
Maximum Likelihood Multivariate Calibration

Peter D. Wentzell* and Darren T. Andrews

Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3

Bruce R. Kowalski

Center for Process Analytical Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700

Two new approaches to multivariate calibration are de-
scribed that, for the first time, allow information on
measurement uncertainties to be included in the calibra-
tion process in a statistically meaningful way. The new
methods, referred to as maximum likelihood principal
components regression (MLPCR) and maximum likeli-
hood latent root regression (MLLRR), are based on
principles of maximum likelihood parameter estimation.
MLPCR and MLLRR are generalizations of principal
components regression (PCR), which has been widely
used in chemistry, and latent root regression (LRR), which
has been virtually ignored in this field. Both of the new
methods are based on decomposition of the calibration
data matrix by maximum likelihood principal component
analysis (MLPCA), which has been recently described
(Wentzell, P. D.; et al. J. Chemom., in press). By using
estimates of the measurement error variance, MLPCR and
MLLRR are able to extract the optimum amount of
information from each measurement and, thereby, exhibit
superior performance over conventional multivariate cali-
bration methods such as PCR and partial least-squares
regression (PLS) when there is a nonuniform error
structure. The new techniques reduce to PCR and LRR
when assumptions of uniform noise are valid. Compari-
sons of MLPCR, MLLRR, PCR, and PLS are carried out
using simulated and experimental data sets consisting of
three-component mixtures. In all cases of nonuniform
errors examined, the predictive ability of the maximum
likelihood methods is superior to that of PCR and PLS,
with PLS performing somewhat better than PCR. MLLRR
generally performed better than MLPCR, but in most
cases the improvement was marginal. The differences
between PCR and MLPCR are elucidated by examining
the multivariate sensitivity of the two methods.

Over the past several decades, advances in chemometrics have
led to the development of a multitude of multivariate calibration
methods for the analysis of chemical mixtures.1-3 As a result,
such methods are now routinely applied and are indispensable
tools for solving many “real-world” problems. At times, the
proliferation of multivariate calibration techniques seems unending
and includes such methods as multiple linear regression (MLR),
principal components regression (PCR), partial least-squares
regression (PLS), continuum regression (CR), projection pursuit

regression (PPR), locally weighted regression (LWR), and artificial
neural networks (ANNs), among others. Each of these methods
possesses its own strengths and weaknesses, and which works
best for a given problem depends on the characteristics of the
data and the objectives of the analysis. However, as research
produces a clearer distillation of the similarities and differences
among methods, a number of techniques, such as PLS and PCR,
have established themselves as the practical workhorses of
multivariate calibration. PCR is one of the oldest and most well-
studied methods currently in use, and this paper describes two
fundamental enhancements to the methodology involved which
will extend its utility and reliability even further. Although the
techniques described in this work are general in their applicability,
the focus will be on spectroscopic data sets.

Traditional univariate calibration, which assumes no interfer-
ence with the measured response variable, typically applies
weighted or unweighted least-squares regression to a series of
standards to develop the calibration model. Under the right
conditions, the model developed in this manner will be optimal
in a maximum likelihood sense. Maximum likelihood parameter
estimation methods are widely used because of their desirable
statistical characteristics.4 In the present context, maximum
likelihood estimation means that the parameters determined for
the model are the ones most likely to give rise to the observed
data, given the statistical characteristics of the measurement
uncertainties. The conditions necessary for ordinary least-squares
(weighted or unweighted, as appropriate) to provide maximum
likelihood parameter estimates are (1) the form of the model
needs to be correct (e.g., straight line, quadratic, intercept if
necessary), (2) the measurement uncertainties in the response
variable need to be uncorrelated and normally distributed and (in
the case of weighted regression) have known variances, and (3)
the measurement uncertainties in the concentrations (x variable)
need to be negligibly small relative to the uncertainties in the
response variable (y). In practice, these ideal conditions are rarely
met exactly, but maximum likelihood methods are often still
regarded as the best alternative if the conditions are approximately
valid.

In contrast to traditional univariate calibration, techniques such
as PCR are known as inverse calibration methods because the
concentrations are regressed on the responses (factor scores in
PCR) rather than the other way around. Accordingly, PCR can
only qualify as a maximum likelihood method if the uncertainties
in the responses (scores) are negligible compared to those in the
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concentrations. While this is often true when the reference
method for concentrations is relatively imprecise, there are many
cases where the assumption is somewhat tenuous. Furthermore,
PCR ignores the uncertainty in the spectroscopic data when it
performs the initial decomposition by principal component analysis
(PCA). As pointed out in earlier work,5 PCA yields a maximum
likelihood decomposition only when the measurement uncertain-
ties are independent and identically distributed with an normal
distribution (“iid normal”). It has long been known that spectro-
scopic measurements inherently possess nonuniform measure-
ment standard deviations which can vary as a function of both
signal amplitude and wavelength. Causes of such nonuniformity
include variations in the source intensity profile, quantum effects
(i.e., shot noise), nonlinear transformations (e.g., for absorbance
measurements), and variations in detector noise characteristics.
Furthermore, instrument characteristics, such as a finite spectral
band-pass and source flicker, often lead to correlated noise
characteristics.

Although the noise characteristics for most common spectro-
scopic methods have been well-studied,6 this information is
generally ignored in establishing multivariate calibration models.
It should be apparent that, since each spectral measurement can
possess a different uncertainty, each can also carry a different
amount of information into the calibration procedure. In PCR,
for example, PCA is first used to determine the subspace of the
component spectra of a mixture. The spectrum of each calibration
sample is then projected into this subspace to give a set of scores,
or latent variables. These scores are used in the regression
procedure to produce the PCR calibration model. This projection
has the effect of combining the spectral measurements to reduce
the overall error and also makes the regression step more
mathematically tractable. Obviously, the quality of results ob-
tained by PCR will depend on the quality of the estimation of the
spectral subspace by PCA. Unfortunately, PCA tries to maximize
the variance accounted for by the extracted latent variables,
regardless of whether the variance is due to chemical effects (i.e.,
changes in chemical concentrations) or simply measurement
uncertainty. Because of this, including measurements with a large
uncertainty can degrade the quality of the calibration model
developed by PCR. While this problem has been addressed
informally through approaches such as scaling and wavelength
selection, these pretreatments are generally suboptimal in a
maximum likelihood sense.

In this paper, two new methods are described to account for
measurement uncertainty in multivariate calibration. These
methods are based on a recently described matrix decomposition
procedure called maximum likelihood principal component analy-
sis (MLPCA)5 and will be referred to as maximum likelihood
principal components regression (MLPCR) and maximum likeli-
hood latent root regression (MLLRR). The new techniques are
actually more general forms of PCR and latent root regression
(LRR) and will produce solutions identical to those given by these
methods under the right conditions. However, the new methods
are better suited to providing optimal solutions in the maximum
likelihood sense when there are nonuniform uncertainties in the
data. It will be shown using both simulated and experimental
data that MLPCR and MLLRR can provide significantly better

predictive ability than conventional methods in realistic situations.
Perhaps more importantly, the maximum likelihood methods
provide a general unifying framework from which multivariate
calibration methods can be examined.

Throughout this work, a number of assumptions and simpli-
fications have been made that should be clarified from the outset.
First, it has been assumed that measurement errors are normally
distributed. While the principles of maximum likelihood estima-
tion are general in nature, mathematical tractability in the
development of MLPCA demanded that this restriction be
imposed. Although this assumption may not be strictly valid in
all cases, it is viewed as reasonable and, unless the violation is
severe, should not greatly diminish the general utility of the
methods, just as simple regression is often used without strict
adherence of the underlying assumptions. A second assumption
made by MLPCA for maximum likelihood estimation (and by
weighted regression, for that matter) is that measurement error
variances are exactly known. In practice, however, this is rarely
the case, so true maximum likelihood estimates are technically
unattainable for real experimental data. Nevertheless, it will be
shown that variance estimates are sufficient to obtain significant
improvement in results; i.e., that some knowledge of measurement
uncertainty is often better than an implicit assumption of uniform
variance. Finally, throughout this work, it has been assumed that
measurement errors are uncorrelated; i.e., the error covariance
matrix is diagonal. While such a condition can be controlled in
simulations, it is almost certainly invalid for experimental mea-
surements. It is demonstrated, however, that significant improve-
ment in predictive ability can be achieved even when the
assumption of uncorrelated errors is tenuous. There are two main
reasons for excluding error covariance in this work. First, while
estimates of measurement error variance are often available,
knowledge of the covariance matrix in practice is still quite rare,
so we wished to demonstrate the utility of these methods when
the covariance matrix is unavailable. Second, although the theory
of MLPCA is capable of dealing with correlated errors,5 there are
several practical problems that need to be addressed. These
include rank deficiency in the estimated error covariance matrix
and the computational burden of large matrices. These subjects
are beyond the scope of the present work and will be dealt with
in a subsequent paper.

THEORY
Principal Components Regression. For the purposes of this

discussion, it will be assumed that we are trying to develop a
calibration model for a single analyte in the presence of multiple
unknown interferences, and that the measurements consist of
spectroscopic data (although other analytical techniques could also
be employed). Conventional PCR begins with a set of calibration
samples for which the concentration of the analyte has been
obtained by some independent means. The first step in the
procedure is to apply PCA to the spectra of the calibration samples.
This is usually done by way of singular value decomposition (SVD)
to give

Here, X is the matrix of spectra in the calibration set (m samples
by n wavelengths). The component concentrations in the calibra-
tion set should reflect the distribution of those concentrations for

(5) Wentzell, P. D.; Andrews, D. T.; Hamilton, D. C.; Faber, K.; Kowalski, B. R.
J. Chemom., in press.

(6) Ingle, J. D; Crouch, S. R. Spectrochemical Analysis; Prentice-Hall: Englewood
Cliffs, NJ, 1988.
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future samples (i.e., the calibration set should span the space of
samples to be predicted), and the number of samples and
wavelength channels should be greater than the number of
independently observable components in the mixtures. Assuming
that m < n, the SVD gives the matrices U (m × m), S (m × m)
and V (n × m). These matrices are truncated by removing the
right-hand columns and bottom rows to give Ũ (m × p), S̃ (p ×
p), and Ṽ (n× p), where p is the “pseudorank” of X, or the number
of independently observable components. In practice, p is usually
unknown, but can be estimated by statistical means or cross-
validation. In this work, the tilde (“∼”) will be used to distinguish
the truncated matrices and the quantities derived from them. The
truncation gives X̃ ) ŨS̃ṼT ) T̃ṼT, where X̃ is the estimated data
matrix and T̃ ) ŨS̃ is called the scores matrix for the truncated
solution. Alternatively, in a model and parameters framework,
we have

where E is the m × n matrix of residuals. PCA obtains T̃ and Ṽ
by minimizing the sum of the squares of the elements in E. This
estimation is optimal in a maximum likelihood sense as long as p
represents the true pseudorank and the measurement errors for
the elements of X are iid normal.

The reduction in the dimensionality of the problem by PCA is
the key to PCR, since it improves the reliability of the solution.
The actual regression is carried out using orthogonal projections
of the spectra onto the subspace determined by PCA, i.e., the
scores. The regression assumes a model of the form

where y is the m × 1 vector of analyte concentrations for the
calibration set, q is a p × 1 regression vector, and f is an m × 1
vector of errors. The least-squares solution to this problem is

In this equation and elsewhere, the caret (“∧”) is used to indicate
an estimated quantity. In the prediction step, the scores for the
unknown spectrum are given by

where t̃unk and xunk are row vectors of length p and n, respectively.
The unknown concentration is then estimated by

More typically, the intermediate step of calculating the scores is
incorporated into an n × 1 regression vector, b̂, that is multiplied
directly by the spectrum to obtain the concentration estimate

In conventional PCR, the representations in eqs 6 and 7 are

equivalent, but this is not the case for MLPCR, as discussed in
the next section.

Maximum Likelihood PCR. When applied in the proper
context, conventional PCR is a powerful tool for the quantitative
analysis of multicomponent mixtures. However, it suffers from a
number of weaknesses. One of these is that it relies on SVD to
obtain a reliable estimation of the p-dimensional subspace that
contains the component spectra. In essence, the eigenvectors
produced by SVD (the columns of Ṽ) describe a p-dimensional
hyperplane in the n-dimensional wavelength space and should
contain all of the pure spectral vectors. As long as the measure-
ment errors in all of the calibration spectra are all iid normal, the
p-dimensional hyperplane determined by SVD will be an optimal
model for the data in a maximum likelihood sense (assuming the
system is linear and the pseudorank, p, has been correctly
specified). However, if the measurement errors are not indepen-
dent with uniform variance, this will no longer be true, and the
estimation of the subspace will be suboptimal.

There are several potential solutions to this problem. First, it
may be possible to scale the data in such a way that all of the
measurement standard deviations become equal. It has been
shown, however, that in order for this to work in a manner which
preserves the structure of the data, the matrix of measurement
standard deviations must have a rank of unity7 (e.g., when the
uncertainty at each wavelength is independent of signal ampli-
tude). This restriction is frequently violated for experimental data
sets, making it impossible to obtain an optimum solution through
simple scaling. A second approach to the problem is to perform
wavelength selection, removing those channels that significantly
violate the assumption of iid errors. This assumes, however, that
noise is a function only of wavelength and not signal amplitude.
Furthermore, although a portion of the spectrum may appear
noisy, it may also be the region which is richest in information
about the analyte of interest. Wavelength selection has also been
performed by using leave-one-out cross-validation. In addition to
being very time consuming, this approach only mitigates the
problem of finding the optimal subspace and does not address
the source of the problem.

What is needed is a modeling method which accounts for
spectral measurement errors in the estimation of the spectral
subspace. Such a method, called maximum likelihood principal
component analysis (MLPCA), was recently introduced5 and is
the basis of MLPCR. In MLPCA, the eigenvectors are chosen to
provide the optimal estimation of the p-dimensional hyperplane
in a maximum likelihood sense. The optimality of the estimation
is, strictly speaking, contingent on the assumption of normally
distributed measurement errors with known variances and cova-
riances, but relaxation of these conditions (i.e., near normality
and/or estimated variances) still yields significantly improved
estimates of the PCA subspace. For uncorrelated measurement
errors, MLPCA minimizes a weighted sum of squared residuals:

In this equation, xij is a measurement (an element of X), x̂ij is the
maximum likelihood estimate of that measurement, and σij is the

(7) Paatero, P.; Tapper U. Chemom. Intell. Lab. Syst. 1993, 18, 183-194.

X ) T̃ṼT + E (2)

y ) T̃q + f (3)

q̂ ) (T̃TT̃)-1T̃Ty ) S̃-1ŨTy (4)

t̃unk ) xunkṼ (5)

ỹunk ) t̃unkq̂ (6)

ỹunk ) x̃unkb̂ (7)

b̂ ) Ṽq̂ ) ṼS̃-1ŨTy (8)

S2 ) ∑
i)1

m

∑
j)1

n (xij - x̂ij)
2

σij
2

(9)
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corresponding measurement error standard deviation. (In prac-
tice, σij is typically replaced by its estimate, sij.) The MLPCA
decomposition can be represented as

where X, X̌, and E are m × n, Ǔ and Ť are m × p, Š is pxp, and
V̌ is n × p for a p-dimensional model. The symbol “ˇ ” above the
matrix variables has been used here to distinguish the MLPCA
solution from the truncated PCA solution. Although similar in
their objectives, MLPCA and conventional PCA have some very
significant differences.5 In particular, while PCA requires iid
normal measurement errors, the general MLPCA algorithm
requires neither uniform variance nor independence to provide
the maximum likelihood estimates. It is also important to note
that, unlike PCA, MLPCA solutions are not nested; that is, the
rank p model cannot be obtained simply by truncating higher rank
models. Instead, the dimensionality of the model needs to be
specified before initiating the decomposition. Although this tends
to make MLPCA more cumbersome to use, the superior results
often make it worthwhile. Another difference is that, in conven-
tional PCA, the estimate for any 1 × n spectral vector, xi, is given
by an orthogonal projection into the spectral subspace:

In contrast, the maximum likelihood estimate of xi is given by a
projection which is not generally orthogonal, but rather one which
is weighted by the errors in the measurements:

Here, Σi is the n × n covariance matrix for xi (note that any
multiple of Σi could also be used). For uncorrelated errors, this
will be a diagonal matrix whose diagonal elements are the
variances for the corresponding spectral measurements. It is clear
that eq 12 will result in an orthogonal projection when all of the
measurement errors are uncorrelated and have equal variances;
i.e., the PCA projection is equivalent to a maximum likelihood
projection under these conditions. For measurement errors which
are correlated only within a spectrum (i.e., row correlations but
no column correlations), eq 12 is still valid, but the function
minimized by MLPCA is modified to

which reduces to eq 9 for uncorrelated errors. If measurement
errors are correlated among both rows and columns, a somewhat
modified version of MLPCA is needed. This is described
elsewhere5 and will not be treated here except to note that MLPCA
can handle any measurement error covariance structure, provided
that the error covariance matrix can be estimated. As noted in
the introduction, uncorrelated measurement errors have been
assumed throughout this work. Although this assumption is not
generally valid for experimental data, the error covariance

structure is rarely known in practical situations, so it is intended
to reflect a realistic implementation of the methods described.
The theoretical and practical aspects of dealing with correlated
errors have been examined and will be presented elsewhere.

The regression model in MLPCR is developed in a manner
analogous to that in PCR. Following from eq 4,

However, unlike conventional PCR, a maximum likelihood projec-
tion is used to determine the scores for the unknown sample,
which are then used to estimate the concentration:

Note that, in MLPCR, there is no longer an analog to a universal
regression vector, b, for all unknown samples, as defined in eqs
7 and 8 for PCR. This is because the projection matrix depends
on the measurement error covariance matrix, which can be
different for each unknown sample. This, however, is one of the
main advantages of MLPCR, since the projection of the unknown
sample onto the spectral subspace will exploit those measure-
ments that have the smallest errors in order to obtain the best
estimate of the scores.

To summarize, MLPCR improves the quality of the regression
over PCR in two ways. First, it uses MLPCA in conjunction with
measurement error information to obtain a more reliable estimate
of the subspace containing the pure spectral vectors. Because
measurements in the calibration set are appropriately weighted,
a maximum likelihood estimate of the PCA model is obtained
which is generally superior to that obtained by SVD. This is
important because it is the determination of this initial space that
ultimately affects the sensitivity of the calibration procedure. The
second advantage of MLPCR derives from the projection of the
measurements (calibration and unknown) onto the subspace
determined by MLPCA. Because the projection is not orthogonal
but rather optimized through the use of measurement uncertain-
ties, the maximum information is extracted for the best estimation
of the true measurements. These factors tend to lead to superior
calibration models.

Maximum Likelihood Latent Root Regression. Although
MLPCR can offer a significant improvement over conventional
PCR, it is still not a “pure” maximum likelihood approach to
calibration because of the final regression step. For this step to
be optimal from a maximum likelihood perspective, the absolute
uncertainties in the scores need to be much smaller than those
in the concentration values. Since this will not always be true, it
would be useful to develop a method which could accommodate
an arbitrary error in the final regression step. This can be done
by incorporating a variation of latent root regression (LRR).

Unlike PCR, LRR8-10 is not well-known among chemists. With
this technique, the original calibration matrix of response variables

(8) Montgomery, D. C.; Peck, E. A. Introduction to Linear Regression Analysis;
Wiley: New York, 1982; p 339.

(9) Sanchez, E.; Kowalski, B. R. J. Chemom. 1988, 2, 247-263.
(10) Vigneau, E.; Bertrand, D.; Qannari, E. M. Chemom. Intell. Lab. Syst. 1996,

35, 231-238.

X ) ǓŠV̌T + E ) ŤV̌T + E ) X̌ + E (10)

x̂i ) xiṼṼT (11)

x̂i ) xiΣi
-1V̌(V̌TΣi

-1V̌)-1V̌T (12)

S2 ) ∑
i)1

m

(xi - x̂i)Σi
-1(xi - x̂i)

T (13)

q̂ ) (ŤTŤ)-1ŤTy ) Š-1ǓTy (14)

t̂unk ) xunkΣunk
-1V̌(V̌TΣunk

-1V̌)-1 (15)

ŷunk ) t̂unkq̂ (16)
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is augmented by the corresponding concentration vector(s). PCA
is then carried out on the augmented matrix. In this way, the
reduction of dimensionality and the determination of the calibra-
tion model are performed simultaneously. Using the previous
example for the estimation of the concentration of a single
component, we have

As before, X is a matrix of m spectra measured at n wavelengths,
y is an m × 1 vector of concentrations for the component of
interest, and the tilde indicates that the SVD results are truncated
to pseudorank p. If Ṽ (which now has dimensions (n + 1) × p)
is partitioned into the upper Ṽ1 (n × p) and lower Ṽ2 (1 × p),
then the regression vector will be given by

such that the predicted concentration is yunk ) xunkb̂, where xunk

is 1 × n.
LRR is similar to PCR in its approach to calibration, but for

some reason it has been virtually ignored in chemistry. It is
possible that it is simply more cumbersome and less intuitive than
PCR, and in many cases it does not offer significant advantages.
Another difference between the two methods is that the predictive
ability of PCR is unaffected by changes in the scale of the y
variable. This is because the regression step in PCR implicitly
assumes (for the maximum likelihood solution) that all of the error
resides in y, so a vertical projection is always used. In contrast,
LRR is consistent with a maximum likelihood solution if the
absolute uncertainties in all of the measured quantities (x and y)
are the same (iid normal), leading to results that will change with
the scale of y. The situation is exactly analogous to the differences
between ordinary least-squares and PCA when used for modeling
purposes.11 In reality, neither set of assumptions is likely to be
valid. It would, therefore, be useful to have a single-step modeling
procedure like LRR which accounts for all of the uncertainties.
Such a method is presented here as maximum likelihood latent
root regression (MLLRR).

The procedure for MLLRR is similar to that for MLPCR, except
that, as in LRR, an augmented matrix is used. In a manner
analogous to eq 17, the augmented matrix is decomposed using
MLPCA rather than PCA. This requires a companion matrix of
measurement variances, also augmented to include the variances
in the concentration values. In the absence of other information,
measurement uncertainties are usually assumed to be uncorre-
lated, but correlated errors can be accommodated by MLPCA as
well. Once MLPCA has been carried out, prediction is performed
using an augmented spectral vector:

In this case, Σunk is the error covariance matrix of the augmented
row vector for the unknown, and V̌ is the loadings matrix obtained
from applying MLPCA to the augmented calibration matrix. The

equation is written so that it produces a row vector, since this is
the manner in which the spectra appear in the original calibration
matrix. Note that eq 19 is simply a maximum likelihood projection
of the unknown spectrum into the MLPCA subspace. The key is
that, since yunk is the quantity sought, the last entry in the error
covariance matrix, Σunk, is set to be numerically equivalent to
infinity, forcing this value to be predicted from the others. Thus,
the last entry in the first row vector on the right-hand side is
unimportant and is set to zero in the equation. Extension of eq
19 to additional components is easily accomplished by further
augmentation of the calibration and prediction matrices. As with
MLPCR, there is no universal regression vector for MLLRR unless
the covariance matrices are identical for all of the spectra obtained.

MLLRR is more general in its treatment of measurement errors
than MLPCR in that it includes uncertainties in the concentration
values. It is an optimal modeling method in the maximum
likelihood sense, subject to the usual restrictions (linear model
of known pseudorank, normally distributed errors with a known
covariance structure).

EXPERIMENTAL SECTION
Data Sets. To examine the two new methods proposed here,

three simulated and two experimental data sets were employed.
The simulated data sets were used to test the methods under
carefully controlled conditions to evaluate their potential. Each
of these was generated from a model of a three-component
mixture. The pure component spectra consisted of Gaussian
profiles centered at 480, 500, and 520 nm (for components 1, 2,
and 3, respectively) with widths (σ) of 20 nm. Spectral data points
were generated at 5 nm intervals between 400 and 600 nm.
Calibration and prediction data sets consisted of 20 and 100
samples, respectively, whose component concentrations were
generated randomly from a uniform distribution between 0 and
1. In all simulations, normally distributed measurement errors
were added using a Gaussian random number generator.

Data set 1 was characterized by wavelength-dependent noise
which was essentially uniform near the center of the spectral range
but amplified on either side. To accomplish this, a baseline noise
level of σ0 was first selected. This standard deviation was then
multiplied by a wavelength-dependent function to give the standard
deviation for a particular wavelength. The function used in this
work was a “double-sigmoidal” mask, with a value close to unity
near the center of the spectral region and values of rmax at the
limits. The profile of this mask is shown along with the individual
spectral profiles in Figure 1. Using this mask, the standard
deviation at wavelength λ is given by

In this equation, λ1 is the inflection point of the sigmoid on the
left-hand side of the range and λ2 is that on the right-hand side.
The parameter a determines the slope of the sigmoidal curves
such that

where ∆λ is the 10%-90% rise range of the sigmoid. In this work,
λ1 ) 460 nm, λ2 ) 540 nm, and ∆λ ) 40 nm. The standard

(11) Andrews, D. T.; Chen, L.; Wentzell, P. D.; Hamilton, D. C. Chemom. Intell.
Lab. Syst. 1996, 34, 231-244.

[X̃|ỹ] ) ŨS̃ṼT (17)

b̂ ) Ṽ1(Ṽ1
TṼ1)

-1Ṽ2
T (18)

[x̂unk|ŷunk] ) [xunk|0]Σunk
-1V̌(V̌TΣunk

-1V̌)-1V̌T (19)

σ(λ) ) [1 + (rmax - 1)( 1
1 + ea(λ-λ1)

+ 1
1 + ea(λ2-λ))]σ0 (20)

a ) 2 ln 9
∆λ

) 4.394
∆λ

(21)
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deviation of the baseline noise level, σ0, was taken to be 1% of the
maximum absorbance in the noise-free calibration data. The noise
amplification factor, rmax, was varied between 1 and 20 for this
work. The concentration data used for calibration with data set
1 were assumed to be error free.

Data set 2 was the same as data set 1 except for the noise
structure. In this case, both proportional and constant error were
added to the signals to give measurement uncertainties that
depended on signal amplitude. The formula used to calculate the
standard deviation for a given absorbance, Aij, was

where σ0 is the level of the constant noise component (in this
case, 1% of the maximum signal in the calibration matrix), and p
is the level of proportional noise (varied between 0 and 0.20 in
this work).

Data set 3, which was intended to exaggerate the differences
between MLLRR and MLPCR, included errors in the calibration
concentrations in addition to those in the spectral measurements.
As for data set 2, the errors in the spectral measurements included
both a constant term (1% of the maximum in the calibration set)
and a proportional term (in this case fixed at a level of 2% of the
pure signal). To simulate nonuniform errors in the calibration
concentrations, proportional error was added to the reference
concentrations. The proportional error had standard deviations
that ranged from 0 to 20% of the true concentration.

To demonstrate the utility of the maximum likelihood calibra-
tion methods for practical applications, two experimental data sets
were also examined. Data set 4, the first of these, was obtained
through a carefully designed experiment involving three-compo-
nent mixtures of metal ions (Co(II), Cr(III), and Ni(II)), a system
suggested from the work of Osten and Kowalski.12 Stock solutions
of the nitrates were prepared with concentrations of 0.172, 0.0764,
and 0.393 M for Co, Cr, and Ni, respectively, in 4% HNO3. All
chemicals used throughout this work were analytical reagent
grade or better unless otherwise specified. A three-level, three-
factor calibration design was used in which 1, 3, or 5 mL aliquots

of the various stock solutions were combined and diluted to 25
mL with 4% HNO3. Unfortunately, insufficient Ni stock remained
for one solution (3:5:5 Co:Cr:Ni), so the calibration set consisted
of 26 rather than 27 solutions. Final concentration ranges were
6.88-34.40 mM for Co, 3.06-15.29 mM for Cr, and 15.70-78.58
mM for Ni. Five replicate spectra were obtained for each sample
using randomized blocks (i.e., five blocks of all 26 solutions,
randomly ordered within each block). To minimize the effects
of instrument drift, a reference spectrum was run prior to each
new sample. Spectra were recorded over the range of 350-650
nm on an HP 8452 diode array spectrophotometer (Hewlett-
Packard, Palo Alto, CA) using a standard 1 cm quartz cuvette.
Measurements were made at 2 nm intervals with a 1 s integration
time. In order to introduce nonuniform noise characteristics, a
dichroic band-pass filter (green, no. 67) was placed between the
source and the sample to decrease the source intensity at high
and low wavelengths for all measurements. The spectra of the
individual components and the optical filter are shown in Figure
2.

The second experimental data set employed in this work, data
set 5, consisted of near-infrared spectra for three-component
mixtures containing toluene, chlorobenzene, and heptane. The
mixtures were prepared as part of a calibration transfer study by
Scott Specialty Gases (Houston, TX) and consisted of 31 samples
from an augmented three-level, three-factor factorial design. The
concentrations varied between 20 and 70 wt % for toluene and
chlorobenzene and between 2 and 10 wt % for heptane. The
mixtures were sealed into standard 1 cm cuvettes, and spectra
were obtained over the range 400-2500 nm on an NIRSystems
grating spectrometer (NIRSystems, Silver Spring, MD) at intervals
of 2 nm. The spectrometer employed a Si detector below 1100
nm and a PbS detector at longer wavelengths. Figure 3 shows a
typical spectrum over the full range and standard deviations
obtained from replicate scans. It is apparent that certain regions
of the spectrum above 1600 nm are effectively opaque and,
therefore, of little utility for analysis. Consequently, standard
deviations in this region are high. The purpose of this data set
was to demonstrate that MLPCR can utilize all of the available
data to obtain superior predictive ability by extracting the optimum
amount of information at each wavelength, provided measurement
variance information is available. Unfortunately, standard devia-
tion information for this data set was only available from replicate(12) Osten, D. W.; Kowalski, B. R. Anal. Chem. 1985, 57, 908-915.

Figure 1. Spectral profiles for simulated three-component mixtures
(data sets 1, 2, and 3) and error mask for data set 1.

σij ) xσ0
2 + (pAij)

2 (22)

Figure 2. Pure component spectra for data set 4 and absorbance
profile of band-pass filter applied to source beam for noise amplifica-
tion.
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scans of one sample. Not only will this fail to be a precise
representation of the standard deviations from the remaining 30
samples, but it also does not reflect all of the sources of
measurement error (e.g., cell positioning, sample preparation) for
the sample for which it does apply. Nevertheless, it will be shown
that MLPCR can utilize even this approximate information to
provide better performance than conventional approaches.

Computational Aspects. The calculations performed in this
work utilized a variety of computational platforms including (1)
486 and Pentium-based personal computers, (2) a Digital Equip-
ment Corp. 3000/300X workstation with a 175 MHz clock speed
and 96 MB of memory, and (3) a Sun Microsystems Sparc Server
1000 with 230 MB of memory and four 50 MHz SuperSPARC
CPUs. All calculations were performed in Matlab (The Math-
Works, Natick, MA).

RESULTS AND DISCUSSION
Simulated Data. Initially, simulated spectroscopic data sets

were used to assess the new calibration methods. Data set 1 was
used to examine the effects of measurement errors whose
standard deviation varies as a function of wavelength but is
constant at any given wavelength. Such situations commonly arise
when source intensity or detector sensitivity changes with
wavelength, or when there is a strongly absorbing (constant)
background component. Even when they are not coincident with
the regions of the spectrum containing relevant information, noisy
measurements can still influence the analysis, since the variance
still needs to be accounted for by PCA. Although wavelength
selection can often reduce this problem, the task of selection
becomes difficult when noisy regions overlap regions of spectral
significance, since the selection then relies on choosing the correct
balance between the signal and noise retained in a given measure-
ment. Maximum likelihood methods simplify the analysis by

extracting the appropriate amount of information from each
measurement.

Figure 4 shows the results of a comparison among PCR, PLS,
MLPCR, and MLLRR for data set 1. Results are presented in
terms of a root-mean-square error of prediction for components
1 and 2 in the three-component mixture (by symmetry, the results
for component 3 will be statistically equivalent to those for
component 1). The RMSEP is calculated as

where yi
pred and yi

true are the predicted and actual concentrations
of the analyte in prediction sample i, respectively, and Npred is the
number of prediction samples (100 in this case). In carrying out
this calculation, the optimum number of latent variables was taken
to be three for PCR, MLPCR, and MLLRR, since this should be
the pseudorank of the calibration matrix by the constraints of the
simulation. To permit greater flexibility for PLS, the optimum
number of latent variables was selected by cross-validation (below
an amplification factor of 8, the optimum number of latent variables
was 3; from 10 to 12, it was 2; and above 12, only 1 was needed).
For MLPCR and MLLRR, the standard deviation values known
from the simulation were used for the measurement error
estimates. In actual practice, these standard deviations would
likely be determined from experimental replicates and would,
therefore, be known with less accuracy, but the true values were
used here to avoid introducing the number of replicates as a
variable and also to examine a best-case scenario. For compari-
son, however, the MLPCR and MLLRR simulations were also run
using variances estimated from five replicates. The results under
these conditions were virtually identical, with all of the prediction
errors falling within 3% of the values obtained when known

Figure 3. (a) Typical spectrum from data set 5 (toluene-chloroben-
zene-heptane) and (b) corresponding measurement standard devia-
tions from replicate scans. The region between 500 and 1600 nm
has been enlarged (inset) for greater clarity.

Figure 4. Comparison of calibration methods applied to simulated
data subjected to a nonuniform error mask (data set 1).

RMSEP )x∑
i)1

Npred

(yi
pred - yi

true)2/Npred (23)
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variances were used. Thus, at least in this case, the use of
estimated variances did not have a large impact. Experimental
data presented later also illustrate a case where standard devia-
tions are estimated.

From Figure 4, it is apparent that, when the noise amplification
factor, rmax, is unity (uniform noise), all of the methods perform
equally well. This is expected since the maximum likelihood
methods reduce to PCR under these conditions and there is
unlikely to be any advantage of PLS over PCR. As the noise
amplification factor is increased so that the variance on either side
of the spectral range is amplified, the performance of all methods
declines (prediction error increases). This is also expected, since
increasing the noise decreases the information content of the data
and increases the uncertainty. As the noise level is increased,
the prediction error for the maximum likelihood methods remains
significantly smaller than that of either PCR or PLS, illustrating
the advantages of these techniques. It should be pointed out that,
even at the limits of this study, the amplified noise on the wings
of the spectrum represents only about 20% of the maximum signal
in the calibration set, and this is not an unrealistic level.
Nevertheless, the prediction errors obtained by the maximum
likelihood methods are a factor of 2 to 3 smaller at this point than
those obtained by the conventional methods. Comparison of the
conventional methods indicates that PLS performs somewhat
better than PCR in this case. This is due, in part, to the selection
of an optimum number of latent variables for PLS, but a more
important factor is likely to be the fact that PLS places some
significance on correlation with the y variable in extracting latent
variables, and so is not entirely based on x-variance.

It will also be noted that MLLRR consistently performs better
than MLPCR in this example, although the difference is not
substantial. The difference arises from the regression step in
MLPCR, which assumes that the errors in y are uniform and much
greater than the errors in the scores (for maximum likelihood
estimation). In this example, however, the y values were gener-
ated with no errors, so the situation is exactly opposite of the
second assumption, and MLLRR produces superior results. In a
real calibration problem, it is likely that y will be determined by
a reference method which has a significant uncertainty, so the
assumptions of MLPCR may be more valid. It has been observed
throughout this work that MLLRR generally yields results superior
to those produced by MLPCR (because the most appropriate
weighting of x and y is used) but that the two methods rarely
give large differences.

A final point worth noting here is that the magnitudes of the
errors are comparable for the two components in this example.
In general, one might expect significantly larger prediction errors
for component 2, since it is overlapped by two interferences (as
opposed to one for components 1 and 3) and, therefore, should
give a smaller net analyte signal.13 However, the lower sensitivity
of the method for component 2 is offset by the lower noise level
near the center of the spectral range, so the prediction errors turn
out to be comparable. The results presented here represent a
limited study, and an infinite number of variations (spectral
resolution, noise profiles, etc.) are, of course, possible. However,
for all of the cases of this type that were examined, the maximum
likelihood methods gave lower prediction errors than the con-
ventional methods.

Although data set 1 clearly shows the advantages of MLPCR
and MLLRR, results comparable to those obtained with MLPCR
for this data set could have been obtained simply by scaling each
wavelength channel by its corresponding standard deviation prior
to performing PCR. In other words, because the standard
deviation matrix is rank 1, optimal scaling is possible. For this
data set, scaling would be the preferred approach for reasons of
computation speed, but optimal scaling is not possible in cases
where the noise depends on signal magnitude. For this reason,
data set 2, which contains both proportional and constant
components of error, was employed for further comparison. A
combination of errors was used to make the simulation more
realistic, since purely proportional errors are rarely encountered.

Figure 5 provides a comparison of the prediction errors for
the same four calibration methods applied to data set 2, as well
as for two additional methods described in the following para-
graph. Results are shown as a function of the level of proportional
noise added to the data. Again, component 3 is omitted because
of statistical equivalence, and, again, all methods are equivalent
in the presence of uniform noise (0% proportional error). For PLS,
the optimum number of latent variables was three up to 4%
proportional noise and four thereafter. As before, the maximum
likelihood methods show a significant improvement over the
conventional methods, with the same order of performance. The
improvement for component 1 is more striking than that for
component 2 in this case, possibly because the central region of
the spectrum remains more uniform in magnitude and, therefore,
more uniform in noise. As with data set 1, the use of estimated
variances with MLPCR and MLLRR gave only small differences
in results (<7%).

To demonstrate that simple scaling is not sufficient to provide
an improvement equivalent to the maximum likelihood methods
for cases where the noise depends on signal amplitude, data set
2 was also examined using “weighted” PCR and PLS, designated(13) Booksh, K. S.; Kowalski, B. R. Anal. Chem. 1994, 66, 782A-791A.

Figure 5. Comparison of calibration methods applied to simulated
data with constant + proportional errors in spectra (data set 2).
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as WPCR and WPLS in Figure 5. The data sets were scaled by
the inverse of a pooled standard deviation at each wavelength.
As the figure shows, this often results in smaller prediction errors
compared to those obtained with PCR and PLS (with notable
exceptions for small proportional errors), but the extent of
improvement is less than what is achieved with the maximum
likelihood methods. Although such suboptimal scaling may
provide satisfactory results in some cases, it is our contention that
MLPCR and MLLRR are preferrable because of their optimal
performance in the general case, regardless of the error structure.

In the first two data sets, comparable performance was
observed for MLPCR and MLLRR. It was speculated that
differences would be exaggerated if significant nonuniform errors
were added to the concentrations in the calibration set. For this
reason, proportional errors were added to the reference concen-
trations in data set 3. This data set is also more realistic in the
sense that multivariate calibration methods often use a reference
method to determine concentrations in the calibration mixtures
and such measurements are prone to uncertainty. Figure 6 shows
the prediction errors for components 1 and 2 using PCR, MLPCR,
and MLLRR as the level of proportional error in the reference
concentrations is increased from 0 to 20%. The plot shows the
actual prediction errors, i.e., the errors from the true concentra-
tions in the prediction set rather than concentrations with errors
added. As anticipated, the differences between MLLRR and
MLPCR become more pronounced as the errors in the calibration
concentrations increase, with MLLRR always providing superior
results. In this example, there are only marginal differences
between MLPCR and PCR, since the level of proportional noise
is small enough to make the spectral measurements close to
uniform error.

At this point, a comment should be made regarding the
augmented error covariance matrix used for MLLRR. Throughout
this work, it has been assumed that the errors in the calibration

concentrations are uncorrelated with the errors in the spectral
measurements. Strictly speaking, in a “designed” experiment, this
may not be true. A designed experiment is one in which the
mixtures are prepared by adding known amounts of the analytes
to the calibration mixture. As such, there is no reference
measurement used other than the gravimetric or volumetric data
in the preparation. An error in these measurements can be
considered to be correlated with the true error in the spectral
measurements since it will affect these measurements propor-
tionately. However, in practical circumstances, instrumental
measurement errors are often much greater than the preparation
errors, and the correlation can be considered insignificant. More
importantly, multivariate calibration procedures more often employ
“natural” calibration, where the concentrations in the calibration
set are determined by a reference method which should be
uncorrelated to errors in the spectral measurements.

Experimental Data. The first of the experimental data sets
examined, data set 4, consisted of mixtures of Co, Cr, and Ni ions
in dilute nitric acid. Spectra for these mixtures are shown in
Figure 7a, with the corresponding measurement standard devia-
tions for each set of replicates in Figure 7b. Increased noise levels
are apparent at either end of the spectral range as the result of
the optical filter placed in the light path. Two groups of samples
were also found to have inordinately high standard deviations near
the center of the spectrum, a problem that was traced to two of
the samples out of the 130 which appeared to have an offset. The
questionable samples were excluded from subsequent analysis,
although it was found that their inclusion did not greatly affect
the results. In the analysis of this data set, a diagonal error
covariance matrix consisting of the variances for each measure-
ment was used (i.e., uncorrelated errors were assumed). Al-
though this assumption is known to be invalid, it was made to
demonstrate the enhanced performance of maximum likelihood
methods even when the error covariance information is unavail-
able.

To examine the predictive ability of various calibration meth-
ods, the technique of leave-one-out cross-validation was employed.

Figure 6. Comparison of calibration methods applied to simulated
data with errors in both spectra and concentrations (data set 3).

Figure 7. (a) Spectra for metal ion mixtures (data set 4) and (b)
corresponding standard deviations.

Analytical Chemistry, Vol. 69, No. 13, July 1, 1997 2307



In this approach, the calibration model is first constructed for a
particular analyte using all but one sample. The concentration of
the analyte in the excluded sample is then predicted using the
model, and the deviation from the expected concentration is
measured. This process is repeated so that each of the 128
calibration samples is excluded once, and a root-mean-square error
of cross-validation (RMSECV) is calculated by

where yi
pred and yi

ref are the predicted and reference concentrations,
respectively, of the analyte in the excluded sample, and Ncal is
the number of calibration samples. The RMSECV was calculated
for each of the three analytes in the mixtures. An overall or total
RMSECV was also calculated from

The RMSECV values calculated in this way give an indication of
the predictive ability of the model. However, it should be pointed
out that, for the PCR methods, two different approaches can be
used for cross-validation. In what will be referred to as “leave-
one-sample-out” cross-validation, PCA or MLPCA (as appropriate)
is carried out on the subset of 127 calibration samples, and the
results are used for calibration. In “leave-one-score-out” cross-
validation, all 128 samples are used for PCA or MLPCA, and these
results are retained for all subsequent calibrations, leaving the
appropriate score out when building the calibration models by
regression. In other words, the basis set is developed using all
128 samples, which are then projected onto the basis to obtain
the scores. The regression is carried out on the scores for each
combination of 127 samples, leaving one set of sample scores out
in each case for cross-validation. This approach is faster, since
PCA or (especially) MLPCA is only performed once (or once for
each model dimensionality in the case of MLPCA). Although
leave-one-score-out cross-validation can be considered a legitimate
approach in that it does not employ concentration information
about the prediction sample in the calibration procedure, purists
may argue that it is not as valid as the leave-one-sample-out
approach, which is completely blind to the prediction sample. For
this reason, both approaches are included in the results presented
here. As expected, the differences are very small, and the time
savings of the leave-one-score-out method is a factor of Ncal, an
important consideration with MLPCR, which is substantially
slower than PCR.

The results for data set 4 are presented in Table 1, which shows
the RMSECV for each method and analyte as a function of the
number of latent variables. The appropriate number of latent
variables for this data set should be three, but since experimental
realities such as offsets and nonlinearities can affect the optimum
number of latent variables, results are given for up to six factors.
The results are presented in tabular rather than graphical format
because the range of values and number of methods would
obscure a conclusive graphical interpretation. In addition to PCR,
PLS, MLPCR, and MLLRR, results are also given for weighted

PCR and PLS, using pooled standard deviations at each wave-
length as weighting factors. For all of the methods examined,
the predictive ability is poor when one or two latent variables are
used, as expected. The maximum likelihood methods generally
reach a performance plateau around three latent variables, where
the prediction errors level off, although there is some marginal
improvement with additional factors. For PCR and PLS, the
plateau is less distinct, with additional factors continuing to bring
further improvement. However, even with the addition of more
latent variables than are shown in the table, the cross-validation
errors for PCR and PLS did not reach the level of those for the
maximum likelihood methods (the minimum total error for both
methods was 0.38 mM, attained at 16 latent variables for PCR
and 10 for PLS). The differences between the maximum likeli-
hood methods and the conventional techniques are dramatic.
Compared to PCR, the cross-validation errors for the maximum
likelihood methods are more than an order of magnitude smaller
in most cases. PLS fares somewhat better, but the RMSECV
values are still substantially higher. Among the maximum
likelihood methods, the results for MLPCR and MLLRR are very
similar in most cases for this application. It will be also be noted
that there is little difference between the leave-one-score-out and
leave-one-sample-out cross-validation methods, as expected. In
this example, the weighted regression methods (WPCR and
WPLS) perform almost identically to the maximum likelihood
methods, but this is expected, since the variances are primarily

RMSECV )x∑
i)1

Ncal

(yi
pred - yi

ref)2/Ncal (24)

RMSECVtot )

x(RMSECVCo
2 + RMSECVCr

2 + RMSECVNi
2)/3 (25)

Table 1. Comparison of Calibration Methods for Data
Set 4 (Mixtures of Co, Cr, and Ni)a

number of latent variablescalibration
methodb species 1 2 3 4 5 6

MLPCR Co 10.68 6.34 0.32 0.32 0.19 0.17
Cr 3.07 3.11 0.11 0.11 0.07 0.07
Ni 24.35 17.98 0.38 0.37 0.33 0.33
total 15.45 11.15 0.29 0.29 0.23 0.22

MLPCR* Co 10.67 6.30 0.32 0.32 0.17 0.16
Cr 3.07 3.09 0.11 0.11 0.07 0.07
Ni 24.37 17.93 0.38 0.37 0.33 0.32
total 15.46 11.12 0.29 0.29 0.22 0.21

MLLRR Co 10.89 7.08 0.33 0.17 0.16 0.16
Cr 3.47 3.43 0.11 0.07 0.07 0.07
Ni 24.48 16.00 0.38 0.35 0.35 0.36
total 15.60 10.30 0.30 0.23 0.23 0.23

PCR Co 11.53 8.47 8.39 8.94 6.07 2.62
Cr 3.51 3.11 3.15 3.29 2.44 0.85
Ni 20.69 11.51 11.73 12.42 8.03 3.44
total 13.82 8.44 8.52 9.04 5.98 2.54

PCR* Co 11.53 8.42 8.27 8.33 5.80 2.46
Cr 3.50 3.11 3.11 3.09 2.33 0.79
Ni 20.69 11.48 11.57 11.53 7.63 3.18
total 13.82 8.41 8.40 8.41 5.69 2.37

PLS Co 11.58 9.43 1.72 1.49 0.63 0.60
Cr 3.55 2.87 0.79 0.58 0.46 0.42
Ni 20.41 8.83 2.35 1.09 0.97 0.70
total 13.70 7.64 1.74 1.12 0.72 0.58

WPCR Co 10.14 5.40 0.32 0.29 0.20 0.16
Cr 3.08 3.02 0.11 0.10 0.08 0.07
Ni 25.36 19.76 0.42 0.36 0.34 0.32
total 15.87 11.95 0.31 0.27 0.23 0.21

WPLS Co 10.14 5.43 0.32 0.29 0.23 0.16
Cr 3.08 3.03 0.11 0.10 0.08 0.07
Ni 25.37 19.85 0.42 0.37 0.36 0.32
total 15.87 12.01 0.31 0.28 0.25 0.21

a Values given are the root-mean-squared errors of cross-validation
(RMSECV) in millimolar. b Asterisk indicates leave-one-score-out cross-
validation as opposed to leave-one-sample-out cross-validation.
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dependent on the wavelength channel in this absorbance range.
As demonstrated for data set 2, differences from the weighted
methods are more obvious with errors that depend on signal
magnitude. For this application, we would expect to see a greater
effect at higher absorbance values. In any case, the utility of the
maximum likelihood methods is that they guarantee an optimal
estimation of the PCA subspace, which is not always assured with
scaling.

The remarkably poor performance of PCR in this example
motivated further examination of the reasons underlying the
differences observed. In conducting this investigation, it was
decided to focus on a comparison of PCR and MLPCR, since these
two methods are the most complementary. Two of the most
important factors influencing the performance of an analytical
method are the sensitivity of the technique and the noise in the
measurements. It is anticipated that, because of the nature of
the geometric projections used, the uncertainty in the scores will
be smaller for MLPCR than for PCR, but since such differences
can be difficult to quantify in the general case, it was decided to
focus on the sensitivity aspect. For first-order calibration methods,
the sensitivity is related to the net analyte signal (NAS) by

where ||‚|| indicates the Euclidean norm, or length, of the NAS
vector.13,14 The NAS for a given analyte is that part of the pure
analyte spectrum that is orthogonal to the spectra of all other
constituents in the mixture. The pure component spectra for a
p-component mixture can be represented as vectors in an n-
dimensional absorbance space (n ) number of wavelength
channels) and will define a p-dimensional subspace (hyperplane)
within that space. If the vector representing the spectrum of
analyte i (the analyte of interest) is now excluded, it is possible
to identify a vector that is orthogonal to the remaining vectors
and lies in the subspace defined by all p spectra. This vector is
called the contravariant vector,9 and it is the projection of the
analyte spectral vector onto the unit vector in this direction that
defines its NAS. Mathematically, if the pure component spectra
of all constituents are known, the NAS is defined as

where Ri is an n × (p - 1) matrix whose columns consist of the
pure component spectra for all constituents except the analyte, ri

is an n × 1 vector containing the analyte spectrum (normalized
to unit concentration), I is the n × n identity matrix, and NASi is
the net analyte signal vector for analyte i.

An obvious problem with eq 27 is that the spectra of all
constituents must be known. For situations where there are
unknown constituents, methods such as PCR are used to estimate
the NAS by regression against concentration. To make the
problem mathematically tractable, PCA is used as the first step
in PCR to identify the subspace of the pure component spectra.
Calibration spectra are projected into this space and regressed
against concentration. The NAS determined in the subspace,
which will be designated as NAS*, can then be transformed back

to the original space. The important equations are

In these equations, qi (p × 1) and Qi (p × (p - 1)) are analogous
to ri and Ri in eq 27 and represent “abstract spectra” in the
principal components space. NAS* represents the p × 1 net
analyte signal vector in the subspace, and NASPCR is the same
vector in the original absorbance space. Note that NASPCR is
distinguished from the “true” NAS in eq 27 since they will only
be identical in the ideal case. If, for example, PCA does not
correctly determine the subspace of the component spectra,
projection of individual spectra will result in a shorter vector and
reduced sensitivity.

In the present study, pure component spectra are available for
the three components in the mixture, and therefore, it is possible
to obtain the NAS directly as well as by PCR and MLPCR. Figure
8 shows the results of this calculation for cobalt using three latent
variables. Similar results were obtained for chromium and nickel,
which are not shown. Note that NAS obtained from direct
calculation and NASMLPCR are very similar and have the expected
shape. However, NASPCR is much smaller in magnitude than the
other two, and it is clear even without resorting to the calculation
of eq 27 that the sensitivity of PCR will be much lower. These
observations are consistent with results of Table 1. Note that the
small NAS for PCR does not derive from the regression step, since
none is used in this direct calculation method. Instead, it is
believed that the spectral space is poorly estimated by PCA as
compared to MLPCA, and subsequent projection into this space
reduces the sensitivity of PCR. A comparison of eigenvectors
produced by PCA and MLPCA is made in Figure 9, which shows
the loadings (abstract spectra) for each of the first three factors.
It will be noted that the first two factors are virtually identical for
both methods, but there are radical differences in the third factor.
While the third factor for MLPCA shows some meaningful
structure in the spectrally active region, the PCA results are(14) Lorber, A.; Kowalski, B. R. J. Chemom. 1988, 2, 67-80.

SEN ) ||NAS|| (26)

NASi ) (I - Ri(Ri
TRi)

-1Ri
T)ri (27)

Figure 8. Comparison of net analyte signal vectors calculated for
Co (data set 4) using different methods.

qi ) ṼTri (28)

Qi ) ṼTRi (29)

NASi* ) (I - Qi(Qi
TQi)

-1Qi
T)qi (30)

NASi
PCR ) Ṽ‚NASi* (31)
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essentially flat in this region and show contributions mainly in
the region dominated by noise. In other words, at the point at
which the third principal component is extracted, the residual
variance in the data set is dominated by the noise, and these are
the regions modeled by PCA. MLPCA, on the other hand, is able
to better account for the systematic variations. This is clearly
indicated by the calibration results.

As a final illustration of the power of the maximum likelihood
calibration methods developed here, consider data set 5. Based
on the typical spectrum shown in Figure 3, one would normally
choose to carry out PCR on a subset of the full spectral range,
e.g., in the region of 700-1600 nm. If the high-noise regions are
included, the PCR results are very poor due to the tendency of
the PCA decomposition to model the noise variance. On the other
hand, selecting a single region excludes other regions that may
be useful for calibration. A more refined variable selection
procedure could be used, but this normally relies on cross-
validation and is extremely time consuming. A better approach
is to apply MLPCR to the entire data set and allow the variance
information to determine the importance of each channel.

A comparison of PCR and MLPCR for data set 5 is presented
in Table 2 in terms of cross-validation errors (leave-one-score-out
method). PCR was carried out over the region 700-1600 nm,
while MLPCR was applied to the entire data set. For both
methods, optimum performance occurs around three latent
variables, as expected. It is clear that MLPCR generates models
with significantly better predictive ability for all three components.
Although it is not necessarily obvious from the spectra, it is
apparent from the results that the inclusion of additional wave-

length channels in the analysis improves the calibration model
through MLPCR. This is because important information exists
in the region above 1600 cm-1 on the shoulders of peaks that
saturate the detector. Thus, valuable information lost through
suboptimal wavelength selection can be recovered through
MLPCR.

It is also important to note that the results for data set 5 did
not rely on precisely correct standard deviation estimates since,
for all samples, these were based on 400 replicate scans for just
one sample (so wavelength scaling could also have been used
here). Correlations in the measurement errors, which are known
to exist, were also ignored. Nevertheless, this approximation was
sufficient to improve the calibration model. This suggests that
even approximate information on measurement errors, such as
that which might be provided by a skilled spectroscopist, can be
used to advantage in multivariate calibration.

CONCLUSIONS
It has been the objective of this work to describe the theoretical

basis of maximum likelihood multivariate calibration methods
(MLPCR and MLLRR) that are based on MLPCA and to present
results demonstrating their ability to provide superior calibration
models over conventional methods in certain cases. This objective
has been accomplished through the use of both computer-
generated and experimental data sets which showed that signifi-
cant improvements over PCR and PLS can be realized by including
measurement error information in the calibration procedure. In
the majority of cases, MLLRR provided better results than
MLPCR, but the improvement was often marginal for the cases
examined here.

This study was not intended to be exhaustive in its investigation
of the new methods and leaves open many issues concerning, for
example, situations under which maximum likelihood methods
should offer significant improvements, the relative merits of
MLPCR and MLLRR under different measurement conditions, the
role of measurement error covariance in the quality of a calibration
model, and more extensive comparisons with other methods.
Nevertheless, the underlying reasons for the improved results
have been described from a fundamental perspective using
standard figures of merit for multivariate calibration.

Two of the most common arguments against methods such
as MLPCR and MLLRR relate to the requirement for measurement
error variance estimates and the extended computation time
necessitated by the algorithm. The first argument asserts that
methods such as PCR require no variance information and are,
therefore, more universally applicable. This argument is decep-

Figure 9. Comparison of eigenvector loadings for PCA and MLPCA
applied to data set 4.

Table 2. Comparison of PCR and MLPCR for Data Set 5
(Organic Mixture)a

number of latent variablescalibration
methodb analyte 1 2 3 4 5 6

PCR (700- toluene 16.60 7.68 0.61 0.60 0.60 0.46
1600 nm) chlorobenzene 16.55 10.32 0.57 0.54 0.54 0.42

heptane 3.13 2.66 0.15 0.14 0.14 0.14
MLPCR (400- toluene 20.95 7.96 0.12 0.13 0.13 0.12

2500 nm) chlorobenzene 13.08 10.32 0.13 0.11 0.11 0.11
heptane 2.84 2.65 0.09 0.07 0.07 0.06

a Values given are the root-mean-squared errors of cross-validation
(RMSECV) in weight percent. b Leave-one-score-out cross-validation
was used for both methods.
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tive, since the use of PCR implicitly assumes that the measurement
errors are uniform, so variance information is, in fact, required.
In the absence of any knowledge of measurement error charac-
teristics whatsoever, an assumption of uniform errors may be
reasonable, but practitioners of PCR and similar methods should
be aware of the limitations that such assumptions impose. It is
the authors’ contention that some instinct for measurement error
characteristics on the part of the analyst is almost always present.
Even if measurement error variances are not directly available,
reasonable approximations of the error structure can be used
effectively with the maximum likelihood techniques, as was
demonstrated with data set 5. This should also be true even when
the error distribution is only approximately normal, or when an
exact covariance structure is not known. Finally, the results
presented here support the case for designing instruments which
provide measurement error information. Some instruments pres-
ently have this capability, but more often the information is
unavailable, even when the instrument has the fundamental ability
to provide it routinely from replicate scans (e.g., FT-IR spectrom-
eters).

It is true that the maximum likelihood methods presented here
are more computationally intense. However, the basic MLPCA
algorithm5 is quite simple to implement (about 30 lines of Matlab
code) and converges reliably without the need for any “fine tuning”
like many algorithms. Actual computation times vary with the
size of the matrix and error structure and have been described
elsewhere.5 In this work, time for calculations ranged from several
minutes to several days, with the longest times being observed
for leave-one-sample-out cross-validation for MLPCR and MLLRR.
As demonstrated here, leave-one-score-out cross-validation is
generally equivalent for MLPCR and reduces computation time
by a factor equal to the number of samples. This might typically
take a few hours. Unfortunately, it is not possible to perform leave-
one-score-out cross-validation for MLLRR because of the inclusion
of concentration information, which is a drawback to this method.
In any case, the time spent on calibration is still much less than
that typically required to obtain the experimental data, and past
history has demonstrated that computational barriers erode
quickly with advancing technology.

Beyond the broad utility that these methods may find in
practical situations, there is a more important aspect of their
development. Whereas many new techniques are simply modi-
fications of conventional methods designed to improve their utility,
MLPCR and MLLRR are generalizations of PCR and LRR,

respectively. In other words, PCR and LRR are special cases of
the parent techniques that apply under conditions of uniform error
variances. The development of general principles and methods
for incorporating measurement uncertainties into the calibration
process will allow the limitations and strengths of other calibration
techniques to be appreciated from a wider perspective, a feature
which is inherently valuable.

In the context of the preceding statement, the performance of
PLS in the results presented here can be examined. Direct
comparisons with PLS have been avoided until now because of
basic differences in the fundamental philosophy toward the
calibration process. It is generally viewed that, for systems with
a well-defined rank, PLS should provide results comparable to
those obtained with PCR when the correct number of latent
variables is used (although PLS may provide better results than
PCR when fewer latent variables are used). We have found this
to be the case when uniform measurement errors prevail, but in
cases where measurement errors are significantly nonuniform,
PLS consistently performed better than PCR, although it per-
formed worse than the maximum likelihood methods. This is
likely because PLS uses correlation with concentration data to
help exclude much of the noise variance. Based on this observa-
tion, one can speculate that the presence of nonuniform noise in
many other applications may be partly responsible for the relative
popularity of PLS over PCR in practical environments. This factor
may also be important in the relative success of wavelength
selection methods for some methods but not for others. Whatever
the reasons for these observations, further investigation is war-
ranted, and the maximum likelihood calibration methods pre-
sented here provide a unifying framework from which to better
understand the application of multivariate calibration methods to
chemical problems.
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