
Floating Point Numbers & Rounding Floating Point Arithmetic Rounding Error Analysis Condition Stability Fields of Application

2. Motivation and Introduction:

Numerical Algorithms in CSE – Basics and Applications

2. Motivation and Introduction: Numerical Algorithms in CSE

Numerical Programming I (for CSE), Hans-Joachim Bungartz page 1 of 46

http://www5.in.tum.de/persons/bungartz.html


Floating Point Numbers & Rounding Floating Point Arithmetic Rounding Error Analysis Condition Stability Fields of Application

What is Numerics?

• Numerical Mathematics:

– Part of (applied) mathematics.
– Designing computational methods for continuous problems mainly in linear

algebra (solving linear equation systems, finding eigenvalues etc.) and
calculus (finding roots or extrema etc.).

– Often connected to approximations (solving differential equations, computing
integrals) and therefore somewhat atypical for mathematics.

– Analysis of numerical algorithms: memory requirements, computing time, if
approximations: accuracy of approximation.

• Numerical Programming:

– Branch of computer science.
– Efficient implementation of numerical algorithms (memory economical,

considering hardware settings (e.g. cache), parallel).
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• Numerical Simulation:

– Main field of application of numerical methods.
– Present in nearly every discipline of science and engineering
– It provides the third possibility of knowledge acquisition, the other two

“classics” being theoretical examination and experiment
– All times it has been the main occupation of high performance computers

(supercomputer or number cruncher).
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The Principle of Discretization

• In numerics, we have to deal with continuous problems, but computers can in
principle only handle discrete items:

– Computers do not know real numbers, particularly no
√

2, no π, and no 1/3,
but only approximations of discretely (separately, thus not densely) lying
numbers.

– Computers do not know functions such as the sine, but only know
approximations consisting of simple components (e.g. polynomials).

– Computers do not know complicated regions such as circles but only
approximations, e.g. by a set of pixels.

– Computers don’t know operations such as differentiation but only
approximations, e.g. by the differential quotient.

• The magic word for the successful transition “continuous → discrete” is called
discretization. We discretize

– real numbers by introduction of floating point numbers, see section 2.1;
– regions (e.g. time intervals when solving ordinary differential equations

numerically (see chapter 8) or spatial regions when solving partial differential
equations numerically) by introducing a grid of discrete grid points;

– operators such as d/dx by forming differential quotients from function values
in adjacent grid points.
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Discrete terrain model (right) including contour lines (left)
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2.1. Floating Point Numbers and Rounding

Discrete and Finite Sets of Numbers

• The set R of real numbers is unbounded and continuous (between two distinct real
numbers always lies another real number), there are infinitely, even uncountably
many real numbers.

• The set Z of integers is discrete with constant distance 1 between two neighboring
numbers, but it is also unbounded.

• The set of numbers that can be exactly represented by a computer is inevitably
finite, and hence discrete and bounded.

• The probably easiest realization of such a set of numbers and of the arithmetic
using it, is integer arithmetic:

– only using integers, typically in a range [−N, N ] or [−N + 1, N ]

– apparent disadvantage: big problems where everything is continuous
(derivatives, convergence, ...)
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• The so called fixed point arithmetic also allows non-integers:

– working with decimal numbers with a constant number of digits left and right
of the decimal point, typically in a range such as [-999.9999, 999.9999] with
(as in Z) a set distance between neighboring numbers

– obvious disadvantage: fixed range of numbers, frequent overflow
– observation: between 0 and 0.001 additional numbers are often wished for,

whereas between 998 and 999 a rougher partition would be sufficient.

• A floating point arithmetic also works with decimal numbers, but allows a
varying position of the decimal point and therefore a variable size and a variable
location of the representable range of numbers.
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Floating Point Numbers – Definition

• Definition of normalized t-digit floating point numbers to basis B
(B ∈ N \ {1}, t ∈ N):

FB,t :=
n

M ·BE : M = 0 or Bt−1 ≤| M |< Bt, M, E ∈ Z
o

.

– M is called mantissa, E exponent.
– The normalization (no leading zero) assures uniqueness of the

representation: 1.0 · 102 = 0.1 · 103.
– discrete set of numbers, infinite range of numbers.
– We assume a varying distance between neighboring numbers (constant

number of subdivisions, independent of the exponent).

• The adoption of a feasible range for the exponent leads to the machine numbers:

FB,t,α,β :=
˘
f ∈ FB,t : α ≤ E ≤ β

¯
.

– The quadruple (B, t, α, β) completely characterizes the system of those
machine numbers, in computers such a system is used most times.

– Of a concrete number therefore M and E have to be saved.

• Often the terms floating point number and machine number are used
interchangeably; normally B and t are clear in context, which is why we will only
write F in the following.
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• Example (note 5441010 = 311020224):

126880 · 10−34 : B = 10, t = 6, M = 126880 ∈ [105, 106[, E = −34 ,

40001 · 23 : B = 2, t = 16, M = 40001 ∈ [215, 216[, E = 3 ,

−54110 · 40 : B = 4, t = 8, |M | = 54110 ∈ [47, 48[, E = 0 .
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Floating Point Numbers – Range of Representable Numbers

• The absolute distance between two neighboring floating point numbers is not
constant:

– Consider for instance the pairs of neighbors 9998 · 100 and 9999 · 100

(distance 1) as well as 1000 · 10−7 and 1001 · 10−7 (distance 10−7) in case
B = 10 and t = 4.

– If the absolute values of the numbers become bigger, the “mesh width” of the
discrete grid of floating point numbers also increases – we get a logarithmic
scale.

– That’s reasonable: a million doesn’t make a big difference to national debt but
considering one’s own wage a 100 euros difference carries more or less
weight for most people.

– Overall, the usage of floating point numbers increases the range of
representable numbers compared to fixed point numbers.
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• The maximal possible relative distance between two neighboring floating point
numbers is called resolution %. It holds:

(|M |+ 1) ·BE − |M | ·BE

|M | ·BE
=

1 ·BE

|M | ·BE
=

1

|M |
≤ B1−t =: % .

• For the boundaries of the representable region, we get:

– smallest positive machine number: σ := Bt−1 ·Bα

– biggest machine number: λ := (Bt − 1) ·Bβ
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Floating Point Numbers – Examples

• Famous and most important example is the floating point number format set by
the IEEE (Institute of Electrical and Electronics Engineers), which is defined in the
US norm ANSI/IEEE-Std-754-1985 and traces back to a patent of Konrad Zuse
from the year 1936 (!):

level B t α β % σ λ

single precision 2 24 −149 104 2−23 2−126 =̇2128

double precision 2 53 −1074 971 2−52 2−1022 =̇21024

extended precision 2 64 −16445 16320 2−63 2−16382 =̇216384

• Single precision hence corresponds to approx. 6 to 7 decimal digits, at double
precision approx. 14 decimal digits are stored.

• Exactly those definitions are behind the nomenclature used in standard
programming languages (e.g FLOAT or DOUBLE in C).
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Floating Point Numbers – Exceptions

Exceptions in which one has to rely on correct troubleshooting by the system’s
arithmetic:
• NaN (Not-a-Number): undefined value, implemented as quiet (inherits quietly) or

signalizing (activates alert)

• Exponent overflow: absolute value of the number is bigger than λ

• Exponent underflow: absolute value of the number is smaller than σ (threatens
to happen e.g. if comparing a < b is realized by comparing their difference with 0).
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The Principle of Rounding

• As floating point numbers are also discrete, certain real numbers can slip. Each of
those has to be sensibly assigned to a fitting floating point number – we round
off, the according transformation is called rounding.

• For every arbitrary x ∈ R exists exactly one left and one right neighbor in F:

fl(x) := max{f ∈ F : f ≤ x} , fr(x) := min{f ∈ F : f ≥ x} .

In the special case x ∈ F it of course holds fl(x) = fr(x) = x.

• An explicit formula for the floating point numbers of x > 0, x = (M + δ) ·BE ,
0 ≤ δ < 1 is given by

fl(x) = M ·BE , fr(x) =


fl(x) if δ = 0 ,
(M + 1) ·BE otherwise .

• Reasonable postulations for a rounding method rd : R → F are:

– surjectivity: ∀f ∈ F ∃x ∈ R with rd(x) = f

– idempotence: rd(f) = f for all f ∈ F
– monotony: x ≤ y ⇒ rd(x) ≤ rd(y) ∀x, y ∈ R

• There are different ways to round sensibly (i.e. following the above postulates).
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Types of Rounding

• We distinguish between three important types of directed rounding:

– At rounding down the number is mapped onto the left neighbor:

rd−(x) := fl(x) .

– At rounding up it is accordingly mapped to the right neighbor:

rd+(x) := fr(x) .

– Chopping off maps the number onto the neighbor closer to zero:

rd0(x) :=


fl(x) if x ≥ 0 ,
fr(x) if x ≤ 0 .

The idea that underlies this notation is to neglect (chop off) every digit from a
certain decimal place onward.
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• In practice, the most important form of rounding is correct rounding, which
doesn’t know a preferred direction:

rd∗(x) :=

8<: fl(x) if x ≤ fl(x)+fr(x)
2

,

fr(x) if x ≥ fl(x)+fr(x)
2

,

plus a rule for the procedure in the case of x = ..., i.e. if x lies exactly in the middle
of its two neighbors (e.g. rounding such that the resulting mantissa is even).

• You can easily check that all four ways of rounding introduced here are surjective,
idempotent, and monotonous.
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The Relative Rounding Error

• Due to rounding, errors are inevitable in numerical computations. We distinguish:

– absolute rounding error: rd(x)− x

– relative rounding error: rd(x)−x
x

, if x 6= 0

• As the whole construct of floating point numbers is aiming at a high relative
precision, the rounding error will play the decisive role for every analysis. This
error has to be estimated to judge the possible effect of rounding errors in a
numerical algorithm.

• If identifying the relative rounding error with ε, from the formula above directly
follows

rd(x) = x · (1 + ε) ∀x ∈ R .

• For the relative rounding error the following bounds apply:

– directed rounding:
| ε | ≤ %

– correct rounding:

| ε | ≤
1

2
%

• Therefore, the relative rounding error is directly linked to the resolution.
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Rounding Errors – a Dramatic Example

• In the second gulf war an American patriot missile missed an approaching Iraqi
Scud missile on February 25, 1991 in Saudi Arabia. The Scud missile hit barracks
killing 28 US soldiers.

• The cause was a rounding error:

– The interior clock of the patriot missile saved the time elapsed since booting
up the system in tenths of seconds (24-Bit-register).

– As the tenth of a second is not exactly representable in a binary system, only
the first 24 digits were used for calculations, and a resulting rounding error
occurred:

0.1 s = (0.0001100)2 s ≈ 0.00011001100110011001100 s ,

error ≈ 9.5 · 10−8 s .

– Since booting up the last time, the system hadn’t been shut down.
– After 100 hours of operation, the rounding error had accumulated to

100 · 60 · 60 · 10 · 9.5 · 10−8 tenths of a second ≈ 0.34 seconds .

– During this time the Scud missile covered a distance of about 570 metres and
couldn’t be detected by the Patriot missile’s sensors anymore.
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2.2. Floating Point Arithmetic

Calculating with Floating Point Numbers

• At mere rounding of numbers, the exact value is known. That changes already
with the simplest calculations:

– From the first arithmetic operation on only approximations are operated with.
– The exact execution of basic arithmetic operations ∗ ∈ {+,−, ·, /} in the

system F of floating point numbers is usually impossible – even when using
arguments of F: How can the sum of 1234 and 0.1234 be exactly
represented with four digits?

• Therefore, we need a “clean” floating point arithmetic that avoids building up
accumulated errors.

• Notation:
– a ∗ b ∈ R and usually a ∗ b /∈ F for the exact result of the arithmetic operation ∗
– a ∗̇ b ∈ F for the actually computed result of the arithmetic operation ∗

• Interesting again is the relative error

ε(a, b) :=
a ∗̇ b− a ∗ b

a ∗ b
, for a ∗ b 6= 0.

• The varying postulations for a “clean” floating point arithmetic now differ in the
postulations for a ∗̇ b.
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The Ideal Floating Point Number Arithmetic

• What is ideal in the sense of floating point numbers?
– Without question, the computed result has to match the rounded exact result:

a ∗̇ b = rd(a ∗ b) ∀a, b ∈ F, ∀∗ ∈ {+,−, ·, /} .

– Reason: This error is inevitable – even when the exact result is known, after
all the exact result also has to be forced into the corset of F, i.e. it has to be
rounded.

– Such an ideal arithmetic is not utopia but possible. The IEEE standard
requests it for the basic operations in binary floating point arithmetic and even
for square roots, namely for all three introduced accuracy levels and for all
four introduced types of rounding.

• With this, we get bounds for the rounding error of our arithmetic operations in the
ideal arithmetic:

a ∗̇ b = rd(a ∗ b) = (a ∗ b)(1 + ε(a, b)) ∀a, b ∈ F

with

| ε(a, b) | ≤ ε̄ =
1

2
% bzw. % (depending on the type of rounding) .

• The variable ε̄ is called machine accuracy or computational accuracy and
depends only on the parameters B and t of the floating point arithmetic.
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Relaxations

• Although an ideal arithmetic technically is feasible, in some computers only an
alleviated version is realized.

• strong hypothesis:
– There exists an ε̃ = O(%) that bounds the relative error in every case:

a ∗̇ b = (a ∗ b)(1 + ε(a, b))

with
| ε(a, b) | ≤ ε̃ .

– The strong hypothesis applies for most computers.
• weak hypothesis:

– With ε̃ from above only holds

a ∗̇ b = (a(1 + ε1)) ∗ (b(1 + ε2))

with
| ε1 |, | ε2 | ≤ ε̃ .

– That means, there is no direct functional dependency of the calculated result
on the exact result anymore.

– At least this weak postulation applies for nearly every computer.
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Surprising Properties of Floating Point Arithmetic

• The floating point operators ∗̇ do not have the same properties as their “authentic”
pendants.

• We will study this at the example of floating point addition +̇:

– The floating point addition is not associative.
– Depending on the order of execution of calculation, different final results can

occur.

• For demonstration, the numbers 220, 24, 27, −23 as well as −220 shall be added.
The exact result is 136. Depending on the bracketing of the summands we get
different results when calculating with 8 binary digits:

(((220 +̇ − 220) +̇ 24) +̇ − 23) +̇ 27 .
= 136

220 +̇ (−220 +̇ (24 +̇ (−23 +̇ 27)))
.
= 0

(220 +̇ (−220 +̇ 24)) +̇ (−23 +̇ 27)
.
= 120

(220 +̇ ((−220 +̇ 24) +̇ − 23)) +̇ 27 .
= 128
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2.3. Rounding Error Analysis

A-priori Rounding Error Analysis

• A numerical algorithm is a finite sequence of basic arithmetic operations with a
clearly defined order.

• The floating point arithmetic presents an essential source of error in numerical
algorithms.

• Therefore, the most important goals in this regard for a numerical algorithm are:

– small discretization error: as little influence of discretization as possible
– efficiency: minimal runtime
– small rounding error: as little influence of (accumulated) rounding errors as

possible

• The latter goal requires an a priori rounding error analysis:

– Which bounds can be determined for the total error assuming a certain
quality of the basic operations?
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Forward and Backward Error Analysis

• For the a priori rounding error analysis there are two obvious strategies:

– Forward analysis: Interpret the computed result as perturbed exact result
(practical, because that leads directly to the relative error, however in general,
it is very difficult to calculate due to error correlation).

– Backward analysis: Interpret the computed result as the exact result of
perturbed input data (the easier and more popular method)

– Interpretation of the backward analysis: If the input perturbations due to
rounding error analysis are of the same order as their blurring (usually most
times anyway (for reasons of measurements e.g.) given), then everything is
alright with the algorithm in this regard.

• Note: The weak hypothesis only allows for backward analysis, the strong
hypothesis and the ideal arithmetic allow for a backward and a forward
interpretation, whereby the relative error of the computed result is bounded by ε in
every case:

a+̇b = (a + b)(1 + ε) = a(1 + ε) + b(1 + ε)

a·̇b = ab(1 + ε) = a
√

1 + ε · b
√

1 + ε

forward backward
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An Example: The Horner Scheme

• Task: Find the value y := p(x) of the polynomial p(x) :=
Pn

i=0 aix
i for a

given x.
• Algorithm: Horner scheme

y := (. . . (((anx + an−1)x + an−2)x + an−3) . . . + a1)x + a0

or

y := a[n];
for i:=n-1 downto 0 do y:=y*x+a[i] od;

• For every step according to the strong hypothesis, we have

ỹ := (ỹ · x · (1 + µi) + ai) · (1 + αi)

with αi and µi bounded by ε̃.
• Transformations provide

ỹ =
nX

i=0

ãix
i

with
ãi := ai · (1 + αi) · (1 + µi−1) · . . . · (1 + α0) , αn := 0 .

• That means: The computed value ỹ can be interpreted as exact value of a
polynomial with slightly differed coefficients.
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2.4. The Concept of Condition

Definition and Examples

• Condition is a very crucial, but most times only qualitatively defined concept of
numerics:

– How sensitive is the result of a problem concerning changes in the input?
– At high sensitivity we speak of bad condition or an ill-conditioned

problem, if the sensitivity is low we speak accordingly of good condition
and a well-conditioned problem.

• Very important: The condition number is a property of the examined problem, not
of the used algorithm.

• Examples:

– Solving a linear system of equations Ax = b:
Input data is A ∈ Rn,n and b ∈ Rn, result is x ∈ Rn.

– Compute the roots of a polynomial of order n with real coefficients:
Input data are the polynomial coefficients a0, ..., an, result are the n
(complex) roots of p.

– Compute the eigenvalues of a matrix A:
Input data is the matrix A ∈ Rn,n, results are all complex λ with Ax = λx for
an eigenvector x different from zero.
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Well- and Ill-Conditioned Problems

• Perturbations δx in the input data have to be studied because the input is often
imprecise (obtained by measuring or from former calculations) and, thus, such
perturbations occur frequently, even at exact computing.

• well-conditioned problems:

– A rule to keep in mind: Small δx lead to little perturbations δy of the results.
– Perturbations of the input, thus, are relatively uncritical.
– Here it pays to invest in a good algorithm.

• ill-conditioned problems:

– Rule to keep in mind: Even smallest δx can lead to big δy.
– The solution reacts in an extremely sensitive way to perturbations of the input.
– Here, even excellent algorithms generally have difficulties.

• From the perspective of a numerical programmer:

– Ill-conditioned problems are very difficult (in extreme cases even impossible)
to deal with numerically.

– Every error in the input data, every inaccuracy in the run-up by rounding can
distort the computed result completely when the problem is ill-conditioned.
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Condition of the Basic Arithmetic Operations

• We examine the arithmetic basic operations. Those obviously represent a
numerical problem and, thus, have a condition number.

• For this purpose, we quantify the concept of condition and introduce the absolute
condition as the difference between exact result with exact input data and exact
result with perturbed input data,

δ(a ∗ b) := (a + δa) ∗ (b + δb)− a ∗ b ,

and as the relative condition the quotient

δ(a ∗ b)

a ∗ b

(thus de facto a relative error).
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• The following shows the resulting condition numbers or the leading order term in
each case (higher, for example square terms in the perturbations δa and δb are
neglected):

operation absolute condition relative condition

addition/subtraction δa± δb (δa± δb)/(a± b)

multiplication ≈ b · δa + a · δb δa/a + δb/b

division ≈ δa/b− a · δb/b2 δa/a− δb/b

square root ≈ δa/(2
√

a) δa/(2a)

• At multiplication, division, and square root the relative condition number stays
within the relative input perturbation δa

a
and δb

b
.

• Unlike at the real subtraction (equal signs of a and b): If the exact result is close to
zero, the relative condition can become arbitrarily large.

2. Motivation and Introduction: Numerical Algorithms in CSE

Numerical Programming I (for CSE), Hans-Joachim Bungartz page 29 of 46

http://www5.in.tum.de/persons/bungartz.html


Floating Point Numbers & Rounding Floating Point Arithmetic Rounding Error Analysis Condition Stability Fields of Application

The Phenomenon of Cancellation

• Cancellation describes the effect occurring at the subtraction of two numbers with
same signs that leading identical digits cancel each other, that means leading
non-zeros disappear. The number of relevant digits can be reduced dramatically.

• Loss of significance impends particularly when both numbers are of the same
order of magnitude and sign.

• Examples:

– Subtract 4444.4444 from 4444.5555. Both numbers have eight significant
digits, the result only has four!

– Subtract 999999 from a million. We assume a perturbation of ±1 for both
numbers and, beside the exact result 1, get the exactly calculated result of
the perturbed numbers:

(1000000 + 1)− (999999− 1) = 3 .

Hence, the relative error or, rather, the relative condition number is

δ(a− b)

a− b
=

3− 1

1
= 2 ,

although the relative perturbation of the input data was only of the order
O(10−6).
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• This gets even more alarming for complete cancellation, i.e. when the exact result
would be zero – in this case the relative error becomes infinitely big.

• A nice example: Compute e−20 via the known expansion of the exponential
function. Keep adding up until the value does not change anymore. Observation:
Instead of the correct value of approximately 2.061 · 10−9 a completely incorrect
result may be delivered due to cancellation!
When computing with 7 digits, the Maple program

x := -20;
n := 100;
y := 1.0;
s := 1.0;
Digits := 7;
for i from 1 to n do

y := y*x/i;
s := s+y;

od;
s;

delivers the result 7.014115, for 14 digits (Digits := 14) 9.253 · 10−7, for 21
digits indeed the correct 2.061 · 10−9.

2. Motivation and Introduction: Numerical Algorithms in CSE

Numerical Programming I (for CSE), Hans-Joachim Bungartz page 31 of 46

http://www5.in.tum.de/persons/bungartz.html


Floating Point Numbers & Rounding Floating Point Arithmetic Rounding Error Analysis Condition Stability Fields of Application

e
−20 ≈ S(n)

n S(n)
1 −19.0
2 181.0
3 −1152.333

. . . . . .
7 −186231.6
8 448688.6

. . . . . .
30 1.599699 · 106

31 1.011906 · 106

32 620347
. . . . . .
41 −2124.511
42 1005.751
43 −450.185
. . . . . .
58 7.014426
59 7.014010
60 7.014149
61 7.014104
62 7.014119
63 7.014114
64 7.014115
65 7.014115
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The Condition of Compound Problems

• Usually the condition of a problem p(x) to the input x is not defined as above by a
simple difference (thus by the relative error) but by the derivative of the result w.r.t.
the input:

cond(p(x)) :=
∂p(x)

∂x
.

• When decomposing the problem p into two or more subproblems, the result is
(due to the chain rule)

cond(p(x)) = cond(r(q(x))) =
∂r(z)

∂z
|z=q(x) ·

∂q(x)

∂x
.

• Of course, the total condition of p(x) is independent of the decomposition, but the
partial conditions do depend on it. This might lead to problems:

– Let p be well-conditioned with an excellently conditioned first part q and
lousily conditioned second part r.

– If now errors occur in the first part, those could lead to a catastrophe in the
second part.

– Consider: ∂p
∂x

= O(10−10) , ∂r
∂z

= O(1010) , ∂q
∂x

= O(10−20) .

Rounding errors in the first step of order O(10−14) will be inflated to the
dimension of O(10−4) by r during the second step – and, hey presto, there
are only 4 significant digits left, although p was that well-conditioned!
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Example 1: The Symmetric Problem of Eigenvalues

• As an example, we examine the problem of finding the n real eigenvalues of a
symmetric matrix A = AT ∈ Rn,n.

• The complete problem is very well-conditioned: Little perturbation of the input (the
elements of the matrix) only leads to small perturbations of the eigenvalues.

• A solution strategy well-known from linear algebra provides a decomposition into
the two subproblems “setting up the characteristic polynomial” and ”finding its
roots”:

– The first subproblem is perfectly conditioned, the second one lousily: Even
errors in the last significant digit of the polynomial’s coefficients lead to a
completely different graph, therefore, to a different position of the roots.

– Therefore, the total result is completely useless (cf. chapter Interpolation –
finding roots of polynomials should always be avoided as a subproblem).

– The consequence: The eigenvalues of A certainly must not be determined in
this way.

– For comfort: There are other ways, i.e. without ill-conditioned subproblems.

2. Motivation and Introduction: Numerical Algorithms in CSE

Numerical Programming I (for CSE), Hans-Joachim Bungartz page 34 of 46

http://www5.in.tum.de/persons/bungartz.html


Floating Point Numbers & Rounding Floating Point Arithmetic Rounding Error Analysis Condition Stability Fields of Application

Example 2: The Intersection Point of Two Non-Parallel
Straight Lines

• In the plane, the point of intersection of two straight non-parallel lines ax + by = c
and dx + ey = f is to be determined:

– Input data: the coefficients a, b, c, d, e, f of the linear equations
– Result: the coordinates x̄ and ȳ of the intersection point

• Geometrically, it is clear:
– If the lines run almost orthogonally, the problem of determining the

intersection point is very well-conditioned.
– On the contrary, if the lines run almost parallel, the problem of determining

the intersection point is very ill-conditioned.
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2.5. The Concept of Stability

Numerically Acceptable Results

• With the concept of condition we are now able to characterize problems. Now we
will have a look at the characterization of numerical algorithms.

• As we have already seen, input data can be perturbed. Phrased mathematically,
that means that they are only fixed within a certain tolerance, meaning they lie e.g.
in a neighborhood

Uε(x) := {x̃ : |x̃− x| < ε}

of the exact input x. Hence, any such x̃ has to be considered as virtually equal to
x. With this, the following definition suggests itself:

• An approximation ỹ for y = p(x) is called acceptable, if ỹ is the exact solution to
one of the above x̃, thus

ỹ = p(x̃) .

• In literature varying weaker definitions can be found.

• The proof of acceptability can be – similar to backward calculation at rounding
error analysis – carried out by a validation computation.
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• The occurring error ỹ − y has different sources:

– rounding errors
– method or discretization errors: Series and integrals are approximated by

sums, derivatives by difference quotients, iterations will stop after a few
iteration steps.
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Numerically Stable Algorithms

• Stability is another vital concept in numerics. A numerical algorithm is called
(numerically) stable, if for all permitted input data perturbed in the size of
computational accuracy O(ε̃) acceptable results are produced under the influence
of rounding and method errors.

• A stable algorithm can definitely produce large errors – for example when the
problem to solve is ill-conditioned. In this case, acceptable results can be
positioned far away from the exact results.

• What is stable, what is unstable?

– The basic arithmetic operations are numerically stable under the precondition
of the weak hypothesis.

– Compositions of stable methods are not necessarily stable – otherwise the
declaration above would indicate everything being numerically stable.

– For methods to numerically solve ordinary and partial differential equations,
stability is a very vital topic. For the former, see chapter Ordinary Differential
Equations.
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Example of an Unstable Algorithm

• A simple example shall clarify the phenomenon of stability. The bigger root of the
quadratic equation

x2 + 2px− q = 0

is to be found, namely for the concrete input data

p = 500, q = 1 .

• The formula
x :=

p
p2 + q − p

familiar from school delivers
√

250001− 500 = 0.00099999900... .

• When computing with 5 digits, the computed result however is zero. Zero can only
be root for the input q = 0 – which however is no modification within the computing
accuracy O(10−5).

• Therefore, the computed result is not acceptable and the algorithm is instable.
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• Note that at p = q = 1 no problems occur – not even when computing with 5 digits.

• The rescue: Transform the above formula into

x :=
qp

p2 + q + p
.

This formula presents a stable calculation instruction.

• What does instable behavior look like?

– For example it takes the form of oscillations: The computed approximate
solution for an ordinary differential equation oscillates around the exact
solution and, therefore, shows a totally different behavior than the exact
solution – so it can’t be an acceptable result.
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2.6. Fields of Application – Numerical Methods in CSE

Geometric Modeling

• Geometric modeling or CAGD (Computer-Aided Geometric Design) deals with
the modeling of geometric objects on a computer (car bodies, dinosaurs for
Jurassic Park, . . . ).

• Especially for nonlinear curves and surfaces there are a number of numerical
methods including efficient algorithms for their generation and modification:

– Bézier curves and surfaces
– B-spline curves and surfaces
– NURBS (Non-Uniform Rational B-Splines)

• Such methods are based on the methods of interpolation of chapter 3.
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Computer Graphics

• Computer graphics is a very computationally intensive branch of computer
science:

– At ray tracing, to compute highlight and reflection effects, very many
intersection points of rays with objects of the scenery have to be computed –
which leads to the problem of solving a system of linear or nonlinear
equations (see chapters 5 and 7).

– At the radiosity method for computing diffuse illumination, a large linear
system of equations is constructed which usually has to be solved iteratively
– this is covered in chapter 7.

– All computer games or flight simulations require very powerful numerical
algorithms due to their real time characteristics.
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Visualization

• Visualization has developed from a branch of computer graphics to an
independent domain. In visualization, numerical computations are carried out in
numerous places:

– Particle Tracing is a possibility to visualize numerically simulated flows.
Here, many virtual particles are brought into the computed flow field to make
it visible on the basis of their paths (vertices etc.). To compute the paths of
the particles, ordinary differential equations have to be solved. We will learn
more about methods to accomplish this in chapter 8.

– Volume visualization deals with the visualization of three-dimensional data,
for example from the area of medicine. To make far away details visible the
intensities along the rays are integrated – through numerical methods such
as those described in chapter 4.
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Image Processing

• Image processing without numerical methods is also unthinkable. Almost all
filters and transformations are numerical algorithms, most times related to the fast
Fourier transformation (FFT).

• In addition, most methods for image compression (such as JPEG) rely on
numerical transformations (discrete cosine transformation, wavelet transformation)

• We will have a quick look at those transformations in chapter 4.
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Numerical Simulation & High Performance Computing

• The links to numerics are nowhere as strong as in High-Performance Scientific
Computing, i.e. the numerical simulation on high-performance computers – a
core topic for us in CSE!

• Supercomputers spend a major part of their lives with numerical calculations,
that’s why they are trimmed especially on floating point performance – a care topic
for us in CSE!

• Here, efficient methods to solve differential equations numerically are needed – a
first foretaste of this will be given in chapter 8.

2. Motivation and Introduction: Numerical Algorithms in CSE

Numerical Programming I (for CSE), Hans-Joachim Bungartz page 45 of 46

http://www5.in.tum.de/persons/bungartz.html


Floating Point Numbers & Rounding Floating Point Arithmetic Rounding Error Analysis Condition Stability Fields of Application

Control

• Process computers in particular have to deal with control.

• One possible mathematical description of control processes uses ordinary
differential equations whose numerical solution will be discussed in chapter 8.

building up damped oscillation
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