then XA is the vector field defined
by

XA
xA(f) := xA (X(f)) ∀f ∈ O (M)

and, more generally,

(
aXA

)
xA (f) := a ·

(
xAX(f)

)

Moreover A ⊗xA T
x̃A (M) can also be seen, in a canonical way, as a right A module by

defining

a⊗xA X · a′ := (−1)p(a
′)(p(a)+p(X))a′ · a⊗xA X

So that we can also define the vector field

XAa : xA 7−→ (1⊗xA X) · a(f) = (−1)p(f)p(X)xA (X(f)) · a

XAa is called the left prolongation of X while aXA is called the right prolongation. Due to
eq. 6.9 we have that the corresponding vector fields are defined through3

((
XAa

)
(f ⊗ c∗)

)
(xA) = c∗y

(
XAa

)
xA (f)

= (−1)p(X)p(f) (X(f)⊗ axc∗) (xA)

We now pass to consider the commutator of two vector fields. It is easily calculated as
follows

(
XAa ◦ Y Bb

)
(f ⊗ c∗) = XAa

(
Y Ab (f ⊗ c∗)

)

= (−1)p(Y )p(f)+(p(Y )+p(f))p(X) (XY ) (f)⊗ axbxc∗

where ax denotes the adjoint of multiplication (·) · a. Hence we have:

[
XAa, Y Ab

]
= (−1)p(X)p(Y )

(
[X,Y ]A ab

)

We now use the machinery developed in this section for investigating a construction that
first appeared, in the super context, in Berezin book [Ber87].

3In what follows all checks and all calculations will be done for the left prolongation only, since it is the
one we will be most concerned with.
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6.5 The Weil-Berezin functor

Let (G,µ) be a super group. As we have described in the previous section we can associate
to G the functor of near points:

Loc −→ Man

A 7−→ GA

As one may expect, we have

Proposition 36 If G is a super group, the corresponding functor of near points take values
in the category of Lie groups.

Proof. In order to prove the theorem it is enough to show that each GA can be endowed
with a Lie group structure but this is an easy consequence of prop. 3. In fact each map µ,
i and e can be transported to a smooth map

µA : (G×G)
A ≃ GA ×GA −→ GA

iA : GA −→ GA

eA : R0 −→ GA

and each of them obeys the necessary commutative diagrams.

The explicit form of the maps µA, iA, eA is easily recognized to be

mA(xA, yA) = xA · yA = m ◦ xA ⊗ yA ◦ µ∗

iA(xA) = xA ◦ i∗

eA(pt) = j ◦ δe

where here j : R −→ A denotes the canonical inclusion of the scalars in the superalgebra A.

Lie algebra of GA In this section we propose to investigate the structure of the Lie
algebra of GA. We have already seen that the tangent space at the identity of each GA can
be identified with

(A⊗ g)0

Actually, given a super Lie algebra g = g0⊕ g1, it is well known (see [DM99a], for example)
that the correspondence

A −→ gA := (A⊗ g)0

defines in a natural way a functor from the category of local algebras (for example) to the
category of (ordinary) Lie algebras. Indeed on each gA one can define the commutator

[∑
aiXi +

∑
bjYj ,

∑
cpXp +

∑
dqYq

]
=

∑
aicp [Xi, Xp] +

∑
aidq [Xi, Yq]

=
∑

bj, cp [Yj , Xp]−
∑

bjdq [Yj , Yq]

where ai, cp ∈ A0, bj , dq ∈ A1 and {Xi, Yj} is a homogeneous basis of g. Moreover such
functor determines uniquely the graded Lie algebra g. All such considerations are commonly
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used by physicists for making computations and fall under the name of even rules principle
(see, for a complete account, [DM99a] and [Var04]).

It is not at all obvious that such Lie algebra structure is the one induced by the group
GA. We now want to prove that this is the case.
Define the map4

ǫ : (A⊗ g)0 −→ VectGA

a⊗X 7−→ XAa

Proposition 37 The map ǫ is a Lie algebra isomorphism between (A⊗ g0) and Lie
(
GA
)
.

We need the following lemma.

Lemma 10

(
idO(G) ⊗

(
XAa

)
ea

)
◦ µ∗(f) = (−1)p(X)p(f)

[(
idO(G) ⊗X

)
◦ µ∗(f)

]
· a

Proof. First of all let us notice that
(
XAa

)
eA ∈ DerxA (O (G) , A)0 is a continuous operator

on O (G). This follows noticing that

(
XAa

)
eA : O (G) −→ R →֒ A
f 7−→ δe (X(f)) 7−→ a · δe (X(f))

and using prop. 6.

We are now ready for the calculation. We consider two cases. First we suppose that f
is an even section, hence we have

µ∗(f) =
∑

f(1) ⊗ f(2) +
∑

g(1) ⊗ g(2)

with f(i) ∈ O (G)0, g(i) ∈ O (G)1 and where the sum is actually a convergent series. Due to
the continuity of the operator we have that

(
idO(G) ⊗

(
XAa

)
ea

)
◦ µ∗(f) =

∑
f(1) ⊗Xe

(
f(2)
)
· a+ (−1)p(X)

∑
g(1) ⊗Xe

(
g(2)
)
· a

= [(1⊗Xe) ◦ µ
∗] · 1⊗ a

In the case f is an odd section, then

µ∗(f) =
∑

f(1) ⊗ f(2) +
∑

g(1) ⊗ g(2)

with f(1) and g(2) even, and f(2), g(1) ∈ O (G)1. A completely similar calculation yields the
desired result.

Proof. (of prop. 37) Due to simple dimension counting, the problem is reduced to prove
that

i each XAa is actually left invariant

ii ǫ ([aX, bY ]) =
[
XAa, Y Bb

]

4It is defined on decomposable elements and then extended by linearity.
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Since point ii) follows immediately from eq. 6.15, let us show point i). Define the left
multiplication

LxA : GA −→ GA

yA 7−→ xAyA = m ◦ xA ⊗ yA ◦ µ∗

We have
(
LxA∗

(
XAa

)
eA

)
(f) = m ◦ xA ⊗

(
XAa

)
eA ◦ µ

∗(f)

(using lemma 10) =
(
xA (1⊗Xe ◦ µ

∗(f))
)
· a

= (Xa)xA (f)

and we are done.

We can heuristically summarize the result saying that

A −→ gA

is the Lie algebra of the group

A −→ GA

Structure of GA In this paragraph we say some word about the structure of gA and GA.
First notice that if we denote by A+ the nilpotent maximal ideal J of A, then n(A) :=
(g⊗A+)0 is a nilpotent Lie subalgebra of gA. Even more is true since gA decomposes into
the semidirect product

gA = g0 ⊕
′
(
g⊗A+

)
0

= g0 ⊕
′ n(A)

On the group level we have

Proposition 38 Each GA has the structure of semi-direct product

GA = G0 ×
′ NA

where G0 is the Lie group underlying G and NA is the simply connected nilpotent Lie group
corresponding to n(A).

Proof. (sketch) Let xA ∈ GA and define

xA0 = xA ◦ r∗
x̃A

−1

so that

˜xA0 = δe

xA = xA0 ◦ r∗
x̃A

Hence given a point xA in GA we have defined a point xA0 in

GAe :=
{
yA | yA ∈ g −Alg (O (G) , A) and ỹa = δe

}

GAe is easily proved to be a subgroup of GA.
Derfine the map

I : GA −→ G0 ×G
A
e

xA 7−→
(
x̃A, x

A0
)

then we have:
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i I is a bijection with inverse

(
g, xA0

)
7−→ xA0 ◦ r∗

Ã

ii the group law on GA can be transported on G0 ×GAe and gives

(
x̃A, xA0

)
·
(
ỹA, y

A0
)

= I
(
xA0 ⊗ yA01⊗Ad

(
x̃A
)∗
◦ µ∗ ◦ r

x̃AỹA

)

=

(
x̃AỹA, xA0yA0x̃

A
)

The fact that GAe is simply connected follows easily from the fact that it is isomorphic to
A+.

Proposition 39 The Weil-Berezin functor uniquely determines yhe super Lie group G.

Proof.

i) G0 is given by

GR = g −Alg (O (G) ,R)

ii) g is determined by

Λ 7−→ (g⊗ Λ)0

iii) The adjoint action is determined as follows. Each GΛ acts through the corresponding
adjoint representation AdΛ on the corresponding (g⊗ Λ)0:

GΛ −→ End ((g⊗ Λ)0)

xΛ 7−→
(
X ⊗ θ 7→ mΛ

[(
mΛ ◦

(
xΛ ⊗

(
τ
(
θXΛ

)
eΛ

))
◦ µ∗

)
⊗
(
xΛ
)−1
]
◦ µ∗

)

From this, it follows that
{

AdΛ
}

is a functorial family of Λ0-multilinear maps. Since

G0 →֒ GΛ = G0 ⋊N (Λ), we have, by the even rule principle, a map

Ad : G0 −→ End (g)

Due to the fact that each AdΛ is a representation, also Ad is. The continuity is easily
established.
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Chapter 7

Representation theory

Già sapea che la commedia

Si cangiava al second’atto

Dandini

La Cenerentola

7.1 Finite-dimensional representation theory

In the classical setting, a representation of a group G on a complex vector space V is nothing
else that a group morphism π : G −→ Aut (V ). Analogously one can define the concept of
representation of a super Lie group G on a graded vector space V = V0 ⊕ V1. In fact, if V
has (finite) dimension (p, q) then one can consider the group of automorphism of V

Gl (V ) = Aut (V ) ⊂ End (V )

and endow it with a super Lie group structure. A representation of the super Lie group G
on V is simply a morphism of super groups

Π : G −→ Gl (V )

We can translate this considerations in the language of SHCP. Indeed the SHCP associ-
ated to Aut (V ) is

Gl (V )0 = Gl (V0)×Gl (V1)

gl (V ) = End (V )

with the natural adjoint action

Ad (M)X = MXM−1

Keeping in mind definition 13, the following is completely natural1.

1With respect to the conventions adopted insofar, here we change notations. Now a morphism is denoted
with Π = (π, rhoπ) rather than π = (π0, ρπ). This is due to the fact that the symbol π0 is reserved for the
action of π on the even part of the super vector space V .

69
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Definition 18 A representation of the super Lie group G = (G0, g) on the graded vector
space V = V0⊕V1 is a morphism of corresponding SHCPs. Explicitly this means that a pair
Π = (π, ρπ) is given such that:

i) π is the direct sum of two representations π0 : G̃ −→ Gl (V0) and π1 : G̃ −→ Gl (V1):

π =

(
π0

π1

)

ii) ρπ is a graded Lie algebra morphism

ρπ : g −→ End (V )

iii) ρπ intertwines the adjoint actions, in the sense that:

ρπ (Xg) = π(g)ρπ (X)π(g)−1

The remaining part of the chapter is devoted to the extension of the theory to the infinite-
dimensional setting.

7.2 Super Lie groups and their unitary representations

7.2.1 Super Hilbert spaces

All sesquilinear forms are linear in the first argument and conjugate linear in the second. We
use the usual terminology of super geometry as in [DM99b],[Var04]. A super Hilbert space
(SHS) is a super vector space H = H0 ⊕H1 over C with a scalar product (· , ·) such that
H is a Hilbert space under (· , ·), and Hi(i = 0, 1) are mutually orthogonal closed linear
subspaces. If we define

〈x, y〉 =





0 if x and y are of opposite parity

(x, y) if x and y are even

i(x, y) if x and y are odd

then 〈x, y〉 is an even super Hermitian form with

〈y, x〉 = (−1)p(x)p(y)〈x, y〉, 〈x, x〉 > 0(x 6= 0 even), i−1〈x, x〉 > 0(x 6= 0 odd).

If T (H → H) is a bounded linear operator, we denote by T ∗ its Hilbert space adjoint and
by T † its super adjoint given by 〈Tx, y〉 = (−1)p(T )p(x)〈x, T †y〉. Clearly T † is bounded,
p(T ) = p(T †), and T † = T ∗ or −iT ∗ according as T is even or odd. For unbounded T we
define T † in terms of T ∗ by the above formula. These definitions are equally consistent if
we use −i in place of i. But our convention is as above.

7.2.2 SUSY quantum mechanics

In SUSY quantum mechanics in a SHS H, it is usual to stipulate that the Hamiltonian
H = X2 where X is an odd operator [Wit82]; it is customary to argue that this implies
that H ≥ 0 (positivity of energy); but this is true only if we know that H is essentially self



7.2. SUPER LIE GROUPS AND THEIR UNITARY REPRESENTATIONS 71

adjoint on the domain of X2. We shall now prove two lemmas which clarify this situation
and will play a crucial role when we consider systems with a super Lie group of symmetries.

If A is a linear operator on H, we denote by D (A) its domain. We always assume
that D (A) is dense in H, and then refer to it as densely defined. We write A ≺ B if
D(A) ⊂ D(B) and B restricts to A on D(A); A is symmetric iff A ≺ A∗, and then A has
a closure A. A ≺ B =⇒ B∗ ≺ A∗. If A is symmetric we say that it is essentially self
adjoint if A is self adjoint; in this case A∗ = A. If A is symmetric and B is a symmetric
extension of A, then A ≺ B ≺ A∗; in fact A ≺ A∗ and A ≺ B ≺ B∗, and so B∗ ≺ A∗ and
A ≺ B ≺ B∗ ≺ A∗. If A is self adjoint and L ⊂ D(A), we say that L is a core for A if A
is the closure of its restriction to L. A vector ψ ∈ H is analytic for a symmetric operator
H if ψ ∈ D(Hn) for all n and the series

∑
n t

n(n!)−1||Hnψ|| < ∞ for some t > 0. It is a
well known result of Nelson [Nel59] that if D ⊂ D(H) and contains a dense set of analytic
vectors, then H is essentially self adjoint on D. In this case ψ ∈ D(H) is analytic for H if
and only if t 7−→ eitHψ is analytic in t ∈ R. If A is self adjoint, then A2, defined on the
domain D(A2) = {ψ

∣∣ ψ,Aψ ∈ D(A)}, is self adjoint; this is well known and follows easily
from the spectral theorem.

Lemma 11 Let H be a self adjoint operator on H and U(t) = eitH the corresponding one
parameter unitary group. Let B ⊂ D(H) be a dense U -invariant linear subspace. We then
have the following.

(i) B is a core for H.

(ii) Let X be a symmetric operator with B ⊂ D(X) such that XB ⊂ D(X) and X2
∣∣
B

=

H |B. Then X |B is essentially self adjoint, X |B = X and X
2

= H.

In particular, H ≥ 0, D(H) ⊂ D(X). Finally, these results are valid if we only assume that
B is invariant under H and contains a dense set of analytic vectors.

Proof. Let H1 = H
∣∣
B
. We must show that if L(λ)(λ ∈ C) is the subspace of ψ such that

H∗
1ψ = λψ, then L(λ) = 0 if ℑ(λ) 6= 0. Now L(λ) is a closed subspace. Moreover, as H1 is

invariant under U , so is H∗
1 and so L(λ) is invariant under U also. So the vectors in L(λ)

that are C∞ for U are dense in L(λ) and so it is enough to prove that 0 is the only C∞

vector in L(λ). But H = H∗ ≺ H∗
1 while the C∞ vectors for U are all in D(H), and so if

ψ is a C∞ vector in L(λ), Hψ = H∗
1ψ = λψ. This is a contradiction since H is self adjoint

and so all its eigenvalues are real. This proves (i).

Let X1 = X
∣∣
B
. Clearly, X1 is symmetric on B. It is enough to show that X1 is essentially

self adjoint and X1
2

= H , since in this case X1 ≺ X ≺ X∗
1 = X1 and hence X = X1. We

have X2
1 = H1. So H ≥ 0 on B and hence H ≥ 0 by (i). Again it is a question of showing

that for λ ∈ C with ℑ(λ) 6= 0, we must have M(λ) = 0 where M(λ) is the eigenspace for
X∗

1 for the eigenvalue λ. Let ψ ∈M(λ). Now, for ϕ ∈ B,

(X2
1ϕ, ψ) = (X1ϕ,X

∗
1ψ) = λ(X1ϕ, ψ) = λ

2
(ϕ, ψ) = (ϕ, λ2ψ).

Hence ψ ∈ D((X2
1 )∗) and (X2

1 )∗ψ = λ2ψ. But X2
1 = H1 and so (X2

1 )∗ = H∗
1 = H by (i). So

Hψ = λ2ψ. Hence λ2 is real and ≥ 0. This contradicts the fact that ℑ(λ) 6= 0. Furthermore,

X2
1 ≺ X1

2
and so X1

2
= (X1

2
)∗ ≺ (X2

1 )∗ = H∗
1 = H . On the other hand, as X1

2
is closed,

H = H1 = X2
1 ≺ X1

2
. So H = X1

2
= X

2
. This means that D(H) ⊂ D(X).
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Finally, let us assume that HB ⊂ B and that B contains a dense set of analytic vectors
for H . Clearly B is a core for H . If ψ ∈ B is analytic for H we have X2nψ = Hnψ ∈ B and
X2n+1ψ ∈ D(X) by assumption, and

||Xnψ||2 = |(Hnψ, ψ)| ≤ ||ψ||||Hnψ|| ≤Mnn!

for some M > 0 and all n. Thus ψ is analytic for X and so its essential self adjointness is a
consequence of the theorem of Nelson. The rest of the argument is unchanged.

Lemma 12 Let A be a self adjoint operator in H. Let M be a smooth (resp. analytic)
manifold and f(M −→ H) a smooth (resp. analytic) map. We assume that (i) f(M) ⊂
D(A2) and (ii) A2f : m 7−→ A2f(m) is a smooth (resp. analytic) map of M into H. Then
Af : m 7−→ Af(m) is a smooth (resp. analytic) map of M into H. Moreover, if E is any
smooth differential operator on M , (Ef)(m) ∈ D(A2) for all m ∈M , and

E(A2f) = A2Ef, E(Af) = AEf.

Proof. It is standard that if g(M −→ H) is smooth (resp. analytic) and L is a bounded
linear operator on H, then Lg is a smooth (resp. analytic) map. We have

Aψ = A(I +A2)−1(I +A2)ψ, ψ ∈ D(A2).

Moreover A(I + A2)−1 is a bounded operator. Now (I + A2)f is smooth (resp. analytic)
and so it is immediate from the above that Af is smooth (resp. analytic).

For the last part we assume that M is an open set in Rn since the result is clearly
local. Let xi(1 ≤ i ≤ n) be the coordinates and let ∂j = ∂/∂xj, ∂α = ∂α1

1 . . . ∂αn
n where

α = (α1, . . . , αn). It is enough to prove that

(∂αf)(m) ∈ D(A2), A2∂αf = ∂α(A2f), A∂αf = ∂α(Af).

We begin with a simple observation. Since (A2ψ, ψ) = ||Aψ||2 for all ψ ∈ D(A2),
it follows that whenever ψn ∈ D(A2) and (ψn) and (A2ψn) are Cauchy sequences, then
(Aψn) is also a Cauchy sequence; moreover, if ψ = limn ψn, then ψ ∈ D(A2) and A2ψ =
limnA

2ψn, Aψ = limnAψn. This said, we shall prove the above formulae by induction on
|α| = α1 + · · ·+αn. Assume them for |α| ≤ r and fix j, 1 ≤ j ≤ n. Let g = ∂αf, |α| = r. Let

gh(x) =
1

h

(
g(x1, . . . , xj + h, . . . , xn)− g(x1, . . . , xn)

)
(h is in jth place).

Then, as h → 0, gh(x) → ∂j∂
αf(x) while A2gh(x) = (∂αA2f)h(x) → ∂j∂

αA2f(x), and
Agh(x) = (∂αAf)h(x)→ ∂j∂

αAf(x). From the observation made above we have ∂j∂
αf(x) ∈

D(A2) and A2 and A map it respectively into ∂j∂
αA2f(x) and ∂j∂

αAf(x).

Definition 19 For self adjoint operators L,X with L bounded, we write L ↔ X to mean
that L commutes with the spectral projections of X.

Lemma 13 Let X be a self adjoint operator and B a dense subspace of H which is a core
for X such that XB ⊂ B. If L is a bounded self adjoint operator such that LB ⊂ B, then
the following are equivalent: (i) LX = XL on B (ii) LX = XL on D(X) (this carries with
it the inclusion LD(X) ⊂ D(X)) (iii) L↔ X. In this case eitLX = XeitL for all t ∈ R.
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Proof. (i) ⇐⇒ (ii). Let b ∈ D(X). Then there is a sequence (bn) in B such that bn →
b,Xbn → Xb. Then XLbn = LXbn → LXb. Since Lbn → Lb we infer that Lb ∈ D(X) and
XLb = LXb. This proves (i) =⇒ (ii). The reverse implication is trivial.

(ii) =⇒ (iii). We have LnXb = XLnb for all b ∈ D(X), n ≥ 1. So eitLXb =
∑
n((it)

n/n!)XLnb.
If sN =

∑
n≤N ((it)n/n!)Lnb, then sN → eitLb,XsN → eitLXb. So eitLb ∈ D(X) and

XeitLb = eitLXb. If U(t) = eitL, this means that U(t)XU(t)−1 = X and so, by the unique-
ness of the spectral resolution of X , U(t) commutes with the spectral projections of X . But
then L↔ X.

(iii) =⇒ (i). Under (iii) we have U(t)XU(t)−1 = X or XU(t)b = U(t)Xb for b ∈ D(X),
U(t)b being in D(X) for all t. Let bt = (it)−1(U(t)b− b). Then Xbt = (it)−1(U(t)Xb−Xb).
Hence, as t→ 0, bt → Lb while Xbt → LXb. Hence Lb ∈ D(X) and XLb = LXb. Thus we
have (ii), hence (i).

7.2.3 Unitary representations of super Lie groups

We take the point of view [DM99b] that a super Lie group (SLG) is a super Harish-Chandra
pair (G0, g) that is a pair (G0, g) where G0 is a classical Lie group, g is a super Lie algebra
which is a G0-module, Lie(G0) = g0, and the action of g0 on g is the differential of the action
of G0. The notion of morphisms between two super Lie groups in the above sense is the
obvious one from which it is easy to see what is meant by a finite dimensional representation
of a SLG (G0, g): it is a triple (π0, π, V ) where π0 is an even representation of G0 in a super
vector space V of finite dimension over C, i.e., a representation such that π0(g) is even for
all g ∈ G0; π is a representation of the super Lie algebra g in V such that π

∣∣
g0

= dπ0; and

π(gX) = π0(g)π(X)π0(g)
−1, g ∈ G0, X ∈ g1.

If V is a SHS and π(X)† = −π(X) for all X ∈ g, we say that (π0, π, V ) is a unitary
representation (UR) of the SLG (G0, g). The condition on π is equivalent to saying that π0

is a unitary representation of G0 in the usual sense and π(X)∗ = −iπ(X) for all X ∈ g1. It
is then clear that a finite dimensional UR of (G0, g) is a triple (π0, π, V ), where

(a) π0 is an even unitary representation of G0 is a SHS V ;

(b) π is a linear map of g1 into the space gl(V )1 of odd endomorphisms of V with π(X)∗ =
−iπ(X) for all X ∈ g1;

(c) dπ0([X,Y ]) = π(X)π(Y ) + π(Y )π(X) for X,Y ∈ g1;

(d) π(g0X) = π0(g0)π(X)π0(g0)
−1 for X ∈ g1, g0 ∈ G0.

Let

ζ = e−iπ/4, ρ(X) = ζπ(X).

Then, we may replace π(X) by ρ(X) for X ∈ g1; the condition (b) becomes the requirement
that ρ(X) is self adjoint for all X ∈ g1, while the commutation rule in condition (c) becomes

−idπ0([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X), X, Y ∈ g1.
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If we want to extend this definition to the infinite dimensional context it is necessary to
take into account the fact that the π(X) for X ∈ g1 will in general be unbounded; indeed,
from (c) above we find that dπ0([X,X ]) = 2π(X)2, and as dπ0 typically takes elements of g0

into unbounded operators, the π(X) cannot be bounded. So the concept of a UR of a SLG
in the infinite dimensional case must be formulated with greater care to take into account
the domains of definition of the π(X) for X ∈ g1. In the physics literature this aspect is
generally ignored. We shall prove below that contrary to what one may expect, the domain
restrictions can be formulated with great freedom, and the formal and rigorous pictures are
essentially the same. In particular, the concept of a UR of a super Lie group is a very stable
one and allows great flexibility of handling.

If V is a super vector space (not necessarily finite dimensional), we write End(V ) for the
super algebra of all endomorphisms of V . If π0 is a unitary representation of G0 in a Hilbert
space H, we write C∞(π0) for the subspace of differentiable vectors in H for π0. We denote
by Cω(π0) the subspace of analytic vectors of π0. Here we recall that a vector v ∈ H is
called a differentiable vector (resp. analytic vector) for π0 if the map g 7→ π0(g)v is smooth
(resp. analytic). If H is a SHS and π0 is even, then C∞(π0) and Cω(π0) are π0-invariant
dense linear super subspaces. We also need the following fact which is standard but we shall
give a partial proof because the argument will be used again later.

Lemma 14 C∞(π0) and Cω(π0) are stable under dπ0(g0). For any Z ∈ g0, idπ0(Z) is
essentially self adjoint both on C∞(π0) and on Cω(π0); moreover, for any Z1, . . . , Zr ∈ g0

and ψ ∈ C∞(π0), (resp. ψ ∈ Cω(π0)) the map g 7−→ dπ0(Z1) . . . dπ0(Zr)π0(g)ψ is C∞

(resp. analytic).

Proof. We prove only the second statement. That idπ0(Z) is essentially self adjoint on
C∞(π0) and on Cω(π0) is immediate from Lemma 11. Using the adjoint representation we
have, for any Z ∈ g0, gZ =

∑
i ci(g)Wi for g ∈ G0 where the ci are analytic functions on

G0 and Wi ∈ g0. Hence, as

dπ0(Z)π0(g) = π0(g)dπ0(g
−1Z),

we can write dπ0(Z1) . . . dπ0(Zr)π0(g)ψ as a linear combination with analytic coefficients of
π0(g)dπ0(R1) . . . dπ0(Rr)ψ for suitable Rj ∈ g0. The result is then immediate.

Definition 20 A unitary representation (UR) of a SLG (G0, g) is a triple (π0, ρ,H),H a
SHS, with the following properties.

(a) π0 is an even UR of G0 in H;

(b) ρ(X 7−→ ρ(X)) is a linear map of g1 into End(C∞(π0))1 such that

(i) ρ(g0X) = π0(g0)ρ(X)π0(g0)
−1 (X ∈ g1, g0 ∈ G0),

(ii) ρ(X) with domain C∞(π0) is symmetric for all X ∈ g1,

(iii) −idπ0([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X) (X,Y ∈ g1) on C∞(π0).

Proposition 40 If (π0, ρ,H) is a UR of the SLG (G0, g), then ρ(X) with domain C∞(π0)
is essentially self adjoint for all X ∈ g1. Moreover

π : X0 +X1 7−→ dπ0(X0) + ζ−1ρ(X1) (Xi ∈ gi)

is a representation of g in C∞(π0).
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Proof. Let Z = (1/2)[X,X ]. We apply Lemma 11 with U(t) = π0(exp tZ) = eitH ,B =
C∞(π0). Then H = −idπ0(Z) = ρ(X)2 on C∞(π0). We conclude that H and ρ(X) are

essentially self adjoint on C∞(π0) and that H = ρ(X)
2
; in particular, H ≥ 0. For the second

assertion the only non obvious statement is that for Z ∈ g0, X ∈ g1, ψ ∈ C∞(π0),

ρ([Z,X ])ψ = dπ0(Z)ρ(X)ψ − ρ(X)dπ0(Z)ψ.

Let gt = exp(tZ) and let (Xk) be a basis for g1. Then gX =
∑
k ck(g)Xk where the ck are

smooth functions on G0. So

π0(gt)ρ(X)ψ = ρ(gtX)π0(gt)ψ =
∑

k

ck(gt)ρ(Xk)π0(gt)ψ.

Now g 7−→ π0(g)ψ is a smooth map into C∞(π0). On the other hand, ifHk = −(1/2)[Xk, Xk],
we have idπ0(Hk) = ρ(Xk)

2 on C∞(π0), so π0(g)ψ ∈ D(ρ(Xk)
2), and by Lemma 14,

ρ(Xk)
2π0(g)ψ = idπ0(Hk)π0(g)ψ is smooth in g. Lemma 12 now applies and shows that

ρ(Xk)π0(gt)ψ is smooth in t and

(
d

dt

)

t=0

ρ(Xk)π0(gt)ψ = ρ(Xk)dπ0(Z)ψ.

Hence
dπ0(Z)ρ(X)ψ =

∑

k

ck(1)ρ(Xk)dπ0(Z)ψ +
∑

k

(Zck)(1)ρ(Xk)ψ.

Since
[Z,X ] =

∑

k

(Zck)(1)Xk, X =
∑

k

ck(1)Xk

the right side is equal to
ρ(X)dπ0(Z)ψ + ρ([Z,X ])ψ.

Remark 14 For Z such that exp tZ represents time translation, H is the energy operator,
and so is positive in the supersymmetric model.

We shall now show that one may replace C∞(π0) by a more or less arbitrary domain
without changing the content of the definition. This shows that the concept of a UR of a
SLG is a viable one even in the infinite dimensional context.

Let us consider a system (π0, ρ,B,H) with the following properties.

(a) B is a dense super linear subspace of H invariant under π0 and B ⊂ D(dπ0(Z)) for all
Z ∈ [g1, g1];

(b) (ρ(X))X∈g1 is a set of linear operators such that:

(i) ρ(X) is symmetric for all X ∈ g1,

(ii) B ⊂ D(ρ(X)) for all X ∈ g1,

(iii) ρ(X)Bi ⊂ Hi+1 (mod2) for all X ∈ g1,

(iv) ρ(aX + bY ) = aρ(X) + bρ(Y ) on B for X,Y ∈ g1 and a, b scalars,
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(v) π0(g)ρ(X)π0(g)
−1 = ρ(gX) on B for all g ∈ G0, X ∈ g1,

(vi) ρ(X)B ⊂ D(ρ(Y )) for all X,Y ∈ g1, and −idπ0([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X)
on B.

Proposition 41 Let (π0, ρ,B,H) be as above. We then have the following.

(a) For any X ∈ g1, ρ(X) is essentially self adjoint and C∞(π0) ⊂ D(ρ(X)).

(b) Let ρ(X) = ρ(X)
∣∣
C∞(π0)

for X ∈ g1. Then (π0, ρ,H) is a UR of the SLG (G0, g).

If (π0, ρ
′,H) is a UR of the SLG (G0, g), such that B ⊂ D(ρ′(X)) and ρ′(X) restricts to

ρ(X) on B for all X ∈ g1, then ρ′ = ρ.

Proof. Let X ∈ g1. By assumption B is invariant under the one parameter unitary
group generated by H = −(1/2)idπ0([X,X ]) while H = ρ(X)2 on B. So, by Lemma 11,
ρ(X) is essentially self adjoint, ρ(X) = ρ(X)|B, H = (ρ(X))2, and D(H) ⊂ D(ρ(X)). Since
C∞(π0) ⊂ D(H), we have proved (a).

Let us now prove (b). If a is scalar and X ∈ g, ρ(aX) = aρ(X) follows from item (iv)
and the fact that ρ(X) = ρ(X)|B. For the additivity of ρ, let X,Y ∈ g1. Then ρ(X + Y )
is essentially self adjoint and its closure restricts to ρ(X + Y ) on C∞(π0). Then, viewing
ρ(X) + ρ(Y ) as a symmetric operator defined on the intersection of the domains of the two
operators (which includes C∞(π0)), we see that ρ(X) + ρ(Y ) is a symmetric extension of
ρ(X)|B + ρ(Y )|B = ρ(X + Y )|B. But as ρ(X + Y )|B is essentially self adjoint, we have, by
the remark made earlier,

ρ(X) + ρ(Y ) ≺ ρ(X + Y )|B = ρ(X + Y ).

Restricting both of these operators to C∞(π0) we find that ρ(X +Y ) = ρ(X)+ ρ(Y ). From
the relation π0(g)ρ(X)π0(g)

−1 = ρ(gX) on B follows π0(g)ρ(X)π0(g)
−1 = ρ(gX).

The key step is now to prove that for any X ∈ g1, ρ(X) maps C∞(π0) into itself. Fix
X ∈ g1, ψ ∈ C∞(π0). Now

π0(g)ρ(X)ψ = ρ(gX)π0(g)ψ.

So, writing gX =
∑
k ck(g)Xk where the ck are smooth functions on G0 and the (Xk) a

basis for g1, we have, remembering the linearity of ρ on C∞(π0),

π0(g)ρ(X)ψ =
∑

k

ck(g)ρ(Xk)π0(g)ψ.

It is thus enough to show that g 7−→ ρ(Xk)π0(g)ψ is smooth. If Hk = −[Xk, Xk]/2, we know

from Lemma 14 that π0(g)ψ lies in D(Hk) and idπ0(Hk)π0(g)ψ = ρ(Xk)
2
π0(g)ψ is smooth

in g. Lemma 12 now shows that ρ(Xk)π0(g)ψ is smooth in g.

It remains only to show that for X,Y ∈ g1 we have

−idπ0([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X)

on C∞(π0). But, the right side is ρ(X + Y )2 − ρ(X)2 − ρ(Y )2 while the left side is the
restriction of (−i/2)dπ0([X + Y,X + Y ]) + (i/2)dπ0([X,X ]) + (i/2)dπ0([Y, Y ]) to C∞(π0),
and so we are done.
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We must show the uniqueness of ρ. Let ρ′ have the required properties also. Then ρ′(X)
is essentially self adjoint on C∞(π0) and B is a core for its closure, by Lemma 11. Hence
ρ′(X) = ρ(X). The proof is complete.

We shall now prove a variant of the above result involving analytic vectors.

Proposition 42 (i) If (π0, ρ,H) is a UR of the SLG (G0, g), then ρ(X) maps Cω(π0) into
itself for all X ∈ g1, so that π, as in Proposition (40), is a representation of g in C∞ (π0).
(ii) Let G0 be connected. Let π0 be an even unitary representation of G0 and B ⊂ Cω(π0) a
dense linear super subspace. Let π be a representation of g in B such that π(Z) ≺ dπ0(Z)
for Z ∈ g0 and ρ(X) = ζπ(X) is symmetric for X ∈ g1. Then, for each X ∈ g1, ρ(X) is
essentially self adjoint on B and C∞(π0) ⊂ D(ρ(X)). If ρ(X) is the restriction of ρ(X) to
C∞(π0), then (π0, ρ,H) is a UR of the SLG (G0, g) and is the unique one in the following
sense: if (π0, ρ

′,H) is a UR with B ⊂ D(ρ′(X)) and ρ′(X) |B = ρ(X) for all X ∈ g1, then
ρ′ = ρ.

Proof. (i) This is proved as its C∞ analogue in the proof of Proposition 41, using the
analytic parts of Lemmas 12 and 14.

(ii) The proof that ρ(X) for X ∈ g1 is essentially self adjoint with D(ρ(X)) ⊃ C∞(π0)
follows as before from (the analytic part of) Lemma 11. The same goes for the linearity of
ρ.

We shall now show that for X ∈ g1, g ∈ G0,

π0(g
−1)ρ(X)π0(g) = ρ(g−1X). (7.1)

Write g−1X =
∑
k ck(g)Xk where (Xk) is a basis for g1 and the ck are analytic functions

on G0. We begin by showing that for all ψ ∈ B

ρ(X)π0(g)ψ = π0(g)ρ(g
−1X)ψ. (7.2)

Now
π0(g)ρ(g

−1X)ψ =
∑

k

ck(g)π0(g)ρ(Xk)ψ.

We argue as in Proposition 41 to conclude, using Lemmas 12 and 14, that the function
ρ(X)π0(g)ψ is analytic in g and its derivatives can be calculated explicitly. It is also clear
that the right side is analytic in g since ρ(Xk)ψ ∈ B for all k. So, as G0 is connected, it is
enough to prove that the two sides in (7.2) have all derivatives equal at g = 1. This comes
down to showing that for any integer n ≥ 0 and any Z ∈ g0,

ρ(X)dπ0(Z)nψ =
∑

k,r

(
n

r

)
(Zrck)(1)dπ0(Z)n−rρ(Xk)ψ. (7.3)

Let λ be the representation of G0 on g1 and write λ again for dλ. Then, taking gt = exp(tZ),

λ(g−1
t )(X) =

∑

k

ck(gt)Xk,

from which we get, on differentiating n times with respect to t at t = 0,

λ(−Z)r(X) =
∑

k

(Zrck)(1)Xk.
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Hence the right side of (7.3) becomes

∑

r

(
n

r

)
dπ0(Z)n−rρ(λ(−Z)r(X))ψ.

On the other hand, from the fact that π is a representation of g in B we get

ρ(X)dπ0(Z) = dπ0(Z)ρ(X) + ρ(λ(−Z)(X))

on B. Iterating this we get, on B,

ρ(X)dπ0(Z)n =
∑

r

(
n

r

)
dπ0(Z)n−rρ(λ(−Z)r(X))

which gives (7.2). But then (7.1) follows from (7.2) by a simple closure argument.

Using (7.1), the proof that ρ(X) maps C∞(π0) into itself is the same of Proposition 41.
The proof of the relation −idπ0([X,Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X) for X,Y ∈ g1 is also the
same. The proof is complete.

7.2.4 The category of unitary representations of a super Lie group

If Π = (π0, ρ,H) and Π′ = (π′
0, ρ

′,H′) are two UR’s of a SLG (G0, g), a morphism A : Π −→
Π′ is an even bounded linear operator from H to H′ such that A intertwines π0, ρ and π′

0, ρ
′;

notice that as soon as A intertwines π0 and π′
0, it maps C∞(π0) into C∞(π′

0), and so the
requirement that it intertwine ρ and ρ′ makes sense. An isomorphism is then a morphism A
such that A−1 is a bounded operator; in this case A is a linear isomorphism of C∞(π0) with
C∞(π′

0) intertwining ρ and ρ′. If A is unitary we then speak of unitary equivalence of Π and
Π′. It is easily checked that equivalence implies unitary equivalence, just as in the classical
case. Π′ is a subrepresentation of Π if H′ is a closed graded subspace of H invariant under
π0 and ρ, and π′

0 (resp. ρ′) is the restriction of π0 (resp. ρ) to H′ (resp. C∞(π0) ∩ H′).
The UR Π is said to be irreducible if there is no proper nonzero closed graded subspace H′

that defines a subrepresentation. If Π′ is a nonzero proper subrepresentation of Π, and H′′

is H′⊥, it follows from the self adjointness of ρ(X) for X ∈ g1 that H′′∩C∞(π0) is invariant
under all ρ(X)(X ∈ g1); then the restrictions of π0, ρ to H′′ define a subrepresentation Π′′

such that Π = Π′ ⊕Π′′ in an obvious manner.

Lemma 15 Π is irreducible if and only if Hom(Π,Π) = C.

Proof. If Π splits as above, then the orthogonal projection H −→ H′ is a nonscalar ele-
ment of Hom(Π,Π). Conversely, suppose that Π is irreducible and A ∈ Hom(Π,Π). Then
A∗ ∈ Hom(Π,Π) also and so, to prove that A is a scalar we may suppose that A is self adjoint.
Let P be the spectral measure of A. Clearly all the P (E) are even. Then P commutes with
π0 and so P (E) leaves C∞(π0) invariant for all Borel sets E. Moreover, by Lemma 13, the
relation Aρ(X) = ρ(X)A on C∞(π0) implies that P (E) ↔ ρ(X) for all E and x ∈ g1, and
hence that P (E)ρ(X) = ρ(X)P (E) on C∞(π0) for all E,X . The range of P (E) thus defines
a subrepresentation and so P (E) = 0 or I. Since this is true for all E, A must be a scalar.
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Lemma 16 Let (R0, r) be a SLG and (θ, ρθ) a UR of it, in a Hilbert space L. Let PX be the

spectral measure of ρθ(X), X ∈ r1. Then the following properties of a closed linear subspace
M of L are equivalent: (i) M is stable under θ and M∞ = C∞(θ) ∩M is stable under all
ρθ(X), (X ∈ r1) (ii) M is stable under θ and all the spectral projections PXF (Borel F ⊂ R).
In particular, (θ, ρθ) is irreducible if and only if L is irreducible under θ and all PXF .

Proof. Follows from Lemma 13 applied to the orthogonal projection L : L −→M. Indeed,
suppose that M is a closed linear subspace of L stable under θ. Then L maps L∞ onto
M∞. By Lemma 13 L commutes with ρθ(X) on L∞ if and only if L ↔ ρθ(X); this is the
same as saying that PX stabilizes M.



80 CHAPTER 7. REPRESENTATION THEORY



Chapter 8

Induced representations of

super Lie groups

Die Frist ist um...

L’Olandese volante

8.0.5 Smooth structure of the classical induced representation and

its system of imprimitivity

Let G0 be a unimodular Lie group and H0 a closed Lie subgroup. We write Ω = G0/H0

and assume that Ω has a G0-invariant measure; one can easily modify the treatment below
to avoid these assumptions. We write x 7→ x for the natural map from G0 to Ω and dx for a
choice of the invariant measure on Ω. For any UR σ of H0 in a Hilbert space K one has the
representation π of G0 induced by σ. One may take π as acting in the Hilbert space H of
(equivalence classes) of Borel functions f from G0 to K such that (i) f(xξ) = σ(ξ)−1f(x) for
all x ∈ G0, ξ ∈ H0, and (ii) ||f ||2H :=

∫
Ω
|f(x)|2Kdx <∞. Here |f(x)|K is the norm of f(x) in

K, and the function x 7→ |f(x)|2K is defined on Ω so that it makes sense to integrate it on Ω.
Let P be the natural projection valued measure on H defined as follows: for any Borel set
E ⊂ Ω the projection P (E) is the operator f 7→ χEf where χE is the characteristic function
of E. Then (π,H, P ) is the classical system of imprimitivity (SI) associated to the UR σ
of H0. In our case G0 is a Lie group and it is better to work with a smooth version of π;
its structure is determined by a well known theorem of Dixmier-Malliavin in a manner that
will be explained below.

We begin with a standard but technical lemma that says that certain integrals containing
a parameter are smooth.

Lemma 17 Let M,N be smooth manifolds, dn a smooth measure on N , and B a separable
Banach space with norm |·|. Let F : M ×N −→ B be a map with the following properties:
(i) For each n ∈ N , m 7→ F (m,n) is smooth (ii) If A ⊂ M is an open set with compact
closure, and G is any derivative of F with respect to m, there is a gA ∈ L1(N, dn) such that
|G(m,n)| ≤ gA(n) for all m ∈ A, n ∈ N . Then

f(m) =

∫

N

F (m,n)dn

81
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exists for all m and f is a smooth map of M into B.

Proof. It is a question of proving that the integrals

∫

N

|G(m,n)|dn

converge uniformly when m varies in an open subset A of M with compact closure. But the
integrand is majorized by gA which is integrable on N and so the uniform convergence is
clear.

We also observe that any f ∈ H lies in Lp,loc(G0) for p = 1, 2, i.e., θ(x)|f(x)|2K is
integrable on G0 for any continuous compactly supported scalar function θ ≥ 0. In fact

∫

G0

θ(x)|f(x)|2Kdx =

∫

Ω

(∫

H0

θ(xξ)|f(xξ)|2Kdξ

)
dx =

∫

Ω

θ(x)|f(x)|2Kdx <∞

where θ(x) =
∫
G0
θ(xξ)dξ.

In H we have the space C∞(π) of smooth vectors for π. We also have its Garding
subspace, the subspace spanned by all vectors π(α)h where α ∈ C∞

c (G0) and h ∈ H. We
have

(π(α)h)(z) =

∫

G0

α(x)h(x−1z)dx =

∫

G0

α(zt−1)h(t)dt (z ∈ G0).

The integrals exist because h is locally L2 onG0 as mentioned above. Since h ∈ L1,loc(G0), α ∈
C∞
c (G0), the conditions of Lemma 17 are met and so π(α)h is smooth. Thus all elements

of the Garding space are smooth functions. But the Dixmier-Malliavin theorem asserts that
the Garding space is exactly the same as C∞(π) [DM78]. Thus all elements of C∞(π) are
smooth functions from G0 to K. This is the key point that leads to the smooth versions of
the induced representation and the SI at the classical level.

Let us define B as the space of all functions f from G0 to K such that (i) f is smooth
and f(xξ) = σ(ξ)−1f(x) for all x ∈ G0, ξ ∈ H0 (ii) f has compact support mod H0. Let
C∞
c (π) be the subspace of all elements of C∞(π) with compact support mod H0.

Proposition 43 B has the following properties: (i) B = C∞
c (π) (ii) B is dense in H (iii)

f(x) ∈ C∞(σ) for all x ∈ G0 (iv) B is stable under dπ.

Proof. (i) Let f ∈ B. To show that f ∈ C∞(π) it is enough to show that for any u ∈ H
the map x 7→ (π(x−1)f, u)H is smooth in x. Now

(π(x−1)f, u)H =

∫

Ω

(f(xy), u(y))Kdy.

Since |u|K is locally L1 on X and f is smooth, the conditions of Lemma 17 are met. We
have B ⊂ C∞

c (π). The reverse inclusion is immediate from the Dixmier-Malliavin theorem,
as remarked above.

(ii) It is enough to prove that any h ∈ H with compact support mod H0 is in the closure
of B. We know that π(α)h → h as α ∈ C∞

c (G0) goes suitably to the delta function at the
identity of G0. But π(α)h is smooth and has compact support mod H0 because h has the
same property, so that π(α)h ∈ B.
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(iii) Fix x ∈ G0. Since σ(ξ)f(x) = f(xξ−1) for ξ ∈ H0 it is clear that f(x) ∈ C∞(σ).

(iv) Let f ∈ B, Z ∈ g0. Then

(dπ(Z)f)(x) = (d/dt)t=0f(exp(−tZ)x)

is smooth and we are done.

We refer to (π,B) as the smooth representation induced by σ. We shall also define the
smooth version of the SI. For any u ∈ C∞

c (Ω) let M(u) be the bounded operator on H
which is multiplication by u. Then M(u) leaves B invariant and M : u 7→ M(u) is a ∗-
representation of the ∗-algebra C∞

c (Ω) in H. It is natural to refer to (π,B,M) as the smooth
system of imprimitivity associated to σ. Observe that f ∈ C∞(π) has compact support mod
H0 if and only if there is some u ∈ C∞

c (Ω) such that f = M(u)f . Proposition 43 shows that
B is thus determined intrinsically by the SI associated to σ. The passage from (π,H, P ) to
(π,B,M) is thus functorial and is a categorical equivalence. Thus we are justified in working
just with smooth SI’s.

It is easy to see that the assignment that takes σ to the associated smooth SI is functorial.
Indeed, let R be a morphism from σ to σ′, i.e., R is a bounded operator from K to K′

intertwining σ and σ′. We then define TR = T (H −→ H′) by (TRf)(x) = Rf(x)(x ∈
G0). It is then immediate that TR is a morphism from the (smooth) SI associated to σ to
the (smooth) SI associated to σ′. This functor is an equivalence of categories. To verify
this one must show that every morphism between the two SI’s is of this form. This is of
course classical but we sketch the argument depending on the following lemma which will
be essentially used in the super context also.

Lemma 18 Suppose f ∈ B and f(1) = 0. Then we can find ui ∈ C∞
c (Ω), gi ∈ B such that

(i) ui(1) = 0 for all i (ii) we have f =
∑

i uigi.

Proof. If f vanishes in a neighborhood of 1, we can choose u ∈ C∞
c (Ω) such that u = 0

in a neighborhood of 1 and f = uf . The result is thus true for f . Let f ∈ B be arbitrary
but vanishing at 1. Let z be a linear subspace of g0 = Lie (G0) complementary to h0 = Lie
(H0). Then there is a sufficiently small r > 0 such that if zr = {Z ∈ z | |Z| < r}, |·| being a
norm on z, the map

zr ×H0 −→ G0, (Z, ξ) 7−→ expZ·ξ

is a diffeomorphism onto an open set G1 = G1H0 of G0. We transfer f from G1 to a function,
denoted by ϕ on zr ×H0. We have ϕ(0, ξ) = 0, and ϕ(Z, ξξ′) = σ(ξ′)−1ϕ(Z, ξ) for ξ′ ∈ H0.
If ti(1 ≤ i ≤ k) are the linear coordinates on z,

ϕ(Z, ξ) =
∑

i

ti(Z)

∫ 1

0

(∂ϕ/∂ti)(sZ, ξ)ds.

The functions ψi(Z, ξ) =
∫ 1

0 (∂ϕ/∂ti)(sZ, ξ)ds are smooth by Lemma 17 while ψi(Z, ξξ
′) =

σ(ξ′)−1ψi(Z, ξ) for ξ′ ∈ H0. So, going back to G1 we can write f =
∑

i tihi where ti are
now in C∞(G1), right invariant under H0 and vanishing at 1, while the hi are smooth and
satisfy hi(xξ) = σ(ξ)−1hi(x) for x ∈ G1, ξ ∈ H0. If u ∈ C∞

c (Ω) is such that u is 1 in a neigh-
borhood of 1 and supp (u) ⊂ G1, then u2f =

∑
i uigi where ui = uti ∈ C∞

c (Ω), ui(1) = 0,
and gi = uhi ∈ B. Since f = u2f + (1− u2)f and (1− u2)f = 0 in a neighborhood of 1, we



84 CHAPTER 8. INDUCED REPRESENTATIONS OF SUPER LIE GROUPS

are done.

We can now determine all the morphisms from H to H′. Let T be a morphism H −→ H′.
Then, as T commutes with multiplications by elements of C∞

c (Ω), it maps B to B′. Moreover,
for the same reason, the above lemma shows that if f ∈ B and f(1) = 0, then (Tf)(1) = 0.
So the map

R : f(1) 7−→ (Tf)(1) (f ∈ B)

is well defined. From the fact that T intertwines π and π′ we obtain that (Tf)(x) = Rf(x)
for all x ∈ G0. To complete the proof we must show two things: (1) R is defined on all of
C∞(σ) and (2) R is bounded. For (1), let v ∈ C∞(σ). In the earlier notation, if u ∈ C∞

c (G0)
is 1 in 1 and has support contained in G1, then h : (expZ, ξ) 7→ u(expZ)σ(ξ)−1v is in B
and h(1) = v. For proving (2), let the constant C > 0 be such that

||Tg||H′ ≤ C||g||H (g ∈ H′).

Then, taking g = u1/2f for f ∈ B and u ≥ 0 in C∞
c (Ω), we get

∫

Ω

u(x)|Rf(x)|2Kdx ≤ C

∫

Ω

u(x)|f(x)|2K′dx

for all f ∈ B and u ≥ 0 in C∞
c (Ω). So |Rf(x)|K ≤ C|f(x)|K for almost all x. As f and

Rf = Tf are continuous this inequality is valid for all x, in particular for x = 1, proving
that R is bounded.

8.0.6 Representations induced from a special sub super Lie group

It is now our purpose to extend this smooth classical theory to the super context. A SLG
(H0, h) is a sub super Lie group of the SLG (G0, g) if H0 ⊂ G0, h ⊂ g, and the action of
H0 on h is the restriction of the action of H0 (as a subgroup of G0) on g. We shall always
suppose that H0 is closed in G0. The sub SLG (H0, h) is called special if h has the same odd
part as g, i.e., h1 = g1. In this case the super homogeneous space associated is purely even
and coincides with Ω = G0/H0. As in §8.0.5 we shall assume that Ω admits an invariant
measure although it is not difficult to modify the treatment to avoid this assumption. Both
conditions are satisfied in the case of the super Poincaré groups and their variants.

We start with a UR (σ, ρσ ,K) of (H0, h) and associate to it the smooth induced repre-
sentation (π,B) of the classical group G0. In our case K is a SHS and so H becomes a SHS
in a natural manner, the parity subspaces being the subspaces where f takes its values in
the corresponding parity subspace of K. π is an even UR.

We shall now define the operators ρπ(X) for X ∈ g1 as follows:

(ρπ(X)f)(x) = ρσ(x−1X)f(x) (f ∈ B).

Since the values of f are in C∞(σ) the right side is well defined. In order to prove that the
definition gives us an odd operator on B we need a lemma.

Lemma 19 [g1, g1] ⊂ h0 and is stable under G0. In particular it is an ideal in g0.
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Proof. For g ∈ G0, Y, Y
′ ∈ g1, we have g[Y, Y ′] = [gY, gY ′] ∈ [g1, g1]. Since h0 ⊕ g1 is a

super Lie algebra, [g1, g1] ⊂ h0.

Proposition 44 ρπ(X) is an odd linear map B −→ B for all X ∈ g1. Moreover ρπ(X) is
local, i.e., supp(ρπ(X)f) ⊂ supp(f) for f ∈ B. Finally, if Z ∈ h0, we have −dσ(Z)f(g) =
(Zf)(g).

Proof. The support relation is trivial. Further, for x ∈ G0, ξ ∈ H0,

(ρπ(X)f)(xξ) = ρσ(ξ−1x−1X)f(xξ)

= σ(ξ)−1ρσ(x−1X)σ(ξ)f(xξ)

= σ(ξ)−1(ρπ(X)f)(x).

It is thus a question of proving that g 7→ ρσ(g−1X)f(g) is smooth. If (Xk) is a basis for g1,
g−1X =

∑
k ck(g)Xk where the ck are smooth functions and so it is enough to prove that

g 7→ ρσ(Y )f(g) is smooth for any Y ∈ g, f ∈ B. We use Lemma 12. If Z = (1/2)[Y, Y ], we
have ρσ(Y )2f(g) = −idσ(Z)f(g), and we need only show that −dσ(Z)f(g) is smooth in g.
But Z ∈ h0 and f(g exp tZ) = σ(exp(−tZ))f(g) so that −dσ(Z)f(g) = (Zf)(g) is clearly
smooth in g. Note that this argument applies to any Z ∈ h0, giving the last assertion.

Proposition 45 (π, ρσ,B) is a UR of the SLG (G0, g).

Proof. The symmetry of ρπ(X) and the relations ρπ(yX) = π(y)ρπ(X)π(y)−1 follow im-
mediately from the corresponding relations for ρσ. Suppose now that X,Y ∈ g1. Then
(ρπ(X)ρπ(Y )f)(x) = ρσ(x−1X)ρσ(x−1Y )f(x). Hence

((ρπ(X)ρπ(Y ) + ρπ(Y )ρπ(X))f)(x) = −idσ(x−1[X,Y ])f(x)

= i(x−1[X,Y ]f)(x)( Proposition 44 )

= i(d/dt)t=0f(x(x−1 exp t[X,Y ]x))

= i(d/dt)t=0f(exp t[X,Y ]x)

= i(d/dt)t=0(π(exp(−t[X,Y ])f)(x)

= −i(dπ([X,Y ])f)(x).

This proves the proposition.

We refer to (π, ρπ ,H) as the UR of the SLG (G0, g) induced by the UR (σ, ρσ ,K) of (H0, h),
and to (π, ρπ,B) as the corresponding smooth induced UR.

Write P for the natural projection valued measure inH based on Ω: for any Borel E ⊂ Ω,
P (E) is the operator in H of multiplication by χE , the characteristic function of E.

Recall the definition of ↔ before Lemma 13.

Proposition 46 For X ∈ g1, and u ∈ C∞
c (Ω), we have M(u) ↔ ρπ(X). Furthermore

P (E)↔ ρπ(X) for Borel E ⊂ Ω.
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Proof. It is standard that a bounded operator commutes with all P (E) if and only if it
commutes with all M(u) for u ∈ C∞

c (Ω). It is thus enough to prove that M(u) ↔ ρπ(X)
for all u,X . On B we have M(u)ρπ(X) = ρπ(X)M(u) trivially from the definitions, and so
we are done in view of Lemma 13.

Theorem 5 The assignment that takes (σ, ρσ) to (π, ρπ,B,M) is a fully faithful functor.

Proof. Let R be a morphism intertwining (σ, ρσ) and (σ′, ρσ
′

), and let T : B −→ B′ be
associated to R such that (Tf)(x) = Rf(x). It is then immediate that T intertwines ρπ

and ρπ
′

. Conversely, if T is a morphism between the induced systems, from the classical
discussion following Lemma 18 we know that (Tf)(x) = Rf(x) for a bounded even operator
R intertwining σ and σ′. Since T intertwines ρπ and ρπ

′

we conclude that R must intertwine
ρσ and ρσ

′

.

8.0.7 Super systems of imprimitivity and the super imprimitivity

theorem

A super system of imprimitivity (SSI) based on Ω is a collection (π, ρπ,H, P ) where (π, ρπ ,H)
is a UR of the SLG (G0, g), (π,H, P ) is a classical system of imprimitivity, π, P are both
even, and ρπ(X)↔ P (E) for all X ∈ g1 and Borel E ⊂ Ω.

Let (π, ρπ ,H) be the induced representation defined in §8.0.6 and let P be the projection
valued measure introduced above. Proposition 46 shows that (π, ρπ ,H, P ) is a SSI based on
Ω. We call this the SSI induced by (σ, ρσ).

Theorem 6 (super imprimitivity theorem) The assignment that takes (σ, ρσ) to (π, ρπ,H, P )
is an equivalence of categories from the category of UR ’s of the special sub SLG (H0, h) to
the category of SSI ’s based on Ω.

Proof. Let us first prove that any SSI of the SLG (G0, g) is induced from a UR of the
SLG (H0, h). We may assume, in view of the classical imprimitivity theorem that π is the
representation induced by a UR σ of H0 in K and that π acts by left translations on H. By
assumption ρπ(X) leaves C∞(π) invariant. We claim that it leaves C∞

c (π) also invariant.
Indeed, let f ∈ C∞

c (π); then there is u ∈ C∞
c (Ω) such that f = uf . On the other hand, by

Lemma 13, ρπ(X)M(u) = M(u)ρπ(X) so that uf ∈ D(ρπ(X)) and ρπ(X)(uf) = uρπ(X)f .
Since uf = f this comes to ρπ(X)f = uρπ(X)f , showing that ρπ(X)f ∈ C∞

c (π). Thus the
ρπ(X) leave B invariant and commute with all M(u) there. In other words we may work
with the smooth SSI.

By Lemma 18 the map f(1) 7−→ (ρπ(X)f)(1) is well defined and so, as in §8.0.5 we can
define a map

ρσ(X) : C∞(σ) −→ C∞(σ)

by

ρσ(X)v = (ρπ(X)f)(1), f(1) = v, f ∈ B.

Then, for f ∈ B, x ∈ G0,
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(ρπ(X)f)(x) = (π(x−1)ρπ(X)f)(1)

= (ρπ(x−1X)π(x−1)f)(1)

= ρσ(x−1X)(π(x−1)f)(1)

= ρσ(x−1X)f(x).

If we now prove that (σ, ρσ ,K) is a UR of the SLG (H0, h), we are done. This is completely
formal.

Covariance with respect to H0: For f ∈ B, ξ ∈ H0,

ρσ(ξX)f(1) = (ρπ(ξX)f)(1)

= (π(ξ)ρπ(X)π(ξ−1)f)(1)

= (ρπ(X)π(ξ−1)f)(ξ−1)

= σ(ξ)(ρπ(X)π(ξ−1)f)(1)

= σ(ξ)ρσ(X)(π(ξ−1)f)(1)

= σ(ξ)ρσ(X)σ(ξ)−1f(1).

Odd commutators : Let X,Y ∈ g1 = h1 so that Z = [X,Y ] ∈ h0. We have

[ρπ(X), ρπ(Y )]f = −idπ([X.Y ])f (∗)

for all f ∈ B. Now,

i(−dπ(Z)f)(1) = i(d/dt)t=0f(exp tZ)

= i(d/dt)t=0σ(exp(−tZ))f(1)

= −idσ(Z)f(1).

On the other hand,

(ρπ(X)ρπ(Y )f)(1) = ρσ(X)ρσ(Y )f(1)

so that the left side of (∗), evaluated at 1, becomes

[ρσ(X), ρσ(Y )]f(1).

Thus

[ρσ(X), ρσ(Y )]f(1) = −idσ(Z)f(1).

Symmetry: From the symmetry of the ρπ(X) we have, for all f, g ∈ B, a, b ∈ C∞
c (Ω),

(ρπ(X)(af), bg)H = (af, ρπ(X)(bg))H.

This means that
∫

(ρσ(x−1X)f(x), g(x))Ka(x)b(x)dx =

∫
(f(x), ρσ(x−1X)g(x))Ka(x)b(x)dx.

Since a and b are arbitrary we conclude that

(ρσ(x−1X)f(x), g(x))K = (f(x), ρσ(x−1X)g(x))K
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for almost all x. All functions in sight are continuous and so this relation is true for all x.
The evaluation at 1 gives the symmetry of ρσ(X) on C∞(σ).

This proves that (σ, ρσ,K) is a UR of the SLG (H0, h) and that the corresponding induced
SSI is the one we started with.

To complete the proof we must show that the set of morphisms of the induced SSI’s is
in canonical bijection with the set of morphisms of the inducing UR’s of the sub SLG in
question. Let (π, ρπ ,H, P ) and (π′, ρπ

′

,H′, P ′) be the SSI’s induced by (σ, ρσ) and (σ′, ρσ
′

)
respectively. For any morphism R from (σ, ρσ) to (σ′, ρσ

′

) let T be as in Theorem 5. Then
T extends uniquely to a bounded even operator from H to H′, and the relations TM(u) =
M ′(u)T for all u ∈ C∞

c (Ω) imply that TP (E) = P ′(E)T for all Borel E ⊂ Ω. Hence T is a
morphism from (π, ρπ,H, P ) to (π′, ρπ

′

,H′, P ′). It is clear that the assignment R 7−→ T is
functorial. To complete the proof we must show that any morphism T from (π, ρπ,H, P ) to
(π′, ρπ

′

,H′, P ′) is of this form for a unique R. But T must take B = C∞
c (π0) to B′ = C∞

c (π′
0)

and commute with the actions of C∞
c (Ω). Hence T is a morphism from (π, ρπ ,B,M) to

(π′, ρπ
′

,B′,M ′). Theorem 5 now implies that T arises from a unique morphism of (σ, ρσ) to
(σ′, ρσ

′

).

This finishes the proof of Theorem 6.
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9.0.8 Super semidirect products and their irreducible unitary rep-

resentations

We start with a classical semidirect product G0 = T0 ×′ L0 where T0 is a vector space of
finite dimension over R, the translation group, and L0 is a closed unimodular subgroup of
GL(T0) acting on T0 naturally. For any Lie group the corresponding gothic letter denotes
its Lie algebra. In applications L0 is usually an orthogonal group of Minkowskian signature,
or its 2-fold cover, the corresponding spin group. By a super semidirect product (SSDP) we
mean a SLG (G0, g) where T0 acts trivially on g1 and [g1, g1] ⊂ t0. Clearly t := t0 ⊕ g1 is
also a super Lie algebra, and (T0, t) is a SLG called the super translation group. For any
closed subgroup S0 ⊂ L0, H0 = T0S0 is a closed subgroup of G0, h = h0 ⊕ g1 is a super Lie
algebra where h0 = t0⊕ s0 is the Lie algebra of H0. Notice that (H0, h) is a special sub SLG
of (G0, g). We begin by showing that the irreducible UR’s of (G0, g) are in natural bijection
with the irreducible UR’s of suitable special sub SLG’s of the form (H0, h) with the property
that the translations act as scalars. For brevity we shall write S = (G0, g), T = (T0, t).

The action of L0 on T0 induces an action on the dual T ∗
0 of T0. We assume that this action

is regular, i.e., the orbits are all locally closed. By the well known theorem of Effros this
implies that if Q is any projection valued measure on T ∗

0 such that QE = 0 or the identity
operator I for any invariant Borel subset E of T ∗

0 , then Q is necessarily concentrated on a
single orbit. This is precisely the condition under which the classical method of little groups
of Frobenius-Mackey-Wigner works. For any λ ∈ T ∗

0 let Lλ0 be the stabilizer of λ in L0 and
let gλ = t0 ⊕ lλ0 ⊕ g1. The SLG (T0L

λ
0 , g

λ) will be denoted by Sλ. We shall call it the little
super group at λ. It is a special sub SLG of (G0, g). Two λ’s are called equivalent if they
are in the same L0-orbit. If θ is a UR of the classical group T0L0 and O is an orbit in

89
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T ∗
0 , its spectrum is said to be in O if the spectral measure (via the SNAG theorem) of the

restriction of θ to T0 is supported by O.

Given λ ∈ T ∗
0 , a UR (σ, ρσ) of Sλ is λ-admissible if σ(t) = eiλ(t)I for t ∈ T0. λ itself is

called admissible if there is an irreducible UR which is λ-admissible. It is obvious that the
property of being admissible is preserved under the action of L0. Let

T+
0 =

{
λ ∈ T ∗

0

∣∣∣∣ λ admissible

}
.

Then T+
0 is an invariant subset of T ∗

0 .

Theorem 7 The spectrum of every irreducible UR of the SLG (G0, g) is in some orbit in
T+

0 . For each orbit in T+
0 and choice of λ in that orbit, the assignment that takes a λ-

admissible UR γ := (σ, ρσ) of Sλ into the UR Uγ of (G0, g) induced by it, is a functor which
is an equivalence of categories between the category of the λ-admissible UR’s of Sλ and the
category of UR’s of (G0, g) with their spectra in that orbit. Varying λ in that orbit changes
the functor into an equivalent one. In particular this functor gives a bijection between the
respective sets of equivalence classes of irreducible UR’s.

Proof. Notice first of all that since T0 acts trivially on g1, π0(t) commutes with ρπ (X)
on C∞ (π0) for all t ∈ T0, X ∈ g1. Hence PE ↔ ρπ (X) for all Borel E ⊂ Ω, X ∈ g1 .
For the first statement, let E be an invariant Borel subset of T ∗

0 . Let P be the spectral
measure of the restriction of π to T0. Then PE commutes with π, ρπ(X). So, if (π, ρπ) is
irreducible, PE = 0 or I. Hence P is concentrated in some orbit O, i.e., PO = I. The
system (π, ρπ) is clearly equivalent to (π, ρπ, P ) since P and the restriction of π to T0 gen-
erate the same algebra. If λ ∈ O and Lλ0 is the stabilizer of λ in L0, we can transfer P
from O to a projection valued measure P ∗ on L0/L

λ
0 = T0L0/T0L

λ
0 . So (π, ρπ) is equivalent

to the SSI (π, ρπ, P ∗). The rest of the theorem is an immediate consequence of Theorem
6. The fact that σ(t) = eiλ(t)I for t ∈ T0 is classical. Indeed, in the smooth model for π
treated in §8.0.6, the fact that the spectrum of π is contained in the orbit of λ implies that
(π(t)f)(x) = eiλ(x−1tx)f(x) for all f ∈ B, t ∈ T0, x ∈ G0. Hence f(t−1) = eiλ(t)f(1) while
f(t−1) = σ(t)f(1). So σ(t) = eiλ(t)I.

Remark 15 In the classical theory all orbits of L0 are allowed and an additional argument
of the positivity of energy is needed to single out the physically occurring representations. In
SUSY theories as exemplified by Theorem 7, a restriction is already present: only orbits in
T+

0 are permitted. We shall prove in the next section that T+
0 may be interpreted precisely

as the set of all positive energy representations.

9.0.9 Determination of the admissible orbits. Product structure of

the representations of the little super groups

We fix λ ∈ T+
0 and let (σ, ρσ) be a λ-admissible irreducible UR of Sλ. Clearly

−idσ(Z) = λ(Z)I (Z ∈ t0).

Define

Φλ(X1, X2) = (1/2)λ([X1, X2]) (X1, X2 ∈ g1).
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Then, on C∞(σ),

[ρσ(X1), ρ
σ(X2)] = λ([X1, X2])I = 2Φλ(X1, X2)I.

Clearly Φλ is a symmetric bilinear form on g1 × g1. Let

Qλ(X) = Φλ(X,X) = (1/2)λ([X,X ]).

Then Qλ is invariant under Lλ0 because for X1, X2 ∈ g1, h ∈ L1,

[ρσ(hX1), ρ
σ(hX2)] = σ(h)[ρσ(X1), ρ

σ(X2)]σ(h)−1 = 2Φλ(X1, X2).

Now
ρσ(X)2 = Qλ(X)I (X ∈ g1).

Since ρσ(X) is essentially self adjoint on C∞(σ), it is immediate that Qλ(X) ≥ 0. We thus
obtain the necessary condition for admissibility:

Qλ(X) = Φλ(X,X) ≥ 0 (X ∈ g1).

In the remainder of this subsection we shall show that the condition that Φλ ≥ 0, which we
refer to as the positive energy condition, is also sufficient to ensure that λ is admissible. We
will then find all the λ-admissible irreducible UR’s of Sλ.

It will follow in the next section that if the super Lie group (G0, g1) is a super Poincaré
group, the condition Φλ ≥ 0 expresses precisely the positivity of the energy. This is the
reason for our describing this condition in the general case also as the positive energy con-
dition.

From now on we fix λ such that Φλ ≥ 0.

Lemma 20 For any admissible UR (σ, ρσ) of Sλ, ρσ(X) is a bounded self adjoint operator
for X ∈ g1, and ρσ(X)2 = Qλ(X)I. Moreover, Qλ ≥ 0 and is invariant under Lλ0 .

Proof. We have, for X ∈ g1, ψ ∈ C∞(σ),

|ρσ(X)ψ|2K = (ρσ(X)2ψ, ψ) = Qλ(X)2|ψ|2K

which proves the lemma.

This lemma suggests we study the following situation. Let W be a finite dimensional
real vector space and let q be a nonnegative quadratic form on W , i.e., q(w) ≥ 0 for w ∈W .
Let ϕ be the corresponding symmetric bilinear form (q(w) = ϕ(w,w)). Let C be the real
algebra generated by W with the relations w2 = q(w)1(w ∈ W ). If q is nondegenerate,
i.e., positive definite, this is the Clifford algebra associated to the quadratic vector space
(W, q). If q = 0 it is just the exterior algebra over W . If (wi)1≤i≤n is a basis for W such
that ϕ(wi, wj) = εiδij with εi = 0 or 1 according as i ≤ a or > a, then C is the algebra
generated by the wi with the relations wiwj + wjwi = 2εiδij . Let W0 be the radical of q,
i.e., W0 = {w0|ϕ(w0, w) = 0 for all w ∈ W}; in the above notation W0 is spanned by the
wi for i ≤ a. If W∼ = W/W0 and q∼, ϕ∼ are the corresponding objects induced on W∼,
q∼ is positive definite, and so we have the usual Clifford algebra C∼ generated by (W∼, q∼)
with W∼ ⊂ C∼. The natural map W −→ W∼ extends uniquely to a morphism C −→ C∼

which is clearly surjective. We claim that its kernel is the ideal C0 in C generated by W0.
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Indeed, let I be this kernel. If s ∈ I, s is a linear combination of elements wIwJ where wI is
a product wi1 . . . wir (i1 < · · · < ir ≤ a) and wJ is a product wj1 . . . wjs(a < j1 < · · · < js);
hence, s ≡

∑
J cJwJ mod C0, and as the image of this element in C∼ is 0, cJ = 0 for all J

because the images of the wJ are linearly independent in C∼. Hence s ∈ C0, proving our
claim.

A representation θ of C by bounded operators in a SHS K is called self adjoint (SA)
if θ(w) is odd and self adjoint for all w ∈ W . θ can be viewed as a representation of
the complexification C ⊗ C of C; a representation of C ⊗ C arises in this manner from a
SA representation of C if and only if it maps elements of W into odd operators and takes
complex conjugates to adjoints. Also we wish to stress that irreducibility is in the graded
sense.

Lemma 21 (i) If τ is a SA representation of C in K, then τ = 0 on C0 and so it is the
lift of a SA representation τ∼ of C∼. (ii) There exist irreducible SA representations τ of
C; these are finite dimensional, unique if dim(W∼) is odd, and unique up to parity reversal
if dim(W∼) is even. (iii) Let τ be an irreducible SA representation of C in a SHS L and
let θ be any SA representation of C in a SHS R. Then R ≃ K ⊗ L where K is a SHS and
θ(a) = 1 ⊗ τ(a) for all a ∈ C; moreover, if dim(W∼) is odd, we can choose K to be purely
even.

Proof. (i) If w ∈ W0, then τ(w0)
2 = q(w0)I = 0 and so, τ(w0) itself must be 0 since it is

self adjoint.

(ii) In view of (i) we may assume that W0 = 0 so that q is positive definite.

Case I : dim(W ) = 2m. Select an ON basis a1, b1, . . . , am, bm for W . Let ej = (1/2)(aj +
ibj), fj = (1/2)(aj − ibj). Then ϕ(ej , ek) = ϕ(fj , fk) = 0 while ϕ(ej , fk) = (1/2)δjk. Then
C⊗ C is generated by the ej, fk with the relations

ejek + ekej = fjfk + fkfj = 0, ejfk + fkej = δjk.

We now set up the standard “Schrödinger” representation of C⊗C. The representation acts
on the SHS L = Λ(U) where U is a Hilbert space of dimension m and the grading on L is
the Z2-grading induced by the usual Z-grading of Λ(U). Let (uj)1≤j≤m be an ON basis for
U . We define

τ(ej)f = uj ∧ f, τ(fj)f = ∂(uj)(f) (f ∈ Λ(U)),

∂(u) for any u ∈ U being the odd derivation on Λ(U) such that ∂(u)v = 2(v, u) (here (·, ·)
is the scalar product in Λ(U) extending the scalar product of U). It is standard that τ is an
irreducible representation of C⊗C. The vector 1 is called the Clifford vacuum. We shall now
verify that τ is SA Since aj = ej+fj, bj = −i(ej−fj), we need to verify that τ(fj) = τ(ej)

∗

for all j, ∗ denoting adjoints. For any subset K = {k1 < · · · < kr} ⊂ {1, 2, . . . ,m} we write
uK = uk1 ∧ · · · ∧ ukr

. Then we should verify that

(uj ∧ uK , uL) = (uK , ∂(uj)uL) (K,L ⊂ {1, 2, . . . ,m}).

Write K = {k1, . . . , kr}, L = {ℓ1, . . . , ℓs} where k1 < · · · < kr, ℓ1 < · · · < ℓs. We assume
that j = ℓa for some a and K = L \ {ℓa}, as otherwise both sides are 0. Then K =
{ℓ1, . . . , ℓa−1, ℓa+1, . . . , ℓs} (note that r = s− 1). But then both sides are equal to (−1)a−1.

From the general theory of Clifford algebras we know that if τ ′ is another irreducible SA
representation of C, then either τ ≈ τ ′ or else τ ≈ Πτ ′Π where Π is the parity revarsal map
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and we write ≈ for linear (not necessarily unitary) equivalence. So it remains to show that ≈
implies unitary equivalence which we write ≃. This is standard since the linear equivalence
preserves self adjointness. Indeed, if R : τ1 −→ τ2 is an even linear isomorphism, then R∗R
is an even automorphism of τ1 and so R∗R = a2I where a is a scalar which is > 0. Then
U = a−1R is an even unitary isomorphism τ1 ≃ τ2. Also for use in the odd case to be
treated next, we note that τ is irreducible in the ungraded sense since its image is the full
endomorphism algebra of L.

Case II : dim(W ) = 2m+ 1. It is enough to construct an irreducible SA representation
as it will be unique up to linear, and hence unitary, equivalence.

Let a0, a1, . . . , a2m be an ON basis for W . Write xj = ia0aj(1 ≤ j ≤ 2m), x0 =
ima0a1 . . . a2m. Then x2

0 = 1, xjxk + xkxj = 2δjk(j, k = 1, 2, . . . , 2m). Moreover x0 com-
mutes with all aj and hence with all xj . The xj generate a Clifford algebra over R cor-
responding to a positive definite quadratic form and so there is an irreducible ungraded
representation τ+ of it in an ungraded Hilbert space L+ such that τ+(xj) is self adjoint for
all j = 1, 2, . . . , 2m (cf. remark above). Within C⊗ C the xj generate C⊗ C+ so that τ+ is
a representation of C⊗ C+ in L+ such that iτ+(a0aj) is self adjoint for all j. We now take

L = L+ ⊕ L+, τ = τ+ ⊕ τ+, τ(x0) =

(
0 1
1 0

)
.

Here L is given the Z2-grading such that the first and second copies of L+ are the even and
odd parts. It is clear that τ is an irreducible representation of C⊗C. We wish to show that
τ(ar) is odd and self adjoint for 0 ≤ r ≤ 2m. But this follows from the fact that the τ(xr)
are self adjoint, τ(xj) are even, and τ(x0) is odd, in view of the formulae

a0 = imx0x1 . . . x2m, aj = −ia0xj .

This finishes the proof of (ii).

(iii) Let now θ be a SA representation of C in a SHS R of possibly infinite dimension.
For any homogeneous ψ ∈ R the cyclic subspace θ(C)ψ is finite dimensional, hence closed,
graded and is θ-stable; moreover by the SA nature of θ, for any graded invariant subspace
its orthogonal complement is also graded and invariant. Hence we can write R = ⊕αRα
where the sum is direct and each Rα is graded, invariant, and irreducible. Let L be a SHS
on which we have an irreducible SA representation of C. If dim(W )∼ is even we can thus
write R = (M0 ⊗ L) ⊕ (M1 ⊗ ΠL) where the Mj are even Hilbert spaces; if dim(W∼)
is odd we can write R = K ⊗ L where K is an even Hilbert space. In the first case, since
M1⊗ΠL = ΠM1⊗L, we haveR = K⊗L where K is a SHS with K0 =M0,K1 = ΠM1.

For studying the question of admissibility of λ we need a second ingredient. Let H be a
not necessarily connected Lie group and let us be given a morphism

j : H −→ O(W∼)

so that H acts on W∼ preserving the quadratic form on W∼. We wish to find out when
there is a UR κ of H , possibly projective, and preferably, but not necessarily, even, in the
space of the irreducible SA representation τ∼, such that

κ(t)τ∼(w)κ(t)−1 = τ∼(tw) (t ∈ H,w ∈W∼) (∗).
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For h ∈ O(W∼), let
τ∼h (w) = τ∼(hw) (w ∈ W∼).

Then τ∼h is also an irreducible SA representation of C∼ and so we can find a unitary operator
K(h) such that

τ∼h (w) = K(h)τ∼(w)K(h)−1 (w ∈W∼).

If dimW∼ is even, τ∼ is irreducible even as an ungraded representation, and so K(h) will be
unique up to a phase; it will be even or odd according as τ∼h ≃ τ

∼ or τ∼h ≃ Πτ∼Π where Π
is parity reversal. If dimW∼ is odd, τ∼ is irreducible only as a graded representation and so
we also need to require K(h) to be an even operator in order that it is uniquely determined
up to a phase. With this additional requirement in the odd dimensional case, we then see
that in both cases the class of κ as a projective UR of H is uniquely determined, i.e., the
class of its multiplier µ in H2(H,T) is fixed. In the following, we shall show that µ can be
chosen to be ±1-valued, and examine the structure of κ more closely.

We begin with some preparation (see [Del99],[Var04]). Let C∼× be the group of invertible
elements in C∼. Define the full Clifford group as follows:

Γ =
{
x ∈ C∼× ∩ (C∼+ ∪ C∼−) | xW∼x−1 ⊂W∼

}
.

We have a homomorphism α : Γ −→ O(W∼) given by

α(x)w = (−1)p(x)xwx−1

for all w ∈W∼, p(x) being 0 or 1 according as x ∈ C∼+ or x ∈ C∼−. Let β be the principal
antiautomorphism of C∼+; then xβ(x) ∈ R× for all x ∈ Γ, and we write G for the kernel
of the homomorphism x 7→ xβ(x) of Γ into R×. Since W∼ is a positive definite quadratic
space, we have an exact sequence

1 −→ {±1} −→ G
α
−→O(W∼) −→ 1.

For dimW∼ ≥ 2, the connected component G0 of G is contained in C∼+ and coincides with
Spin(W∼).

Lemma 22 Let τ∼ be a SA irreducible representation of C∼. We then have the following.
(i) τ∼ restricts to a unitary representation of G. (ii) The operator τ∼ (x) is even or odd
according as x ∈ G0 or x ∈ G \ G0. (iii) τ∼(x)τ∼(w)τ∼(x)−1 = (−1)p(x)τ∼(α(x)(w)) for
x ∈ G,w ∈ W∼.

Proof. Each x ∈ G is expressible in the form x = cv1 . . . vr, where vi are unit vectors in
W∼ and c ∈ {±1}. Since τ∼ (vi) is odd, the parity of τ∼ (x) is the same of x. Moreover,
since the τ∼ (vi) are self adjoint,

τ∼ (x) τ∼ (x)∗ = c2τ∼ (v1) . . . τ
∼ (vr) τ

∼ (vr) . . . τ
∼ (v1) = I.

This proves (i). (ii) and (iii) are obvious.

We now consider two cases.
Case I. j(H) ⊂ SO(W∼).

Let ζ be a Borel map of SO(W∼) into Spin(W∼) which is a right inverse of α(Spin(W∼) −→
SO(W∼)) with ζ(1) = 1. Then ζ(xy) = ±ζ(x)ζ(y) for x, y ∈ SO(W∼), and so

κH = τ∼ ◦ ζ ◦ j
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is an even projective UR of H satisfying (∗) with a ±-valued multiplier µH . Since ζ(1) = 1
it follows that µH is normalized , i.e.,

µH(h, 1) = µH(1, h) = 1 (h ∈ H).

Clearly, the class of µH in H2(H,Z2) is trivial if and only if j : H → SO(W∼) can be lifted

to a morphism ĵ : H → Spin(W∼). In particular, this happens if H is connected and simply
connected.

Suppose now H is connected but ĵ does not exist. We can then find a two-fold cover H∼

of H with a covering map p(H∼ −→ H) such that j(H → SO(W∼)) lifts to a morphism
j∼(H∼ → Spin(W∼)), and if ξ is the nontrivial element in ker p, then j∼(ξ) = −1.

Lemma 23 If j maps H into SO(W∼), there is a projectively unique even projective UR
κ of H satisfying (∗), with a normalized ±1-valued multiplier µ. If H is connected, for
κ to be an ordinary even representation (which will be unique up to multiplication by a
character of H) it is necessary and sufficient that either (i) j(H → SO(W∼)) can be lifted
to Spin(W∼) or (ii) there exists a character χ of H∼ such that χ(ξ) = −1. In particular,
if H = A ×′ T , where A is simply connected and T is a torus, then κ is an ordinary even
unitary representation.

Proof. The first statement has already been proved.

We next prove the sufficiency part of the second statement. Sufficiency of (i) has already
been observed. To see that (ii) is sufficient, note that κ∼ = τ∼ ◦ j∼ is an even UR of H∼

satisfying (∗); one can clearly replace κ∼ by κ∼χ without destroying (∗). As κ∼(ξ) = −1,
we have (κ∼χ)(ξ) = 1, and so it is immediate that κ∼χ descends to H .

We leave the necessity part to the reader; it will not be used in the sequel.

The statement for H = A ×′ T will follow if we show that H∼ has a character χ as in
condition (ii). We have H∼ = A×′ T∼, T∼ being the double cover of T , and ξ = (1, t), with
t 6= 1, t2 = 1. There exists a character χ of T∼ such that χ(t) = −1, and such a character
can be extended to H∼ by making it trivial on A.

Case II. j(H) 6⊂ SO(W∼).
Let

H0 = j−1(SO(W∼)).

Then H0 is a normal subgroup of H of index 2. We must distinguish two subcases.

Case II.a. dim(W∼) is even.
Let ζ0 be a Borel right inverse of α(G0 −→ SO(W∼)) with ζ0(1) = 1. Fix a unit vector
v0 ∈ W∼ and let r0 = −α(v0). Since α(v0) is the reflection in the hyperplane orthogonal
to v0 and dim(W∼) is even, we see that r0 ∈ O(W∼) \ SO(W∼). We then define a map
ζ(O(W∼)→ G) by

ζ(h) =

{
ζ0(h) if h ∈ SO(W∼)

ζ0(h0)v0 if h = h0r0, h0 ∈ SO(W∼).

Once again we have ζ(h1h2) = ±ζ(h1)ζ(h2). Define

κH = τ∼ ◦ ζ ◦ j.
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Then κH is a projective UR of H satisfying (∗) with a ±-valued normalized multiplier µH .
But κH is not an even representation; elements of H \H0 map into odd unitary operators
in the space of τ∼. We shall call such a representation of H graded with respect to H0, or
simply graded. We have thus proved the following.

Lemma 24 If j(H) 6⊂ SO(W∼), and dim(W∼) is even, and if we define H0 = j−1(SO(W∼)),
then there is a projective UR κH, graded with respect to H0, and satisfying (∗) with a ±-
valued normalized multiplier µH .

Before we take up the case when dim(W∼) is odd, we shall describe how the projective
graded representations of H are constructed. This is a very general situation and so we shall
work with a locally compact second countable group A and a closed subgroup A0 of index 2;
A0 is automatically normal and we write A1 = A\A0. Gradedness is with respect to A0. We
fix a ±-valued multiplier µ for A which is normalized. For brevity a representation will mean
a unitary µ-representation. Moreover, with a slight abuse of language a µ-representation of
A0 will mean a µ|A0×A0

-representation of A0. If Rg is a graded representation in a SHS H, R
the corresponding ungraded representation, and Pj is the orthogonal projection H −→ Hj ,
we associate to R the projection valued measure P on A/A0 where PA0 = P0 and PA1 = P1.
Then the condition that Rg is graded is exactly the same as saying that (R,P ) is a system of
imprimitivity for A based on A/A0. Conversely, given a system of imprimitivity (R,P ) for
A based on A/A0, let us define the grading for H = H(R) by Hj = range of PAj

(j = 0, 1);
then R becomes a graded representation. Moreover for graded representations Rg, R

′
g, we

have Hom(Rg, R
′
g) = Hom((R,P ), (R′, P ′)). In other words, the category of systems of

imprimitivity for A based on A/A0 and the category of representations of A graded with
respect to A0 are equivalent naturally.

For any µ-representation r of A0 in a purely even Hilbert space H(r), let

Rr := IndAA0
r

be the representation of A induced by r. We recall that Rr acts in the Hilbert space H(Rr)
of all (equivalence classes of Borel) functions f(A→ H(r)) such that for each α ∈ A0,

f(αa) = µ(α, a)r(α)f(a)

for almost all a ∈ A; and

(Rr(a)f)(y) = µ(y, a)f(ya) (a, y ∈ A).

The space H(Rr) is naturally graded by defining

H(Rr)j = {f ∈ H(Rr) | supp(f) ⊂ Aj} (j = 0, 1).

It is then obvious that Rr is a graded µ-representation. We write R̂r for Rr treated as a
graded representation. These remarks suggest the following lemma.

Lemma 25 For any unitary µ-representation r of A0 let Rr = Ind(r) and let R̂r be the

graded µ-representation defined by Rr. Then the assignment r 7→ R̂r is an equivalence
from the category of unitary µ-representations of A0 to the category of unitary graded µ-
representations of A.

Proof. Let us first assume that µ = 1. Then we are dealing with UR’s and the above
remarks imply the Lemma in view of the classical imprimitivity theorem.
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When µ is not 1 we go to the central extension A∼ of A by Z2 defined by µ. Recall that
A∼ = A×µ Z2 with multiplication defined by

(a, ξ)(a′, ξ′) = (aa′, ξξ′µ(a, a′)) (a, a′ ∈ A, ξ, ξ′ ∈ Z2).

(We must give to A∼ the Weil topology). Then A∼
0 = A0 ×µ Z2 and A∼/A∼

0 = A/A0.
The µ-representations R of A are in natural bijection with UR’s R∼ of A∼ such that R∼ is
nontrivial on Z2 by the correspondence

R∼(a, ξ) = ξR(a), R(a) = R∼(a, 1).

The assignment R 7→ R∼ is an equivalence of categories. Analogous considerations hold
for µ-representations r of A0 and UR’s r∼ of A∼

0 which are nontrivial on Z2. The Lemma
would now follow if we establish two things: (a) For any unitary µ-representation r of A0,
and Rr = Ind(r), we have

R∼
r ≃ Ind(r∼)

and (b) If ρ is a UR of A∼
0 and Ind(ρ) = R∼ for some µ-representation R of A, then ρ = r∼

for some µ-representation r of A0. To prove (a) we set up the map f 7−→ f∼ from H(R∼
r )

to H(Ind(r∼)) by

f∼(a, ξ) = f(a)ξ.

It is an easy calculation that this is an isomorphism of R∼
r with H(Ind(r∼)) that intertwines

the two projection valued measures on A/A0 and A∼/A∼
0 ≈ A/A0. To prove (b) we have

only to check that ρ(1, ξ) = ξ; this however is a straightforward calculation.

Remark 16 Given a graded µ-representation R of A, let r be the µ-representation of A0

defined by

r(α) = R(α)
∣∣
H(R)0

(α ∈ A0).

It is then easy to show that R ≃ Rr. In fact it is enough to verify this (as before) when
µ = 1. In this simple situation this is well known.

We now resume our discussion and treat the odd dimensional case.
Case II.b. dim(W∼) is odd.

We shall exhibit a projective even UR κ ofH satisfying (∗). We refer back to the construction
of τ∼ in Lemma 21. Then

S =

(
0 1
−1 0

)

is an odd unitary operator such that S2 = −1 and τ∼(x)S = (−1)p(x)Sτ∼(x) for all x ∈ C∼.
Let γ(O(W∼)→ G) be a Borel right inverse of α. Then, it is easily checked that

κH (h) =

{
(τ∼ ◦ γ ◦ j) (h) if h ∈ H0

(τ∼ ◦ γ ◦ j) (h)S if h ∈ H \H0

has the required properties.

We now return to our original setting. First the graded representations of H are obtained
by taking H = A,H0 = A0 in the foregoing discussion. Let g1λ = g1/rad Φλ. We write Cλ
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for the algebra generated by g1 with the relations X2 = Qλ(X)1 for all X ∈ g1. We have a
map

jλ : Lλ0 −→ O(g1λ).

We take in the preceding theory

q = Qλ, ϕ = Φλ, H = Lλ0 , W∼ = g1λ, j = jλ, C∼ = C∼λ .

Furthermore let

κλ = κ, µλ = µ, τ∼λ = τ∼, τλ = lift of τ∼ to Cλ.

Then µλ is a normalized multiplier for Lλ0 which we can choose to be ±-valued, κλ is a
µλ-representation (unitary) of Lλ0 in the space of τλ, and

κλ(t)τλ(X)κλ(t)
−1 = τλ(tX) (t ∈ Lλ0 ).

Moreover, κλ is graded if and only if jλ(L
λ
0 ) 6⊂ SO(g1λ) and dim(g1λ) is even, otherwise κλ

is even. Finally, let

Lλ00 =

{
j−1
λ (SO(g1λ)) if jλ(L

λ
0 ) 6⊂ SO(g1λ) and dim(g1λ) is even

Lλ0 otherwise.

For any unitary µλ-representation r of Lλ00 in an even Hilbert space Kλ, let R̂r be the unitary
µλ- representation of Lλ0 induced by r, which is graded if jλ(L

λ
0 ) 6⊂ SO(g1λ) and dim(g1λ)

is even, and is just r in all other cases.

Theorem 8 Let λ be such that Φλ ≥ 0. Then λ is admissible, i.e., λ ∈ T+
0 . For a fixed

such λ let τλ be an irreducible SA representation of Cλ in a SHS Lλ and κλ the unitary
µλ-representation of Lλ0 in Lλ associated to τλ as above. For any unitary µλ-representation

r of Lλ00 in an even Hilbert space Kλ, let R̂r be the unitary µλ- representation of Lλ0 defined
as above, and let

θrλ = (σrλ, ρ
σ
λ)

be the UR of the little SLG Sλ, where, for X ∈ g1, h ∈ Lλ0 , t ∈ T0,

σrλ(th) = eiλ(t)σ′
rλ(h)

and
σ′
rλ(h) = R̂r(h)⊗ κλ(h), ρσλ(X) = 1⊗ τλ(X) (X ∈ g1).

Then θrλ is an admissible UR of Sλ. The assignment r 7−→ θrλ is functorial, commutes
with direct sums, and is an equivalence of categories from the category of unitary µλ-
representations of Lλ00 to the category of admissible UR’s of the little super group Sλ. If
Lλ0 is connected and satisfies either of the conditions of Lemma 23, then r 7−→ θrλ is an
equivalence from the category of even UR’s of Lλ0 into the category of admissible UR’s of
Sλ.

Proof. Once κλ is fixed, the assignment

r 7−→ θrλ

is clearly functorial (although it depends on κλ). If dim(g1λ) is even, a morphism M : r1 −→

r2 obviously gives rise to the morphism M̂ : Rr1 −→ Rr2 and hence to the morphism M̂ ⊗ 1
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from θr1λ to θr2λ. Conversely, if T is a bounded even operator commuting with 1⊗ τλ, it is
immediate (since the τλ(X) generate the full super algebra of endomorphisms of Lλ) that T

must be of the form M ′⊗1 whereM ′ : H(R̂r1)→ H(R̂r2) is a bounded even operator. If now

T intertwines R̂r1⊗κλ and R̂r2⊗κλ, then M ′ must belong to Hom(R̂r1 , R̂r2) ≈ Hom(r1, r2).
Thus r 7−→ θrλ is a fully faithful functor. If dim(g1λ) is odd, we can choose Kλ to be purely
even (see Lemma 21). If T is a bounded even operator commuting with 1⊗ τλ, we use the
fact that it commutes with

1⊗

(
τ+(a) 0

0 τ+(a)

)
and 1⊗

(
0 1
1 0

)

(in the notation of Lemma 21) to conclude, via an argument similar to the one used in the
even dimensional case, that T is of the form M ⊗ 1. Arguing as before we conclude that
M ∈ Hom(r1, r2). Thus r 7→ θrλ is a fully faithful functor in this case also. It remains to
show that every admissible UR of Sλ is of the form θrλ.

Let θ be an admissible UR of Sλ in H. Then θ = (ξ, τ) where ξ is an even UR of T0L
λ
0

which restricts to eiλI on T0, τ is a SA representation of Cλ related to ξ as usual. We may
then assume by Lemma 21 that H = K ⊗Lλ and τ = 1⊗ τλ. If dim(g1λ) is odd, we choose
K purely even. Then 1⊗ τλ(hX) = ξ(h)[1 ⊗ τλ(X)]ξ(h)−1. But the same relation is true if
we replace ξ by 1 ⊗ κλ. So if ξ1 = [1 ⊗ κλ]−1ξ, then ξ1(h) is even or odd according to the
grading of κλ(h), and commutes with 1⊗ τλ. Hence ξ1 is of the form R′⊗ 1 for a Borel map
R′ from Lλ0 into the unitary group of K. Thus

ξ(h) = [1⊗ κλ(h)][R
′(h)⊗ 1].

The two factors on the right side of this equation commute; the left side is an even UR and
the first factor on the right is a unitary µλ-representation of Lλ0 , which is graded or even
according to dim(g1λ) even or dim(g1λ) odd. So R′ is a µ−1

λ = µλ-representation of Lλ0 in
K, which is graded or even according to dim(g1λ) even or dim(g1λ) odd. This finishes the
proof.

Remark 17 If λ = 0, then Φλ = 0,Lλ = 0, and θr0 = (r, 0).

Remark 18 For the super Poincaré groups we shall see in the next subsection that the
situation is much simpler and Lλ0 is always connected and satisfies the conditions of Lemma
23.

Combining Theorems 7 and 8 we obtain the following theorem. Let Θrλ be the UR of
(G0, g) induced by θrλ as described in Theorem 8.

Theorem 9 Let λ be such that Φλ ≥ 0. The assignment that takes r to the UR Θrλ is
an equivalence of categories from the category of unitary µλ-representations of Lλ00 to the
category of UR’s of (G0, g) whose spectra are contained in the orbit of λ. In particular, for
r irreducible, Θrλ is irreducible, and every irreducible UR of (G0, g) is obtained in this way.
If the conditions of Lemma 23 are satisfied, then the r’s come from the category of UR’s of
Lλ0 .
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In the case of super Poincaré groups (see Remark 18 above), Θrλ induced by θrλ rep-
resents a superparticle. In general the UR πrλ of T0L0 contained in Θrλ will not be an
irreducible UR of G0. Its decomposition into irreducibles gives the multiplet that the UR
of S determines. This is of course the set of irreducible UR’s Urλj of G0 induced by the rλj
where the rλj are the irreducible UR’s of Lλ0 contained in r ⊗ κλ:

r ⊗ κλ =
⊕

rλj , πrλ =
⊕

Urλj .

The set (rλj) thus defines the multiplet . For r trivial the corresponding multiplet is called
fundamental.

9.0.10 The case of the super Poincaré groups

We shall now specialize the entire theory to the case when (G0, g) is a super Poincaré group
(SPG). This means that the following conditions are satisfied.

(a) T0 = R1,D−1 is the D-dimensional Minkowski space of signature (1, D−1) with D ≥ 4;
the Minkowski bilinear form is 〈x, x′〉 = x0x

′
0 −

∑
j xjx

′
j .

(b) L0 = Spin(1, D − 1).

(c) g1 is a real spinorial module for L0, i.e., is a direct sum of spin representations over C.

(d) For any 0 6= X ∈ g1, and any x ∈ T0 lying in the interior Γ+ of the forward light cone
Γ, we have

〈[X,X ], x〉 > 0.

If in (c) g1 is the sum of N real irreducible spin modules of L0, we say we are in the
context of N -extended supersymmetry. Sometimes N refers to the number of irreducible
components over C. In (d)

Γ = {x | 〈x, x〉 ≥ 0, x0 ≥ 0}, Γ+ = {x | 〈x, x〉 > 0, x0 > 0}.

In the case when D = 4 and g1 is the Majorana spinor, the condition (d) is automatic (one
may have to change the sign of the odd commutators to achieve this); in the general case,
as we shall see below, it ensures that only positive energy representations are allowed.

We identify T ∗
0 with R1,D−1 by the pairing 〈x, p〉 = x0p0 −

∑
j xjpj . The dual action of

L0 is then the original action. The orbit structure of T ∗
0 is classical.

Lemma 26 (i) Let V be a finite dimensional real vector space with a nondegenerate quadratic
form and let V1 be a subspace of V on which the quadratic form remains nondegenerate. Then
the spin representations of Spin(V ) restrict on Spin(V1) to direct sums of spin representa-
tions of Spin(V1). (ii) Suppose V = R1,D−1. Let p ∈ V be such that 〈p, p〉 = ±m2 6= 0
and V1 = p⊥. Then V1 is a quadratic subspace, the stabilizer Lp0 of p in Spin(V ) is precisely
Spin(V1), and it is ≃ Spin(D−1) for 〈p, p〉 = m2 and ≃ Spin(1, D−2) for 〈p, p〉 = −m2 6= 0.

Proof. (i) Let C, C1 be the Clifford algebras of V and V1. Then C+
1 ⊂ C

+ and hence, as
the spin groups are imbedded in the even parts of the Clifford algebras, we have Spin(V1) ⊂
Spin(V ). Now the spin modules are precisely the modules for the even parts of the corre-
sponding Clifford algebras and so, as these algebras are semisimple, the decomposition of the
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spin module of Spin(V ), viewed as an irreducible module for C+, into irreducible modules
for C+

1 under restriction to C+
1 , gives the decomposition of the restriction of the original spin

module to Spin(V1). See [Del99],[Var04].

(ii) Choose an orthogonal basis (eα)0≤α≤D−1 such that 〈e0, e0〉 = −〈ej, ej〉 = 1 for
1 ≤ j ≤ D− 1. It is easy to see that we can move p to either (m, 0, . . . , 0) or (0,m, 0, . . . , 0)
by L0 and so we may assume that p is in one of these two positions. For u ∈ C(V )+ it
is then a straightforward matter to verify that up = pu if and only if u ∈ C(V1)

+. From
the characterization of the spin group ([Del99],[Var04]) it is now clear that Lp0 = Spin(V1).

Lemma 27 Let M be a connected real semisimple Lie group whose universal cover does not
have a compact factor, i.e., the Lie algebra of M does not have a factor Lie algebra whose
group is compact. Then M has no nontrivial morphisms into any compact Lie group, and
hence no nontrivial finite dimensional UR’s.

Proof. We may assume that M is simply connected. If such a morphism exists we have
a nontrivial morphism m −→ k where m is the Lie algebra of M and k is the Lie algebra
of a compact Lie group. Let a be the kernel of this Lie algebra morphism. Then a is an
ideal of m different from m, and so we can write m as a × k′ where k′ is also an ideal and
is non zero; moreover, the map from k′ to k is injective. k′ is semisimple and admits an
invariant negative definite form (the restriction from the Cartan- Killing form of k), and so
its associated simply connected group K ′ is compact. If A is the simply connected group for
a, we haveM = A×K ′, showing that M admits a compact factor, contrary to hypothesis.

Corollary 4 If V is a quadratic vector space of signature (p, q), p, q > 0, p + q ≥ 3, then
Spin(V ) does not have any nontrivial map into a compact Lie group.

Proof. The Lie algebra is semisimple and the simple factors are not compact.

Lemma 28 We have Γ = {p | Φp ≥ 0}, i.e., for any p ∈ R1,D−1,

Φp ≥ 0⇐⇒ p0 ≥ 0, 〈p, p〉 ≥ 0.

Moreover,
p0 > 0, 〈p, p〉 > 0 =⇒ Φp > 0.

Proof. For 0 6= X ∈ g1 we have 〈[X,X ], x〉 > 0 for all x ∈ Γ+ and hence the inequality is
true with ≥ 0 replacing > 0 for x ∈ Γ. Hence 2Φp(X,X) = 〈[X,X ], p〉 ≥ 0 if p ∈ Γ. So

Γ ⊂ {p | Φp ≥ 0}.

We shall show next that

{p | Φp ≥ 0} ⊂ {p | 〈p, p〉 ≥ 0}.

Suppose on the contrary that Φp ≥ 0 but 〈p, p〉 < 0. Since Φp is invariant under Lp0 which
is connected, we have a map Lp0 −→ SO(g1p). Then Lp0 = Spin(V1) = Spin(1, D − 2) by
Lemma 26, and Corollary 4 shows that Lp0 has no nontrivial morphisms into any compact
Lie group. Hence Lp0 acts trivially on g1p. Since Lp0 is a semisimple group, g1p can be lifted
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to an Lp0-invariant subspace of g1. Hence, if g1p 6= 0, the action of Lp0 on g1 must have non
zero trivial submodules. However, by Lemma 26, the spin modules of Spin(V ) restrict on
Spin(V1) to direct sums of spin modules of the smaller group and there is no trivial module
in this decomposition. Hence g1p = 0, i.e., Φp = 0. Hence p vanishes on [g1, g1]. Now [g1, g1]
is stable under L0 and non zero, and so must be the whole of t0. So p = 0, a contradiction.

To finish the proof we should prove that if Φp ≥ 0 then p0 ≥ 0. Otherwise p0 < 0 and so
−p ∈ Γ and so from what we have already proved, we have Φ−p = −Φp ≥ 0. Hence Φp = 0.
But then as before p = 0, a contradiction.

Finally, if p0 > 0 and 〈p, p〉 > 0, then Φp > 0 by definition of the SPG structure. This
completes the proof.

Theorem 10 Let S = (G0, g) be a SPG. Then all stabilizers are connected and

T+
0 = {p | Φp ≥ 0} = Γ.

Moreover, κp is an even UR of Lp0, and the irreducible UR’s of S whose spectra are in
the orbit of p are in natural bijection with the irreducible UR’s of Lp0. The corresponding
multiplet is then the set of irreducible UR’s parametrized by the irreducibles of Lp0 occurring
in the decomposition of α⊗ κp as a UR of Lp0.

Proof. In view of Theorem 8 and Lemma 28 we have T+
0 = Γ. For p ∈ Γ, the stabilizers

are all known classically. If 〈p, p〉 > 0, Lp0 = Spin(D − 1); if 〈p, p〉 = 0 but p0 > 0, then
Lp0 = RD−2 ×′ Spin(D − 2); and for p = 0, Lp0 = L0. So, except when D = 4 and p is non
zero and is in the zero mass orbit, the stabilizer is connected and simply connected, thus κp
is an even UR of Lp0 by Lemma 23. But in the exceptional case, Lp0 = R2 ×′ S1 where S1 is
the circle, and Lemma 23 is again applicable. This finishes the proof.

9.0.11 Determination of κp and the structure of the multiplets. Ex-

amples

We have seen that the multiplet defined by the super particle Θαp is parametrized by the set
of irreducible UR’s of Lp0 that occur in the decomposition of α⊗ κp. Clearly it is desirable
to determine κp as explicitly as possible. We shall do this in what follows.

To determine κp the following lemma is useful. (W, q) is a positive definite quadratic
vector space and ϕ is the bilinear form of q. C(W ) is the Clifford algebra of W and H is a
connected Lie group with a morphism H −→ SO(W ). τ is an irreducible SA representation
of C(W ) and κ is a UR such that κ(t)τ(u)κ(t)−1 = τ(tu) for all u ∈ W, t ∈ H . We write ≈
for equivalence after multiplying by a suitable character.

Lemma 29 Suppose that dim(W ) = 2m is even and WC := C ⊗R W has an isotropic
subspace E of dimension m stable under H. Let η be the action of H on Λ(E) extending its
action on E. Then

κ ≈ Λ(E) ≈ Λ(E∗) (E∗is the complex conjugate of E).
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Proof. Clearly E∗ is also isotropic and H-stable. E ∩E∗ = 0 as otherwise E ∩E∗ ∩W will
be a non zero isotropic subspace of W . So WC = E⊕E∗. We write τ ′ for the representation
of C(W ) in Λ(E) where

τ ′(u)(x) = u ∧ x, τ ′(v)(x) = ∂(v)(x) (u ∈ E, v ∈ E∗, x ∈ Λ(E)).

Here ∂(v) is the odd derivation taking x ∈ E to 2ϕ(x, v). It is then routine to show that

η(t)τ ′(u)η(t)−1 = τ ′(tu) (u ∈ E ∪ E∗).

Now τ ′ is equivalent to τ and so we can transfer η to an action, written again as η, of H
in the space of τ satisfying the above relation with respect to τ . It is not necessary that
η be unitary. But we can normalize it to be a UR, namely κ(t) = | det(η(t))|−1/ dim(τ)η(t).

Remark 19 It is easy to give an independent argument that Λ(E) ≈ Λ(E∗). For the unitary
group U(E) of E let Λr be the representation on Λr(E), and let Λ be their direct sum; then
a simple calculation of the characters on the diagonal group shows that Λr

∗ ≃ det−1⊗Λn−r.
Hence Λ∗ ≃ det−1⊗Λ, showing that Λ∗ ≈ Λ. It is then immediate that this result remains
true for any group which acts unitarily on E.

Corollary 5 The conditions of the above lemma are met if W = A ⊕ B where A,B are
orthogonal submodules for H which are equivalent. Moreover

κ ≈ Λ(E) ≃ Λ(E∗) ≃ Λ(A) ≃ Λ(B).

Proof. Take ON bases (aj), (bj) for A and B respectively so that the map aj 7→ bj is an
isomorphism of H-modules. If E is the span of the ej = aj + ibj, it is easy to check that E
is isotropic, and is a module for H which is equivalent to A and B.

We now assume that for some r ≥ 3 we have a map

H −→ Spin(r) −→ Spin(W )

where the first map is surjective, and H acts on W through Spin(W ). Further let the repre-
sentation of Spin(r) on W be spinorial. We write σr for the (complex) spin representation
of Spin(r) if r is odd and σ±

r for the (complex) spin representations of Spin(r) if r is even.
Likewise we write sr, s

±
r for the real irreducible spin modules. Note that dim(W ) must be

even.

Lemma 30 Let the representation of Spin(r) on W be spinorial. Let n be the number of
real irreducible constituents of W as a module for Spin(r), and, when r is even, let n± be the
number of irreducible constituents of real or quaternionic type. We then have the following
determination of κ.

r mod 8 κ

0(n± even ) Λ
(
((n+/2)σ+

r ⊕ (n−/2)σ−
r )
)

1, 7(n even) Λ
(
(n/2)σr

)

2, 6 Λ
(
nσ+

r

)
≈ Λ

(
nσ−

r

)

3, 5 Λ
(
nσr

)

4 Λ
(
n+σ+

r ⊕ n
−σ−

r

)
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Proof. This is a routine application of the the Lemma and Corollary above if we note the
following facts.

r ≡ 0 : Here σ±
r = s±r and W = n+s+r + n−s−r .

r ≡ 1, 7 : Here σr = sr,W = nsr.
r ≡ 2, 6 : Over C, sr becomes σ+

r ⊕σ
−
r while σ±

r do not admit a non zero invariant form.
So WC = E ⊕ E∗ where E = nσ+

r , E
∗ = nσ−

r , and q is zero on E.

r ≡ 3, 5 : sr is quaternionic, W = nsr, WC = 2nσr and σr does not admit an invariant
symmetric form.

r ≡ 4 : s±r are quaternionic and σ±
r do not admit a non zero invariant symmetric form;

WC = E ⊕ E∗, where E = n+σ+
r + n−σ−

r and q is zero on E.

In deriving these the reader should use the results in [Del99] and [Var04] on the reality of
the complex spin modules and the theory of invariant forms for them.

Super Poincaré group associated to R1,3: N=1 supersymmetry

Here T0 = R1,3, L0 = SL(2,C)R where the suffix R means that the complex group is viewed
as a real Lie group. Let s = 2⊕ 2, 2 being the holomorphic representation of L0 in C2 and
2 its complex conjugate. Thus we identify s with C2⊕C2 and introduce the conjugation on
s given by (u, v) = (v, u). The action (u, v) 7→ (gu, gv) of L0 (g is the complex conjugate
of g) commutes with the conjugation and so defines the real form sR invariant under L0

(Majorana spinor). We take t0 to be the space of 2 × 2 Hermitian matrices and the action
of L0 on it as g,A 7→ gAgT. For (ui, ui) ∈ sR(i = 1, 2) we put

[(u1, u1), (u2, u2)] =
1

2
(u1u2

T + u2u1
T).

Then g = g0 ⊕ g1 with g0 = t0 ⊕ l0, g1 = sR is a super Lie algebra and (T0L0, g) is the SLG
with which we are concerned.

Here R1,3 ≃ t0 by the map a 7→ ha =

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
; t0 ≃ t∗0 with p ∈ t0 viewed

as the linear form a 7→ 〈a, p〉 = a0p0 − a1p1 − a2p2 − a3p3. Then

Qp((u, u)) =
1

4
uThp̌u, p̌ = (p0,−p1,−p2,−p3).

I : p0 > 0, m2 = 〈p, p〉 > 0. We take p = mI so that Lp0 = SU(2). Take E =
{(u, 0)}, E∗ = {(0, u)}. Then we are in the set up of Lemma 29. Then

κp = Λ(E) ≃ 2D0 ⊕D1/2, Dj ⊗ Λ(E) =

{
2Dj ⊕Dj+1/2 ⊕Dj−1/2 (j ≥ 1/2)

2D0 ⊕D1/2 (j = 0).

Thus the multiplet with mass m has the same mass m and spins
{
{j, j, j + 1/2, j − 1/2}(j > 0)

{0, 0, 1/2}(j = 0)

II : p0 > 0, 〈p, p〉 = 0. Here we take p = (1, 0, 0,−1), hp =

(
0 0
0 2

)
. Then Lp0 =

(
a 0
c a

)
.

The characters χn/2 : a 7→ an (n ∈ Z) are viewed as characters of Lp0. Here Qp((u, u)) =
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1
4u

Thp̌u = |u1|2. The radical of Φp is the span of (e2, e2) and (ie2,−ie2), e1, e2 being the
standard basis of C2. We identify g1p with the span of (e1, e1) and (ie1,−ie1). We now
apply Lemma 29 with E = C(e1, 0) which carries the character defined by χ1/2; then

Λ(E) = χ0 ⊕ χ1/2, χn/2 ⊗ Λ(E) = χn/2 ⊕ χ(n+1)/2.

The multiplet is {n/2, (n+ 1)/2}. These results go back to [SS74].

Extended supersymmetry

Here the SLG has still the Poincaré group as its even part but g1 is the sum of N > 1 copies
of sR. It is known ([Del99],[Var04])that one can identify g1 with the direct sum sN

R
of N

copies of sR in such a way that for the odd commutators we have

[(s1, s2, . . . , sN ), (s′1, s
′
2, . . . , s

′
N )] =

∑

1≤i≤N

[si, s
′
i]

1,

so that
Qλ((s1, . . . , sN )) =

∑

1≤i≤N

Q1
λ((si, si)).

Here the index 1 means the [ , ] and Q for the case N = 1 discussed above. Let EN = NE1.
I : p0 > 0,m2 = 〈p, p〉 > 0. Then we apply Lemma 29 with E = EN so that κp =

Λ(ND1/2). The decomposition of the exterior algebra of ND1/2 is tedious but there is no
difficulty in principle. We have

κp =
∑

0≤r≤N

cNrD
r/2 cNr > 0, cNN = 1.

Then j + N/2 is the maximum value of r for which Dr occurs in Dj ⊗ Λ(ND1/2). The
multiplet defined by the super particle of mass m is thus

{
{j −N/2, j −N/2 + 1/2, . . . , j +N/2− 1/2, j +N/2} (j ≥ N/2)

{0, 1/2, . . . , j +N/2− 1/2, j +N/2} (0 ≤ j < N/2)

II : p0 > 0,m = 0. Here

κλ = Λ(Nχ1/2) =
∑

0≤r≤N

(
N

r

)
χr/2.

The multiplet of the super particle has the helicity content

{r/2, (r + 1)/2, . . . , (r +N)/2}.

Super particles of infinite spin

The little groups for zero mass have irreducible UR’s which are infinite dimensional. Since
Lp0 is also a semidirect product its irreducible UR’s can be determined by the usual method.
The orbits of S1 in C (which is identified with its dual) are the circles {|a| = r} for r > 0
and the stabilizers of the points are all the same, the group {±1}. The irreducible UR’s of
infinite dimension can then be parametrized as {αr,±}. Now Λ(E) = χ0 ⊕χ1/2 and an easy
calculation gives

αr,± ⊗ Λ(E) = αr,+ ⊕ αr,−.

The particles in the multiplet with mass 0 corresponding to spin (r,±) consist of both types
of infinite spin with the same r.
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Super Poincaré groups of Minkowski super spacetimes of arbitrary dimension

Let T0 = R1,D−1. We first determine κp in the massive case. Here Lp0 = Spin(D − 1) and
the form Φp is strictly positive definite. So g1p = g1 and Lp0 acts on it by restriction, hence
spinorially by Lemma 26. So Lemma 30 applies at once. It only remains to determine n, n±

in terms of the corresponding N,N± for g1 viewed as a module for L0. Notation is as in
Lemma 30, and res is restriction to Lp0; r = D − 1. This is done by writing g1 as a sum of
the sD and determining the restrictions of the sD to Lp0 by dimension counting. We again
omit the details but refer the reader to [Del99],[Var04].

Proposition 47 When p0 > 0,m2 = 〈p, p〉 > 0, κp, the fundamental multiplet of the super
particle of mass m, is given according to the following table:

D mod 8 res (sD) κp

0 2sD−1 Λ
(
NσD−1

)

1(N = 2k) s+D−1 + s−D−1 Λ
(
kσ+

D−1 ⊕ kσ
−
D−1

)

2(N = 2k) sD−1 Λ
(
kσD−1

)

3 sD−1 Λ
(
Nσ±

D−1

)

4 sD−1 Λ
(
NσD−1

)

5 s+D−1 + s−D−1 Λ
(
Nσ+

D−1 ⊕Nσ
−
D−1

)

6 sD−1 Λ
(
NσD−1)

7 2sD−1 Λ
(
(2N)σ±

D−1)

We now extend these results to the case when p has zero mass. Let V = R1,D−1(D ≥ 4)
and p 6= 0 a null vector in V . Let ej be the standard basis vectors for V so that (e0, e0) =
−(ej, ej) = 1 for j = 1, . . . , D − 1. We may assume that p = e0 + e1. Let V ′

1 be the span of
ej(2 ≤ j ≤ D−1). The signature of V ′

1 is (0, D−2). Then we have the flag 0 ⊂ Rp ⊂ p⊥ ⊂ V
left stable by the stabilizer Lp0 of p in L0. The quadratic form on p⊥ has Rp as its radical
and so induces a nondegenerate form on V1 := p⊥/Rp. Write L1 = Spin(V1). Note that
V ′

1 ≃ V1.

We have a map x 7→ x′ from Lp0 to L1 where, for v ∈ p⊥ with image v′ ∈ V1, x
′v′ = (xv)′.

It is known that this is surjective and its kernel T1 := T p0 is isomorphic to V1 canonically:
for x ∈ T p0 , the vector xe0− e0 ∈ p⊥, and the map that sends x to the image t(x) of xe0− e0
in V1 is well defined and is an isomorphism of T p0 with V1. The map x 7→ (t(x), x′) is an
isomorphism of Lp0 with the semidirect product V1 ×′ L1. The Lie algebra of the big spin
group L0 has the eres(r < s) as basis and it is a simple calculation that the Lie algebra of
Lp0 has as basis tj = (e0 + e1)ej(2 ≤ j ≤ D−1), eres(2 ≤ r < s ≤ D−1) with the tj forming
a basis of the Lie algebra of T1. The eres(2 ≤ r < s ≤ D − 1) span a Lie subalgebra of the
Lie algebra of L0 and the corresponding subgroup H ⊂ Lp0 is such that Lp0 ≃ T1 ×′ H . For
all of this see [Var04], pp. 36-37.

We shall now determine the structure of the restriction to Lp0 of the irreducible spin
representation(s) of L, over R as well as over C. Since this may not be known widely we
give some details. We begin with some preliminary remarks.

Let U be any finite dimensional complex Lp0-module. Write U = ⊕χUχ where Uχ, for
any character (not necessarily unitary) χ of T1, is the subspace of all elements u ∈ U such
that (t − χ(t))mu = 0 for sufficiently large m. The action of L1 permutes the Uχ, and so,
since L1 has no finite nontrivial orbit in the space of characters of T1, it follows that the
spectrum of T1 consists only of the trivial character, i.e., T1 acts unipotently. In particular
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U1, the subspace of T1-invariant elements of U , is 6= 0, an assertion which is then valid for
real modules also. It follows that we have a strictly increasing filtration (Ui)i≥1 where Ui+1

is the preimage in U of (U/Ui)1. In particular, if U is semisimple, U = U1.

Lemma 31 Let W be an irreducible real or complex spin module for L0. Let W1 be the
subspace of all elements of W fixed by T1 and W 1 := W/W1. We then have the following.

(i) 0 6= W1 6= W , W1 is the unique proper non zero Lp0-submodule of W , and T1 acts trivially
also on W 1.

(ii) W1 and W 1 are both irreducible Lp0-modules on which Lp0/T1 ≃ L1 acts as a spin module.

(iii) The exact sequence

0 −→W1 −→W −→W/W1 −→ 0

does not split.

(iv) Over R, W,W1,W
1 are all of the same type. If dim(V ) is odd, W1 ≃W 1. Let dim(V ) be

even; then, over C, W1,W
1 are the two irreducible spin modules for L1; over R, W1 ≃W 1

when W is of complex type, namely, when D ≡ 0, 4 mod 8; otherwise, the modules W1,W
1

are the two irreducible modules of L1 (which are either real or quaternionic).

Proof. We first work over C. Let C be the Clifford algebra of V . The key point is that
W1 6= W . Suppose W1 = W . Then tj = 0 on W for all j. If D is odd, C+ is a full matrix
algebra and so all of its modules are faithful, giving a contradiction. Let D be even and W
one of the spin modules for L0. We know that inner automorphism by the invertible odd
element e2 changes W to the other spin module. But as e2tje

−1
2 = tj for j > 2 and −t2 for

j = 2, it follows that tj = 0 on the other spin module also. Hence tj = 0 in the irreducible
module for the full Clifford algebra C. Now C is isomorphic to a full matrix algebra and so
its modules are faithful, giving again tj 6= 0, a contradiction.

Let (Wi) be the strictly increasing flag of Lp0-modules, with T1 acting trivially on each
Wi+1/Wi, defined by the previous discussion. Let m be such that Wm = W . Clearly m ≥ 2.
On the other hand, the element −1 of L0 lies in Lp0 and as it acts as −1 on W , it acts as −1
on all the Wi+1/Wi. Hence dim(Wi+1/Wi) ≥ dim(σD−2) (see Lemma 6.8.1 of [Var04]), and
there is equality if and only if Wi+1/Wi ≃ σD−2. Since dim(σD) = 2 dim(σD−2), we see at
once that m = 2 and that both W1 and W/W1 are irreducible Lp0-modules which are spin
modules for L1. The exact sequence in (iii) cannot split, as otherwise T1 will be trivial on all
of W . Suppose now U is a non zero proper Lp0-submodule of W . Then dim(U) = dim(W1)
for the same dimensional argument as above, and so U is irreducible, thus T1 is trivial on
it, showing that U = W1. We have thus proved (i)-(iii).

We now prove (iv). There is nothing to prove when D is odd since there is only one spin
module. Suppose D is even. Let us again write σ±

D−2 for the Lp0-modules obtained by lifting
the irreducible spin modules of L1 to Lp0. We consider two cases.

D ≡ 0 , 4 mod 8 : In this case σ±
D are self dual while σ±

D−2 are dual to each other. It is not

restrictive to assume W = σ+
D and W1 = σ+

D−2. We have the quotient map W = σ+
D −→

W 1 = σ; and σ is to be determined. Writing σ′ for the dual of σ, we get σ′ ⊂ (σ+
D)′ ≃ σ+

D,
so that, by the uniqueness of the submodule proved above, σ′ = σ+

D−2. Hence σ = σ−
D−2.

D ≡ 2 , 6 mod 8 : Now σ±
D are dual to each other while σ±

D−2 are self dual. Again, suppose

W = σ+
D and W1 = σ+

D−2. The above argument then gives σ′ ⊂ σ−
D. On the other hand,
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the inner automorphism by e2 transforms σ+
D into σ−

D, and the subspace of σ+
D fixed by T1

into the corresponding subspace of σ−
D, while at the same time changing σ+

D−2 into σ−
D−2.

Hence it changes the inclusion σ+
D−2 ⊂ σ+

D into the inclusion σ−
D−2 ⊂ σ−

D. Hence we have

σ′ = σ−
D−2. Dualizing, this gives σ = σ−

D−2 once again. This finishes the proof of the lemma
over C.

We now work over R. Since both V and V1 have the same signatureD−2, it is immediate
that the real spin modules for L0 and L1 are of the same type. As an L0-module, the
complexification WC of W is either irreducible or is a direct sum U ⊕ U where U is a
complex spin module for L0. In the first case W is of real type and the lemma follows from
the lemma for the complex spin modules. In the second caseW is of quaternionic or complex
type according as U and U are equivalent or not.

Complex type : We have WC = U ⊕ Z where Z = U is the complex conjugate of U .
We have U ≃ σ+

D, Z ≃ σ−
D. Since CW1 = U1 ⊕ Z1 it is clear that 0 6= W1 6= W . The real

irreducible spin modules of L1 have dimension 2D/2−1 and so we find that dim(W1) = 2D/2−1

and W1,W
1 are both irreducible; they are equivalent as they are of complex type. A non

zero proper submodule R of W then has dimension 2D/2−1 and so must be irreducible.
Hence either R = W1 or W = W1 ⊕ R. But then W = W1, a contradiction. The same
argument shows that the exact sequence in the lemma does not split.

Quaternionic type : For proving (i)-(iii) of the lemma the argument is the same as in
the complex type, except that Z ≃ U . We now check (iv). The case of odd dimension is
obvious. So let D be even and W1 ≃ s+D−2. Then CW1 ≃ 2σ+

D−2 so that U1 ≃ Z1 ≃ σ+
D−2.

Then U1 ≃ Z1 ≃ σ−
D−2 and so CW 1 ≃ 2σ−

D−2. Hence W 1 ≃ s−D−2.

The lemma is completely proved.

Remark 20 Since we are interested in the quotient W 1 rather than W1 below, we change
our convention slightly; for W = s±D we write W 1 = s±D−2 and W1 = s∓D−2.

We now come to the discussion of the structure of κp when p is in a massless orbit.

Proposition 48 Let p0 > 0, 〈p, p〉 = 0. Then rad (Φp) = gT1
1 , the subspace of elements

of g1 fixed by T1. Moreover T1 acts trivially on g1p, rad (Φp) ≃ g1p except in the cases
D ≡ 2, 6 mod 8 when rad (Φp) and g1p are dual to each other, and Lp0/T1 ≃ L1 acts
spinorially on rad Φp and g1p. In all cases dim(rad (Φp)) = dim(g1p) = (1/2) dim(g1). For
g1p as well as the associated κp the results are as in the following table.

D mod 8 g1p κp

0, 4 NsD−2 Λ
(
Nσ±

D−2

)

2(N± = 2n±) N+s+D−2 +N−s−D−2 Λ
(
n+σ+

D−2 + n−σ−
D−2

)

6 N+s+D−2 +N−s−D−2 Λ
(
N+σ+

D−2 +N−σ−
D−2

)

1, 3(N = 2n) NsD−2 Λ
(
nσD−2

)

5, 7 NsD−2 Λ
(
NσD−2

)

Proof. We have g1 = ⊕1≤i≤Nhi where the hi are real irreducible spin modules and
[hi, hj ] = 0 for i 6= j while 〈[X,X ], q〉 > 0 for all q ∈ Γ+. Let rp = rad Φp and rip the
radical of the restriction of Φp to hi. Since Qp(X) =

∑
iQp(Xi) where Xi is the component

of X in hi, it follows that rp = ⊕irip. We now claim that rip = (hi)1, namely, the subspace
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of elements of hi fixed by T1. Since rip is a Lp0-submodule it suffices, in view of the lemma
above, to show that 0 6= rip 6= hi. If rip were 0, Φp would be strictly positive definite on
hi, and hence the action of Lp0 will have an invariant positive definite quadratic form. So
the action of Lp0 on hi will be semisimple, implying that T1 will act trivially on hi. This
is impossible, since, by the preceding lemma, hi 6= (hi)1. If rip = hi, then Φp = 0 on hi,
and this will imply that p = 0. Thus rip = (hi)1, hence rp = (g1)1. The other assertions
except the table are now clear. For the table we need to observe that g1p = ⊕ihi/rip and
that rip ≃ hi/rip except when D ≡ 2, 6 mod 8; in these cases, the two modules are the two
real or quaternionic spin modules which are dual to each other. The table is worked out in
a similar manner to Proposition 47. We omit the details.

Remark 21 The result that the dimension of g1p has 1/2 the dimension of g1 extends the
known calculations when D = 4 (see [FSZ81]).

The role of the R-group in classifying the states of κp

In the case of N -extended supersymmetry we have two groups acting on g1: L
p
0, the even

part of the little super group at p, and the R-group ([Del99],[Var04]) R. Their actions
commute and they both leave the quadratic form Qp invariant. In the massive case we have
a map

Lp0 ×R −→ Spin(g1p)

so that one can speak of the restriction κ′p of the spin representation of Spin(g1p) to Lp0×R.
The same is true in the massless case except we have to replace Lp0 by a two-fold cover of
it. It is thus desirable to not just determine κp as we have done but actually determine this
representation κ′p of Lp0 × R. We have not done this but there is no difficulty in principle.
However, when D = 4, we have a beautiful formula [FSZ81]. To describe this, assume that
we are in the massive case. We first remark that g1 ≃ HN⊗HS0 where S0 is the quaternionic
irreducible of SU(2) of dimension 4. Thus the R-group is the unitary group U(N,H). Over
C we thus have g1C ≃ C2N ⊗ C2 where the R-group is the symplectic group Sp(2N,C)
acting on the first factor and Lp0 ≃ SU(2) acts as D1/2 on the second factor. The irreducible
representations of Sp(2N,C)× SU(2) are outer tensor products of irreducibles a of the first
factor and b of the second factor, written as (a, b). Let k denote the irreducible of dimension
k of SU(2) and [2N ]k denote the irreducible representation of the symplectic group in the
space of traceless antisymmetric tensors of rank k over C2N ; by convention for k = 0 this is
the trivial representation and for k = 1 it is the vector representation. Then

κ′p ≃ ([2N ]0,N + 1) + ([2N ]1,N) + . . . ([2N ]k,N + 1− k) + . . . ([2N ]N ,1).

To see how this follows from our theory note that C2N ⊗ e1 is a subspace satisfying the
conditions of Lemma 29 for the symplectic group and so κp ≃ Λ(C2N ). It is known that

Λ(C2N ) ≃
∑

0≤k≤N

(N + 1− k)[2N ]k.

On the other hand we know that the representations of SU(2) in κp are precisely the
N + 1− k(0 ≤ k ≤ N). The formula for κ′p is now immediate. In the massless case
the R-group becomes U(N) and

κ′p ≃
∑

0≤k≤N

((N − k)/2, [N ]k)
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where r/2 denotes the character denoted earlier by χr and [N ]k is the irreducible represen-
tation of U(N) defined on the space Λk(CN ). We omit the proof which is similar.



Conclusions and further

developments

E’ l’intrecio terminato

lieto fine ha il dramma mio

e contento qual son io

forse il pubblico sarà

Il poeta

Il turco in Italia

This thesis is centered on the representations of super Lie groups. A unitary represen-
tation of a (usual) Lie group G can be defined as a continuous action of G on a Hilbert s
pace V. For a super Lie group G, the definition cannot be that simple. It is necessary to
take into account the Grassmanian (anticommuting) part of G, other than the fact that V
has to be a super Hilbert space. This introduces essential complications that have made
difficult and retarded the birth of the theory of representations of super Lie groups, contrary
to the case of super Lie algebras. Among the few contributions to this problem, the ones
of Kostant ([Kos77]) and Dobrev ([DP87]) have to be mentioned. The point of view of
the former has not been pursued, until now. The work of Dobrev relies on the results of
Berezin, and, although very interesting, it lacks of the mathematical precision that we feel
it is necessary. Our point of attack to the theory of representations of super Lie groups is
that the category of super Lie groups is equivalent to the category of super Harish-Chandra
pairs. A super Harish-Chandra pair is made by an ordinary Lie group and a super Lie
algebra; moreover, these two objects fulfill some compatibility relations among them. The
equivalence among the categories means (roughly speaking) that a super Lie group can be
replaced by the corresponding super Harish-Chandra pair, and vice versa. Assuming this
point of view, a representation of a super Lie group, in a super Hilbert space, can be de-
fined as a representation of the corresponding super Harish-Chandra pair. Quite obviously,
a representation of a super Harish-Chandra pair is a pair consisting of a representation of
the ordinary Lie group and a representation of the super Lie algebra. Moreover, these two
representations are linked together by compatibility relations. This is one of the possible
ways for taking into account of the anticommuting part of the super group. The problem is
that the representation of the super algebra brings into play unbounded operators that have
to be controlled with great care. This issue has been solved in the first part of [CCTV06]
where the theory of representations of super Harish-Chandra pairs is exposed. This allows
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to deal with the representations of the super Poincare’ group, which is a super semi direct
group. The classical theory of representations of semi direct products is based on the use of
the induced representations and the imprimitivity theorem. Hence, it is necessary to extend
these constructions to super Lie groups. When we define an induced representation, we have
a super Lie group G and its subgroup H. In general, G/H is a super differentiable manifold.
On the contrary, in dealing with representations of super semi direct products, it turns out
that we have only to face cases G/H is a classical manifold. We say, in this case, that H
is a special subgroup. The fact that it is enough considering only representations induced
by special subgroups is a simplification of the problem of classifying the representations of
the super Poincare’ group (in general, of a super semi direct product). In the same way, it
has been enough proving the imprimitivity theorem only for special subgroups. In (12) we
have been able to work out completely the theory of representations of super semi direct
products, which has been applied to the super Poincare’ group. In a subsequent paper (13),
we have extended to the supersymmetric case the classical theory of extensions of normal
abelian subgroups. In this case, we added the hypothesis that the subgroup is special. We
would like to stress that the idea of using the super Harish-Chandra pairs to study the repre-
sentations is quite original, and it allowed for the first time the complete classification of the
unitary representations (in super Hilbert spaces) of a non trivial family of super Lie groups,
namely the super semi direct products. A fundamental step toward the construction of a
complete theory of representations of super Lie groups, is extending the theory of induced
representations beyond the case of special subgroups.

For this, it could be useful also the approach developed in chapter 6. There we give a
rigorous basis to a construction that first appeared in Berezin’s work [Ber87], and we clarify
the relationship between this method and another one used in modern algebraic geometry
(the functor of points approach (see [DM99a])). Let us now briefly explain what we obtained
in chapter 6, and the reasons why we are so interested in this approach. It is well known
(see ([Var04])) that a super Lie algebra g can also be viewed as an infinite family {g(Λ)}
of purely even Lie algebras, indexed by Grassmann algebras, and compatible with respect
to Grassmann algebras transformations. The precise statement of the above sentence is
that a super Lie algebra can also be viewed as a functor from the category of Grassmann
algebras to the category of ordinary Lie algebras. In Physics literature this construction is
known under the name of ”even rules principle”. Even if it is a quite difficult fact to be
proved, it is natural to expect that such a result holds in the context of super Lie groups
too. In other words, we expect that a super Lie group G can be replaced by an infinite
”compatible” family {G (Λ)} of ordinary Lie groups, indexed by Grassmann algebras and
such that Lie (G (Λ)) = g (Λ). Such results were proved by generalizing the theory of A-near
points (due to A. Weil) to the super setting. We believe that this approach presents the
following advantages:

a) it allows to view G as an ordinary group with matrix entries taking values in Grassmann
algebras, if G is a matrix supergroup . This approach is the one commonly used in
Theoretical Physics ([DP87]) and ([CDF91]);

b) it establishes a formal link between the theory of super Lie groups and modern algebraic
geometry. This can be useful in order to understand further developments of the
theory;

c) it allows to reduce problems and definitions in the category of super Lie groups to
equivalent (but hopefully simpler) problems and definitions in the category of ordinary
Lie groups. This is exactly what is usually done in the theory of super Lie algebras.



Reamark c) is the basis of the approach we plan to follow in order to develop a general
theory of induced representations. Let us briefly explain this point in more detail. Suppose
r a representation of the super Lie group G in the super vector space H . It is very easy to
construct a family {r (Λ)} of representations such that each r (Λ) is an ordinary representa-
tion of the Lie group G (Λ) in the vector space H (Λ). This approach parallels quite a lot the
way in which representations are defined in modern algebraic groups theory. It is natural to
expect that an induced representation can be defined in terms of a compatible family {r (Λ)}
of ordinary Lie groups representations. Actually, there are some subtleties that seem to arise
at this point. There are clues that further regularity properties have to be imposed on the
family {r (Λ)} in order to ensure that it arises from a representation r of G, in the way
described above. Such regularity properties should be related to a rigorous formulation of
what Berezin calls ”Grassmann analytic continuation”. This part of the program is probably
the most difficult one. Nevertheless, it should make us able to treat in a rigorous way and
in full generality the representation theory of supergroups. In order to obtain a reasonably
large amount of irreducible representations of the conformal supergroup SU (2, 2 |N), it is
reasonable to proceed in analogy with the classical case. Hence, the first basic step consists
in obtaining a super version of the Iwasawa decomposition for the conformal supergroup.
Nevertheless, such a generalization presents some pitfalls. In fact, in [Ser83] it is proved
that there are no compact real forms of complex semisimple Lie superalgebras. Due to the
importance of the compact factor in the ordinary Iwasawa decomposition there has been
until now no satisfying attempt to develop this part of the theory. In spite of this, some
recent works ([Pel05]) have shown that this drawback can be overcome by working with the
family {G (Λ)}. Once the Iwasawa decomposition of SU (2, 2 |N) is obtained, it is natural
to expect that it is possible to construct a large amount of representations of the conformal
supergroup using the theory of induced representations exactly as in the non super setting.
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Appendix A

The isomorphism

λ̃ : E (g0)⊗ Λ (g1) −→ E (g)

We define the map

λ : Λ (g1) −→ E (g)

Z1 ∧ ... ∧ Zk 7−→
1

k!

∑

σ∈Sk

(−1)σZσ(1) · ... · Zσ(k)

and notice that E (g0)⊗Λ (g1) is a filtered vector space, whose filtration is that induced by
Λ (g1). On the other hand, we consider the filtration on E (g) defined by (let q = dim g1):

E (g)
(0)

= E (g0)

E (g)
(1)

= E (g0) (1 + g1)

...

E (g)
(q)

= E (g0) (1 + g1 + ...+ g
q
1) = E (g)

Lemma 32 The map

λ̃ : E (g0)⊗ Λ (g1) −→ E (g)

X ⊗ ω 7−→ Xλ(ω)

is an isomorphism of filtered vector spaces.

Proof. The proof is by induction. Clearly

λ̃
(
[E (g0)⊗ Λ (g1)]

(0)
)

= E (g0)
(0)

Suppose now n ≤ q and λ̃
(
[E (g0)⊗ Λ (g1)]

(n−1)
)

= E (g)
(n−1)

It follows from graded PBW

theorem that if Zn ∈ E (g)
(n)

, then there exist wn ∈ E (g0)⊗Λn (g1) and Zn−1 ∈ E (g)
(n−1)

such that Zn = λ̃ (wn) + Zn−1 In fact it is easy to check that

λ (Z1 ∧ ... ∧ Zn) = Z1 · ... · Zn
(

mod E (g)(n−1)
)
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and, due to PBW, this gives

λ̃
(
[E (g0)⊗ Λn (g1)]

(0)
)

= E (g)
(n)
(

mod E (g)
(n−1)

)

It is then enough to apply the inductive hypothesis.

Before coming to the proof of the formula we need, we fix some notation. In general we
denote with (i1, ..., ik) an ordered set of indexes. We say that (i1, ..., ik) is increasing if
i1 < ... < ik. If J = (i1, ..., ir) ⊆ {1, ..., k}, we denote with J the increasing set of indexes
{1, ..., k}\J . If J = (i1, ..., ir) ⊆ {1, ..., k} is increasing and J = (j1, ..., jk−r), we denote with(
J, J

)
the ordered set (i1, ..., ir, j1, ..., jk−r). If Z1...Zk are vectors in g1 and J = (i1, ..., ir),

we define ZJ = Zi1 ∧ ... ∧ Zir . Finally

(1...k) −→
(
J, J

)

is the permutation in Sk bringing (1, ..., k) in
(
J, J

)
.

Proposition 49 With the above notations, the following formula holds:

∆(λ (Z1 ∧ ... ∧ Zk)) =

k∑

r=0

∑

J ⊆ {1...k}
incr. ord.

|J | = r

(−1)p((1...k)→(J,J))λ (ZJ)⊗ λ (ZJ)

where Zσ(I) = Zσ(i1)...Zσ(ir) with I = (i1, ..., ir).

Fixe an increasing set I ⊆ {1...k}. Given σ ∈ Sk there exists a unique increasing set
J ⊆ {1...k}, with |J | = |I| and there exists a unique permutation σI,J in the subgroup
(Sk)J ⊂ Sk fixing the set J but not its ordering, such that

σ(I) = σI,J (J) σ
(
I
)

= σI,J
(
J
)

(as ordered sets).
Viceversa, if J ⊆ {1...k} is increasing and |J | = |I|, given σ ∈ (Sk)J we define σJ,I ∈ Sk as

σJ,I(I) := σ (J) σJ,I
(
I
)

:= σ
(
J
)

(as ordered sets)

If we denote with σJ and σJ the restrictions of σ to permutations of J and J respectively,
then

p
(
σJ,I

)
= p

((
I, I
)
→
(
J, J

))
+ p(σ) and p (σ) = p (σJ ) + p (σJ )

Fix an increasing set I ⊆ {1...k}, then

∑

σ∈Sk

(−1)σZσ(I) ⊗ Zσ(I) =
∑

J ⊆ {1...k}
incr. ord.
|J | = |I|

∑

σ∈(Sk)J

(−1)σ
J,I

ZσJ,I (I) ⊗ ZσJ,I(I)

=
∑

J ⊆ {1...k}
incr. ord.
|J | = |I|

(−1)p((I,I)→(J,J))
∑

σ∈(Sk)J

(−1)
σ
Zσ(J) ⊗ Zσ(J)



Denoting with SJ the group of permutations of the set J , we have

∑

σ∈(Sk)J

(−1)σZσ(J) ⊗ Zσ(J) =
∑

σ′∈SJ

∑

σ′′∈SJ

(−1)σ
′+σ′′

Zσ′(J) ⊗ Zσ′′(J)

= |J |!
∣∣J
∣∣!λ (ZJ)⊗ λ (ZJ)

Collecting these facts

∆ (λ (Z1 ∧ ... ∧ Zk)) =
1

k!

∑

σ∈Sk

(−1)σ
(
Zσ(1) ⊗ 1 + 1⊗ Zσ(1)

)
...
(
Zσ(k) ⊗ 1 + 1⊗ Zσ(k)

)

=
1

k!

∑

I ⊆ {1...k}
incr. ord.

(−1)p((1...k)→(I,I))
∑

σ∈Sk

(−1)σZσ(I) ⊗ Zσ(I)

=
1

k!

∑

I ⊆ {1...k}
incr. ord.

(−1)p((1...k)→(I,I)) ×

∑

J ⊆ {1...k}
incr. ord.
|J | = |I|

×(−1)p((I,I)→(J,J))
∑

σ∈(Sk)J

(−1)σZσ(J) ⊗ Zσ(J)

=
1

k!

∑

I ⊆ {1...k}
incr. ord.

∑

J ⊆ {1...k}
incr. ord.
|J | = |I|

(−1)p((1...k)→(J,J)) |J |! |J |!λ (ZJ)⊗ λ (ZJ)

=
1

k!

k∑

r=0

(
k
r

) ∑

J ⊆ {1...k}
incr. ord.
|J | = r

(−1)p((1...k)→(J,J))r!(k − r)!λ (ZJ)⊗ λ (ZJ)

=

k∑

r=0

∑

J ⊆ {1...k}
incr. ord.
|J | = r

(−1)p((1...k)→(J,J))λ (ZJ)⊗ λ (ZJ)





Appendix B

A theorem on classical

manifolds

In this appendix we state a theorem that allows to endow a given set with a differentiable
manifold structure.

Theorem 11 Let M be a set such that

i) there exists a countable cover {Ui}i∈N

ii) for each Ui there exists an injective map

hi : Ui −→ Rn

such that

a) hi (Ui ∩ Uj) ⊆ Rn is open ∀i, j

b) the map

hih
−1
j : hj (Ui ∩ Uj) −→ hi (Ui ∩ Uj)

is a diffeomorphism.

c) for each x and y in M x 6= y, there exist V1 ⊆ Ui and V2 ⊆ Uj such that x ∈ V1,
y ∈ V2, V1 ∩ V2 = ∅ , hi (V1) and hj (V2) are open

then there exists a unique manifold structure on M such that {Ui, hi} is a differentiable atlas
for M .
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