Phylogenetics of Cancer Crabs (Crustacea: Decapoda: Brachyura)

Michelle K. Harrison and Bernard J. Crespi

Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
Received June 2, 1998; revised July 17, 1998

Abstract

We used morphological, mitochondrial DNA sequence, paleontological, and biogeographical information to examine the evolutionary history of crabs of the genus Cancer: Phylogenies inferred from adult morphology and DNA sequence of the cytochrome oxidase I (COI) gene were each well resolved and well supported, but differed substantially in topology. Four lines of evidence suggested that the COI data set accurately reflected Cancer phylogeny: (1) in the phylogeny inferred from morphological data, each Atlantic species was sister taxon to an ecologically similar Pacific species, suggesting convergence in morphology; (2) a single trans-Arctic dispersal event, as indicated by the phylogeny inferred from COI, is more parsimonious than two such dispersal events, as inferred from morphology; (3) test and application of a maximum likelihood molecular clock to the COI data yielded estimates of origin and speciation times that fit well with the fossil record; and (4) the tree inferred from the combined COI and morphology data was closely similar to the trees inferred from COI, although notably less well supported by the bootstrap. The phylogeny inferred from maximum likelihood analysis of COI suggested that Cancer originated in the North Pacific in the early Miocene, that the Atlantic species arose from a North Pacific ancestor, and that Cancer crabs invaded the Atlantic from the North Pacific 6-12 mya. This inferred invasion time is notably prior to most estimates of the date of submergence of the Bering Strait and the trans-Arctic interchange, but it agrees with fossil evidence placing at least one Cancer species in the Atlantic about 8 mya. © 1999 Academic Press

INTRODUCTION

Crabs of the genus Cancer (Crustacea: Decapoda: Brachyura) comprise 23 phenotypically diverse species distributed in a variety of intertidal and subtidal habitats worldwide (Table 1; Nations, 1975; Lawton and Elner, 1985; Creswell and Marsden, 1990; Jensen, 1995). Cancer species have long been the subject of intense interest from evolutionary biologists, paleontologists, and systematists (Bell, 1835; Weymouth, 1910; Way, 1917; Imaizumi, 1962; Nations, 1975, 1979; Car-
vacho, 1989), behavioral ecologists (Mackay, 1943; Garth and Abbott, 1980; Orensanz and Galluci, 1988; Creswell and McLay, 1990; Orensanz et al., 1995), and fisheries researchers (e.g., Anderson and Ford, 1976; Haeffner, 1976; Reilly and Saila, 1978; Ingle, 1981; Carroll, 1982; Lawton and Elner, 1985; Hines, 1991), and as a result, there exists a plethora of ecological, behavioral, and biogeographic information on the genus. Despite the ecological, evolutionary, and economic importance of Cancer crabs, phylogenetic hypotheses for the analysis of their evolution and adaptations have yet to be developed and their diversity has yet to be examined in a temporal or comparative context.

In this paper, we infer a phylogeny for selected species of the genus Cancer using both DNA sequence and morphological data, and we use this phylogeny to examine the origin, diversification, and biogeographic history of these Cancer species. The paper has two main goals. First, we assess the usefulness of data from DNA sequence of the mitochondrial cytochrome oxidase I gene and from external adult morphological traits for phylogenetic inference in the genus; we analyze the degree of congruence of the data and trees derived from these two sources and then decide upon our bestsupported hypothesis of ancestry. Second, we examine the relationship between our phylogeny and the extensive fossil record of Cancer crabs (Nations, 1975) to investigate their date of origin, temporal pattern of diversification, and biogeographic history, particularly with regard to the timing of one of the most critical dispersal events in the history of marine biodiversity, the trans-Arctic interchange (Gladenkov, 1979; Herman and Hopkins, 1980; Vermeij, 1989a,b, 1991).

MATERIALS AND METHODS

Taxonomy and Biogeography of the Genus Cancer

Nations (1975) divided the genus Cancer into four subgenera: Romaleon, Metacarcinus, Glebocarcinus, and Cancer sensu stricto. Based on paleontological and morphological evidence, he proposed that (1) the relatively small, highly ornate crabs of the subgenus Romaleon are ancestral to the other Cancer species because Romaleon species appear earliest in the fossil record,

TABLE 1
Selected Life History Characteristics for the Species Used in the Molecular Analysis

Species (common name)	Cancer subgenus \dagger	Distribution*†	Reported depth range* $¥ \not \geq I[$	Primary habitat type*¥	Collection site/date	GenBank Accession No.
Petrolithes cinc- tipes (Flat porce- lain crab)	\bullet	Porcher Island, British Columbia to Santa Barbara, California	Upper and middle intertidal	Under rocks on or near the outer coast; abundant in mussel beds	Diana Island, B.C. May-95	AF060776
Hemigrapsus nudus (Purple shore crab)	\bullet	Yakobi Island, Alaska to Bahia de Tortuga, Mexico	Upper and middle intertidal	Under rocks on exposed beaches; estuaries	Diana Island, B.C. May-95	AF060775
Cancer oregonensis (Pygmy rock crab)	Glebocarcinus	Pribilof Islands to Palos Verdes, California	Low intertidal to $436 \text { m }$	Under rocks in low intertidal; subtidally in broken shell	First Beach, B.C. Jun-95	AF060772
Cancer branneri (Furrowed rock crab)	Romaleon	Granite Cove, Alaska to Isla de Cedros, Baja California	Subtidal to 179 m	Coarse gravel and sand; most abundant on broken shell	Helby Island, B.C. Jun-96	AF060774
Cancer gracilis (Graceful crab)	Metacarcinus	Prince William Sound, Alaska to Bahia Playa Maria, Mexico	Low intertidal to $143 \text { m }$	Mud and muddy sand	Grappler Inlet, B.C. May-95	AF060769
Cancer novaezealandiae (New Zealand rock crab)	Metacarcinus	New Zealand; North, South, Auckland and Chatham Islands; introduced to Tasmania and Victoria, Australia	Intertidal to 60 m	Fine sediment, under rocks, stones, and among seaweed	New Zealand Oct-96	AF060768
Cancer antennarius (Pacific rock crab)	Romaleon	Queen Charlotte Sound, British Columbia to Cabo San Lucas, Mexico	Low intertidal to 91 m	Mud, sand, gravel, and rock	Diana Island, B.C. May-95	AF060773
Cancer borealis (Jonah crab)	Metacarcinus	Grand Banks to south of Tortugas, Florida	Intertidal to 870 m ; most abundant at intermediate depths	Mud, sand, and near shore rocky areas	Nova Scotia Oct-96	AF060767
Cancer productus (Red rock crab)	Cancer sensu stricto	Kodiak, Alaska to Isla San Martin, Baja California	Mid intertidal to 79 m	Mud, sand, gravel, and boulder beaches	Grappler Inlet, B.C. May-95	AF060770
Cancer magister (Dungeness crab)	Metacarcinus	Pribilof Islands to Santa Barbara, California	From low intertidal to 230 m	Common subtidally on sand and mud	Pachena Bay, B.C. May-95	AF060766
Cancer pagurus (Edible crab)	Cancer sensu stricto	From northwest coast of Norway, south to Portugal: Mediterranean Sea	Intertidal to 100 m	Primarily mud and sand, some rock	Great Britain Jun-95	AF060771

Note. Sources of information: $\dagger=$ Nations, 1975; $¥=$ Lawton and Elner, 1985; $\mathbb{I}=$ Creswell and Marsden, 1990; * Jensen, 1995.
(2) crabs of the subgenus Cancer sensu stricto, which are characterized by large size, smooth carapace margins, pronounced lateral carapace expansions, and unornamented chelipeds, were the most recently derived group, and (3) Metacarcinus species appear to represent an intermediate stage between Romaleon and Cancer: Nations (1975) also noted that the evolutionary position of crabs of the subgenus Glebocarcinus re-
mains unclear, as Glebocarcinus species have relatively large, wide carapaces, yet retain a high degree of cheliped and carapace ornamentation.

Previous paleontological research has suggested that the genus Cancer originated in the Miocene in the North Pacific and dispersed south along the coast of North and South America, west toward Japan, and north across the Arctic into the Atlantic Ocean, with
speciation events subsequent to or concomitant with dispersal into each new area (Fig. 12 of Nations, 1975; Nations 1979). According to Nation's (1975) biogeographic hypotheses, the basal species of Cancer should be North Pacific species and the Atlantic species should be more closely related to one another than to any of the Pacific species. Furthermore, if Cancer species participated in the trans-Arctic interchange and speciated once they reached the Atlantic Ocean, Atlantic taxa should have diverged from the North Pacific species sometime after the seaway between Alaska and Siberia opened, 5.2-3.4 million years ago (Gladenkov, 1979; Herman and Hopkins, 1980; Vermeij, 1989a,b, 1991).

Choice of Taxa

Our analyses included 9 of the 23 extant Cancer species, including at least 1 species representative from each of the four subgenera proposed by Nations (1975). These taxa include all Cancer species from the northeast Pacific, 2 Atlantic species, and the single species from the southwest Pacific (New Zealand). Two other crabs, Hemigrapsus nudus (Decapoda: Brachyura: Grapsidae) and Petrolithes cinctipes (Decapoda: Anomura: Porcellanidae), representing a different brachyuran family and decapod order, respectively, were used as the outgroups. These outgroup taxa were chosen because multiple outgroup taxa can increase resolution and support for basal ingroup nodes (Maddison et al., 1984) and these two species were readily available.

COI Data Collection

DNA was isolated from frozen or preserved (in 99\% ethanol or guanidine isothiocyanate) specimens by crushing cheliped muscle tissue in Lifton buffer (0.2 M sucrose, 0.05 M EDTA, 0.1 M Tris, 0.5% SDS). Total DNA was extracted from this homogenate using phenol-chloroform-isoamyl alcohol, precipitated in 70% ethanol with 0.7 M sodium acetate, and suspended in sterile distilled water. The primers designated S1718a or S1718b were used with A2238, A2316, A3500, or A3662 (Table 2) to amplify sequence from the mitochondrial cytochrome oxidase I (COI) gene using the polymerase chain reaction (PCR). After processing with exonuclease I and shrimp alkaline phosphatase, double-stranded PCR products were sequenced using 35^{S} and Se quenase kits (U.S. Biochemical) or 33^{P} Thermo Sequenase radiolabeled terminator cycle sequencing kits (Amersham Life Sciences) (30 cycles; 30 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and 60 s at $72^{\circ} \mathrm{C}$). Sequences were aligned by eye using SEQAPP (Appendix 1). All COI products were sequenced in one direction (annealing with various ' S ' primers; Table 2), and the opposite strand was also partially sequenced (annealing with various ' A ' primers; Table 2) for all taxa to confirm that there were no inconsistencies in the sequence.

TABLE 2
Primer Sequences Used in the Amplification and Sequencing of the COI Region

Primer name	Primer sequence								
	5^{\prime}								3^{\prime}
S1718a	GGA	GGA	TTT	GGA	AAT	TGA	TTA	GTT	C
S1718b	GGA	GGA	TTT	GGA	AAT	TGA	TT		
S1834	AAG	AGG	WWT	AGT	AGA	AAG	WGG		
S1841	ATA	GTA	GAA	AGA	GGW	GTT	GG		
S1976	GTA	AAY	TTT	ATA	ACA	AC			
S 1991	ACM	GTW	ATT	AAT	ATA	CG			
S2045	GTT	TGA	GCT	GTA	TTT	AT			
S2118	TWY	TAA	CTG	ACC	GAA	A			
S2219	ATT	CTT	ATT	TTA	CCY	GCT	T		
S2249	ATG	ATT	TCT	CAY	ATT	GTT	AG		
S2329	АСт	GTA	AAT	ATA	TGA	TGA	GCT	CA	
S2417	ACW	ATA	ATT	ATT	GCY	RTH	CC		
A1887	ARR	GGD	GGR	TAR	ACR	GTY	CA		
A2051	CTR	GTT	TAT	GGW	GAR	AAR	CA		
A2064	GTA	ATA	AAW	ACA	GCT	CAA			
A2238	GGY	AAA	ATW	ARA	ATA	TAD	AC		
A2316	TAA	ATT	ATY	CCW	ARG	GTC	CC		
A3389	TCA	TAA	GTT	CAR	TAT	CAT	TG		
A3500	TAA	GAR	TCA	AAT	TTC	TAC	TTG		
A3662	CCA	CAA	ATT	TCT	GAA	CAT	TGI	CC	

Note. Primer numbers correspond to 3^{\prime} positions in the D. yakuba genome (Clary and Wolstenholme, 1985). Nonstandard and mixed bases as follows: $\mathrm{I}=$ deoxyinosine, $\mathrm{R}=\mathrm{A}+\mathrm{G}, \mathrm{Y}=\mathrm{C}+\mathrm{T}, \mathrm{M}=\mathrm{A}+\mathrm{C}$, $\mathrm{W}=\mathrm{A}+\mathrm{T}, \mathrm{D}=\mathrm{A}+\mathrm{T}+\mathrm{G}, \mathrm{H}=\mathrm{A}+\mathrm{T}+\mathrm{C}$.

Morphological Data Collection

An extensive morphological character matrix was constructed from the literature, using characters developed in previous systematic studies of fossil and extant Cancer crabs (Bell, 1835; Weymouth, 1910; Way, 1917; Imaizumi, 1962; Nations, 1975; Carvacho, 1989) (Appendix 2). Data were restricted to adult features because of the high degree of intraspecific variability in larval morphology (Orensanz and Galluci, 1988).

Phylogenetic Analyses

Phylogenetic analyses and the test of the validity of a molecular clock model for the COI data were conducted using PAUP (beta test version *d63, written by D. L. Swofford). In both the morphology and the COI data sets, all characters were weighted equally. Multistate morphological characters were ordered because we assumed that character transitions in Cancer crabs have occurred in a stepwise manner. Both the COI and the morphological data sets were analyzed in PAUP*d63 using maximum parsimony with the branch and bound algorithm. The robustness of trees inferred from these analyses was evaluated using bootstrap analyses with heuristic searching (1000 replicates; Felsenstein, 1985), decay indices (Bremer support; Bremer, 1994), and skewness analysis of tree length frequency distributions (Hillis, 1991; Huelsenbeck, 1991; Hillis and

Huelsenbeck, 1992). The COI data set was also analyzed using neighbor-joining with the default settings under the Kimura two-parameter model and maximum likelihood using the empirical nucleotide frequencies with a transition-transversion ratio of 2.0 under the Hasegawa-Kishino-Yano model. For the COI data, we tested an hypothesis of a molecular clock by comparing the log-likelihood of the maximum likelihood tree constrained to clockwise behavior with the log-likelihood of a tree with the same topology inferred using the unconstrained model, using the Kishino-Hasegawa test.

Considerable debate in the systematic literature has centered on the analysis and ability of different types of data to accurately reflect phylogenetic history (Eernisse and Kluge, 1993; Larson, 1994; reviewed in Swofford 1991; Bull et al., 1993; deQueiroz et al., 1995; Miyamoto and Fitch, 1995; Huelsenbeck et al., 1996; Huelsenbeck and Bull, 1996). Much of this controversy focuses on the relative merits of morphological versus molecular characters (e.g., Lewin, 1985; Hillis, 1987) and the methods of combining such diverse information. The two main approaches are taxonomic congruence and total evidence: taxonomic congruence involves inferring a consensus tree from separately analyzed data sets, while total evidence involves using character congruence to find the best-fitting topology for all of the available data (Eernisse and Kluge, 1993). The strategy followed in this paper was to analyze the degree of congruence between the data sets using a variety of approaches and to assess the influence of data set combining on tree topology, resolution, and support. A finding of well-supported incongruence between data sets would motivate investigation of its causes, using evidence ancillary to the data sets themselves.

Four methods were used to assess the degree of congruence between the COI and the morphology data sets. First, we evaluated the magnitude of the bootstrap values and decay indices on the trees inferred from each data set separately. Second, Templeton's Wilcoxon test (1983) was used to compare the topologies of the trees produced by maximum parsimony analyses of each data set. Templeton's test compares two topologies by summing the number of characters that undergo a different number of changes on the two trees. The sign and magnitude of these character by character differences are then analyzed using a Wilcoxon rank sum test. Third, to determine if the tree inferred from the combined data was only slightly suboptimal with respect to the trees inferred from each data set separately, the number of steps each data set required on the combined tree was compared to the number of steps required on the shortest trees inferred from the separate data sets (Swofford, 1991). Fourth, the Mickevich-Farris incongruence index (I_{MF}) (Swofford, 1991) and its associated statistical test (the partition homogeneity or incongruence length difference test; Farris et al., 1994; see also Cunningham, 1997)
were used to assess the extent of character incongruence between the data sets. I_{MF} values partition total character incongruence (homoplasy) into between and within data set components; smaller I_{MF} values indicate that the disagreement between two data sets is low relative to the amount of incongruence among characters within the separate data sets. Statistical significance of I_{MF} need not engender substantial erosion of resolution and support of a tree inferred from the combined data relative to trees inferred from the separate data sets (e.g., Crespi et al., 1998; Remsen and DeSalle, 1998), which suggests that it represents a necessary, though not sufficient, condition for convincing deviation from congruence.

RESULTS

Data Sets

The COI data set consisted of 1072 characters, 307 of which were cladistically informative and 240 of which were informative within the ingroup (Appendix 1). Using all three nucleotide positions yielded pairwise distances ranging from 7.2 to 17.2% within the ingroup, 19.9 to 23.6% between ingroup taxa and outgroup species, and 23.0% between the two outgroups (Table 3).

The morphology data set included 44 characters, which comprised 13 carapace traits and 31 claw characters. Thirty-eight of these characters were cladistically informative in the entire data set, and 37 were informative in the ingroup (Appendix 3).

Phylogenetic Analyses

Ten thousand random trees were generated from each data set to analyze the skewness of tree length frequency distributions. G_{1} values indicated a strongly significant phylogenetic signal in both data sets (morphology: $\mathrm{g}_{1}=-0.913, P<0.05 ; \mathrm{COI}$: $\left.\mathrm{g}_{1}=-0.834, P<0.05\right)$.

Analysis of COI data. Maximum parsimony analysis of the COI data yielded one tree of length 1043 (consistency index $\mathrm{CI}=0.587$, retention index $\mathrm{RI}=0.383)($ Fig. 1A). Both bootstrap values and decay indices for this tree gave strong support (99% and 21 steps, respectively) for the branch differentiating the Cancer genus from the outgroups and for four of the ingroup nodes ($\geq 70 \%$ and ≥ 3 steps, respectively). In particular, the monophyly of the two Atlantic species, C. borealis and C. pagurus, was supported by a high bootstrap value (81%) and a high decay index (5 steps).

The topologies of the phylogenetic trees inferred from neighbor-joining (Fig. 1B) and maximum likelihood (Fig. 1C) analyses did not differ substantially from the topology of the tree inferred from maximum parsimony analysis. All three trees agreed with respect to the node connecting the two Atlantic species, the branch supporting C. novaezealandiae, C. antennarius, and C. magister, and the clade containing C. gracilis, C. branneri, and C. oregonensis. In addition, 1000 bootstrap repli-

TABLE 3
Pairwise Distance Matrix for the COI Data Set

	Pairwise differences between taxa										
	P. cinctipes	H. nudus	branneri	C. antennarius	C. oregonensis	pagurus	C. productus	C. gracilis	C. novaezealandiae	C. borealis	C. magister
P. cinctipes	-										
H. nudus	0.230	-									
C. branneri	0.226	0.220	-								
C. antennarius	0.227	0.232	0.137	-							
C. oregonensis	0.218	0.230	0.118	0.162	-						
C. pagurus	0.208	0.215	0.165	0.151	0.160	-					
C. productus	0.211	0.214	0.150	0.148	0.172	0.134	-				
C. gracilis	0.217	0.199	0.107	0.148	0.138	0.172	0.157	-			
C. novaezealandiae	0.213	0.236	0.163	0.072	0.165	0.146	0.146	0.169	-		
C. borealis	0.213	0.228	0.149	0.162	0.165	0.109	0.141	0.161	0.154	-	
C. magister	0.232	0.224	0.159	0.147	0.166	0.148	0.149	0.172	0.138	0.165	-

cates of the neighbor-joining tree (Fig. 1B) provided strong support ($>70 \%$) for all nodes except the branches supporting C. branneri and C. gracilis (67\%), and the clade encompassing C. productus and the two Atlantic species (65%). The only difference among the three trees was the position of C. productus; on the tree derived from maximum parsimony analysis, C. productus was the most basal Cancer species, whereas on the trees resulting from neighbor-joining and maximum likelihood analyses, C. productus formed a monophyletic group with the two Atlantic species and C. oregonensis, C. branneri, and C. gracilis comprised the most basal Cancer clade.

Analysis of morphology data. Maximum parsimony analysis of the morphology data set yielded four trees with 167 steps $(\mathrm{CI}=0.557, \mathrm{RI}=0.529)$. One thousand bootstrap replicates and the decay index again gave strong support for the branch differentiating the genus Cancer from the outgroups (98% and 8 steps, respectively) on the strict consensus tree (Fig. 2). Three internal nodes were also supported by strong bootstrap values ($>75 \%$) and decay indices (2 or 3 steps), and the node separating C. magister from the other Cancer species received some support ($67 \%, 1$ step).

Analysis of combined data. Maximum parsimony analysis of the combined COI and morphology data yielded one shortest tree of length 1250 ($\mathrm{CI}=0.56$, $\mathrm{RI}=0.36$) (Fig. 3A) that was identical to the maximum parsimony, neighbor-joining, and maximum likelihood trees inferred from COI with regard to the presence of the monophyletic group ((C. antennarius, C. novaezealandiae), C. magister) and shared the clade (C. productus, (C. borealis, C. pagurus)) with the tree inferred from neighbor-joining. The combined tree was also similar to the tree inferred from morphology in that C. gracilis and C. branneri were basal taxa in both trees, although C. magister formed the sister taxon to the other Cancer species in the tree inferred from morphology. Bootstrap support for the combined tree
was generally quite low (Fig. 3B), with strong support restricted to the clade ((C. antennarius, C. novaezealandiae), C. magister), a group also well supported by the bootstrap analysis of the COI data.

Congruence analysis. None of the nodes on the trees inferred from the COI and morphology data sets defined identical monophyletic groups. We note in particular that in the tree inferred from the morphology data, each of the two Atlantic species forms the sister group to a Pacific species, whereas in the COI data, the Atlantic species form a well-supported monophyletic group (Fig. 2). The bootstrap and decay index values for conflicting nodes were generally high (Figs. 1A, 1B, and 2), such that the differences between topologies cannot be attributed to weakness of support for relationships and concomitant topological uncertainty. Templeton's (1983) test also provided strong evidence for substantive difference between the topologies (Wilcoxon rank sum test; $P<0.001$).

To determine if a single tree existed that was only slightly suboptimal with respect to the trees inferred from both data sets, the number of steps each data set required on the combined tree (Fig. 3) was compared to the number of steps required on the shortest trees inferred from the separate data sets (Swofford, 1991). The COI and morphology data sets required 16 and 20 more steps, respectively, on the tree inferred from the combined data set than they did on the tree inferred from each data set separately; thus, for the COI data the combined tree was $1.5 \%(16 / 1059)$ longer than the shortest COI tree of 1043 steps, and for the morphology data the combined tree was 11% (20/187) longer than the shortest tree from morphology alone. The morphology data required 43 additional steps on the tree based on COI data, and the COI data set required 111 additional steps on the tree produced by the morphology data. These results suggest that the COI data set fit a tree from the combined data reasonably well but the morphology data set did not and that the topologies
constructed from the separate data sets were substantially different.

The trees inferred from the separate morphology, COI, and combined data sets each contained 74, 431, and 545 homoplasies, or extra steps, respectively. These extra steps represent the difference between the amount of character change required (the tree length) on the tree being evaluated and the minimum amount of change that the characters could show on any tree. Analysis of character congruence yielded a congruence

FIG. 1. Results of analyses of COI data using (A) maximum parsimony (one tree; length $=1043, \mathrm{CI}=0.587, \mathrm{RI}=0.383$), (B) neighbor-joining, and (C) maximum likelihood (ln likelihood $=-6083.04$). Bootstrap values (1000 replicates) are indicated above branches and decay indices are shown below branches. * and § denote Atlantic and South Pacific species, respectively.

FIG. 2. Results of maximum parsimony analysis of the morphology data set, showing the strict consensus tree (four trees; length $=167, \mathrm{CI}=0.557, \mathrm{RI}=0.529$); bootstrap values (1000 replicates) are indicated above branches and decay indices are shown below branches. * and § denote Atlantic and South Pacific species, respectively.
index (I_{MF}) of 0.073 , indicating that 7.3% of the total character incongruence was due to disparity between the data sets. Thus, the relative degree of between-data set incongruence was low relative to the extent of character incongruence within the two separate data sets. However, the incongruence length difference test indicated that this degree of incongruence between data sets was statistically highly significant $(P=0.001)$.

All four of our approaches to analyzing congruence suggested that the morphology and COI characters provided strongly conflicting information. To determine whether certain characters in each data set were obscuring the true phylogeny of Cancer crabs, we reanalyzed both data sets by excluding specific character types. First, we partitioned the COI data set into hydrophobic and hydrophilic regions. Second, we excluded third position nucleotides, which have a relatively high substitution rate (Simon et al., 1994). Neither method yielded substantially different results. Third, we excluded the claw characters from a reanalysis of the morphological data, using the justification that claws may be under stronger selective pressures because of their role in a variety of functions, such as feeding, defense, and mate acquisition (Orensanz and Galluci, 1988) and therefore may tend to be convergent. However, the tree produced by this analysis was also weakly supported, and the two Atlantic species remained nonmonophyletic.

To what degree do the trees inferred from each of the two separate data sets conflict with the combined tree? Consideration of the degree of support for the relationships in the combined tree indicates that this tree is more similar to the COI tree than the single mostparsimonious combined tree would indicate. Thus, the bootstrap majority-rule tree inferred from the com-
bined data (Fig. 3B) has nearly the same topology as the trees inferred from COI (Fig. 1), differing only with regard to nodes exhibiting extremely weak bootstrap support in one or both analyses. Indeed, a combined tree with the same topology as the maximum parsimony COI tree has only three more steps than the shortest combined tree, a 0.2% difference in length. The main difference between the trees inferred from the COI and the combined data is therefore the reduced degree of bootstrap support for relationships in the tree from combined data. The tree inferred from morphology remains highly incompatible with the combined tree, especially with regard to the placements of C. novaezealandiae, C. borealis, and C. magister.

Analysis of Evolutionary History and Biogeography

To draw inferences concerning the origin and tempo of diversification in the genus Cancer and to compare the results of our phylogenetic analyses with the information in the fossil record, we presumed that the COI

FIG. 3. (A) Shortest tree resulting from maximum parsimony analysis of the combined data sets (one tree; length $=1250$, $\mathrm{CI}=0.564, \mathrm{RI}=0.363$; decay indices are shown below branches). (B) Bootstrap majority-rule consensus tree (plus compatible groups) of combined data set; bootstrap values (1000 replicates) are indicated above branches. * and \S denote Atlantic and South Pacific species, respectively.

COI: Maximum likelihood analysis with molecular clock

Fossil record:

FIG. 4. Comparison of results of maximum likelihood analysis of the COI data constrained to a molecular clock and the stratigraphic distribution of Cancer crabs (after Nations, 1975). * and § denote Atlantic and South Pacific species, respectively, and \bullet indicates those species for which COI data was collected.
data yielded an accurate phylogeny and we explored the ramifications of this presumption. Analysis of the COI data using maximum likelihood analysis did not lead to statistical rejection of the validity of the molecular clock (Kishino and Hasegawa test; Ln L with clock $=-6090.9, \mathrm{Ln} \mathrm{L}$ without clock $=-6087.4$; difference in $\mathrm{Ln} \mathrm{L}=3.5, \mathrm{SD}=2.5 ; P=0.18$). We therefore used the tree constrained to the molecular clock generated from the COI data and COI clock calibrations from Juan et al. (1995, 1996; see also Brower, 1994) to attach an approximate time scale to the evolutionary history of Cancer (Fig. 4). This tree and the clock calibration suggested that Cancer crabs arose during the Miocene, 20-25 million years ago, and that the majority of the diversification within this clade occurred by the end of the Miocene, about 5 million years ago. On this tree, north Pacific species were the most basal taxa, and the clade containing C. novaezealandiae, the South Pacific
species, and C. antennarius, a North Pacific crab, was the most recently derived group, diverging approximately 6 million years ago. The two Atlantic species (C. pagurus and C. borealis) were paired as sister species, branching off from their Pacific ancestors 6 to 12 million years before present.

The fossil record also exhibits good correspondence with the results of the maximum likelihood molecular clock model with regard to the ages of the different species. Thus, none of the extant species is recorded in the fossil record as clearly being older than the age of its lineage as inferred from the COI tree, though ancestors along internal branches of the tree may well closely resemble one of the descendant species. Similarly, the three lineages inferred as relatively old from the COI tree, C. oregonensis, C. magister, and C. productus, also arose relatively early, among extant species, in the fossil record, and two of the relatively young lineages as inferred from the COI tree, those leading to C. novaezealandiae and C. pagurus, are also relatively recent in the paleontological record. Inclusion in our phylogenetic analysis of species that are most recent in the fossil record, C. polyodon and C. jordani, will allow more extensive tests of the correspondence between phylogenetic and paleontological information, but given the uncertainties inherent in both sources of data, the general agreement between them in the data analyzed here lends credence to both.

DISCUSSION

Systematics and Phylogenetics of the Genus Cancer

The phylogenetic trees inferred from the morphological and COI characters supported notably different, though each strongly supported, hypotheses of relationship among crabs of the genus Cancer. In particular, analysis of the COI data indicated sister taxon status of the two Atlantic species, whereas analysis of the morphology data resulted in pairing of each Atlantic species with a Pacific species. The incongruence of the two topologies was strongly supported by the high bootstrap values on both of the trees derived from the separate data sets, the lack of a slightly suboptimal tree consistent with both data sets, and the highly significant results of the incongruence length difference and Templeton tests. Although the COI and morphology data sets provided notably incongruent trees, the combined data set yielded a tree that was closely similar to the trees inferred from COI using maximum parsimony, neighbor-joining, and maximum likelihood, although this combined tree was substantially less well supported by bootstrap analysis. Faced with such evidence of incongruence, we attempted to determine which, if either, phylogenetic hypothesis accurately represented the genealogical relationships of Cancer crabs. To this end, we first sought to diagnose the source of the incongruence and then evaluated the
ancillary evidence for and against the alternative phylogenetic hypotheses.

Consideration of the distributions, habitats, and feeding ecology of the species exhibiting divergent positions on the trees inferred from COI and morphology, C. pagurus, C. productus, C. borealis, and C. novaezealandiae, suggests that the source of incongruence between the data sets is extensive convergence in adult crab morphology. All four species live in intertidal and subtidal habitats and consume a wide variety of prey (Lawton and Elner, 1985; Creswell and Marsden, 1990; Jensen, 1995), and the pairs of species joined in the analysis of morphology, with each pair comprising species in different oceans, exhibit notable ecological similarities. Thus, C. borealis and C. novaezealandiae are most common in more structurally complex microhabitats and consume primarily hardshelled molluscan and crustacean prey (Creswell and Marsden, 1990; Creswell and McLay, 1990), whereas adult C. pagurus and C. productus are more omnivorous and most frequently occupy open-bottom substrates or habitats with large hiding places (Lawton and Elner, 1985; Orensanz and Galluci, 1988). Consequently, C. borealis and C. novaezealandiae appear to have converged with respect to their relatively stout, robust claws and oval-shaped carapace; correspondingly, C. pagurus and C. productus have smaller, weaker claws and wide carapaces with concave sides, which minimize lateral resistance to water flow in open benthic habitats (Blake, 1985). Our analyses suggest that the similarities in habitat across each pair of species have selected for convergence not just in overall size and shape, but in a sufficient number of external morphological traits to bias the results of the morphological analysis and make the separation of homoplasious from nonhomoplasious characters problematic.

Our hypothesis of convergence between C. borealis and C. novaezealandiae and between C. pagurus and C. productus is consistent with the taxonomic treatment of Cancer by Nations (1975), in that he places the former two species in the subgenus Metacarcinus and the latter two species in the subgenus Cancer sensu stricto. Other systematic studies of brachyuran crabs have encountered evidence of substantial homoplasy in external adult morphology (Rice, 1980; Spears et al., 1992). For example, the division Podotremata, which comprised the families Ranindae and Dromiidae, was proposed by Guinot (1977) on the basis of similar gonopore location; however, analysis of spermatozoan ultrastructure (Jamieson, 1990), zoel morphology (Rice, 1980), and sequence from 18S rRNA (Spears et al., 1992) all suggest that the Dromiidae should be removed from the Brachyura. Similarly, 18 S rRNA sequence data failed to support the monophyly of the Dromiidae; the morphological similarity (particularly the carapace) of the dromiid genera Dromidia and Hypoconcha appears to reflect convergence in response to the shared behavior of carrying objects (e.g., sponges)
over their dorsal surface (Spears et al., 1992). Several researchers have concluded that the accuracy of trees inferred from morphological data may be improved by the inclusion of characters that are presumably less subject to the selective pressures that may lead to convergence, such as setae number, antennae form, and gonopod structure (Jamieson, 1990; Abele, 1991).

Given the apparent high degree of morphological convergence among the allopatric species of Cancer crabs in this study, we believe that the COI and combined data sets provide a more accurate guide to the genealogical relationships of the genus Cancer than the tree inferred from morphological characters. Ancillary evidence for this hypothesis is provided by two sources. First, the biogeographic implications of the tree inferred from COI data agree with the most plausible dispersal pattern of Cancer crabs. Based on paleontological evidence, the genus is thought to have originated in the North Pacific, dispersing south along the coast of North and South America, west toward Japan, and north across the Bering Strait to the Atlantic Ocean (Nations, 1975, 1979). Thus, presuming a single trans-Arctic invasion, Atlantic species should be more closely related to one another than to any of the Pacific species, and indeed, in the tree inferred from the COI data, the two Atlantic taxa form a well-supported monophyletic group. Second, the phylogeny inferred via maximum likelihood analysis of the COI data, under the molecular clock model, is consistent with the fossil record of Cancer crabs with respect to the timing and location of the origin, diversification, and speciation patterns of the genus (Fig. 4). The stratigraphic distribution of Cancer crabs suggests that the genus arose in the Pacific in the early Miocene and diversified relatively rapidly. According to our COI-based time scale (Fig. 4), the genus Cancer arose in the early Miocene, the basal taxa are Pacific species, and the majority of the diversification within the genus occurred by the early Miocene, about five million years ago. The inclusion of DNA sequence from the Japanese and South American Cancer species in future studies will enable better resolution of the patterns of diversification of Cancer crabs and may allow further tests of our hypothesis that morphological phylogenetics in this genus can be prone to ecologically driven convergence.

Evolutionary History of Cancer Crabs and the Trans-Arctic Interchange

Due to the absence of Cancer fossils in the AsianArctic and the eastern Atlantic, previous studies have assumed that the probable migration route of Cancer crabs between the northern Pacific and the northern Atlantic was via the Bering Strait (Nations, 1975, 1979). Migration between North and South America before the closure of the Isthmus of Panama approximately 3.1 million years ago (Saito, 1976; Keigwin, 1978) is an alternative, but less plausible route, given that no Cancer fossils have been found in Central

America and that Cancer crabs are restricted to water temperatures below $24^{\circ} \mathrm{C}$ (Nations, 1975).

The Bering Strait, currently a shallow seaway, was a land bridge connecting Alaska and Siberia until it flooded in the late Miocene or early Pliocene, opening a migration route between the northern Pacific and Atlantic for many marine species, such as gastropods, echinoderms, barnacles, and marine vertebrates (Vermeij, 1989a,b, 1991). The date of submergence of the Bering land bridge is based primarily upon the stratigraphic distribution of fossil deposits in both the Pacific and Atlantic oceans. The occurrence of similar species of walruses in Miocene fossil beds from California and Virginia, and common molluscan species on both sides of the Atlantic Ocean, suggested to early researchers that the Bering Sea first opened briefly around 10-12 million years ago (MacNeil, 1965; Durham and MacNeil, 1967; Hopkins, 1967, 1972). However, these early deposits probably represent remnants of animals that dispersed into the Atlantic Ocean by way of the former Panama seaway before its closure around 3.1 million years ago (Repenning, 1976; Gladenkov, 1979; Herman and Hopkins, 1980). Currently, most researchers agree that the initial opening of the Bering Strait occurred approximately 5.2-3.4 million years ago (Hopkins, 1967; Gladenkov, 1979; Herman and Hopkins, 1980; Vermeij, 1989a, b, 1991).

The COI data places the invasion of the Atlantic Ocean from the North Pacific by the genus Cancer at approximately 6-12 million years ago, prior to most estimates of the date of submergence of the Bering Strait. Our results agree with previous paleontological research that dates Cancer fossils found in Atlantic deposits from the late Miocene (approximately 8 million years ago; Nations, 1975). Collins et al. (1996) point out that inferences from fossil data are subject to errors in fossil identification and estimates of divergence time, as well as gaps in the fossil record; however, several other DNA-based studies have also suggested an early date for trans-Arctic dispersal. For example, Collins et al. (1996) proposed that Nucella invaded the Atlantic from the North Pacific 7-8 million years ago, and studies of over 30 allozyme loci of ray-finned fish have yielded estimated divergence times of 1.7-4.5, 3.6-6.6, and 4.8-8.9 million years ago between closely related Atlantic and North Pacific species (Grant et al., 1984; Grant, 1986; Grant and Stahl, 1988). These studies of molluscs and fish, taken in conjunction with our analysis and the fossil record of Cancer crabs, should motivate further investigation into the timing and geography of dispersal between the Atlantic and Pacific oceans.

ACKNOWLEDGMENTS

[^0]
APPENDIX 1

Mitochondrial Cytochrome Oxidase I (COI) Sequence Used in the Molecular Analyses
Taxon

Position

1
PC, -ggaggatttggaaattgat
HN, -ggaggatttggaaattgat
CB, -----------------------
CA,
CO, -ggaggatttggaaattgat
CPa, aggaggatttggaaattgat
CP, -ggaggatttggaaattgat
CG, -ggaggatttggaaattgat
CN, ------------------------
CBo,
CM,
-ggaggatttggaaattgat 101
PC, ctaacactccttctaataag
HN, ttatcccttcttttaacaag
CB,
CA, ctaacattactccttataag
CO, ttaacactgcttcttataag
CPa, ctaacactacttcttataag
CP, ctaacccttcttcttataag
CG, ttaacattgctccttataag
CN, ctaactttacttcttataag
CBo, ttaaccctactccttataag
CM, ttaaccttacttcttataag 201
PC, ctgttgacatggggattttc
HN, ctgtcgatctcgggattttc
CB, cagttgacataggaattttc
CA, cagttgatataggaattttc
CO, cagtagacataggaattttt
CPa, cagtagatatagggattttt
CP, cagtagatatagggatcttt
CG, cagttgatataggaattttc
CN, cagtagatatgggaatcttt
CBo, cagtggacatggggattttt
CM, cagtcgatataggaatcttt 301
PC, agttacaatagaccgtatgc
HN, gaggacaatggaccaaatac
CB, gataaccttagatcaaatac
CA, aataaccttagatcaaatac
CO, tataaccctagatcaaatac
CPa, aataactctagaccaaatgc
CP, aataactctagaccaaatac
CG, aataaccttagaccaaatac
CN, gataactttagaccaaatac
CBo, gataagcttagaccaaatac
CM, gataactttagatcaaatac 401
PC, cttctaacagaccgaaatct
HN, ttgcttactgatcgaaattt
CB, ttattaactgatcgaaatct
CA, ttattgactgaccgaaatct
CO, ttattaactgaccgaaacct
CPa, cttttaacagaccgaaacct
CP, cttctcactgaccgaaatct
CG, ttactaactgatcgaaacct
CN, cttctaaccgaccgaaacct
CBo, ctcttaacggaccgaaacct
CM, cttctaactgaccgaaatct
tagttcccttaatattagga tagttccactaatactaggg
tagttcctcttatattagga tagttcccttaatactaggg tagttcctcttatgctggga tagttcctcttatattagga tagttcccttaatattagga -agttcctcttatattagga -agtccccttaatattagga tagttcccctaatgctagga
aggaatagttgaaagaggtg aagaatagtagagagtggag
aggtatagtagaaagaggag aggtatggtagaaagagggg aggaatagtagaaagaggag aggattagtagaaagaggtg aggtatagtagaaagtggag aggaatagtagagagagggg aggaatagtagaaagagggg aggaatagtagaaagaggag
tctctccatcttgcaggtat tcactacatcttgcaggggt tccttacatttagcaggggt tccttacacttagcaggagt tccttgcatttagcaggggt tctctccatttagcaggagt tcgcttcacttggcaggagt tccttacacttagcaggagt tctcttcatttagcaggagt tctcttcatttagctggggt tcccttcatttacgtggggt
cacttttcgtttgagctgtt ctctttttgtgtgagctgta ctctcttcgtttgagctgta ctctctttgtttgagctgta ctcttttcgtttgggctgta cactttttgtctgagctgtc cactttttgtttgagccgta ctctctttgtttgagctgta cactttttgtttgagctgta cactttttgtttgggctgtg cactcttcgtttgagctgta
taatacctcgttttttgacc aaatacatctttctttgacc taatacttctttctttgacc taatacctcattctttgacc taatacttcttttttcgacc caatacttccttctttgacc taatacttctttcttcgatc taatacttctttctttgatc taatacttctttcttcgacc aaacacttccttctttgatc taacacatctttctttgatc
gcccccgatatggctttccc gcgccagacatagcattccc
gctcctgatatagctttccc gcacctgatatggctttccc gcgcctgacatagcctttcc gcccctgatatagctttccc gcccotgatatagctttccc gctcctgatatagctttccc gcacctgatatagcctttcc gcacccgatatagctttccc
ttggaacaggatgaactgtt ttggcacagggtgaactgtt
ttggaacaggctgaactgtt ttgggacaggatgaaccgtc ttggaacagggtggactgtt ttggaactggctgaactgtc ttgggacaggatgaactgtt ttggaacaggttggactatc ttggaacaggttggactgtt taggaacaggatggaccgtc
ttcttcgattctaggtgcag ctcttcaattttaggagcag ttcttctatcttaggagctg ttcttctatcttaggagctg gtcctctattttaggggctg ttcttctattttaggagctg ttcctcaatcttaggagctg ttcttctatcttaggggctg ttcttctattctaggagctg ttcttcaatcctaggagctg ttcctctattttaggagcag
tttattactgctattctttt ttcattactgctattctctt tttattactgctatcctatt tttattactgccatcctatt tttattacagctatcttact tttattactgctatcctttt tttattactgccatcctttt tttattaccgctatcctgtt tttattactgctattctttt tttattactgccatcctttt tttatcaccgctattctttt
ccgcggagg-tggagatcca ctgctggcg-ggggggacca ccgcaggag-gggtgaccct ccgcagagg-aggagaccet cagcggagg-gggtgatcct ccgctgagg-aggtgaccet cagcaggag-gggagatcct ctgcgggcg-ggggggacct ccgcggagg-gggagatcct ctgcagagg-aggtgaccct cggcaaggg-aggagaccct
tcgtataaacaacataagat tcgtataaacaatataagat
tcgtataaacaatatgagtt ccgaataaataatataagat tcgaataaataacataagtt gcgtataaacaacataaggt tcgaataaataatataagat tcgtataaacaatatgagtt tcgaataaataatataagtt tcgtataaataatataagtt
tatccacctctttctgccag taccctcccctctccgctgc ---cctcctttagcaggagc taccetcctttagcaggagc taccetcctttagcgggggc tatccccctttagcaggtgc taccctcctttagcaggtgc tnccctcctttggcaggtgc taccctcccctagcgggcgc taccctcctttagcaggtgc taccctcccttagcgggggc
taaattttataacaacagta taaattttataactaccgtt taaattttataacaactgta taaactttataacaaccgta taaactttataacaactgtg taaattttataacaactgta taaattttataacaaccgta taaactttataacaactgtg taaattttataacaactgta tgaattttataacaactgta taaattttataacaaccgta
acttctttctttacctgtct acttttatctcttccagttc actcctctctccctgttc acttttatctctccctgtct actactctctctgcctgttt acttctatcactccctgtct acttttatctctcccagtat acttttatctctccctgttt acttttatctctccctgttt gctgctatccctccctgttt actactatcccttcctgtac
gtactttaccaacatttatt gttttataccaacatttatt gttctttatcaacacctttt gttctttaccaacacctttt gttctctatcaacacctttt gttctttatcaacacctctt gttctctatcaacatctctt gttctctatcaacacctttt gtactctaccaacacctttt gttctttaccaacatctttt gttctttaccaacacctttt
tttgattacttcccccatct tttggcttttaccgccctct
tttgactcttacctccttct tttgacttttacccccttca tctgattattacccccttca tttgattattacccccttct tttgacttcttcctccctcc tttgactcttacctccttct tctggttactacccccttca tctgactattacctccttct

200
gattgcacacgcaggagctt tattgcccacgctggcgcct tattgctcat--cggggcct tattgctcatcgtggcgcct tattgctcacgcaggggcct tattgcccacgctggagcct tattgcccatgcaggtgcct tattgctcacgctggagcct tattgctcatgctggagcct tattgcccacgctggagctt tatcgctcatgccggagcct 300
attaatatacgaccgaaagg attaatatacgatcttacgg attaatatgcgatcctttgg attaatatacgatcttttgg attaacatgcgatcttttgg atcaacatacgatcatttgg attaatatacgatcatttgg attaatatacggtcctttgg attaatatgcgctcatttgg atcaacatacggtcatttgg attaacatacgttcttttgg
tagccggagcaattaccatg tagcaggtgctatcactatg tagcaggtgcaattactata tagcaggtgcaattactata tagcaggggcaattactata tagctggagccatcactatt tagcaggagctattactata tagcaggtgcaattactatg tagcaggagcaattactata tagccggagctattaccata tagcaggtgccatcactata 500 ttgattcttcggtcaccctg ttggttctttggtcatcctg ttgattttttgggcaccag ctgattttttgg-cacccag ttgattcttcgggcaccctg ctgatttttcgggcacctcg ctgattttttgggcaccctg ttgattttttggacacccag ttgattctttggacaccctg ttggttttttgggcaccccg ttgact---tgggcaccctg

APPENDIX 1—Continued

Taxon
Position

501

PC, aagtctacattttaatttta
HN, aagtttatattttgatctta
CB, aagtatatattcttattttg
CA, aggttatatatcttatttta
CO, aagtttatattctcattctt
CPa , aagtttatattcttatttta
CP, aagtatatattcttatttta
CG, aagtctatattcttatctta
CN, aggtctatattctaatttta
CBo, aagtctatattcttatttta
CM, aagtgtacattcttattcta 601
PC, tgcaatattagctattggaa
HN, tgctatactagccattggaa
CB, cgctatattggccattggta
CA, cgccatattagctattggaa
CO, tgctatattagctattggta
CPa, tgctatactagccattggta
CP, tgctatattagccatcggta
CG, tgctatactagccattggta
CN, cgccatattagctattggaa
CBo, tgctatactagccattggta
CM, tgctatgttagccattggta 701
PC, acaataattattgctattcc
HN, acaataattattgctattcc
CB, actataattattgccgttcc
CA, actataattattgctgttcc
CO, actataattattgctgttcc
CPa, actataattattgctgtacc
CP, actataattattgctatccc
CG, actataattattgccgtccc
CN, actataattattgctgttcc
CBo, actataattattgctgtccc
CM, actataattattgctgttcc 801
PC, taggttttatttttctttt
HN, tagggtttatcttcttattt
CB, taggttttatttttcttttc
CA, taggttttatttttctattc
CO, taggtttcatttttcttttt
CPa, taggttttatcttcttattt
CP, taggtttcatcttcctattt
CG, tagggtttattttccttttt
CN, taggttttatttttctattc
CBo, taggttttatttttttattt
CM, taggttttatcttcctattt 901
PC, tcattttcactatgtattat
HN, tcactttcattatgttcttt
CB, ccattttcactatgttctat
CA, tcatttccattacgtattat
CO, tcatttccattatgttctat
CPa, tcatttccattatgtattat
CP, ccactttcattatgttttat
CG, acactttcactatgtcctat
CN, tcatttccattacgtattat
CBo, -------------gttttat
CM, ccatttccattacgttctat 1001
PC, tgattaaaaattcacttttc
HN, tgattgaaagttcatttctt
CB, tgacttaaaattcactttct
CA, tgacttaaaatccactttct
CO, tgacttaaaatccactttct
CPa, tgacttaaaatccactttct
CP, tgacttaaaatccatttttt
CN, tgacttaaaatccactttct
ccggcttttgggatgatttc cctgccttcggaatgatttc cctgcttttggaataatttc cctgcttttggaataatttc cctgcttttgggataatctc cccgcttttggtataatctc ccggcttttggaataatttc cctgctttcggaataatctc cctgcttttggtataatctc ccggcttttggaataatttc cctgctttcggcataatctc
tcttaggatttattgtctga ttttaggatttgtagtatga ttttaggctttgtggtctga tcctagggtttgttgtttga tcttaggttttgttgtttga ttctaggatttgttgtttga ttttaggctttgttgtctga tcttaggttttgtagtctga tcctagggtttgttgtttga ttctaggatttgttgtctga ttttaggatttgttgtttga
cacaggaattaaaattttta cactggaattaaaattttca cactgggattaaaatcttta caccggcatcaaaattttta aactggaattaaaatcttta taccggtattaaaattttta cactggtattaaaattttca tactggaattaagatcttca caccggcatcaaaattttta taccggaattaaaattttta tactggaatcaaaattttta
actgttggaggtcttacagg actatcggaggattaactgg actgtaggaggattaactgg acagtggggggcctaactgg actgtaggtgggttaacagg acagtaggtggattaactgg acagtaggaggactaactgg actgtaggaggattaactgg acagtggggggcctaactgg acagtaggaggattaacggg acagtaggaggactaactgg
caatgggcgcagtattcgga caataggagctgtattcgga ccataggagctgtgttcggt ctataggagctgtttttggt ctataggggctgtctttggg cgataggagctgtatttggt ctataggagctgtttttggt ccataggtgctgtcttcggg ctataggagctgtttttggt ctataggtgctgtatttggt ctataggagctgtcttcgga
aactatattcctaggagtaa agttactttcatcggagtaa tgtta---------------tgtaatgtttatcggagtta tgttatgtttattggggtaa tgttatatttattggagtaa tgttatatttacaggagtta
tgtaatgtttatcggagtta
tcacattgttagtcaggagt tcatattgttagtcaagaat ccatattgtaagacaagaat tcatattgtgagacaagaat tcatattgatagacaagaat tcatattgtaagtcaagaat tcatattgtaagccaagaat ccatattgtaagacaagaat tcatattgtaagtcaagagt tcatattgtaagccaagaat tcatattgtaagccaagagt
gctcatcacatgtttactgt gctcaccatatatttacatt gctcatcacatgtttacagt gcacaccatatatttacagt gcccaccacatatttacagt gctcatcatatatttacagt gcccaccatatatttacagt gcccaccatatattcacagt gcacaccatatatttacagt gctcaccatatatttacagt gctcatcatatatttacagt
gttgactaggaactcttcag gatgattaaggactctacat gttgactaaggactctccac gttgattgagcacactccat gttgactaagaactctccac gttggttaagaactctacat gttgactaagaactcttcat gttgactaagaacccttcac gttgattgagcacactccat gttgattaaggacacttcat gttggctaagcactcttcac
agtaattttagcaaactctt ggtagtactagctaattcat agtagttctagctaactctt tgtagttttagccaattctt agtagttctagctaattctt tgtagttttagctaattctt tgttgtattggccaactcct agtagttctagctaactctt tgtagttttagccaattctt agttgttttagctaactctt agtagttttagccaattctt
attttcgccggtattaccca attttcgctggggtagcaca attttcgccggtatcgctca atttttgccggaatcgccca atcttcgccggtattgctca atttttgctgggatctccca atttttgccggaatctctca attttcgccggaattgctca atttttgccggaatcgccca atttttgccggtatctccca atttttgctggaatcgccca
atttaactttttttcctcaa atctcacattcttcccccaa
atactacttttttcccgcaa atactactttctttcctcaa acataactttttttcctcaa acctcacttttttccctcaa
atactacttttt--------
cagggaaaaaagantctttt ctggtaaaaaagaatctttt ctgggaaaaaagagtccttt ctggtaaaaaagagtccttt ctggtaaaaaagagtctttt ctggaaaaaaagaatctttt ctgggaaaaaagaatctttt ctggtaaaaaagaatccttt cggggaaaaaagaatccttt ctgggaaaaaagaatctttt ctggaaaaaaagaatctttt
tggaatagacgttgacacgc gggaatagacgtagacactc tggaatggacgttgatactc gggtatagacgtagacaccc tggaatggatgttgatactc tggaatagatgtagatactc tggaatagatgttgataccc cggaatagacgttgatactc gggtatagacgtacacaccc cggaatagatgtagatactc tggtatagacgtcgataccc
ggtaatcaaatagtctacag ggtacgcagatgaattactc ggaactcaaattaattttag ggaactcaaattaacttcag ggaactcaaatcaattttag ggaacacaaattaactttag ggaacacaaattaactttag ggaactcaaattaactttag ggaactcaaattaacttcag ggaactcaaattaattttag ggcacacaaatcaacttcag
caattgacaccgtccttcat cgattgatattattctccat ctcttgatattattcttcat ctattgatatcatcctccat ctattgatattatccttcat ccattgatattatcctccac ctcttgacattattctccac ctatcgacattattcttcat ctattgatatcatcctccat caattgatattatcct---ctcttgatattattctccac
ctgattccccctattcacag ctgattctccttaataaccg ttgattccctttattcaccg ttgatttcctctttttactg ctgattccccttattcaccg ttgattccccttatttactg ttgatttcccctgttcaccg ttgattccctttatttactg ttgatttcctctttttactg ctgattccccttattcaccg ttgattccctctttttacag 1072
ggaaccgtggggataattta ggtactttgggtatgattta gggacccttgggataattta gggaccctaggaataattta gggacccttgg-atgattta ggtaccttaggaataattta gggaccctagggataatcta gggacccttggaataattta gggaccctaggaataattta gggacccgaggaataattta ggaactttaggaataatcta

700
gagcttacttcacctcagca gagcatactttacatctgca gagcttactttacctcagct gagcctattttacctcagcc gcgcttattttacttccgcc gcgcttactttacctccgcc gagcttacttcacctcagcc gagcttactttacctcagct gagcctattttacctcagcc gggcttactttacctcagcc gagcttattttacttcagcc 800 accetctataatttgagctc cccgtccctattatgagccc accttcaatgctttgagctc tccatctatactttgggccc cccttcaatactttgagccc gccttctatactttgagccc gccttcgatactttgagcco accctcaatactttgggcct tccatctatactttgggccc gccttctatgctctgagcco tccttctatactttgggctt

900
gacacatactatgtggtagc gatacatactatgtagttgc gatacttactacgttgttgc gatacttattatgttgttgc gacacttattatgttgttgc gatacatattatgttgtagc gatacttattatgttgtagc gatacttactatgttgtagc gatacttattatgttgttgc
gatacttattatgttgttgc 1000 gtctttccgttaatcccaaa gcctatccatgaaccctaaa gagtatctttaaaccctaag gagtgtctttaaaccccaaa gggtctctttaaaccctaaa gggtttccttaaatcctaaa gtgtatccttaaacccaaaa gagtt--------------gagtgtctttaaaccccaaa gggtttccttaaaccctaaa gtatatccttaaaccccaaa
cactttttagg
catttcctagg
cattttttagg
cattctttagg
catttcttagg
catttttagg

Note. PC, Petrolithes cinctipes; HN, Hemigrapsus nudus; CB, Cancer branneri; CA, C. antennarius; CO, C. oregonenesis; CPa, C. pagurus; CP, C. productus; CG, C. gracilis; CN, C. novaezealandiae; CBo, C. borealis; CM, C. magister. Missing nucleotides denoted by "-".

APPENDIX 2

Characters and States Used in the Morphological Analyses

1. Number of anterolateral teeth	15. Number of finger teeth	31. Degree of carapace aerolation
0 : twelve	0 : four	0 : none
1: ten	1: five	1: little
2: nine	2: six	2: moderate
3: three	3: seven	3: high
4: none	4: ten	32. Carapace shape
2. Number of posterolateral teeth	5: eleven	0 : oval
0 : none	6: many small	1: wide, sides concave
1: rudimentary	16. Outer finger carinae	2 : round
2: one	0 : absent	33. Carapace hair
3: two	1: present	0: absent
4: three	17. Outer finger ridges	1: present
3. Separation of anterolateral teeth	0 : absent	34. Cheliped hair
0: no	1: present	0 : none
1: at base	18. Inner finger setiferous pits	1: little
2: with fissures at base	0 : absent	2: moderate
3: only by fissures	1: present	3: high
4: not applicable	19. Number of outer manus carinae	35. Leg hair
4. Curvature of anterolateral teeth	0 : none	0 : none
0: absent	1: four	1: little
1: present	2: five	2: high
2: not applicable	3: six	36. Dense finger material
5. Anterolateral teeth tip shape	4: seven	0 : none
0 : round	20. Number of outer manus setiferous pits	1: $<25 \%$ of finger
1: single spine	0: absent	$2:<50 \%$ of finger
2: jagged	1: present	$3:>50 \%$ of finger
3: not applicable	21. Inner manus carinae	4: to proximal tooth
6. First anterolateral tooth shape	0 : absent	5: to base of finger
0: acute	1: present	37. Dense dactyl material
1: triangular	22. Inner manus ridges	0 : none
2 : round	0: absent	1: $<25 \%$ of dactyl
3: not applicable	1: present	$2:<50 \%$ of dactyl
7. Carpace granule	23. Inner manus setiferous pits	$3:>50 \%$ of dactyl
0: absent	0: absent	4: to proximal tooth
1: present	1: present	5: to base of finger
8. Number of dactyl teeth	24. Manus spines	38. Finger tip color
0 : four	0: absent	0: absent
1: five	1: present	1: present
2: six	25. Outer carpus carinae	39. Male carapace size
3: seven	0 : absent	0 : small ($<75 \mathrm{~mm}$ width)
4: eleven	1: present	1: medium ($\geq 75 \times \leq 180 \mathrm{~mm}$ width)
5: twelve	26. Outer carpus ridges	2: large ($>180 \mathrm{~mm}$ width)
6: many small	0 : absent	40. Relative leg length
9. Outer dactyl carinae	1: present	0 : small (<1.10)
0: absent	27. Carpus spines	1: medium ($\geq 1.10 \times \leq 1.20$)
1: present	0 : absent	2 : large (>1.20)
10. Outer dactyl ridges	1: present	41. Relative claw size
0: absent	28. Merus spines	0 : small (<0.230)
1: present	0 : absent	1: medium ($\geq 0.230 \times \leq 0.280$)
11. Outer dactyl setiferous pits	1: present	2: large (>0.280)
0 : absent	29. Frontal teeth shape	42. Mechanical advantage
1: present	0 : rounded	0 : small (<0.340)
12. Outer dactyl setiferous grooves	1: blunt	1: medium ($\geq 0.340 \times \leq 0.365$)
0: absent	2: triangular	2: large (>0.365)
1: present	3: acute	43. Relative dactyl length
13. Inner dactyl setiferous pits	4: none	0 : small (<0.500)
0 : absent	30. Degree of production of front of carapace	1: medium ($\geq 0.500 \times \leq 0.550$)
1: present	0 : none	2: large (>0.550)
14. Number of dactyl spines	1: little	44. Relative propodus height
0 : none	2: moderate	0 : small (<0.460)
1: many small	3: high	1: medium $(\geq 0.460 \times \leq 0.500)$
2: many large		2: large (>0.500)

Note. All multistate characters (except 39) are ordered. Sources of information: Nations, 1975; Lawton and Elner, 1985 (characters 40-44); Jensen, 1995, and references therein.

APPENDIX 3

Morphological Data Matrix

P. cinctipes \dagger	$4042331601000060000000000010123120110000 ? ? ? ? ?$
H. nudus \dagger	$301110140011005000000000001040120100000 ? ? ? ? ?$
C. antennarius	21111011001110001141100000111221022441102212
C. branneri	21111013011112211130110110112221132441021010
C. borealis	$231021111011111101400001001 ? 2130000441202212$
C. gracilis	23100111101110201030000100100110000000120000
C. magister	$10102113001102301130001110113110000 ? ? 0210000$
C. novazealandiae	$11202112101111101400001001121100004411 ? ? ? ? ?$
C. oregonensis	0011201100101000114000000010110101551022122
C. pagurus	11300210001100101020000000110311001441201111
C. productus	11201210001010001130101010100311001331201211

Note. Refer to Appendix 2 for character and state names.
\dagger Denotes outgroup taxa.

Note added in proof: Marincovich and Gladenkov (Nature 397: 149-151, 1999) provide stratigraphic evidence from molluscs and diatoms that the Bering Strait first opened 4.8 to 7.4 million years ago, which is consistent with our COI-based estimate.

REFERENCES

Abele, L. G. (1991). Comparison of morphological and molecular phylogeny of the Decapoda. Mem. Queens. Mus. 31: 101-108.
Anderson, W. R., and Ford, R. R. (1976). Early development, growth and survival of the yellow crab Cancer anthonyi Rathbun (Decapoda, Brachyura) in the laboratory. Aquaculture 7: 267-279.
Bell, T. (1835). Observations on the genus Cancer of Dr. Leach (Platycarcinus Latrielle), with descriptions of three new species. Trans. Zool. Soc. Lond. 1: 335-342.
Blake, R. W. (1985). Crab carapace hydrodynamics. J. Zool. (Lond) 207: 407-423.
Bremer, K. (1994). Branch support and tree stability. Cladistics 10: 295-304.
Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. USA 91: 6491-6495.
Bull, J. J., Huelsenbeck, J. P., Cunningham, C. C., Swofford, D. P., and Waddell, P. J. (1993). Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384-397.
Carroll, J. C. (1982). Seasonal abundance, size composition, and growth of rock crab, Cancer antennarius Stimpson, off central California. J. Crustacean Biol. 2: 548-561.
Carvacho, A. (1989). Cancer johngarthi, N. Sp. and Cancer porteri (Bell) (Crustacea, Decapoda): Comparisons and hypothesis. Proc. Biol. Soc. Wash. 102: 613-619.
Clary, D. O., and Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22: 252-271.
Collins, T. M., Frazer, K., Palmer, A. R., Vermeij, G. J., and Brown, W. M. (1996). Evolutionary history of northern hemisphere Nucella (Gastropoda, Muricidae): Molecular, morphological, ecological, and paleontological evidence. Evolution 50: 2287-2304.
Crespi, B. J., Carmean, D. A., Mound, L. A., Worobey, M., and Morris, D. (1998). Phylogenetics of social behavior in Australian gallforming thrips: Evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. Mol. Phylogenet. Evol. 9: 163-180.
Creswell, P. D., and Marsden, I. D. (1990). Morphology of the feeding
apparatus of Cancer novaezealandiae in relation to diet and predatory behaviour. Pac. Sci. 44: 384-400.
Creswell, P. D., and McLay, C. L. (1990). Handling times, prey size and species selection by Cancer novaezealandiae (Jacquinot, 1853) feeding on molluscan prey. J. Exp. Mar: Biol. Ecol. 140: 13-28.
Cunningham, C. W. (1997). Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst. Biol. 46: 464-478.
de Queiroz, A., Donoghue, M. J., and Kim, J. (1995). Separate versus combined analysis of phylogenetic evidence. Annu. Rev. Ecol. Syst. 26: 657-681.
Durham, J. W., and MacNeil, F. S. (1967). Cenozoic migrations of marine invertebrates through the Bering Strait Region. In "The Bering Land Bridge" (D. M. Hopkins, Ed.), pp. 326-349. Stanford Univ. Press, Stanford, CA.
Eernisse, D. J., and Kluge, A. G. (1993). Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol. Biol. Evol. 10: 1170-1195.
Farris, J. S., Kallersjo, M., Kluge, A. G., and Bult, C. (1994). Testing significance of incongruence. Cladistics 10: 315-319.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Garth, J. S., and Abbott, D. P. (1980). Brachyura: The true crabs. In "Intertidal Invertebrates of California" (R. H. Morris, D. P. Abbott, and E. C. Haderlie, Eds.), pp. 594-630. Stanford Univ. Press, Stanford, CA.
Gladenkov, Y. B. (1979). Comparison of late Cenozoic molluscan assemblages in northern regions of the Atlantic and Pacific oceans. Int. Geol. Rev. 21: 880.
Grant, W. S. (1986). Biochemical genetic divergence between Atlantic, Clupea harengus, and Pacific, C. pallasi, herring. Copeia (3): 714-719.
Grant, W. S., and Stahl, G. (1988). Evolution of Atlantic and Pacific cod: Loss of genetic variation and gene expression in Pacific cod. Evolution 42: 138-146.
Grant, W. S., Teel, D. J., Kobayashi, T., and Schmitt, C. (1984). Biochemical population genetics of Pacific halibut (Hippoglossus stenolepis) and comparison with Atlantic halibut (H. Hippoglossus). Can. J. Fish Aquat. Sci. 41: 1083-1088.
Guinot, D. (1977). Propositions pour une nouvelle classification des Crustaces Decapodes Brachyoures. C.R. Hebd. Seances Acad. Sci. Ser: D 285: 1049-1052.
Haeffner, P. A., Jr. (1976). Distribution, reproduction and moutling of
the rock crab, Cancer irroratus Say, 1917, in the mid-Atlantic Bight. J. Nat. Hist. 10: 377-397.
Herman, Y., and Hopkins, D. M. (1980). Arctic oceanic climate in late Cenozoic time. Science 209: 557-562.
Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. Annu. Rev. Ecol. Syst. 18: 23-42.
Hillis, D. M. (1991). Discriminating between phylogenetic signal and random noise in DNA sequences. In "Phylogenetic Analysis of DNA Sequences" (M. M. Miyamoto and J. Cracraft, Eds.), pp. 278-294. Oxford Univ. Press, Oxford.
Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses. J. Hered. 83: 189195.

Hines, A. H. (1991). Fecundity and reproductive output in nine species of Cancer crabs (Crustacea, Brachyura, Cancridae). Can. J. Fish. Aquat. Sci. 48: 267-275.
Hopkins, D. M. (1967). The Cenozoic history of Beringia: A synthesis. In "The Bering Land Bridge" (D. M. Hopkins, Ed.), pp. 451-484. Stanford Univ. Press, Stanford, CA.
Hopkins, D. M. (1972). The paleogeography and climatic history of Beringia during late Cenozoic time. Inter-Nord 12: 121-150.
Huelsenbeck, J. P. (1991). Tree-length distribution skewness: An indicator of phylogenetic information. Syst. Zool. 40: 257-270.
Huelsenbeck, J. P., and Bull, J. J. (1996). A likelihood ratio test to detect conflicting phylogenetic signal. Syst. Biol. 45: 92-98.
Huelsenbeck, J. P., Bull, J. J., and Cunningham, C. W. (1996). Combining data in phylogenetic analysis. Trends Ecol. Evol. 11: 152-158.
Imaizumi, R. (1962). Miocene Cancer of Japan. Sci. Rep. Tohoku Univ. Ser. 2 (Geol.) 5: 233-245.
Ingle, R. W. (1981). The larval and post-larval development of the edible crab, Cancer pagurus Linnaeus (Decapoda: Brachyura). Bull. Br: Mus. Nat. Hist. (Zool.) 40: 211-236.
Jamieson, B. G. M. (1990). The ultrastructure of the spermatozoa of Peralomera lateralis (Gray) (Crustacea, Brachyura, Dromiacea) and its phylogenetic significance. Invertebr: Reprod. Dev. 17: 39-45.
Jensen, G. C. (1995). "Pacific Coast Crabs and Shrimps," Sea Challengers, Monterey, CA.
Juan, C., Oromi, P., and Hewitt, G. M. (1995). Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae). Proc. R. Soc. Lond, Ser: B 261: 173-180.
Juan, C., Oromi, P., and Hewitt, G. M. (1996). Phylogeny of the genus Hegeter (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequence. Heredity 76: 392-403.
Keigwin, L. D., Jr. (1978). Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribean Sea cores. Geology 6: 630-634.
Larson, A. (1994). The comparison of morphological and molecular data in phylogenetic systematics. In "Molecular Ecology and Evolution: Approaches and Applications" (B. Schierwater, B. Streiet, G. P. Wagner, and R. DeSalle, Eds.), pp. 371-390. Birkhäuser, Basel.
Lawton, P., and Elner, R. W. (1985). Feeding in relation to morphometrics within the genus Cancer: Evolutionary and ecological considerations. In "Proceedings of the Symposium on Dungeness Crab Biology and Management" (B. R. Melteff, Ed.), pp. 357-379. Alaska Sea Grant Report No. 85-3, Univ. of Alaska.
Lewin, R. (1985). Molecules vs. morphology: Of mice and men. Science 229: 743-745.
Mackay, D. C. G. (1943). Temperature and the world distribution of crabs of the genus Cancer. Ecology 24: 113-115.

MacNeil, F. S. (1965). Evolution and distribution of the genus Mya, and tertiary migration of Mollusca. U. S. Geol. Surv. Professional Paper 483-G: 51.
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. (1984). Outgroup analysis and parsimony. Syst. Zool. 33: 83-103.
Miyamoto, M. M., and Fitch, W. M. (1995). Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44: 64-76.
Nations, J. D. (1975). The genus Cancer (Crustacea: Brachyura): Systematics, biogeography and fossil record. Nat. Hist. Mus. Los Angelos Cty. Sci. Bull. 23.
Nations, J. D. (1979). The genus Cancer and its distribution in time and space. Bull. Biol. Soc. Wash. 3: 153-187.
Orensanz, J. M., and Galluci, V. F. (1988). Comparative study of postlarval life-history schedules in four sympatric species of Cancer (Decapoda: Brachyura: Cancridae). J. Crustacean Biol. 8: 187-220.
Orensanz, J. M., Parma, A. M., Armstrong, D. A., Armstrong, J., and Wardrup, P. (1995). The breeding ecology of Cancer gracilis (Crustacea: Decapoda: Cancridae) and the mating systems of cancrid crabs. J. Zool. (Lond) 235: 411-437.
Reilly, P. N., and Saila, B. (1978). Biology and ecology of the rock crab, Cancer irroratus Say, 1817, in southern New England waters (Decapoda, Brachyura). Crustaceana 34: 121-140.
Remsen, J., and DeSalle, R. (1998). Character congruence of multiple data partitions and the origin of Hawaiian Drosophilidae. Mol. Phylogenet. Evol. 9: 225-235.
Repenning, C. A. (1976). Adaptive evolution of sea lions and walruses. Syst. Zool. 25: 375-390.
Rice, A. L. (1980). Crab zoel morphology and its bearing on the classification of the Brachyura. Trans. Zool. Soc. Lond. 35: 271424.

Saito, T. (1976). Geologic significance of coiling direction in the planktonic foraminifera Pulleniatina. Geology 4: 305-309.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651-701.
Spears, T., Abele, L. G., and Kim, W. (1992). The monophyly of brachyuran crabs: A phylogenetic study based on 18S RNA. Syst. Biol. 41: 446-461.
Swofford, D. L. (1991). When are phylogeny estimates from molecular and morphological data incongruent? In "Phylogenetic Analysis of DNA Sequences" (M. M. Miyamoto and J. Cracraft, Eds.), pp. 295-333. Oxford Univ. Press, Oxford.
Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221-244.
Vermeij, G. J. (1989a). Geographical restriction as a guide to the cause of extinction: The case of the cold northern seas during the Neogene. Paleobiology 15: 335-356.
Vermeij, G. J. (1989b). Invasion and extinction: The last three million years of North Sea pelecypod history. Conserv. Biol. 3: 274-281.
Vermeij, G. J. (1991). Anatomy of an invasion: The trans-Arctic interchange. Paleobiology 17: 281-307.
Way, E. (1917). "Brachyura and Crab-like Anomura of Friday Harbour," Puget Sound Biological Station.
Weymouth, F. W. (1910). Synopsis of the true crabs (Brachyura) of Monterey Bay, California. Leland Stanford Junior Univ. Pub. Univ. Ser. 4: 1-64.
Zar, J. H. (1984). "Biostatistical Analysis," Prentice Hall International, Englewood Cliffs, NJ.

[^0]: We are grateful to the Natural Resources and Engineering Research Council of Canada for financial support, to Graeme Taylor, Michael Eagles, and Colin McLay for providing Cancer crab specimens, and to Dave Carmean for assistance with the phylogenetic analyses.

