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Abstract. A Wieferich prime is a prime p such that

2p−1 ≡ 1 (mod p2).

Despite several intensive searches, only two Wieferich primes are known: p =

1093 and p = 3511. This paper describes a new search algorithm for Wieferich

primes using double-precision Montgomery arithmetic and a memoryless sieve,
which runs significantly faster than previously published algorithms, allowing

us to report that there are no other Wieferich primes p < 6.7× 1015. Further-

more, our method allowed for the collection of large amounts of statistical data
on Fermat quotients, leading to a strong empirical confirmation of a conjecture

of Crandall, Dilcher, and Pomerance. Our methods proved flexible enough to

find new solutions of ap−1 ≡ 1 (mod p2) for other small values of a, and to
extend the search for Wall-Sun-Sun (Fibonacci-Wieferich) primes. We con-

clude, among other things, that there are no Wall-Sun-Sun primes less than

p < 9.7 × 1014.

1. Introduction

During the 19th and 20th centuries, several different classes of prime numbers
were identified and studied because of their relationship to Fermat’s Last Theorem.
Most notable among these are Wall-Sun-Sun primes, Wilson primes, and Wieferich
primes. For example, if the first case of Fermat’s Last Theorem holds for a prime p,
then p must be a Wall-Sun-Sun prime [21]. Similarly, any exponent which provides
a solution to FLT and is coprime to the numbers exponentiated is a Wieferich
prime. The relationship between Wilson primes and FLT is more complex; see [12].
Although it no longer makes sense any of these classes of primes to search for a
solution to Fermat’s Last Theorem, the questions they inspired still remain, and
we can now turn our attention to the study of these primes for their own sake.

Of the three above-mentioned classes of primes, Wieferich primes are perhaps
the simplest to define. Define the Fermat quotient of n mod p to be

ω(p) =
2p−1 − 1

p
.

It is known from Fermat’s little theorem that for any prime p, 2p−1−1 is always
divisible by p, and therefore ω(p) is always an integer. If ω(p) vanishes modulo p
(that is, if 2p−1 − 1 is divisible by p2), p is said to be Wieferich. These primes
were first studied by Arthur Wieferich, who in 1909 related them to Fermat’s Last
Theorem[22].

Although Wieferich himself found no example of such a prime, W. Meissner [14]
in 1913 found that 1093 was Wieferich, and in 1922 N. G. W. H. Beeger [1] showed
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that 3511 was Wieferich, also. Since 1922, however, no new examples have been
found.

2. Previous Searches

Exhaustive searches for new Wieferich primes began with Beeger, and continue
today. The last eighty years have seen first computers, then new algorithmic tech-
niques, and finally distributed computing applied to the search for Wieferich primes.
Because we have been unable to find a comprehensive summary of the history of
these searches in the literature, one has been compiled in Table 1.

Table 1. Previous Wieferich prime searches

Search bound Author Year
16000 Beeger [2] 1940
50000 Fröberg [7] unknown
100000 Kravitz [10] 1960
200183 Pearson [17] 1964
500000 Riesel [19] 1964
3×107 Fröberg [8] 1968
3×109 Brillhart, Tonascia, and Weinberger [3] 1971
6×109 Lehmer [11] 1981

6.1×1010 Clark c. 1996
4×1012 Crandall, Dilcher, and Pomerance [5] 1997

4.6×1013 Brown and McIntosh [4] 2001
2×1014 Crump [6] 2002

1.25×1015 Knauer and Richstein [9] 2005

The most recent of these searches, that of Knauer and Richstein, used a dis-
tributed approach, and incorporated more than 250 client computers during the
course of their search, but in order to include as many computers as possible they
were unable to use many of the standard optimizations sometimes used in a search
for Wieferich primes. Notably, their code assumed only a 32-bit processor on client
machines.

3. Improved Search Methods

Our search employed a number of new algorithmic enhancements not used in
previous searches. For computations modulo p2, we used a new “double-precision”
variant Montgomery arithmetic. Finally, we used a new type of “memoryless” sieve
to quickly eliminate composites.

Faster Arithmetic. Our first task was to reduce the time for computing Fermat
quotients to about 1µs (for the machines we had at hand). This was accomplished
by using double-precision Montgomery arithmetic.

The idea behind (single-precision) Montgomery arithmetic modulo p is that in-
stead of the ring Z/pZ, we can choose a parameter r coprime to p, and use the
isomorphic ring

M(p, r) = ({0, 1, . . . , p− 1}, 0, e,	,⊕,⊗)
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with the usual negation 	x = (−x) mod p, addition x ⊕ y = (x + y) mod p and
additive identity 0, but where multiplication is defined by x ⊗ y = xyr−1 mod p
and, consequently, the multiplicative identity is defined by e = r mod p.

The advantage of this is that, by choosing r wisely, it is possible to arrange
that the product x ⊗ y can always be computed without resorting to division by
p. When the modulus p is odd, one such choice is r = 2n > p, which corresponds
to the original idea of P. L. Montgomery [15]. For double-precision Montgomery
arithmetic, we use the same choice for r, but the modulus is now p2. We also use
a double-precision representation for the elements of M(p2, 2n), which consists in
representing x ∈ {0, 1, . . . , p2 − 1} as an ordered pair (x0, x1) where x = x0 + px1

and 0 ≤ x0, x1 ≤ p− 1. Addition and subtraction of such pairs is straightforward.
Multiplication is not so obvious, but it can still be done using without resorting to
division.

The following result shows how to multiply two double-precision elements of
M(p2, 2n) using only multiplication, addition, and subtraction of nonnegative n-bit
integers.

Lemma 3.1. Given two odd numbers p, q such that 0 < p, q < 2n and pq ≡ 1
(mod 2n) as parameters. The product of two double-precision elements of M(p2, 2n)
can be computed using at most 7 multiplications and 8 additions/subtractions of
nonnegative n-bit integers. The square of a double-precision element of M(p2, 2n)
can be computed using at most 6 multiplications and 8 additions/subtractions of
nonnegative n-bit integers.

Proof. Let x0 + x1p and y0 + y1p be double-precision elements of M(p2, 2n). Thus
0 ≤ x0, x1, y0, y1 ≤ p− 1.

First compute:

t0 + t12n := x0y0, where 0 ≤ t0 ≤ 2n − 1;

u0 + u12n := qt0, where 0 ≤ u0 ≤ 2n − 1;

v0 + v12n := pu0, where 0 ≤ v0 ≤ 2n − 1.

This requires 3 multiplications. Note that t0 = v0 since pq ≡ 1 (mod 2n), and so

(1) x0y0 − pu0 = 2n(t1 − v1).

Furthermore, note that 0 ≤ t1, v1 ≤ p− 1.
Next compute:

t′0 + t′12n := x0y1 + x1y0 + u0, where 0 ≤ t′0 ≤ 2n − 1;

u′0 + u′12n := qt′0, where 0 ≤ u′0 ≤ 2n − 1;

v′0 + v′12n := pu′0, where 0 ≤ v′0 ≤ 2n − 1.

This requires 4 multiplications and 3 additions (with carry). Again, t′0 = v′0 since
pq ≡ 1 (mod 2n), and so

(2) (x0y1 + x1y0 + u0)− pu′0 = 2n(t′1 − v′1).

Furthermore, note that 0 ≤ t′1 ≤ 2p− 1 and 0 ≤ v′1 ≤ p− 1.
Combining (1) and (2), we find that

(x0 + x1p)(y0 + y1p) ≡ x0y0 + (x0y1 + x1y0)p (mod p2)

≡ 2n(t1 − v1) + 2n(t′1 − v′1)p
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Since −p < t1 − v1 < p and −p < t′1 − v′1 < 2p, with at most 5 more addi-
tions/subtractions, we can find z0, z1 such that

(x0 + x1p)(y0 + y1p) ≡ 2n(z0 + z1p) (mod p)

and 0 ≤ z0, z1 ≤ p− 1.
In total, this process requires at most 7 multiplications and 8 additions (possibly

with carry). For squaring, we have x0y1 = x1y0, so we can save 1 multiplication by
computing this product only once. �

For comparison, single-precision Montgomery multiplication in M(p2, 22n) requires
3 multiplications and up to 2 additions/subtractions of nonnegative 2n-bit integers.
For small n, multiplication of 2n-bit integers takes at least 3 times as long as
multiplication of n-bit integers, and addition of 2n-bit integers takes 2 times as
long as addition of n-bit integers. Since multiplication is usually much slower
than addition, double-precision Montgomery squaring results in approximately 30%
improvement over single-precision Montgomery squaring.

To test whether p is a Wieferich prime, we need to check whether 2p−1 ≡ 1
(mod p2) or, equivalently, whether 2(p−1)/2 ≡ ±1 (mod p2), as suggested in [5].
Our implementation used a standard binary powering ladder to accomplish this.

Theorem 3.2. Given a n-bit prime number p (n ≥ 4), we can test whether
2(p−1)/2 ≡ ±1 (mod p2) using at most 6n+ 2 lg(n)− 10 multiplications and 12n+
lg(n)− 13 additions/subtractions of nonnegative n-bit integers.

Proof. We do the computations using double-precision Montgomery arithmetic in
M(p2, 2n). To get started, we need to compute the auxiliary parameter q such
that pq ≡ 1 (mod 2n). This can be done in many ways; our implementation used a
Newton iteration that requires 2 lg(n)−4 multiplications and lg(n)−2 subtractions
(of ≤ n/2-bit integers).

To get started with the binary powering ladder, we need to compute the double-
precision representation of the multiplicative unit 2n. Since p has n-bits, this can
be done with only 1 subtraction.

Finally, the (left-to-right) binary powering ladder with the (n− 1)-bit exponent
(p − 1)/2 requires n − 1 squarings and at most n − 1 doublings. Each squaring
uses 6 multiplications and 8 additions/subtractions and each doubling uses up to 4
additions/subtractions. In total, this gives 6n−6 multiplications and up to 12n−12
additions/subtractions. �

Faster Sieving. Previous searches of Wieferich primes employed a segmented sieve
of Eratosthenes to completely sieve an interval for primes before testing those primes
for being Wieferich. Using the testing methods described above, we found that
testing a single number for being Wieferich was quite fast (about 1µs), and that
therefore much of our computing time would be spent sieving.

For traditional sieves, most of the sieving time is spent sieving small primes.
Indeed, sieving an interval of length ` for the prime p requires about `/p memory
write operations. So, for example, it takes about as much time to sieve an interval
for the six primes 2, 3, 5, 7, 11, 13 as it takes to sieve the same interval for the primes
17, 19, 23, . . . , 82139. With this in mind, we began to look for better ways to sieve
out multiples of very small primes. Since memory operations are usually much more
costly than elementary arithmetic operations, we looked for sieves that require little
or no memory.
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The Magic Sieve. Sieving for a few small primes p1, . . . , pk amounts to enumerating
the elements of the unit group modulo M = p1 · · · pk. Our first idea was to make
better use of the structure of the unit group (Z/MZ)∗. After a few experiments,
we found a special number that we ended up calling the Magic Modulus:

M = 2 · 3 · 5 · 7 · 11 · 17 · 23 · 29 · 47 · 53 · 59 · 83 = 319514496269430.

This number was chosen because of the simple structure of the unit group mod
M . Indeed, the group (Z/MZ)∗ has a large cyclic factor of order 6569843280,
generated by 31, and a second factor of order 8192 = 213. The integers in the
interval [kM + 1, (k + 1)M ] that are coprime to M can be listed in a rectangular
array

xij = kM + (ai · 31j mod M) (0 ≤ i < 8192, 0 ≤ j < 6569843280)

where the numbers ai are chosen representatives of the cosets of the cyclic group
〈31〉 in (Z/MZ)∗. Given a coset representative ai, listing the integers xij (0 ≤
j < 6569843280) only involves multiplying by 31, which can be accomplished by
five doubling and one subtraction operation modulo M and essentially no memory
access.

While the Magic Sieve is somewhat less efficient than the Spin Sieve (described
below), it has the advantage that it is easy to implement and requires essentially
no memory storage. In fact, our implementation used only 104 bytes of data to
be stored in memory. The performance of the Magic Sieve was adequate for our
purposes — we only had to compute Fermat quotients for 16.8% of the integers in
an interval.

The Spin Sieve. For optimal results, a sieve should use the first few primes 2, 3, . . . , pk.
A weakness of the Magic Sieve is that it is sometimes preferable to omit a few small
primes so that the unit group has a large cyclic factor. The Spin Sieve does away
with the reliance on the structure of the unit group, but, like the Magic Sieve, it
requires very little memory storage.

The Spin Sieve was inspired by Pritchard’s Wheel Sieve [18]. A similar idea
was independently discovered by Sorenson [20], from whom we borrowed some
implementation ideas.

The idea behind the Spin Sieve is to find a simple bijection between the set of
k-tuples

Tk = {1} × {1, 2} × {1, 2, 3, 4} × · · · × {1, . . . , pk − 1}
and the set

Ak = {x : 0 < x < Mk, (x,Mk) = 1}
where Mk = 2 · 3 · 5 · · · pk. This bijection sk : Tk → Ak is defined recursively by
s1(1) = 1, and

sk(t1, . . . , tk) = sk−1(t1, . . . , tk−1) +Mk−1((rk(t1, . . . , tk−1) + tk) mod pk)

where rk : Tk−1 → {0, . . . , pk − 1} satisfies

sk−1(t1, . . . , tk−1) +Mk−1rk(t1, . . . , tk−1) ≡ 0 (mod pk).

While the definition of sk is somewhat unwieldy, it is rather simple to compute the
values of sk in succession with the lexicographic ordering of Tk. This “spinning”
operation is the origin of the name of the sieve.

There are many ways to use the values of sk. In our implementation, for each
value of s10, we further sieve (in the traditional way) the arithmetic progression
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s10(t1, . . . , t10) (mod M10) for the primes 31, . . . , 65521 and compute the Fermat
quotients of the remaining values. On average, less than 15.8% of numbers survive
the Spin Sieve, then about 32% of the remaining numbers survive the second sieve,
so we only compute Fermat quotients for approximately 5% of the numbers in a
given interval.

4. Other applications

Base-a Wieferich Primes. The definition of Wieferich prime uses base 2 for
historical reasons, but mathematically there is no particular reason why we can’t
consider other bases as well. In an analogy to the base-2 case, define the Fermat
coefficient base-a of n mod p to be

ωa(p) =
ap−1 − 1

p
.

Primes for which ωa(p) vanishes modulo p are sometimes called base-a Wieferich
primes. Using the methods described above, we searched for solutions to this equa-
tion of a = 3, 5, and 7. For each of these bases, we looked for solutions up to about
9.7×1014 (or, more precisely, solutions not greater than (2 ·3 ·5 ·7 ·11 ·13 ·17 ·19 ·23 ·
29) · 1.5× 105), extending by more than five orders of magnitude an earlier search
by Montgomery[16]. We can report two new base-5 Wieferich primes: 6692367337
and 188748146801. This brings the total number of known base-5 Wieferich primes
to six. We found no new base-a Wieferich primes for a = 3 or a = 7, and therefore
there are still only two known solutions for each base 2, 3, and 7. We do not know
whether there is any significance to larger number of base-5 solutions; this may be
simply a statistical aberration. We also found 203 primes p with base-3 Fermat
quotients less than 100, 179 with base-5, and 212 for base-7. These values, together
with near-misses of larger Fermat quotient, are also available on the project web
page, while primes with small relative Fermat coefficients base-a are reported in
Tables 5–7.

Wall-Sun-Sun primes. Another class of primes initially defined because of Fer-
mat’s Last Theorem are the Wall-Sun-Sun primes, also called Fibonacci Wieferich
primes. Let Fu denotes the uth Fibonacci number, and

(
p
5

)
denotes the Legendre

symbol; that is, (p
5

)
=


1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5)

0 if p ≡ 0 (mod 5).

Then although for any prime p,

Fp−( p
5 ) ≡ 0 (mod p),

there are no known solutions to

(3) Fp−( p
5 ) ≡ 0 (mod p2).

Any solution to (3) is a Wall-Sun-Sun prime. Previous searches for Wall-Sun-Sun
primes these primes have extended as far as to 2.0 × 1014 [13] by McIntosh and
Roettger. By modifying the methods described above, we were also able to use our
code in the search for these primes. We were able to search to about 9.7×1014 (or,
more precisely, solutions not greater than (2 ·3 ·5 ·7 ·11 ·13 ·17 ·19 ·23 ·29) ·1.5×105),
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in which space no Wall-Sun-Sun primes were found. We did, however, find several
new “near misses” – those primes for which Fp−( p

5 ) is small (mod p2). These are

reported in Table 8. A more extensive list of near-misses for Wall-Sun-Sun primes,
together with the near misses for Wieferich primes of each base we studied, will be
available on the project web page.

Computational considerations with Wall-Sun-Sun primes. Searching for
Wall-Sun-Sun primes involves calculating Fp−( p

5 ) (mod p2), for (fairly) large p.

Naturally space and memory considerations keep us from computing Fp−( p
5 ) di-

rectly. Instead we do these calculations by recalling a well-known identity, namely
that (

1 1
1 0

)n

=

(
Fn+1 Fn

Fn Fn−1

)
.

By doing all these computations modulo n2 for some n, and the same type of
binary ladder that we used above, we can compute our values quite quickly. In fact,
we can save even more time by noting that all of our matrix calculations involve

either squaring, or multiplying by

(
1 1
1 0

)
. Although naively multiplying two 2x2

matrices requires eight multiplications and four additions, squaring a symmetric
matrix requires only three squares a2, b2, c2, one product (a+c) ·b, and 3 additions:(

a b
b c

)2

=

(
a2 + b2 (a+ c) · b

(a+ c) · b b2 + c2

)
.

After implementing this algorithm, a test for a Wall-Sun-Sun prime runs about
four times slower than testing a Wieferich prime. In practice, since some of the
multiplications can be done in parallel, the test takes a bit less than four times the
time for Wieferich primes.

5. The Computation

The largest part of our computation was the search for Wieferich primes to
6.7 × 1015. This was performed on DISCOVERY cluster at Dartmouth College, a
cluster of (at the time) about 500 AMD Opteron nodes with 64-bit processors. We
ran our code on 24 processors for a period of about 200 days. For short periods of
low cluster load, we utilized more processors, once reaching a total of 96. At other
times, our computation was tabled for higher priority tasks. Altogether, the search
used approximately 12000 CPU days, a value that compares well with that of the
previous record search, which used (based on the information provided by Knauer
and Richstein) used roughly 50000 CPU days – although on slower computers.

The searches for base-3, 5, and 7 Wieferich primes, along with the search for Wall-
Sun-Sun primes, were performed on the Condor cluster in the Dartmouth College
Mathematics Department during low-load times over a period of many months.
We used between one and eighteen 64-bit Linux machines of various architectures.
Computation times were carefully recorded for these runs. In the following table,
the times are recorded: For (base-2) Wieferich primes, the total time taken for the
computation [N, 6.7× 1015], and for all other primes, the time taken for computing
the range [N, 150000N ], where N = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 = 6469693230.
(Computations of the range [0, N ] were very short, and were implemented with
unsophisticated methods.)
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Table 2. Time used in CPU days for calculations (Range values
are approximate; see discussion above for precise values)

Search Range CPU Days
Wieferich primes [6.5× 109, 6.7× 1015] 12907.97
Base-3 Wieferich [6.5× 109, 9.7× 1014] 714.54
Base-5 Wieferich [6.5× 109, 9.7× 1014] 812.14
Base-7 Wieferich [6.5× 109, 9.7× 1014] 916.67
Wall-Sun-Sun [6.5× 109, 9.7× 1014] 1978.49

6. Results

Wieferich and near-Wieferich primes. As we stated earlier, no new (base-2)
Wieferich primes were found. It has become standard practice to report “near-
Wieferich” primes; that is, those p for which 2(p−1)/2 ≡ ±1 + Ap (mod p2), where
|A| ≤ 100. However, as the magnitude of the primes under consideration grows,
the density of the near-Wieferich primes diminishes, and there are fewer to report.
We propose, therefore, a new definition: a near-Wieferich prime is one for which
tfahe value of ω(p)/p is small; say less than 10−13. Table 4 gives all such primes
not greater than 6.7×1015. For base-3 Wieferich primes, such a definition excludes
some 200 previously unreported primes with |ωa(p)| < 100, and simliar numbers
are excluded for base-5 and base-7 primes. Rather than give a table of all these
primes here, their values will be given on the project webpage.

We might well ask whether our results were to be expected: that is, should we
expect to find any Wieferich primes in the region [1.25×1015, 6.7×1015]? Certainly
ω(p) can take on any of p values (mod p). Assuming that ω(p) takes these values
randomly, the “probability” that ω(p) takes any particular value (say, 0) is 1/p.
From this, a heuristic is given in [5] that the expected number of Wieferich primes
in the interval [x, y] is

(4)
∑

x≤p≤y

1

p
≈ log

(
log y

log x

)
= log log y − log log x.

From this we would conclude that the expected number of Wieferich primes in our
interval is .0472, and therefore our lack of ability to find them is not surprising.

Because our program recorded all p with “small” ω(p) (that is, all those for which
|ω(p)| < 224), we compiled a large data set which can be used to give more rigorous
(experimental) confirmation of this conjecture. Indeed, our program recorded more
than 2.1 million primes p for which ω(p) < 224. Using this data, we checked the
following conjecture, which follows from the same heuristic as does equation (4):

Conjecture 6.1 (Crandall, Dilcher, and Pomerance). The number of prime p ∈
[a, b] for which ω(p) ∈ [K,L] is asymptotically

(L−K) · (log log b− log log a).

The table below presents a small snapshot of our experimental results confirming
this conjecture. Complete data will be available on our webpage. In Table 3,
the values in row i, column k reflect the number of p ∈ [i × 1014, (i + 1) × 1014]
with ω(p) ∈ [4(k − 1) × 106, 4k × 106). Overall, the conjecture holds very well.
Indeed, in the strip given by k = 2, the relative error between the conjectured
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Table 3

i k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 Expected
15 7451 7473 7435 7315 7511 7356 7361 7423 7380.8
16 6779 6897 6999 6862 6858 6942 6879 6941 6920.8
17 6449 6448 6545 6480 6391 6497 6420 6622 6514.2
18 6000 6135 6099 6028 6071 6080 6256 6146 6152.1
19 6053 5887 5839 5866 5854 5752 5911 5831 5827.7

and experimental values is never greater than 5.5%. Furthermore, we can plot
conjectured and actual numbers of near-Wieferich primes for different values of i.
The result is a graph that looks remarkably like a straight line. Let xi be the
expected number primes p in the ith interval [i × 1014, (i + 1) × 1014) for which
ω(p) < 4× 106, and let yi be the actual number of such p in the same interval (the
values in column 1). We expect from Conjecture 6.1 that for any i, yi ≈ xi. In
fact, linear regression on the two data sets returns a best fit equation of

y = 0.999958129x+ 9.7

(with R2 = .9992), giving strong experimental agreement with the conjectured
value. Similar tests using different parts of our data show no meaningful disagree-
ment between the values of ω(p) and what is expected heuristically. A data set of
all near misses with Fermat quotients less than 224 (comprising roughly 2 million
primes) is available on the project web page.
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