
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 1

Fast construction of k-Nearest Neighbor Graphs
for Point Clouds

Michael Connor, Piyush Kumar

Abstract—We present a parallel algorithm for k-nearest neighbor graph construction that uses Morton ordering. Experiments show that
our approach has the following advantages over existing methods: (1) Faster construction of k-nearest neighbor graphs in practice on
multi-core machines. (2) Less space usage. (3) Better cache efficiency. (4) Ability to handle large data sets. (5) Ease of parallelization
and implementation. If the point set has a bounded expansion constant, our algorithm requires one comparison based parallel sort of
points according to Morton order plus near linear additional steps to output the k-nearest neighbor graph.

Index Terms—Nearest neighbor searching, point based graphics, k-nearest neighbor graphics, Morton Ordering, parallel algorithms.

F

1 INTRODUCTION

This paper presents the design and implementation of a
simple, fine-grain parallel and cache-efficient algorithm
to solve the k-nearest neighbor graph computation prob-
lem for cache-coherent shared memory multi-processors.
Given a point set of size n it uses only O(n) space.
We show that with a bounded expansion constant γ (as
described in [15]), using p threads (assuming p cores are
available for computation) we can compute the k-NNG
in O(dn

pek log k) unit steps, plus one parallel sort on the
input. We also present extensive experimental results on
a variety of architectures.

The k-nearest neighbor graph problem is defined as
follows: given a point cloud P of n points in Rd and
a positive integer k ≤ n − 1, compute the k-nearest
neighbors of each point in P . More formally, let P =
{p1, p2, . . . , pn} be a point cloud in Rd where d ≤ 3. For
each pi ∈ P , let N k

i be the k points in P , closest to pi. The
k-nearest neighbor graph (k-NNG) is a graph with vertex
set {p1, p2, . . . , pn} and edge set E = {(pi, pj) : pi ∈
N k

j or pj ∈ N k
i }. The well known all-nearest-neighbor

problem corresponds to the k = 1 case. For the purpose
of this paper we are constraining ourselves to Euclidean
distance, as well as low dimensions.

The problem of computing k-nearest neighbor graph
computation arises in many applications and areas in-
cluding computer graphics, visualization, pattern recog-
nition, computational geometry and geographic informa-
tion systems. In graphics and visualization, computation
of k-NNG forms a basic building block in solving many
important problems including normal estimation [18],
surface simplification [24], finite element modeling [8],

• Michael Connor and Piyush Kumar are with the Department of Computer
Science, Florida State University, Tallahassee, FL 32306. This research was
funded by NSF through CAREER Award CCF-0643593.
E-mail: {miconnor,piyush}@cs.fsu.edu. Software available at :
http://compgeom.com/∼stann.

Manuscript received Oct 19, 2008; revised January 11, 2007.

shape modeling [25], watermarking [11], virtual walk-
throughs [7] and surface reconstruction [1], [13]. With
the growing sizes of point clouds, the emergence of
multi-core processors in mainstream computing and the
increasing disparity between processor and memory
speed; it is only natural to ask if one can gain from the
use of parallelism for the k-NNG construction problem.

The naive approach to solve the k-NNG construction
problem uses O(n2) time and O(nk) space. Theoretically,
the k-NNG can be computed in O(n log n + nk) [4]. The
method is not only theoretically optimal and elegant
but also parallelizable. Unfortunately, in practice, most
practitioners choose to use variants of kd-tree imple-
mentations [18], [23], [8] because of the high constants
involved in theoretical algorithms [29], [4], [9], [12]. In
low dimensions, one of the best kd-tree implementations
is by Arya et al. [2]. Their kd-tree implementation is
very carefully optimized both for memory access and
speed, and hence has been the choice of practitioners
for many years to solve the k-NNG problem in point
based graphics [18], [25], [8]. In our experiments we use
this implementation as a basis of comparison, and results
indicate that for k-NNG construction our algorithm has
a distinct advantage.

Our method uses Morton order or Z-order of points,
a space filling curve that has been used previously for
many related problems. Tropf and Herzog [27] present
a precursor to many nearest neighbor algorithms. Their
method uses one, unshifted Morton order point set
to conduct range queries. The main drawbacks of their
method were: (1) It does not allow use of non-integer
keys. (2) It does not offer a rigourous proof of worst case
or expected run time, in fact it leaves these as an open
problem. (3) It offers no scheme to easily parallelize their
algorithm. Orenstein and Merrett [22] described another
data structures for range searching using Morton order
on integer keys [19]. Bern [3] described an algorithm
using 2d shifted copies of a point set in Morton order
to compute an approximate solution to the k-nearest

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 2

neighbor problem. This paper avoids a case where two
points lying close together in space are far away in
the one-dimensional order, in expectation. In all these
algorithms, the Morton order was determined using
explicit interleaving of the coordinate bits.

Liao et al. [16] used Hilbert curves to compute an
approximate nearest neighbor solution using only d+ 1
shifted curves. Chan [5] refined this approach, and later
presented an algorithm that used only one copy of the
data, while still guaranteeing a correct approximation
result for the nearest neighbor problem [6]. It is worth
noting that in practice, these methods for k-nearest
neighbor computation are less efficient than state of the
art kd-tree based algorithms [6]. However, in this paper,
we show that a single shift based algorithm, that is also
exact, cache friendly and multi-core aware, can compete
with a kd-tree algorithm in both theory and practice.

Recently, the k-NNG construction problem has also
been studied in the external memory setting or using
the disk access model [26]. The design and implementa-
tion of our algorithm is more tuned toward the cache-
oblivious model [14] and hence differs significantly
from [26]. While our algorithm was not specifically
designed for external memory, experiments have shown
that through the use of large amounts of swap space it
can handle very large data sets. Parallel to this work, the
same group has announced a GPU based k-NNG algo-
rithm [17]. The paper is mostly concentrated on solving
the similarity join problem efficiently, which is a different
problem than the k-NNG problem. We believe that our
rigorous analysis on the running time for getting exact
answers, as well as the use of floating point coordinates
in Morton ordering (Algorithm 1) could help the GPU
implementation of similarity joins.

Among the various multi-processor/core architectures
that have been proposed in recent times, a new tightly
coupled multi-core multi-processor architecture is gain-
ing a central place in high performance computing.
These new architectures have a shared address program-
ming model with physically distributed memory and
coherent replication (either in caches or main memory).
These architectures usually comprise of one or more
multi-core or chip multi-processor CPUs, and are emerg-
ing as the dominant computing platform. This class of
systems differs a lot from the traditional message passing
machines, clusters or vector supercomputers.

Our algorithm mainly consists of the following three
high level components:
� Preprocessing Phase: In this step, we sort the input

points P using Morton ordering (a space filling
curve).

� Sliding Window Phase: For each point p in the
sorted array of points, we compute its approximate
k-nearest neighbors by scanning O(k) points to the
left and right of p. Another way to think of this step
is, to slide a window of length O(k) on the sorted
array and find the k-nearest neighbors restricted to
this window.

� Search Phase: We refine the answers of the last
phase by zooming inside the constant factor approx-
imate k-nearest neighbor balls using properties of
the Morton order.

The first phase is implemented using parallel Quick
Sort [28]. In section 2 we describe Morton ordering and a
parallel implementation of the final two phases. Section 2
also presents the analysis of the running time of our
algorithm. Section 3 describes the experimental setup
we use. Section 4 presents our experimental results.
Section 5 concludes the paper.

2 METHODOLOGY

In this section we describe our algorithm in detail. Before
we start the description, we need to describe the Morton
order on which our algorithm is based.

2.1 Morton Ordering
Morton order or Z-order is a space filling curve with
good locality preserving behavior. It is often used in data
structures for mapping multi-dimensional data to one
dimension. The Z-value of a point in multiple dimen-
sions can be calculated by interleaving the binary rep-
resentations of its coordinate values. Our preprocessing
phase consists of sorting the input data using their Z-
values without explicitly computing the Z-value itself.
The Morton order curve can be conceptually achieved

p

q

Fig. 1: The Morton order curve preceding the upper left
corner, and following the lower right corner of a box,
will never intersect the box.

by recursively dividing a d-dimensional cube into 2d

cubes, then ordering those cubes, until at most 1 point
resides in each cube. In 2 and 3 dimensions, the resulting

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 3

p

q

Fig. 2: The smallest quadtree box containing two points
will also contain all points lying between the two in
Morton order.

trees are sometimes referred to as quadtrees and octrees
respectively. Although, we use quadtrees to explain our
algorithm, the algorithm itself extends easily to higher
dimensions. Two simple properties of Morton order,
shown in Figure 1 and Figure 2, will be used to prune
points in our k-NNG construction algorithm.

Chan [6] showed that the relative Morton order of two
integer points can be easily calculated, by determining
which pair of coordinates have the first differing bit in
binary notation in the largest place. He further showed
that this can be accomplished using a few binary oper-
ations. Our preliminary experiments with sorting points
in Z-order showed that Chan’s trick was faster than
explicitly interleaving the binary representation of the
coordinate values.

While Chan’s method only applies to integer types,
it can be extended to floating point types as shown
in Algorithm 1. The algorithm takes two points with
floating point coordinates. The relative order of the two
points is determined by the pair of coordinates who
have the first differing bit with the highest exponent. The
XORMSB function computes this by first comparing the
exponents of the coordinates, then comparing the bits in
the mantissa, if the exponents are equal. Note that the
MSDB function on line 14 returns the most significant dif-
fering bit of two integer arguments. This is calculated by
first XORing the two values, then shifting until we reach
the most significant bit. The EXPONENT and MANTISSA
functions return those parts of the floating point number
in integer format. This algorithm allows the relative
Morton order of points with floating point coordinates
to be found in O(d) time and space complexity.

Algorithm 1 Floating Point Morton Order Algorithm
Require: d-dimensional points p and q
Ensure: true if p < q in Morton order

1: procedure COMPARE(point p , point q)
2: x← 0; dim← 0
3: for all j = 0 to d do
4: y ← XORMSB(p(j), q(j))
5: if x < y then
6: x← y; dim← j
7: end if
8: end for
9: return p(dim) < q(dim)

10: end procedure

11: procedure XORMSB(double a , double b)
12: x←EXPONENT(a); y ←EXPONENT(b)
13: if x = y then
14: z ← MSDB(MANTISSA(a),MANTISSA(b))
15: x← x− z
16: return x
17: end if
18: if y < x then return x
19: else return y
20: end procedure

2.2 Notation

In general, lower case Roman letters denote scalar val-
ues. p and q are specifically reserved to refer to points.
P is reserved to refer to a point set. n is reserved to refer
to the number of points in P .

We write p < q iff the Z-value of p is less than q (>
is used similarly). We use ps to denote the shifted point
p + (s, s, . . . , s). P s = {ps|p ∈ P}. dist(p, q) denotes the
Euclidean distance between p and q.
pi is the i-th point in the sorted Morton ordering of

the point set. We use p(j) to denote the j-th coordinate of
the point p. The Morton ordering also defines a quadtree
on the point cloud. boxQ(pi, pj) refers to the smallest
quadtree box that contains the points pi and pj . We use
box(c, r) to denote a box with center c and radius r. The
radius of a box is the radius of the inscribed sphere of
the box.
k is reserved to refer to the number of nearest neigh-

bors to be found for every point. d is reserved to refer
to the dimension.

In general, upper case Roman letters (B) refer to a
bounding box. Bounding boxes with a subscript Q (BQ)
refer to a quadtree box. and dist(p,B) is defined as the
minimum distance from point p to box (or quadtree box)
B. E[] is reserved to refer to an expected value. E refers
to an event. P (E) is reserved to refer to the probability
of an event E . Ai is reserved to refer to the current k
nearest neighbor solution for point pi, which may still
need to be refined to find the exact nearest neighbors.
nnk(p, {}) defines a function that returns the k nearest
neighbors to p from a set. The bounding box of Ai refers

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 4

to the minimum enclosing box for the ball defined by
Ai. Finally, rad(p, {}) returns the distance from point p
to the farthest point in a set. rad(Ai) = rad(pi, Ai).

2.3 The k-Nearest Neighbor Graph Construction Al-
gorithm
Algorithm 2 describes our k-NNG algorithm in more
detail. The first step of the construction is to sort the
input point set P , using the Morton order comparison
operator. In our implementation, this is done using a
parallel Quick Sort [28].

Once P has been sorted, a partial solution is found for
each point pi by finding the k nearest neighbors from the
set of points {pi−ck...pi+ck} for some constant c ≥ 1

2 . This
is done via a linear scan of the range of points (corre-
sponding to Line 4). The actual best value of c is platform
dependant; we chose a value of 1 based on tuning, and
in general c should not be too large. Once this partial
nearest neighbor solution is found, its correctness can be
checked using the property of Morton ordering shown
in Figure 1. If the corners of the bounding box for our
current solution lie within the range we have already
searched, then the partial solution we have calculated
is in fact the true solution (see Figure 3). This check is
performed in lines 5 and 10. If the current approximate
nearest neighbor ball is not bounded by the lower and
upper points already checked, lines 7 and 8 (also 12
and 13), use a binary search to find the location of the
lower and upper corner of the bounding box of the
current approximate nearest neighbor ball in the Morton
ordered point set. This defines the range that needs to
be searched by the CSEARCH function.

For each point pi for which the solution was not found
in the previous step, the partial solution must be refined
to find the actual solution. This is done using a recursive
algorithm. Given a range of points {pa...pb}, we first
check if the distance r from pi to boxQ(pa, pb) is greater
than the radius of Ai (line 24). If it is, then the current
solution does not intersect this range. Otherwise, we
update Ai with pa+b/2. We then repeat the procedure
for the ranges {pa...pa+b/2−1} and {pa+b/2+1...pb}. One
important observation is the property used as a check
in the scan portion of the algorithm still holds (lines 5
and 10), and one of these two new ranges of points may
be eliminated by comparing the bounding box of Ai

with pa+b/2 (lines 27 and 30). If the length of a range
is less than ν, a fixed constant, we do a linear scan
of the range instead of recursing further. Since a good
value for ν is platform dependent, we used a self tuning
program to experimentally determine its value. On most
architectures, ν = 4 worked well.

2.4 Parallel Construction
Parallel implementation of this algorithm happens in
three phases. For the first phase, a parallel Quick Sort is
used in place of a standard sorting routine. Second, the
sorted array is split into p chunks (assuming p threads to

Fig. 3: Pictorial representation of Algorithm 2, Line 5.
Since all the points inside the approximate nearest neigh-
bor ball of pi have been scanned, we must have found
the nearest neighbor. This happens because pdrad(Ai)e

i is
the largest point with respect to the Morton ordering
compared to any point inside the box. Hence any point
greater than pi+k in Morton ordering cannot intersect the
box shown. A similar argument holds for p−drad(Ai)e

i and
pi−k.

be used), with each thread computing the initial approxi-
mate nearest neighbor ball for one chunk independently.
Finally, each thread performs the recursive step of the
algorithm on each point in its chunk.

2.5 Handling large data sets
Many applications of k-NNG construction require large
point clouds to be handled that do not fit in mem-
ory. One way to handle this problem is to make disk-
based data structures [26]. We use an alternative solution
by simply increasing the swap space of the operating
system and running the same implementation that we
did in internal memory. Many operating systems allow
on the fly creation and deletion of temporary swap
files (Windows, Linux), which can be used to run our
code on very large data sets (100 million or more points).
Unfortunately, we were unable to compare our results
to the previously mentioned disk-based methods [26]
directly (their code was not available). However, we
were able to calculate k-NNG for much larger data sets
(up to 285 million points as seen in Table 1).

In Linux, new user space memory allocations (using
new or malloc) of large sizes are handled automatically
using mmap which is indeed a fast way to do IO from
disks. Once the data is memory mapped to disk, both

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 5

Algorithm 2 KNN Graph Construction Algorithm
Require: Randomly shifted point set P of size n. Morton

order compare operators: <,>. (COMPARE= <).
Ensure: Ai contains k nearest neighbors of pi in P .

1: procedure CONSTRUCT(P , int k)
2: P ← ParallelQSort(P,<)
3: parallel for all pi in P
4: Ai ← nnk(pi, {pi−k, . . . , pi+k})
5: if pdrad(Ai)e

i < pi+k then u← i
6: else
7: I ← 1; while pdrad(Ai)e

i < pi+2I do: ++I
8: u← min(i+ 2I , n)
9: end if

10: if p−drad(Ai)e
i > pi−k then l← i

11: else
12: I ← 1; while p−drad(Ai)e

i > pi−2I do: ++I
13: l← max(i− 2I , 1)
14: end if
15: if l 6= u then CSEARCH(pi, l, u)
16: end procedure

17: procedure CSEARCH(point pi , int l , int h)
18: if (h− l) < ν then
19: Ai ← nnk(pi, Ai ∪ {pl . . . ph})
20: return
21: end if
22: m← (h+ l)/2
23: Ai ← nnk(pi, Ai ∪ pm)
24: if dist(pi, box(pl, ph)) ≥ rad(Ai) then return
25: if pi < pm then
26: CSEARCH(pi, l,m− 1)
27: if pm < p

dr(Ai)e
i then CSEARCH(pi,m+ 1, h)

28: else
29: CSEARCH(pi,m+ 1, h)
30: if p−dr(Ai)e

i < pm then CSEARCH(pi, l,m− 1)
31: end if
32: end procedure

sorting and scanning preserve locality of access in our
algorithm and hence are not only cache friendly but
also disk friendly. The last phase of our algorithm is
designed to be disk friendly as well. Once an answer is
computed for point pi by a single thread, the next point
in the Morton order uses the locality of access from the
previous point and hence causes very few page faults in
practice.

2.6 Analysis of the Algorithm
In this section, we show that Algorithm 2 runs in
expected O(dn

pek log k) unit operations plus a parallel
Quick Sort call for point clouds with bounded expansion
constant γ =O(1). Except for the storage of the input
and the output, our algorithm needs only an O(pk) extra
space.

Let P be a finite set of points in Rd such that |P | =
n � k ≥ 1. Let µ be a counting measure on P . Let the

measure of a box, µ(B) be defined as the number of
points in B ∩ P . P is said to have expansion constant γ
if ∀pi ∈ P and for all k ∈ (1, n):

µ(box(pi, 2× rad(pi,N k
i))) ≤ γk

This is a similar restriction to the doubling metric restric-
tion on metric spaces [10] and has been used before [15].
Throughout the analysis, we will assume that P has an
expansion constant γ =O(1).

The first phase of the algorithm is sorting. The second
phase is a linear scan. The dominating factor in the
running time will be from the third phase; the recursive
CSEARCH function. The running time of this phase will
be bounded by showing that the smallest quadtree box
containing the actual nearest neighbor ball for a point
is, in expectation, only a constant factor smaller than the
quadtree ball containing the approximate solution found
in phase two. Given the distribution stated above, this
implies there are only O(k) additional points that need
to be compared to refine the approximation to the actual
solution. We do not concern ourselves with the actual
running time of the CSEARCH function, since it is upper
bounded by the time it would take to simply scan the
O(k) points.

To prove the running time of our algorithm, we will
first need the solution to the following game: In a room
tiled or paved with equal square tiles (created using
equidistant parallel lines in the plane), a coin is thrown
upwards. If the coin rests cleanly within a tile, the length
of the square tile is noted down and the game is over.
Otherwise, the side length of the square tiles in the room
are doubled in size and the same coin is tossed again.
This process is repeated till the coin rests cleanly inside
a square tile.

Note that in our problem, the square tiles come from
quadtrees defined by Morton order, and the coin is
defined by the optimal k-nearest neighbor ball of pi ∈ P .
What we are interested in bounding, is the number
of points inside the smallest quadtree box that con-
tains box(pi, rad(pi,N k

i)). This leads us to the following
lemma:

Lemma 2.1. Let B be the smallest box, centered at pi ∈ P
containing N k

i and with side length 2h (where h is assumed
w.l.o.g to be an integer > 0) which is randomly placed in a
quadtree Q. If the event Ej is defined as B being contained
in a quadtree box BQ with side length 2h+j , and BQ is the
smallest such quadtree box, then

P (Ej) ≤
(

1− 1
2j

)d
dj−1

2
j2−j

2

Proof: From Figure 4, we can infer that in order for
B to be contained in BQ, the total number of candidate
boxes where the upper left corner of B can lie, is (2j−1)
along each dimension. The total number of candidate
grey boxes is therefore (2j − 1)d. The probability that
the upper left corner lies in a particular grey box is
2hd/2(h+j)d. Thus the probability that B is contained in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 6

(a) (b)

Fig. 4: (a) B lands cleanly on the quadtree box BQ twice
its size. (b) B lands cleanly on a quadtree box 22 times
its size. In both figures, if the upper left corner of B
lies in the shaded area, the box B does not intersect the
boundary of BQ. Obviously, (a) happens with probability
1
4 (probability (1

2)d in general dimension) and (b) hap-
pens with probability (22−1

22)2 = 9
16 (probability (22−1

22)d

in general dimension).

BQ is ((2j − 1)/2j)d. If BQ is the smallest quadtree box
housing B, then all quadtree boxes with side lengths
2h+1,2h+2,. . . ,2h+j−1 cannot contain BQ. This probability
is given by:

j−1∏
l=1

(
1−

(
2l − 1

2l

)d
)

=
j−1∏
l=1

(2l)d − (2l − 1)d

(2l)d

The probability of BQ containing B is therefore

P (Ej) =
(2j − 1)d

(2j)d

j−1∏
l=1

(2l)d − (2l − 1)d

(2l)d

We now use the following inequality: Given v such that
0 < v < 1; (1 − v)d ≤ 1 − dv + d(d − 1)v2

2! , which can
be easily proved using induction or alternating series
estimation theorem. Putting v = 1/2l we get:

(1− v)d ≤ 1− dv(1 + v/2) + d2v2/2
≤ 1− d

2l

(
1 + 1/2l+1

)
+ d2/22l+1

To simplify the sum, we will use a Taylor series with
v = 1

2l .

(1− v)d ≤

1− dv + d(d− 1)
v2

2!
− d(d− 1)(d− 2)

v3

3!
+ . . .

≤ 1− dv + (d2 − d)v
2

2!

≤ 1− dv +
d2v2

2
− dv2

2

≤ 1− dv
(
1 +

v

2

)
+
d2v2

2

≤ 1− d

2l

(
1 +

1
2l+1

)
+

d2

22l+1

Fig. 5: All boxes referred in Lemma 2.3.

Then, by substituting and simplifying

P (Ej) ≤
(

1− 1
2j

)d j−1∏
l=1

[
d

2l

(
1 +

1
2l+1

)
− d2

22l+1

]

≤
(

1− 1
2j

)d j−1∏
l=1

d

2l

[
1 +

d

22l+1
− d

22l+1

]

≤
(

1− 1
2j

)d j−1∏
l=1

d

2l

≤
(

1− 1
2j

)d
dj−1

2
j2−j

2

Lemma 2.2. The linear scan phase of the algorithm produces
an approximate k-nearest neighbor box B′ centered at pi with
radius at most the side length of BQ. Here BQ is the smallest
quadtree box containing B, the k-nearest neighbor box of pi.

Proof: Our algorithm scans at least pi−k . . . pi+k, and
picks the top k nearest neighbors to pi among these
candidates. Let a be the number of points between pi

and the largest Morton order point in B. Similarly, let
b be the number of points between pi and the smallest
Morton order point in B. Clearly, a+b ≥ k. Note that B is
contained inside BQ, hence µ(BQ) ≥ k. Now, pi . . . pi+k

must contain a points inside BQ. Similarly, pi−k . . . pi

must contain at least b points from BQ. Since we have
collected at least k points from BQ, the radius of B′ is
upper bounded by the side length of BQ.

Lemma 2.3. The smallest quadtree box containing B′, B′Q,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 7

has only a constant number of points more than k in expec-
tation.

Proof: Let there be k′ points in B. Clearly k′ =O(k)
given γ =O(1). The expected number of points in B′Q is
at most E[γxk′], where x is such that if the side length of
B is 2h then the side length of B′Q is 2h+x. Let the event
E ′x be defined as this occurring for some fixed value of
x.

Recall from Lemma 2.1 that j is such that the side
length of BQ is 2h+j . The probability for the event Ej is

P (Ej) =
(2j − 1)d

(2j)d

j−1∏
l=1

(2l)d − (2l − 1)d

(2l)d

≤ (1− 1
2j

)d d
j−1

2
j2−j

2

From Lemma 2.2 B′ has a side length of at most
2h+j+1 = 2h′ . Let E ′′j′ be the event that, for some fixed
h′, B′ is contained in B′Q with side length 2h′+j′ . Note
that E ′′j′ has the same probability mass function as Ej ,
and that the value of j′ is independent of j. Given this,
P (E ′x) =

∑x−1
j=1 P (Ej)P (E ′′j′). From this, E[γxk′] follows

E[γxk] ≤
∞∑

x=2

γxkP (E ′x)

=
∞∑

x=2

γxk

x−1∑
j=1

P (Ej)P (E ′′j′)

≤
∞∑

x=2

γxk

x−1∑
j=1

(1− 1
2j

)d d
j−1

2
j2−j

2

(1− 1
2x−j

)d dx−j−1

2
(x−j)2−(x−j)

2

≤
∞∑

x=2

γxk

x−1∑
j=1

(1− 1
2j

)d(1− 1
2x−j

)d dx−2

2
x2−(1+2j)x+2j2

2

We now use the fact that, ∀j ∈ {1, 2, . . . , x− 1}:

(1− 2−j)d(1− 2j−x)d ≤ (1− 2−x/2)2d

which can be proved by showing:

(1− 2−j)(1− 2j−x) ≤ (1− 2−x/2)2

or 2−j + 2j−x ≥ 2−x/2+1

which is true because a+b
2 ≥

√
ab. Putting this simpli-

fied upper bound back in the expectation calculation we
get:

E[γxk] =

≤
∞∑

x=2

γxk

x−1∑
j=1

(
1− 1

2x/2

)2d
dx−2

2
x2−(1+2j)x+2j2

2

≤ k

∞∑
x=2

γx

(
1− 1

2x/2

)2d

dx−2
x−1∑
j=1

2−
x2−(1+2j)x+2j2

2

≤ k

∞∑
x=2

γx

(
1− 1

2x/2

)2d

dx−22(x−x2)/2
x−1∑
j=1

2j(x−j)

It is easy to show that j(x−j) ≤ x2/4 ∀j ∈ {1, . . . , x−1}:
Let a′ = x/2 and b′ = j−x/2. Then (a′+b′)(a′−b′) = a′2−
b′2 where the LHS is j(x−j) and RHS is x2/4−b′2. Hence
j(x − j) ≤ x2/4. Using the fact that 2j(x−j) ≤ 2(x/2)2 in
the expectation calculation, we have:

≤ k

∞∑
x=2

γx

(
1− 1

2x/2

)2d

dx−22(x−x2)/2x2x2/4

≤ k

∞∑
x=2

x(dγ
√

2)x

(
1− 1

2x/2

)2d

2−x2/4

Putting y = x/2 and c = 2(dγ)2, we get:

≤ 2k
∞∑

y=1

y
√
c
2y2−y2

(
1− 1

2y

)2d

Using the Taylor’s approximation:(
1− 1

2y

)2d

≤
(
1− d2−y

(
2 + 2−y

)
+ d22−2y+1

)
which when substituted:

≤ 2k
∫ ∞

y=0

y
(c

2y

)y (
1− d2−y

(
2 + 2−y

)
+ d22−2y+1

)
dy

Integrating and simplifying using the facts that the error
function, erf(x) encountered in integrating the normal
distribution follows erf(x) ≤ 1, and c = 2(dγ)2 =O(1),
we have:

≤ k

(
1

ln 2
+
(√

π ln 2
)
e

(ln(c))2

4 ln(2)

)
= O(k)

Now we are ready to prove our main theorem on the
running time of our algorithm:

Theorem 2.4. For a given point set P of size n, with
a bounded expansion constant and a fixed dimension, in a
constrained CREW PRAM model, assuming p threads, the k-
nearest neighbor graph can be found in one comparison based
sort plus O(dn

pek log k) expected time.

Proof: Once B′ is established in the first part of the
algorithm, B′Q can be found in O(log k) time by using
a binary search outward from pi (this corresponds to
lines 5 to 14 in Algorithm 2). Once B′Q is found, it takes
at most another O(k) steps to report the solution. There
is an additional O(log k) cost for each point update to
maintain a priority queue of the k nearest neighbors
of pi. Since the results for each point are independent,
the neighbors for each point can be computed by an
independent thread. Note that our algorithm reduces
the problem of computing the k-NNG to a sorting prob-
lem (which can be solved optimally) when k =O(1),
which is the case for many graphics and visualization
applications. Also the expectation in the running time
is independent of the input distribution and is valid for
arbitrary point clouds.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 8

3 EXPERIMENTAL SETUP

To demonstrate the practicality of our algorithm, we ran
our implementation on a number of different data sizes.
The source code that was used in these tests is available
at http://www.compgeom.com/∼stann.

The algorithm was tested on three different architec-
ture setups, each detailed in its own section below.

ANN [20] had to be modified to allow a fair compar-
ison. Nearest neighbor graph construction using ANN
is done in two phases. The preprocessing stage is the
creation of a kd-tree using the input data set. Then, a
nearest neighbor query is made for each point in the
input data set. For our experiments, we modified the
source code for the query to allow multiple threads to
query the same data structure simultaneously. We did
not modify the kd-tree construction to use a parallel
algorithm. However, it is worth noting that even if a par-
allel kd-tree construction algorithm was implemented,
it would almost certainly still be slower than parallel
sorting (the preprocessing step in our algorithm). In
the interests of a fair comparison, the empirical results
section includes several examples of k-NNG construction
where only one thread was used (Figures 6c, 7c, 8c).

Except where noted, random data sets were gener-
ated from 3-dimensional points uniformly distributed
between (0, 1], stored as 32 bit floats. Graphs using
random data sets were generated using five sets of
data, and averaging the result. Results from random
data sets with different distributions (such as Gaussian,
clustered Gaussian, and spherical) were not significantly
different from the uniform distribution. Also included
were several non-random data sets, consisting of surface
scans of objects. In all graphs, our algorithm will be
labeled ‘knng(float)’. ‘knng(long)’ means that the data
was scaled to a 64 bit integer grid, and stored as a 64 bit
integer. This improves the running time of our algorithm
dramatically, and can be done without loss of precision
in most applications.

4 EXPERIMENTAL RESULTS

4.1 Intel Architecture

The system that we experimented on is equipped with
dual Quad-core 2.66GHz Intel Xeon CPUs, and a total
of 4 GB of DDR memory. Each core has 2 MB of total
cache. SUSE Linux with kernel 2.6.22.17-0.1-default was
running on the system. We used gcc version 4.3.2 for
compilation of all our code (with -O3).

4.1.1 Construction Time Results
As shown in Figure 6a and Table 1, our algorithm per-
forms very favorably against k-NNG construction using
ANN. Table 1 shows timings of k-NNG construction
on very large point sets, where ANN was unable to
complete a graph due to memory issues. Construction
times improve dramatically when floating points are
scaled to an integer grid. Other random distributions had

Dataset Size ANN knng(long) knng(float)
(points) (s) (s) (s)

Screw 27152 .06 .04 .06
Dinosaur 56194 .11 .07 .11
Ball 137602 .31 .14 .21
Isis 187644 .46 .18 .27
Blade 861240 2.9 .86 1.3
Awakening 2057930 8.6 2.1 3.2
David 3614098 16.7 3.7 5.6
Night 11050083 62.2 12.4 18.6
Atlas 182786009 - 1564 2275
Tallahassee 285000000 - 2789 4235

TABLE 1: Construction times for k = 1-nearest neighbor
graphs constructed on non-random 3-dimensional data
sets. Each graph was constructed using 8 threads. All
timings are in seconds.

similar construction times to these cases, and so more
graphs were not included. Figure 6b shows that as k
increases, the advantage runs increasingly toward our
implementation. Finally, Figure 6c shows the speedup
gained by increasing the number of threads. In these
and all other graphs shown, standard deviation was very
small; less than 2% of the mean value.

4.1.2 Memory Usage and Cache Efficiency Results
Figure 9 shows the estimated memory usage, per point,
for both algorithms. Memory usage was determined
using valgrind [21]. As shown in Figure 10, our algo-
rithm has greater cache efficiency than ANN’s kd-tree
implementation. This should allow for better scaling in
our algorithm as processing power increases.

4.2 AMD Architecture
This machine is equipped with 8 Dual Core 2.6GHz
AMD OpteronTMProcessor 885, for a total of 16 cores.
Each processor has 128 KB L1 Cache, 2048 KB L2 cache
and they share a total of 64 GB of memory. We used gcc
version 4.3.2 for compilation of all our code (with -O3).

As can be seen in Figures 7a, 7b and 7c, the knng algo-
rithm performs well despite the change in architecture.
ANN fared particularly poorly on this architecture.

4.3 Sun Architecture
This machine is a Sun T5120 server with a eight-core,
T2 OpenSparc processor and 32 GB of memory. Over-
all, this was a slower machine compared to the others
that were used, however it was capable of running 64
threads simultaneously. We used gcc version 4.3.2 for
compilation of all our code (with -O3).

As can be seen in Figure 8a, results for construction
were similar to the previous experiments. One unex-
pected result was ANN’s performance as k increased,
as seen in Figure 8b. Since ANN was developed on
a Sun platform, we believe that the improvements we
see as k increases are due to platform specific tuning.
In Figure 8c, we observe how both algorithms behave
with a large number of threads. Both ANN and the two
versions of knng level out as the number of threads
increases (processing power is limited to eight cores).

http://www.compgeom.com/~stann

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 9

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
on

ds
)

Size of Input Set(millions)

knng(long)
ANN

knng(float)

(a) Graph of 1-NN graph construction time vs. num-
ber of data points on the Intel architecture. Each
algorithm was run using 8 threads in parallel.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Size of Nearest Neighbor Ball

knng(long)
ANN

knng(float)

(b) Graph of k-NN graph construction time for vary-
ing k on the Intel architecture. Each algorithm was
run using 8 threads in parallel. Data sets contained
one million points.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Number of Threads

knng(long)
ANN

knng(float)

(c) Graph of 1-NN graph construction time for vary-
ing number of threads on Intel architecture. Data sets
contained ten million points.

Fig. 6: Intel Results

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
on

ds
)

Size of Input Set(millions)

knng(long)
ANN

knng(float)

(a) Graph of 1-NN graph construction time vs. num-
ber of data points on AMD architecture. Each algo-
rithm was run using 16 threads in parallel.

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Size of Nearest Neighbor Ball (K)

knng(long)
ANN

knng(float)

(b) Graph of k-NN graph construction time for vary-
ing k on AMD architecture. Each algorithm was run
using 16 threads in parallel. Data sets contained ten
million points.

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Number of Threads

knng(long)
ANN

knng(float)

(c) Graph of 1-NN graph construction time for vary-
ing number of threads on AMD architecture. Data
sets contained ten million points.

Fig. 7: AMD Results

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 10

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
(s

ec
on

ds
)

Size of Input Set(millions)

knng(long)
ANN

knng(float)

(a) Graph of 1-NN graph construction time vs. num-
ber of data points on Sun architecture. Each algo-
rithm was run using 128 threads in parallel.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Size of Nearest Neighbor Ball

knng(long)
ANN

knng(float)

(b) Graph of k-NN graph construction time for vary-
ing k on Sun architecture. Each algorithm was run
using 128 threads in parallel. Data sets contained ten
million points.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

T
im

e
(s

ec
on

ds
)

Number of Processors

knng(long)
ANN

knng(float)

(c) Graph of 1-NN graph construction time for vary-
ing number of threads on Sun architecture. Data sets
contained ten million points.

Fig. 8: Sun Results

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16 18 20

A
llo

ca
te

d
M

em
or

y
pe

r
Po

in
t(

by
te

s)

Number of Points (millions)

knng(float)
ANN

Fig. 9: Graph of memory usage per point vs. data size.
Memory usage was determined using valgrind.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

C
ac

he
 M

is
se

s/
10

00

Size of Point Set (k)

knng(float)
ANN

Fig. 10: Graph of cache misses vs. data set size. All data
sets were uniformly random 3-dimensional data sets.
Cache misses were determined using valgrind which
simulated a 2 MB L1 cache.

5 CONCLUSIONS

We have presented an efficient k-nearest neighbor
construction algorithm which takes advantage of
multiple threads. While the algorithm performs best on
point sets that use integer coordinates, it is clear from
experimentation that the algorithm is still viable using
floating point coordinates. Further, the algorithm scales
well in practice as k increases, as well as for data sets
that are too large to reside in internal memory. Finally,
the cache efficiency of the algorithm should allow it to
scale well as more processing power becomes available.

Acknowledgements

We would like to thank Samidh Chatterjee for his com-
ments on the paper and Sariel Har-Peled for useful
discussions.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SEPTEMBER 2009 11

REFERENCES

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. Point set surfaces. In VIS ’01: Proceedings of the conference on
Visualization ’01, pages 21–28, Washington, DC, USA, 2001. IEEE
Computer Society.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu.
An optimal algorithm for approximate nearest neighbor searching
in fixed dimensions. J. ACM, 45:891–923, 1998.

[3] M. Bern. Approximate closest-point queries in high dimensions.
Inf. Process. Lett., 45(2):95–99, 1993.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors and
n-body potential fields. J. ACM, 42(1):67–90, 1995.

[5] T. M. Chan. Approximate nearest neighbor queries revisited.
In SCG ’97: Proceedings of the thirteenth annual symposium on
Computational geometry, pages 352–358, New York, NY, USA, 1997.
ACM.

[6] T. M. Chan. Manuscript: A minimalist’s implementation of an
approximate nearest neighbor algorithm in fixed dimensions,
2006.

[7] J. Chhugani, B. Purnomo, S. Krishnan, J. Cohen, S. Venkatasub-
ramanian, and D. S. Johnson. vlod: High-fidelity walkthrough of
large virtual environments. IEEE Transactions on Visualization and
Computer Graphics, 11(1):35–47, 2005.

[8] U. Clarenz, M. Rumpf, and A. Telea. Finite elements on point
based surfaces. In Proc. EG Symposium of Point Based Graphics
(SPBG 2004), pages 201–211, 2004.

[9] K. L. Clarkson. Fast algorithms for the all nearest neighbors
problem. In FOCS ’83: Proceedings of the Twenty-fourth Symposium
on Foundations of Computer Science, Tucson, AZ, November 1983.
Included in PhD Thesis.

[10] K. L. Clarkson. Nearest-neighbor searching and metric space
dimensions. In G. Shakhnarovich, T. Darrell, and P. Indyk,
editors, Nearest-Neighbor Methods for Learning and Vision: Theory
and Practice, pages 15–59. MIT Press, 2006.

[11] D. Cotting, T. Weyrich, M. Pauly, and M. Gross. Robust water-
marking of point-sampled geometry. In SMI ’04: Proceedings of
the Shape Modeling International 2004, pages 233–242, Washington,
DC, USA, 2004. IEEE Computer Society.

[12] M. T. Dickerson and D. Eppstein. Algorithms for proximity
problems in higher dimensions. Computational Geometry Theory
& Applications, 5(5):277–291, January 1996.

[13] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-
squares fitting with sharp features. ACM Trans. Graph., 24(3):544–
552, 2005.

[14] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS ’99: Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, pages 285–
298, Washington, DC, USA, 1999. IEEE Computer Society.

[15] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-
restricted metrics. In STOC ’02: Proceedings of the thirty-fourth
annual ACM symposium on Theory of computing, pages 741–750,
New York, NY, USA, 2002. ACM.

[16] Swanwa Liao, Mario A. Lopez, and Scott T. Leutenegger. High
dimensional similarity search with space filling curves. In Proceed-
ings of the 17th International Conference on Data Engineering, pages
615–622, Washington, DC, USA, 2001. IEEE Computer Society.

[17] Michael D. Lieberman, Jagan Sankaranarayanan, and Hanan
Samet. A fast similarity join algorithm using graphics processing
units. In ICDE ’08: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pages 1111–1120, Washington, DC,
USA, 2008. IEEE Computer Society.

[18] N. J. Mitra and A. Nguyen. Estimating surface normals in noisy
point cloud data. In SCG ’03: Proceedings of the nineteenth annual
symposium on Computational geometry, pages 322–328, New York,
NY, USA, 2003. ACM.

[19] G. M. Morton. A computer oriented geodetic data base and a new
technique in file sequencing. In Technical Report,IBM Ltd, 1966.

[20] D. Mount. ANN: Library for Approximate Nearest Neighbor
Searching, 1998. http://www.cs.umd.edu/˜mount/ANN/.

[21] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, pages 89–100, New York, NY, USA,
2007. ACM.

[22] J. A. Orenstein and T. H. Merrett. A class of data structures
for associative searching. In PODS ’84: Proceedings of the 3rd
ACM SIGACT-SIGMOD symposium on Principles of database systems,
pages 181–190, New York, NY, USA, 1984. ACM.

[23] R. Pajarola. Stream-processing points. In Proceedings IEEE Visu-
alization, 2005, Online., pages 239–246. Computer Society Press,
2005.

[24] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of
point-sampled surfaces. In VIS ’02: Proceedings of the conference
on Visualization ’02, pages 163–170, Washington, DC, USA, 2002.
IEEE Computer Society.

[25] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling
with point-sampled geometry. ACM Trans. Graph., 22(3):641–650,
2003.

[26] J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all nearest
neighbor algorithm for applications involving large point-clouds.
Comput. Graph., 31(2):157–174, 2007.

[27] H. Tropf and H. Herzog. Multidimensional range search in
dynamically balanced trees. Angewandte Informatik, 2:71–77, 1981.

[28] P. Tsigas and Y. Zhang. A simple, fast parallel implementation
of quicksort and its performance evaluation on SUN Enterprise
10000. Eleventh Euromicro Conference on Parallel, Distributed and
Network-Based Processing, 00:372, 2003.

[29] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-
neighbors problem. Discrete Comput. Geom., 4(2):101–115, 1989.

Michael Connor received a MS in Computer
Science from Florida State University in 2007,
where he is currently a PhD student. His primary
research interests are Computational Geometry
and Parallel Algorithms.

Piyush Kumar received his PhD from Stony
Brook University in 2004. His primary research
interests are in Algorithms. He is currently an
Assistant Professor at the Department of Com-
puter Science at Florida State University. He was
awarded the FSU First Year Assistant Professor
Award in 2005, the NSF CAREER Award in
2007, and the FSU Innovator Award in 2008. His
research is funded by grants from NSF, FSU, and
AMD.

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

	Introduction
	Methodology
	Morton Ordering
	Notation
	The k-Nearest Neighbor Graph Construction Algorithm
	Parallel Construction
	Handling large data sets
	Analysis of the Algorithm

	Experimental Setup
	Experimental Results
	Intel Architecture
	Construction Time Results
	Memory Usage and Cache Efficiency Results

	AMD Architecture
	Sun Architecture

	Conclusions
	References
	Biographies
	Michael Connor
	Piyush Kumar

