Phylogenetics of *Cancer* Crabs (Crustacea: Decapoda: Brachyura)

Michelle K. Harrison and Bernard J. Crespi

Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada

Received June 2, 1998; revised July 17, 1998

We used morphological, mitochondrial DNA sequence, paleontological, and biogeographical information to examine the evolutionary history of crabs of the genus Cancer. Phylogenies inferred from adult morphology and DNA sequence of the cytochrome oxidase I (COI) gene were each well resolved and well supported, but differed substantially in topology. Four lines of evidence suggested that the COI data set accurately reflected Cancer phylogeny: (1) in the phylogeny inferred from morphological data, each Atlantic species was sister taxon to an ecologically similar Pacific species, suggesting convergence in morphology; (2) a single trans-Arctic dispersal event, as indicated by the phylogeny inferred from COI, is more parsimonious than two such dispersal events, as inferred from morphology; (3) test and application of a maximum likelihood molecular clock to the COI data yielded estimates of origin and speciation times that fit well with the fossil record; and (4) the tree inferred from the combined COI and morphology data was closely similar to the trees inferred from COI, although notably less well supported by the bootstrap. The phylogeny inferred from maximum likelihood analysis of COI suggested that *Cancer* originated in the North Pacific in the early Miocene, that the Atlantic species arose from a North Pacific ancestor, and that Cancer crabs invaded the Atlantic from the North Pacific 6-12 mya. This inferred invasion time is notably prior to most estimates of the date of submergence of the Bering Strait and the trans-Arctic interchange, but it agrees with fossil evidence placing at least one Cancer species in the Atlantic about 8 mya. © 1999 Academic Press

INTRODUCTION

Crabs of the genus *Cancer* (Crustacea: Decapoda: Brachyura) comprise 23 phenotypically diverse species distributed in a variety of intertidal and subtidal habitats worldwide (Table 1; Nations, 1975; Lawton and Elner, 1985; Creswell and Marsden, 1990; Jensen, 1995). *Cancer* species have long been the subject of intense interest from evolutionary biologists, paleontologists, and systematists (Bell, 1835; Weymouth, 1910; Way, 1917; Imaizumi, 1962; Nations, 1975, 1979; Car-

186

vacho, 1989), behavioral ecologists (Mackay, 1943; Garth and Abbott, 1980; Orensanz and Galluci, 1988; Creswell and McLay, 1990; Orensanz *et al.*, 1995), and fisheries researchers (e.g., Anderson and Ford, 1976; Haeffner, 1976; Reilly and Saila, 1978; Ingle, 1981; Carroll, 1982; Lawton and Elner, 1985; Hines, 1991), and as a result, there exists a plethora of ecological, behavioral, and biogeographic information on the genus. Despite the ecological, evolutionary, and economic importance of *Cancer* crabs, phylogenetic hypotheses for the analysis of their evolution and adaptations have yet to be developed and their diversity has yet to be examined in a temporal or comparative context.

In this paper, we infer a phylogeny for selected species of the genus Cancer using both DNA sequence and morphological data, and we use this phylogeny to examine the origin, diversification, and biogeographic history of these Cancer species. The paper has two main goals. First, we assess the usefulness of data from DNA sequence of the mitochondrial cytochrome oxidase I gene and from external adult morphological traits for phylogenetic inference in the genus; we analyze the degree of congruence of the data and trees derived from these two sources and then decide upon our bestsupported hypothesis of ancestry. Second, we examine the relationship between our phylogeny and the extensive fossil record of Cancer crabs (Nations, 1975) to investigate their date of origin, temporal pattern of diversification, and biogeographic history, particularly with regard to the timing of one of the most critical dispersal events in the history of marine biodiversity, the trans-Arctic interchange (Gladenkov, 1979; Herman and Hopkins, 1980; Vermeij, 1989a,b, 1991).

MATERIALS AND METHODS

Taxonomy and Biogeography of the Genus Cancer

Nations (1975) divided the genus *Cancer* into four subgenera: *Romaleon, Metacarcinus, Glebocarcinus,* and *Cancer* sensu stricto. Based on paleontological and morphological evidence, he proposed that (1) the relatively small, highly ornate crabs of the subgenus *Romaleon* are ancestral to the other *Cancer* species because *Romaleon* species appear earliest in the fossil record,

Se	lected Life Hi	story Characteris	tics for the specie	es Used in the Mol	ecular Analysis	
Species (common name)	Cancer subgenus†	Distribution*†	Reported depth range*¥¶	Primary habitat type*¥	Collection site/date	GenBank Accession No.
Petrolithes cinc- tipes (Flat porce- lain crab)	•	Porcher Island, British Columbia to Santa Bar- bara California	Upper and middle intertidal	Under rocks on or near the outer coast; abundant in mussel beds	Diana Island, B.C. May-95	AF060776
<i>Hemigrapsus</i> <i>nudus</i> (Purple shore crab)	•	Yakobi Island, Alaska to Bahia de Tortuga, Mexico	Upper and middle intertidal	Under rocks on exposed beaches; estuaries	Diana Island, B.C. May-95	AF060775
Cancer oregonensis (Pygmy rock crab)	Glebocarcinus	Pribilof Islands to Palos Verdes, California	Low intertidal to 436 m	Under rocks in low intertidal; sub- tidally in broken shell	First Beach, B.C. Jun-95	AF060772
<i>Cancer branneri</i> (Furrowed rock crab)	Romaleon	Granite Cove, Alaska to Isla de Cedros, Baja California	Subtidal to 179 m	Coarse gravel and sand; most abun- dant on broken shell	Helby Island, B.C. Jun-96	AF060774
<i>Cancer gracilis</i> (Graceful crab)	Metacarcinus	Prince William Sound, Alaska to Bahia Playa Maria, Mexico	Low intertidal to 143 m	Mud and muddy sand	Grappler Inlet, B.C. May-95	AF060769
Cancer novaezeal- andiae (New Zealand rock crab)	Metacarcinus	New Zealand; North, South, Auckland and Chatham Islands; intro- duced to Tas- mania and Vic- toria, Australia	Intertidal to 60 m	Fine sediment, under rocks, stones, and among seaweed	New Zealand Oct-96	AF060768
<i>Cancer anten-</i> <i>narius</i> (Pacific rock crab)	Romaleon	Queen Charlotte Sound, British Columbia to Cabo San Lucas, Mexico	Low intertidal to 91 m	Mud, sand, gravel, and rock	Diana Island, B.C. May-95	AF060773
Cancer borealis	Metacarcinus	Grand Banks to	Intertidal to 870 m;	Mud, sand, and	Nova Scotia	AF060767

most abundant

at intermediate

From low intertidal

Intertidal to 100 m

depths Mid intertidal to

79 m

to 230 m

Selected Life History Characteristics for the Species Used in the Molecular Analysis

Note. Sources of information: † = Nations, 1975; ¥ = Lawton and Elner, 1985; ¶ = Creswell and Marsden, 1990; * = Jensen, 1995.

(2) crabs of the subgenus *Cancer* sensu stricto, which are characterized by large size, smooth carapace margins, pronounced lateral carapace expansions, and unornamented chelipeds, were the most recently derived group, and (3) *Metacarcinus* species appear to represent an intermediate stage between *Romaleon* and *Cancer*. Nations (1975) also noted that the evolutionary position of crabs of the subgenus *Glebocarcinus* re-

Cancer sensu

Metacarcinus

Cancer sensu

stricto

stricto

south of Tor-

tugas, Florida

Kodiak, Alaska to

Isla San Martin,

Baja California

Santa Barbara,

coast of Norway,

south to Portugal: Mediterranean Sea

Pribilof Islands to

California

From northwest

(Jonah crab)

Cancer productus

Cancer magister

Cancer pagurus

(Edible crab)

(Red rock crab)

(Dungeness crab)

mains unclear, as *Glebocarcinus* species have relatively large, wide carapaces, yet retain a high degree of cheliped and carapace ornamentation.

Oct-96

B.C.

May-95

May-95

Jun-95

Grappler Inlet,

Great Britain

Pachena Bay, B.C.

AF060770

AF060766

AF060771

near shore rocky

Mud, sand, gravel,

Common subtidally

Primarily mud and

sand, some rock

on sand and mud

and boulder

beaches

areas

Previous paleontological research has suggested that the genus *Cancer* originated in the Miocene in the North Pacific and dispersed south along the coast of North and South America, west toward Japan, and north across the Arctic into the Atlantic Ocean, with speciation events subsequent to or concomitant with dispersal into each new area (Fig. 12 of Nations, 1975; Nations 1979). According to Nation's (1975) biogeographic hypotheses, the basal species of *Cancer* should be North Pacific species and the Atlantic species should be more closely related to one another than to any of the Pacific species. Furthermore, if *Cancer* species participated in the trans-Arctic interchange and speciated once they reached the Atlantic Ocean, Atlantic taxa should have diverged from the North Pacific species sometime after the seaway between Alaska and Siberia opened, 5.2–3.4 million years ago (Gladenkov, 1979; Herman and Hopkins, 1980; Vermeij, 1989a,b, 1991).

Choice of Taxa

Our analyses included 9 of the 23 extant *Cancer* species, including at least 1 species representative from each of the four subgenera proposed by Nations (1975). These taxa include all *Cancer* species from the northeast Pacific, 2 Atlantic species, and the single species from the southwest Pacific (New Zealand). Two other crabs, *Hemigrapsus nudus* (Decapoda: Brachyura: Grapsidae) and *Petrolithes cinctipes* (Decapoda: Anomura: Porcellanidae), representing a different brachyuran family and decapod order, respectively, were used as the outgroups. These outgroup taxa were chosen because multiple outgroup taxa can increase resolution and support for basal ingroup nodes (Maddison *et al.*, 1984) and these two species were readily available.

COI Data Collection

DNA was isolated from frozen or preserved (in 99% ethanol or guanidine isothiocyanate) specimens by crushing cheliped muscle tissue in Lifton buffer (0.2 M sucrose, 0.05 M EDTA, 0.1 M Tris, 0.5% SDS). Total DNA was extracted from this homogenate using phenolchloroform-isoamyl alcohol, precipitated in 70% ethanol with 0.7 M sodium acetate, and suspended in sterile distilled water. The primers designated S1718a or S1718b were used with A2238, A2316, A3500, or A3662 (Table 2) to amplify sequence from the mitochondrial cytochrome oxidase I (COI) gene using the polymerase chain reaction (PCR). After processing with exonuclease I and shrimp alkaline phosphatase, double-stranded PCR products were sequenced using 35^s and Sequenase kits (U.S. Biochemical) or 33^P Thermo Sequenase radiolabeled terminator cycle sequencing kits (Amersham Life Sciences) (30 cycles; 30 s at 95°C, 30 s at 60°C, and 60 s at 72°C). Sequences were aligned by eye using SEQAPP (Appendix 1). All COI products were sequenced in one direction (annealing with various 'S' primers; Table 2), and the opposite strand was also partially sequenced (annealing with various 'A' primers; Table 2) for all taxa to confirm that there were no inconsistencies in the sequence.

TABLE 2

Primer Sequences Used in the Amplification and Sequencing of the COI Region

				Prime	er seque	ence			
Primer name	5'								3'
S1718a	GGA	GGA	TTT	GGA	AAT	TGA	TTA	GTT	С
S1718b	GGA	GGA	$\mathbf{T}\mathbf{T}\mathbf{T}$	GGA	AAT	TGA	TT		
S1834	AAG	AGG	WWT	AGT	AGA	AAG	WGG		
S1841	ATA	GTA	GAA	AGA	GGW	GTT	GG		
S1976	GTA	AAY	$\mathbf{T}\mathbf{T}\mathbf{T}$	ATA	ACA	AC			
S1991	ACM	GTW	ATT	AAT	ATA	CG			
S2045	GTT	TGA	GCT	GTA	TTT	AT			
S2118	TWY	TAA	CTG	ACC	GAA	А			
S2219	ATT	CTT	ATT	TTA	CCY	GCT	т		
S2249	ATG	ATT	TCT	CAY	ATT	GTT	AG		
S2329	ACT	GTA	AAT	ATA	TGA	TGA	GCT	CA	
S2417	ACW	ATA	ATT	ATT	GCY	RTH	CC		
A1887	ARR	GGD	GGR	TAR	ACR	GTY	CA		
A2051	CTR	GTT	TAT	GGW	GAR	AAR	CA		
A2064	GTA	ATA	AAW	ACA	GCT	CAA			
A2238	GGY	AAA	ATW	ARA	ATA	TAD	AC		
A2316	TAA	ATT	ATY	CCW	ARG	GTC	CC		
A3389	TCA	TAA	GTT	CAR	TAT	CAT	TG		
A3500	TAA	GAR	TCA	AAT	TTC	TAC	TTG		
A3662	CCA	CAA	ATT	TCT	GAA	CAT	TGI	CC	

Note. Primer numbers correspond to 3' positions in the *D. yakuba* genome (Clary and Wolstenholme, 1985). Nonstandard and mixed bases as follows: I = deoxyinosine, R = A + G, Y = C + T, M = A + C, W = A + T, D = A + T + G, H = A + T + C.

Morphological Data Collection

An extensive morphological character matrix was constructed from the literature, using characters developed in previous systematic studies of fossil and extant *Cancer* crabs (Bell, 1835; Weymouth, 1910; Way, 1917; Imaizumi, 1962; Nations, 1975; Carvacho, 1989) (Appendix 2). Data were restricted to adult features because of the high degree of intraspecific variability in larval morphology (Orensanz and Galluci, 1988).

Phylogenetic Analyses

Phylogenetic analyses and the test of the validity of a molecular clock model for the COI data were conducted using PAUP (beta test version *d63, written by D. L. Swofford). In both the morphology and the COI data sets, all characters were weighted equally. Multistate morphological characters were ordered because we assumed that character transitions in Cancer crabs have occurred in a stepwise manner. Both the COI and the morphological data sets were analyzed in PAUP*d63 using maximum parsimony with the branch and bound algorithm. The robustness of trees inferred from these analyses was evaluated using bootstrap analyses with heuristic searching (1000 replicates; Felsenstein, 1985), decay indices (Bremer support; Bremer, 1994), and skewness analysis of tree length frequency distributions (Hillis, 1991; Huelsenbeck, 1991; Hillis and

Huelsenbeck, 1992). The COI data set was also analyzed using neighbor-joining with the default settings under the Kimura two-parameter model and maximum likelihood using the empirical nucleotide frequencies with a transition-transversion ratio of 2.0 under the Hasegawa-Kishino-Yano model. For the COI data, we tested an hypothesis of a molecular clock by comparing the log-likelihood of the maximum likelihood tree constrained to clockwise behavior with the log-likelihood of a tree with the same topology inferred using the unconstrained model, using the Kishino-Hasegawa test.

Considerable debate in the systematic literature has centered on the analysis and ability of different types of data to accurately reflect phylogenetic history (Eernisse and Kluge, 1993; Larson, 1994; reviewed in Swofford 1991; Bull et al., 1993; deQueiroz et al., 1995; Miyamoto and Fitch, 1995; Huelsenbeck et al., 1996; Huelsenbeck and Bull, 1996). Much of this controversy focuses on the relative merits of morphological versus molecular characters (e.g., Lewin, 1985; Hillis, 1987) and the methods of combining such diverse information. The two main approaches are taxonomic congruence and total evidence: taxonomic congruence involves inferring a consensus tree from separately analyzed data sets, while total evidence involves using character congruence to find the best-fitting topology for all of the available data (Eernisse and Kluge, 1993). The strategy followed in this paper was to analyze the degree of congruence between the data sets using a variety of approaches and to assess the influence of data set combining on tree topology, resolution, and support. A finding of well-supported incongruence between data sets would motivate investigation of its causes, using evidence ancillary to the data sets themselves.

Four methods were used to assess the degree of congruence between the COI and the morphology data sets. First, we evaluated the magnitude of the bootstrap values and decay indices on the trees inferred from each data set separately. Second, Templeton's Wilcoxon test (1983) was used to compare the topologies of the trees produced by maximum parsimony analyses of each data set. Templeton's test compares two topologies by summing the number of characters that undergo a different number of changes on the two trees. The sign and magnitude of these character by character differences are then analyzed using a Wilcoxon rank sum test. Third, to determine if the tree inferred from the combined data was only slightly suboptimal with respect to the trees inferred from each data set separately, the number of steps each data set required on the combined tree was compared to the number of steps required on the shortest trees inferred from the separate data sets (Swofford, 1991). Fourth, the Mickevich-Farris incongruence index (I_{MF}) (Swofford, 1991) and its associated statistical test (the partition homogeneity or incongruence length difference test; Farris et al., 1994; see also Cunningham, 1997)

were used to assess the extent of character incongruence between the data sets. I_{MF} values partition total character incongruence (homoplasy) into between and within data set components; smaller I_{MF} values indicate that the disagreement between two data sets is low relative to the amount of incongruence among characters within the separate data sets. Statistical significance of I_{MF} need not engender substantial erosion of resolution and support of a tree inferred from the combined data relative to trees inferred from the separate data sets (e.g., Crespi *et al.*, 1998; Remsen and DeSalle, 1998), which suggests that it represents a necessary, though not sufficient, condition for convincing deviation from congruence.

RESULTS

Data Sets

The COI data set consisted of 1072 characters, 307 of which were cladistically informative and 240 of which were informative within the ingroup (Appendix 1). Using all three nucleotide positions yielded pairwise distances ranging from 7.2 to 17.2% within the ingroup, 19.9 to 23.6% between ingroup taxa and outgroup species, and 23.0% between the two outgroups (Table 3).

The morphology data set included 44 characters, which comprised 13 carapace traits and 31 claw characters. Thirty-eight of these characters were cladistically informative in the entire data set, and 37 were informative in the ingroup (Appendix 3).

Phylogenetic Analyses

Ten thousand random trees were generated from each data set to analyze the skewness of tree length frequency distributions. G₁ values indicated a strongly significant phylogenetic signal in both data sets (morphology: $g_1 = -0.913$, P < 0.05; COI: $g_1 = -0.834$, P < 0.05).

Analysis of COI data. Maximum parsimony analysis of the COI data yielded one tree of length 1043 (consistency index CI = 0.587, retention index RI = 0.383) (Fig. 1A). Both bootstrap values and decay indices for this tree gave strong support (99% and 21 steps, respectively) for the branch differentiating the *Cancer* genus from the outgroups and for four of the ingroup nodes (\geq 70% and \geq 3 steps, respectively). In particular, the monophyly of the two Atlantic species, *C. borealis* and *C. pagurus*, was supported by a high bootstrap value (81%) and a high decay index (5 steps).

The topologies of the phylogenetic trees inferred from neighbor-joining (Fig. 1B) and maximum likelihood (Fig. 1C) analyses did not differ substantially from the topology of the tree inferred from maximum parsimony analysis. All three trees agreed with respect to the node connecting the two Atlantic species, the branch supporting *C. novaezealandiae*, *C. antennarius*, and *C. magister*, and the clade containing *C. gracilis*, *C. branneri*, and *C. oregonensis*. In addition, 1000 bootstrap repli-

IABLE 3

Pairwise Distance Matrix for the COI Data Set

	Pairwise differences between taxa										
	P. cinctipes	H. nudus	C. branneri	C. antennarius	C. oregonensis	C. pagurus	C. productus	C. gracilis	C. novaezealandiae	C. borealis	C. magister
P. cinctipes	•										
H. nudus	0.230	•									
C. branneri	0.226	0.220	٠								
C. antennarius	0.227	0.232	0.137	•							
C. oregonensis	0.218	0.230	0.118	0.162	•						
C. pagurus	0.208	0.215	0.165	0.151	0.160	•					
C. productus	0.211	0.214	0.150	0.148	0.172	0.134	•				
C. gracilis	0.217	0.199	0.107	0.148	0.138	0.172	0.157	•			
C. novaezealandiae	0.213	0.236	0.163	0.072	0.165	0.146	0.146	0.169	•		
C. borealis	0.213	0.228	0.149	0.162	0.165	0.109	0.141	0.161	0.154	•	
C. magister	0.232	0.224	0.159	0.147	0.166	0.148	0.149	0.172	0.138	0.165	٠

cates of the neighbor-joining tree (Fig. 1B) provided strong support (>70%) for all nodes except the branches supporting *C. branneri* and *C. gracilis* (67%), and the clade encompassing *C. productus* and the two Atlantic species (65%). The only difference among the three trees was the position of *C. productus;* on the tree derived from maximum parsimony analysis, *C. productus* was the most basal *Cancer* species, whereas on the trees resulting from neighbor-joining and maximum likelihood analyses, *C. productus* formed a monophyletic group with the two Atlantic species and *C. oregonensis, C. branneri*, and *C. gracilis* comprised the most basal *Cancer* clade.

Analysis of morphology data. Maximum parsimony analysis of the morphology data set yielded four trees with 167 steps (CI = 0.557, RI = 0.529). One thousand bootstrap replicates and the decay index again gave strong support for the branch differentiating the genus *Cancer* from the outgroups (98% and 8 steps, respectively) on the strict consensus tree (Fig. 2). Three internal nodes were also supported by strong bootstrap values (>75%) and decay indices (2 or 3 steps), and the node separating *C. magister* from the other *Cancer* species received some support (67%, 1 step).

Analysis of combined data. Maximum parsimony analysis of the combined COI and morphology data yielded one shortest tree of length 1250 (CI = 0.56, RI = 0.36) (Fig. 3A) that was identical to the maximum parsimony, neighbor-joining, and maximum likelihood trees inferred from COI with regard to the presence of the monophyletic group ((*C. antennarius, C. novaezealandiae*), *C. magister*) and shared the clade (*C. productus,* (*C. borealis, C. pagurus*)) with the tree inferred from neighbor-joining. The combined tree was also similar to the tree inferred from morphology in that *C. gracilis* and *C. branneri* were basal taxa in both trees, although *C. magister* formed the sister taxon to the other *Cancer* species in the tree inferred from morphology. Bootstrap support for the combined tree was generally quite low (Fig. 3B), with strong support restricted to the clade ((*C. antennarius, C. novaezealan-diae*), *C. magister*), a group also well supported by the bootstrap analysis of the COI data.

Congruence analysis. None of the nodes on the trees inferred from the COI and morphology data sets defined identical monophyletic groups. We note in particular that in the tree inferred from the morphology data, each of the two Atlantic species forms the sister group to a Pacific species, whereas in the COI data, the Atlantic species form a well-supported monophyletic group (Fig. 2). The bootstrap and decay index values for conflicting nodes were generally high (Figs. 1A, 1B, and 2), such that the differences between topologies cannot be attributed to weakness of support for relationships and concomitant topological uncertainty. Templeton's (1983) test also provided strong evidence for substantive difference between the topologies (Wilcoxon rank sum test; P < 0.001).

To determine if a single tree existed that was only slightly suboptimal with respect to the trees inferred from both data sets, the number of steps each data set required on the combined tree (Fig. 3) was compared to the number of steps required on the shortest trees inferred from the separate data sets (Swofford, 1991). The COI and morphology data sets required 16 and 20 more steps, respectively, on the tree inferred from the combined data set than they did on the tree inferred from each data set separately; thus, for the COI data the combined tree was 1.5% (16/1059) longer than the shortest COI tree of 1043 steps, and for the morphology data the combined tree was 11% (20/187) longer than the shortest tree from morphology alone. The morphology data required 43 additional steps on the tree based on COI data, and the COI data set required 111 additional steps on the tree produced by the morphology data. These results suggest that the COI data set fit a tree from the combined data reasonably well but the morphology data set did not and that the topologies

constructed from the separate data sets were substantially different.

The trees inferred from the separate morphology, COI, and combined data sets each contained 74, 431, and 545 homoplasies, or extra steps, respectively. These extra steps represent the difference between the amount of character change required (the tree length) on the tree being evaluated and the minimum amount of change that the characters could show on any tree. Analysis of character congruence yielded a congruence

FIG. 1. Results of analyses of COI data using (A) maximum parsimony (one tree; length = 1043, CI = 0.587, RI = 0.383), (B) neighbor-joining, and (C) maximum likelihood (In likelihood = -6083.04). Bootstrap values (1000 replicates) are indicated above branches and decay indices are shown below branches. * and § denote Atlantic and South Pacific species, respectively.

FIG. 2. Results of maximum parsimony analysis of the morphology data set, showing the strict consensus tree (four trees; length = 167, CI = 0.557, RI = 0.529); bootstrap values (1000 replicates) are indicated above branches and decay indices are shown below branches. * and § denote Atlantic and South Pacific species, respectively.

index (I_{MF}) of 0.073, indicating that 7.3% of the total character incongruence was due to disparity between the data sets. Thus, the relative degree of between-data set incongruence was low relative to the extent of character incongruence within the two separate data sets. However, the incongruence length difference test indicated that this degree of incongruence between data sets was statistically highly significant (P = 0.001).

All four of our approaches to analyzing congruence suggested that the morphology and COI characters provided strongly conflicting information. To determine whether certain characters in each data set were obscuring the true phylogeny of Cancer crabs, we reanalyzed both data sets by excluding specific character types. First, we partitioned the COI data set into hydrophobic and hydrophilic regions. Second, we excluded third position nucleotides, which have a relatively high substitution rate (Simon et al., 1994). Neither method yielded substantially different results. Third, we excluded the claw characters from a reanalysis of the morphological data, using the justification that claws may be under stronger selective pressures because of their role in a variety of functions, such as feeding, defense, and mate acquisition (Orensanz and Galluci, 1988) and therefore may tend to be convergent. However, the tree produced by this analysis was also weakly supported, and the two Atlantic species remained nonmonophyletic.

To what degree do the trees inferred from each of the two separate data sets conflict with the combined tree? Consideration of the degree of support for the relationships in the combined tree indicates that this tree is more similar to the COI tree than the single mostparsimonious combined tree would indicate. Thus, the bootstrap majority-rule tree inferred from the combined data (Fig. 3B) has nearly the same topology as the trees inferred from COI (Fig. 1), differing only with regard to nodes exhibiting extremely weak bootstrap support in one or both analyses. Indeed, a combined tree with the same topology as the maximum parsimony COI tree has only three more steps than the shortest combined tree, a 0.2% difference in length. The main difference between the trees inferred from the COI and the combined data is therefore the reduced degree of bootstrap support for relationships in the tree from combined data. The tree inferred from morphology remains highly incompatible with the combined tree, especially with regard to the placements of *C. novaezealandiae, C. borealis,* and *C. magister.*

Analysis of Evolutionary History and Biogeography

To draw inferences concerning the origin and tempo of diversification in the genus *Cancer* and to compare the results of our phylogenetic analyses with the information in the fossil record, we presumed that the COI

FIG. 3. (A) Shortest tree resulting from maximum parsimony analysis of the combined data sets (one tree; length = 1250, CI = 0.564, RI = 0.363; decay indices are shown below branches). (B) Bootstrap majority-rule consensus tree (plus compatible groups) of combined data set; bootstrap values (1000 replicates) are indicated above branches. * and § denote Atlantic and South Pacific species, respectively.

COI: Maximum likelihood analysis with molecular clock

Fossil record:

FIG. 4. Comparison of results of maximum likelihood analysis of the COI data constrained to a molecular clock and the stratigraphic distribution of *Cancer* crabs (after Nations, 1975). * and § denote Atlantic and South Pacific species, respectively, and • indicates those species for which COI data was collected.

data yielded an accurate phylogeny and we explored the ramifications of this presumption. Analysis of the COI data using maximum likelihood analysis did not lead to statistical rejection of the validity of the molecular clock (Kishino and Hasegawa test; Ln L with clock = -6090.9, Ln L without clock = -6087.4; difference in Ln L = 3.5, SD = 2.5; P = 0.18). We therefore used the tree constrained to the molecular clock generated from the COI data and COI clock calibrations from Juan et al. (1995, 1996; see also Brower, 1994) to attach an approximate time scale to the evolutionary history of Cancer (Fig. 4). This tree and the clock calibration suggested that Cancer crabs arose during the Miocene, 20-25 million years ago, and that the majority of the diversification within this clade occurred by the end of the Miocene, about 5 million years ago. On this tree, north Pacific species were the most basal taxa, and the clade containing C. novaezealandiae, the South Pacific species, and *C. antennarius*, a North Pacific crab, was the most recently derived group, diverging approximately 6 million years ago. The two Atlantic species (*C. pagurus* and *C. borealis*) were paired as sister species, branching off from their Pacific ancestors 6 to 12 million years before present.

The fossil record also exhibits good correspondence with the results of the maximum likelihood molecular clock model with regard to the ages of the different species. Thus, none of the extant species is recorded in the fossil record as clearly being older than the age of its lineage as inferred from the COI tree, though ancestors along internal branches of the tree may well closely resemble one of the descendant species. Similarly, the three lineages inferred as relatively old from the COI tree, C. oregonensis, C. magister, and C. productus, also arose relatively early, among extant species, in the fossil record, and two of the relatively young lineages as inferred from the COI tree, those leading to C. novaezealandiae and C. pagurus, are also relatively recent in the paleontological record. Inclusion in our phylogenetic analysis of species that are most recent in the fossil record, C. polyodon and C. jordani, will allow more extensive tests of the correspondence between phylogenetic and paleontological information, but given the uncertainties inherent in both sources of data, the general agreement between them in the data analyzed here lends credence to both.

DISCUSSION

Systematics and Phylogenetics of the Genus Cancer

The phylogenetic trees inferred from the morphological and COI characters supported notably different, though each strongly supported, hypotheses of relationship among crabs of the genus Cancer. In particular, analysis of the COI data indicated sister taxon status of the two Atlantic species, whereas analysis of the morphology data resulted in pairing of each Atlantic species with a Pacific species. The incongruence of the two topologies was strongly supported by the high bootstrap values on both of the trees derived from the separate data sets, the lack of a slightly suboptimal tree consistent with both data sets, and the highly significant results of the incongruence length difference and Templeton tests. Although the COI and morphology data sets provided notably incongruent trees, the combined data set yielded a tree that was closely similar to the trees inferred from COI using maximum parsimony, neighbor-joining, and maximum likelihood, although this combined tree was substantially less well supported by bootstrap analysis. Faced with such evidence of incongruence, we attempted to determine which, if either, phylogenetic hypothesis accurately represented the genealogical relationships of Cancer crabs. To this end, we first sought to diagnose the source of the incongruence and then evaluated the

ancillary evidence for and against the alternative phylogenetic hypotheses.

Consideration of the distributions, habitats, and feeding ecology of the species exhibiting divergent positions on the trees inferred from COI and morphology, C. pagurus, C. productus, C. borealis, and C. novaezealandiae, suggests that the source of incongruence between the data sets is extensive convergence in adult crab morphology. All four species live in intertidal and subtidal habitats and consume a wide variety of prey (Lawton and Elner, 1985; Creswell and Marsden, 1990; Jensen, 1995), and the pairs of species joined in the analysis of morphology, with each pair comprising species in different oceans, exhibit notable ecological similarities. Thus, C. borealis and C. novaezealandiae are most common in more structurally complex microhabitats and consume primarily hardshelled molluscan and crustacean prey (Creswell and Marsden, 1990; Creswell and McLay, 1990), whereas adult C. pagurus and C. productus are more omnivorous and most frequently occupy open-bottom substrates or habitats with large hiding places (Lawton and Elner, 1985; Orensanz and Galluci, 1988). Consequently, C. borealis and C. novaezealandiae appear to have converged with respect to their relatively stout, robust claws and oval-shaped carapace; correspondingly, C. pagurus and C. productus have smaller, weaker claws and wide carapaces with concave sides, which minimize lateral resistance to water flow in open benthic habitats (Blake, 1985). Our analyses suggest that the similarities in habitat across each pair of species have selected for convergence not just in overall size and shape, but in a sufficient number of external morphological traits to bias the results of the morphological analysis and make the separation of homoplasious from nonhomoplasious characters problematic.

Our hypothesis of convergence between C. borealis and C. novaezealandiae and between C. pagurus and C. productus is consistent with the taxonomic treatment of Cancer by Nations (1975), in that he places the former two species in the subgenus Metacarcinus and the latter two species in the subgenus Cancer sensu stricto. Other systematic studies of brachyuran crabs have encountered evidence of substantial homoplasy in external adult morphology (Rice, 1980; Spears et al., 1992). For example, the division Podotremata, which comprised the families Ranindae and Dromiidae, was proposed by Guinot (1977) on the basis of similar gonopore location; however, analysis of spermatozoan ultrastructure (Jamieson, 1990), zoel morphology (Rice, 1980), and sequence from 18S rRNA (Spears et al., 1992) all suggest that the Dromiidae should be removed from the Brachyura. Similarly, 18S rRNA sequence data failed to support the monophyly of the Dromiidae; the morphological similarity (particularly the carapace) of the dromiid genera Dromidia and Hypoconcha appears to reflect convergence in response to the shared behavior of carrying objects (e.g., sponges)

over their dorsal surface (Spears *et al.*, 1992). Several researchers have concluded that the accuracy of trees inferred from morphological data may be improved by the inclusion of characters that are presumably less subject to the selective pressures that may lead to convergence, such as setae number, antennae form, and gonopod structure (Jamieson, 1990; Abele, 1991).

Given the apparent high degree of morphological convergence among the allopatric species of *Cancer* crabs in this study, we believe that the COI and combined data sets provide a more accurate guide to the genealogical relationships of the genus Cancer than the tree inferred from morphological characters. Ancillary evidence for this hypothesis is provided by two sources. First, the biogeographic implications of the tree inferred from COI data agree with the most plausible dispersal pattern of Cancer crabs. Based on paleontological evidence, the genus is thought to have originated in the North Pacific, dispersing south along the coast of North and South America, west toward Japan, and north across the Bering Strait to the Atlantic Ocean (Nations, 1975, 1979). Thus, presuming a single trans-Arctic invasion, Atlantic species should be more closely related to one another than to any of the Pacific species, and indeed, in the tree inferred from the COI data, the two Atlantic taxa form a well-supported monophyletic group. Second, the phylogeny inferred via maximum likelihood analysis of the COI data, under the molecular clock model, is consistent with the fossil record of *Cancer* crabs with respect to the timing and location of the origin, diversification, and speciation patterns of the genus (Fig. 4). The stratigraphic distribution of *Cancer* crabs suggests that the genus arose in the Pacific in the early Miocene and diversified relatively rapidly. According to our COI-based time scale (Fig. 4), the genus Cancer arose in the early Miocene, the basal taxa are Pacific species, and the majority of the diversification within the genus occurred by the early Miocene, about five million years ago. The inclusion of DNA sequence from the Japanese and South American *Cancer* species in future studies will enable better resolution of the patterns of diversification of Cancer crabs and may allow further tests of our hypothesis that morphological phylogenetics in this genus can be prone to ecologically driven convergence.

Evolutionary History of Cancer Crabs and the Trans-Arctic Interchange

Due to the absence of *Cancer* fossils in the Asian-Arctic and the eastern Atlantic, previous studies have assumed that the probable migration route of *Cancer* crabs between the northern Pacific and the northern Atlantic was via the Bering Strait (Nations, 1975, 1979). Migration between North and South America before the closure of the Isthmus of Panama approximately 3.1 million years ago (Saito, 1976; Keigwin, 1978) is an alternative, but less plausible route, given that no *Cancer* fossils have been found in Central America and that *Cancer* crabs are restricted to water temperatures below 24°C (Nations, 1975).

The Bering Strait, currently a shallow seaway, was a land bridge connecting Alaska and Siberia until it flooded in the late Miocene or early Pliocene, opening a migration route between the northern Pacific and Atlantic for many marine species, such as gastropods, echinoderms, barnacles, and marine vertebrates (Vermeij, 1989a,b, 1991). The date of submergence of the Bering land bridge is based primarily upon the stratigraphic distribution of fossil deposits in both the Pacific and Atlantic oceans. The occurrence of similar species of walruses in Miocene fossil beds from California and Virginia, and common molluscan species on both sides of the Atlantic Ocean, suggested to early researchers that the Bering Sea first opened briefly around 10-12 million years ago (MacNeil, 1965; Durham and Mac-Neil, 1967; Hopkins, 1967, 1972). However, these early deposits probably represent remnants of animals that dispersed into the Atlantic Ocean by way of the former Panama seaway before its closure around 3.1 million years ago (Repenning, 1976; Gladenkov, 1979; Herman and Hopkins, 1980). Currently, most researchers agree that the initial opening of the Bering Strait occurred approximately 5.2-3.4 million years ago (Hopkins, 1967; Gladenkov, 1979; Herman and Hopkins, 1980; Vermeij, 1989a,b, 1991).

The COI data places the invasion of the Atlantic Ocean from the North Pacific by the genus Cancer at approximately 6–12 million years ago, prior to most estimates of the date of submergence of the Bering Strait. Our results agree with previous paleontological research that dates *Cancer* fossils found in Atlantic deposits from the late Miocene (approximately 8 million years ago; Nations, 1975). Collins et al. (1996) point out that inferences from fossil data are subject to errors in fossil identification and estimates of divergence time, as well as gaps in the fossil record; however, several other DNA-based studies have also suggested an early date for trans-Arctic dispersal. For example, Collins et al. (1996) proposed that Nucella invaded the Atlantic from the North Pacific 7–8 million years ago, and studies of over 30 allozyme loci of ray-finned fish have yielded estimated divergence times of 1.7–4.5, 3.6–6.6, and 4.8–8.9 million years ago between closely related Atlantic and North Pacific species (Grant et al., 1984; Grant, 1986; Grant and Stahl, 1988). These studies of molluscs and fish, taken in conjunction with our analysis and the fossil record of Cancer crabs, should motivate further investigation into the timing and geography of dispersal between the Atlantic and Pacific oceans.

ACKNOWLEDGMENTS

We are grateful to the Natural Resources and Engineering Research Council of Canada for financial support, to Graeme Taylor, Michael Eagles, and Colin McLay for providing *Cancer* crab specimens, and to Dave Carmean for assistance with the phylogenetic analyses.

PHYLOGENETICS OF Cancer CRABS

APPENDIX 1

Mitochondrial Cytochrome Oxidase I (COI) Sequence Used in the Molecular Analyses

Taxon			Position		
	1				100
PC, HN,	-ggaggatttggaaattgat -ggaggatttggaaattgat	tagttcccttaatattagga tagttccactaatactaggg	gcccccgatatggctttccc gcgccagacatagcattccc	tcgtataaacaacataagat tcgtataaacaatataagat	tttgattacttcccccatct tttggcttttaccgccctct
CB,		tagttoctottatattagga		+catataaacaatataaatt	+++gactottacctocttot
CO,		tagttcccttaatactaggu	genetgatatagettteee	cccaataataatataaatat	
CPo		tagttecttaatactaggg	gaaataaataaattaa	tagaataaataataataagat	tatgattattagagagattaa
CP CP	aggaggatttagaaattaat		gegeetgacatageetttee	regatataaacacacaagt	tetgattattaccecctica
CG			gcccctgatatagctttccc		
CN	-9989980009988800980		geteetgatatagettteee		tttgactettacetecte
CRo CBo			genetgatatagetttee		tetgattactaccettet
CD0, CM,	-ggaggatttggaaattgat	tagttcccctaatgctagga	gcacccgatatagctttccc	tcgtataaataatataagtt	tctgactattacctccttct
DC	101				200
PC,	ctaacactccttctaataag	aggaatagttgaaagaggtg	ttggaacaggatgaactgtt	tatccacctctttctgccag	gattgcacacgcaggagctt
HN, CB,	ttatcccttcttttaacaag	aagaatagtagagagtggag	ttggcacagggtgaactgtt	<pre>taccctcccctctccgctgccctcctttagcaggagc</pre>	tattgcccacgctggcgcct tattgctcatcggggcct
CA,	ctaacattactccttataag	aggtatagtagaaagaggag	ttggaacaggctgaactgtt	taccctcctttagcaggagc	tattgctcatcgtggcgcct
CO,	ttaacactgcttcttataag	aggtatggtagaaagagggg	ttgggacaggatgaaccgtc	taccctcctttagcgggggc	tattgctcacgcaggggcct
CPa,	ctaacactacttcttataag	aggaatagtagaaagaggag	ttggaacagggtggactgtt	tatccccctttagcaggtgc	tattgcccacgctggagcct
CP,	ctaacccttcttcttataag	aggattagtagaaagaggtg	ttggaactggctgaactgtc	taccctcctttagcaggtgc	tattgcccatgcaggtgcct
CG,	ttaacattgctccttataag	aggtatagtagaaagtggag	ttgggacaggatgaactgtt	tnccctcctttggcaggtgc	tattgctcacgctggagcct
CN,	ctaactttacttcttataag	aggaatagtagagagagggg	ttggaacaggttggactatc	taccctcccctagcgggcgc	tattgctcatgctggagcct
CBo,	ttaaccctactccttataag	aggaatagtagaaagagggg	ttggaacaggttggactgtt	taccctcctttagcaggtgc	tattgcccacgctggagctt
CM,	ttaaccttacttcttataag 201	aggaatagtagaaagaggag	taggaacaggatggaccgtc	taccctcccttagcgggggc	tatcgctcatgccggagcct 300
PC,	ctgttgacatggggattttc	tctctccatcttgcaggtat	ttcttcgattctaggtgcag	taaattttataacaacagta	attaatatacgaccgaaagg
HN,	ctgtcgatctcgggattttc	tcactacatcttgcaggggt	ctcttcaattttaggagcag	taaattttataactaccgtt	attaatatacgatcttacgg
CB,	cagttgacataggaattttc	tccttacatttagcaggggt	ttcttctatcttaggagctg	taaattttataacaactgta	attaatatgcgatcctttgg
CA,	cagttgatataggaattttc	tccttacacttagcaggagt	ttcttctatcttaggagctg	taaactttataacaaccgta	attaatatacgatcttttgg
CO,	cagtagacataggaattttt	tccttgcatttagcaggggt	gtcctctattttaggggctg	taaactttataacaactgtg	attaacatgcgatcttttgg
CPa,	cagtagatatagggattttt	tctctccatttagcaggagt	ttcttctattttaggagctg	taaattttataacaactgta	atcaacatacgatcatttgg
CP,	cagtagatatagggatcttt	tcgcttcacttggcaggagt	ttcctcaatcttaggagctg	taaattttataacaaccgta	attaatatacgatcatttgg
CG,	cagttgatataggaattttc	tccttacacttagcaggagt	ttcttctatcttaggggctg	taaactttataacaactgtg	attaatatacggtcctttgg
CN,	cagtagatatgggaatcttt	tctcttcatttagcaggagt	ttcttctattctaggagctg	taaattttataacaactgta	attaatatgcgctcatttgg
CBo,	cagtggacatggggattttt	tctcttcatttagctggggt	ttcttcaatcctaggagctg	tgaattttataacaactgta	atcaacatacggtcatttgg
CM,	cagtcgatataggaatcttt 301	tcccttcatttacgtggggt	ttcctctattttaggagcag	taaattttataacaaccgta	attaacatacgttcttttgg 400
PC,	agttacaatagaccgtatgc	cacttttcgtttgagctgtt	tttattactgctattctttt	acttctttctttacctgtct	tagccggagcaattaccatg
HN,	gaggacaatggaccaaatac	ctctttttgtgtgagctgta	ttcattactgctattctctt	acttttatctcttccagttc	tagcaggtgctatcactatg
CB,	gataaccttagatcaaatac	ctctcttcgtttgagctgta	tttattactgctatcctatt	actcctctctccctqttc	tagcaggtgcaattactata
CA,	aataaccttagatcaaatac	ctctctttgtttgagctgta	tttattactgccatcctatt	acttttatctctccctgtct	tagcaggtgcaattactata
CO.	tataaccctagatcaaatac	ctcttttcgtttgggctgta	tttattacagctatcttact	actactctctctgcctgttt	tagcaggggcaattactata
CPa,	aataactctagaccaaatgc	cactttttgtctgagctgtc	tttattactgctatcctttt	acttctatcactccctgtct	tagctggagccatcactatt
CP,	aataactctagaccaaatac	cactttttgtttgagccgta	tttattactgccatcctttt	acttttatctctcccagtat	tagcaggagctattactata
CG.	aataaccttagaccaaatac	ctctctttgtttgagctgta	tttattaccgctatcctgtt	acttttatctctccctgttt	tagcaggtgcaattactatg
CN,	gataactttagaccaaatac	cactttttgtttgagctgta	tttattactgctattctttt	acttttatctctccctgttt	tagcaggagcaattactata
CBo,	gataagettagaceaaatae	cactttttgtttgggctgtg	tttattactgccatcctttt	gctgctatccctccctgttt	tagccggagctattaccata
CM,	gataactttagatcaaatac 401	cactcttcgtttgagctgta	tttatcaccgctattctttt	actactatcccttcctgtac	tagcaggtgccatcactata 500
PC,	cttctaacagaccgaaatct	taatacctcgttttttgacc	ccgcggagg-tggagatcca	gtactttaccaacatttatt	ttgattcttcggtcaccctg
HN,	ttgcttactgatcgaaattt	aaatacatctttctttgacc	ctgctggcg-gggggggacca	gttttataccaacatttatt	ttggttctttggtcatcctg
CB,	ttattaactgatcgaaatct	taatacttctttctttgacc	ccgcaggag-gggtgaccct	gttctttatcaacacctttt	ttgattttttgggcaccag
CA,	ttattgactgaccgaaatct	taatacctcattctttgacc	ccgcagagg-aggagaccct	gttctttaccaacacctttt	ctgattttttgg-cacccag
CO,	ttattaactgaccgaaacct	taatacttcttttttcgacc	cagcggagg-gggtgatcct	gttctctatcaacacctttt	ttgattcttcgggcaccctg
CPa,	cttttaacagaccgaaacct	caatacttccttctttgacc	ccgctgagg-aggtgaccct	gttctttatcaacacctctt	ctgatttttcgggcacctcg
CP,	cttctcactgaccgaaatct	taatacttctttcttcgatc	cagcaggag-gggagatcct	gttctctatcaacatctctt	ctgattttttgggcaccctg
CG.	ttactaactgatcgaaacct	taatacttctttctttgatc	ctgcgggcg-ggggggacct	gttctctatcaacacctttt	ttgattttttggacacccag
CN.	cttctaaccgaccgaaaacct	taatacttctttcttcgacc	ccgcggagg-gggagatcct	gtactctaccaacacctttt	ttgattctttggacaccctg
CBo,	ctcttaacggaccgaaacct	aaacacttccttctttgatc	ctgcagagg-aggtgaccct	gttctttaccaacatctttt	ttggttttttgggcaccccg
CM,	cttctaactgaccgaaatct	taacacatctttctttgatc	cggcaaggg-aggagaccct	gttctttaccaacacctttt	ttgacttgggcaccctg

HARRISON AND CRESPI

APPENDIX 1—Continued

Taxon			Position		
	501				600
PC	aagtetacattttaatttta		tcacattgttagtcaggagt		ggaaccgtggggataattta
HN.	aagtttatattttgatctta	cctgccttcggaatgatttc	tcatattgttagtcaagaat	ctggtaaaaaagaatctttt	ggtactttgggtatgattta
CB.	aagtatatattcttattttg	cctgcttttggaataatttc	ccatattgtaagacaagaat	ctgggaaaaaagagtccttt	gggacccttgggataattta
CA,	aggttatatatcttatttta	cctgcttttggaataatttc	tcatattgtgagacaagaat	ctggtaaaaaagagtccttt	gggaccctaggaataattta
CO,	aagtttatattctcattctt	cctgcttttgggataatctc	tcatattgatagacaagaat	ctggtaaaaaagagtctttt	gggacccttgg-atgattta
CPa,	aagtttatattcttatttta	cccgcttttggtataatctc	tcatattgtaagtcaagaat	ctggaaaaaaaagaatctttt	ggtaccttaggaataattta
CP,	aagtatatattcttatttta	ccggcttttggaataatttc	tcatattgtaagccaagaat	ctgggaaaaaagaatctttt	gggaccctagggataatcta
CG,	aagtctatattcttatctta	cctgctttcggaataatctc	ccatattgtaagacaagaat	ctggtaaaaaagaatccttt	gggacccttggaataattta
CN.	aggtctatattctaatttta	cctgcttttggtataatctc	tcatattgtaagtcaagagt	cggggaaaaaagaatccttt	gggaccctaggaataattta
CBo,	aagtetatattettatttta	ccggcttttggaataatttc	tcatattgtaagccaagaat	ctgggaaaaaaagaatctttt	gggacccgaggaataattta
CM,	aagtgtacattcttattcta	cctgctttcggcataatctc	tcatattgtaagccaagagt	ctggaaaaaaaagaatctttt	ggaactttaggaataatcta
	601	2 22			700
PC,	tgcaatattagctattggaa	tcttaggatttattgtctga	gctcatcacatgtttactgt	tggaatagacgttgacacgc	gagettaetteaceteagea
HN,	tgctatactagccattggaa	ttttaggatttgtagtatga	gctcaccatatatttacatt	gggaatagacgtagacactc	gagcatactttacatctgca
CB,	cgctatattggccattggta	ttttaggctttgtggtctga	gctcatcacatgtttacagt	tggaatggacgttgatactc	gagettaetttaectcaget
CA,	cgccatattagctattggaa	tcctagggtttgttgtttga	gcacaccatatatttacagt	gggtatagacgtagacaccc	gagcctattttacctcagcc
CO.	tgctatattagctattggta	tettaggttttgttgtttga	gcccaccacatatttacagt	tggaatggatgttgatactc	gcgcttattttacttccgcc
CPa	tgctatactagccattggta	ttctaggatttgttgttga	getcatcatatatttacagt	tggaatagatgtagatactc	gcgcttactttacctccgcc
CP	tgctatattagccatcggta	ttttaggetttgttgtctga	gcccaccatatatttacagt	tggaatagatgttgataccc	gagettacttcacctcage
CG	tgctatactagccattggta		gcccaccatatattcacagt	cggaatagacgttgatactc	gagettactttacctcaget
CN	caccatattaactattaaa		gcacaccatatatttacagt	gggtatagacgtacacaccc	gagectatttacctcagec
CBo	tactatactagecattagta		getcaccatatatttacagt	cggaatagatgtagatactc	gggcttacttacctcagec
CM	tactatattagccattagta		getcatcatatatttacagt	tagtatagacgtcgataccc	gggettatttacttcage
Civi,	701	leelaggaeegeegeega	geteuteututttueuge	eggeatagaegeegataeee	800
PC	acaataattattactattac	cacaqqaattaaaatttta	attaactaggaactetteag	aataatcaaataatctacaa	accetetataatttaacte
HN	acaataattattactattcc	cactogaattaaaattttca	getgaetaggaactetacat	ggtutteuutugtetueug	cccqtccctattatqaqccc
CB	actataattattaccattcc	cactoggaattaaaatcttta	gttgattaaggattetceac	ggedegedgdegddeedee	accttcaatactttaaactc
$C\Delta$	actataattattactattac	caccoggatcaaaatttta	gttgattgaggaggggtccetccat	ggaactcaaattaacttcag	
CO,	actataattattactattac	aactggaattaaaatcttta	gttgattgageactetccac	ggaactcaatcaattttag	cccttcaatactttgggeee
CPa	actataattattactatacc		gttgdetddgddeteteede	ggaacacaaattaactttag	gccttctatactttgageee
CP CP	actataattattactatccc	cactogtattaaaattttca	gttggttaagaactetteat	ggaacacaaattaactttag	gccttcgatactttgagccc
CG	actataattattaccatccc		gttgactaagaaccettcac	ggaactcaaattaactttag	accetcaatactttgageee
CN	actataattattactatta		gttgattaggaggggggggg	ggaacteaaattaagttaag	
CRo CBo	actatattattgetgttee		gttgattgageacacttcat	ggaactcaaattaatttaa	
CD0, CM			gttgattaaggacacttcat	ggaacceaacteacteag	
CIVI,	001	Lactyyaattaaaatttta	gliggelaageaelelleae	ggeacacaaaccaaecceag	and
PC		actattagagatattagaga	agtaattttaggaaagtgtt	caattaacaccatcattaat	ascacatactatatata
гс, un		actyccygagyteccacagy	agtagtagtagtagtagt		gatagatagtatatatagtagt
CP		actatoggaggattaactgg	agtagtactagetaatteat		gatacatactacytayttyc
CD,		accycayyayyaccaaccyy			gatacttactacyttyttyt
CA,		acaytyyyyyyyeetaactyy			gacacttattattattattatta
CDo		accycayycyyccaacayy	tataattttaataattatt		gacacttattattgttgttgt
CP CP		acagtaggtggattaactgg	tgttgttttagctadtttt		gatacatattatgttgtage
CG		actortaggaggactaactog	agtagttetagetaactet	ctatogacattattetteat	gatacttactatgttgtage
CN		acegtaggaggactaactgg		ctattgatatcatcatcat	gatacttattattattatta
CRo CRo		acagegggggggccctaacegg			galacitallalyligity
CD0, CM		acaytayyayyattaacyyy	agtigtttagetadetett		
CIVI,	901	acaytayyayyactaactyy	aytaytttayccaattett	Clertyatattatteteeac	1000
DC		asstaggggsgtsttaggs	atttagggggtattagggg	atasttaaaatsttasasa	atatttaaattaataaaaa
INI			attttegeeggtattaecea	atgattataattaataa	glettleegtlaateetaa
CP			attttegetggggtageaca		geotatecatgaacectaaa
CD,			attttegeeggtategetea		gagtatetttaaaccetaag
CA,			attttgeeggaategeeea		gagtgtetttaaaccecaaa
CD,			atertegeeggtattgetea	trattagattattattatta	gggtetetettaaaceetaaa
CPa,			attttgetgggateteeea		gggtttccttaaatcctaaa
CP,	ceaetteattatytttat	Ctataggagetgtttttggt	attttgeeggaatetetea	ttgattteeeetgtteaeeg	gtgtateettaaaeeeaaaa
CG,	acaettteaetatgteetat	ccataggtgctgtcttcggg	atttcgccggaattgctca	ttgatteeetttatttaetg	gagtt
CN,	tcatttccattacgtattat	ctataggagetgtttttggt	attttgccggaatcgccca	ttgatttcctctttttactg	gagtgtctttaaaccccaaa
CBo,	gttttat	ctataggtgctgtatttggt	atttttgccggtatctccca	ctgattccccttattcaccg	gggtttccttaaaccctaaa
CM,	ccatttccattacgttctat	ctataggagetgtettegga	atttttgctggaatcgccca	ttgattccctctttttacag	gtatatccttaaaccccaaa
DC				10/2	
PC,	tgattaaaaattcacttttc	aactatattcctaggagtaa	atttaactttttttcctcaa	cacttttagg	
HN,	tgattgaaagttcatttctt	agttactttcatcggagtaa	atctcacattcttcccccaa	catttcctagg	
CB,	tgacttaaaattcactttct	tgtta			
CA,	tgacttaaaatccactttct	tgtaatgtttatcggagtta	atactacttttttcccgcaa	catttttagg	
CO,	tgacttaaaatccactttct	tgttatgtttattggggtaa	atactactttctttcctcaa	cattctttagg	
CPa,	tgacttaaaatccactttct	tgttatatttattggagtaa	acataactttttttcctcaa	catttcttagg	
CP,	tgacttaaaatccattttt	tgttatatttacaggagtta	acctcacttttttccctcaa	cattttagg	
CG,					
CN,	tgacttaaaatccactttct	tgtaatgtttatcggagtta	atactacttttt		

Note. PC, Petrolithes cinctipes; HN, Hemigrapsus nudus; CB, Cancer branneri; CA, C. antennarius; CO, C. oregonenesis; CPa, C. pagurus; CP, C. productus; CG, C. gracilis; CN, C. novaezealandiae; CBo, C. borealis; CM, C. magister. Missing nucleotides denoted by "-".

APPENDIX 2

Channetern	Ctataa	The set in	the Men	- 1 1 1 1	1 A
Characters and	states	Used III	the mor	phologica	Anaryses

1.	Number of anterolateral teeth	15.	Number of finger teeth	31.	Degree of carapace aerolation
	0: twelve		0: four		0: none
	1: ten		1: five		1: little
	2: nine		2: six		2: moderate
	3: three		3: seven		3: high
	4: none		4: ten	32.	Carapace shape
2.	Number of posterolateral teeth		5: eleven		0: oval
	0: none		6: many small		1: wide, sides concave
	1: rudimentary	16.	Outer finger carinae		2: round
	2: one		0: absent	33.	Carapace hair
	3: two		1: present		0: absent
	4: three	17.	Outer finger ridges		1: present
3.	Separation of anterolateral teeth		0: absent	34.	Cheliped hair
	0: no	10	1: present		0: none
	1: at base	18.	Inner finger setiferous pits		1: little
	2: with fissures at base		0: absent		2: moderate
	3: only by fissures	10	1: present	25	3: nign
4	4: not applicable	19.	Number of outer manus carinae	35.	Leg hair
4.	Ou abcomt		U: none		U: none
	0. absent		1: 1001 2: five		1. little
	2: pet applicable			26	2. Iligii Doneo fingor motoriol
5	2: not applicable Anterelateral teeth tip shape		5. SIX	50.	O: nono
5.	0: round	20	4. SCVCII Number of outer manus setiferous pits		$1 \le 25\%$ of finger
	1: single spine	20.	0: absent		2: < 50% of finger
	2: jagged		1: present		2. <50% of finger
	3: not applicable	21	Inner manus carinae		4: to provimal tooth
6	First anterolateral tooth shape	21.	0: absent		5: to base of finger
0.	0. acute		1: present	37	Dense dactyl material
	1: triangular	22	Inner manus ridges	57.	0: none
	2: round		0: absent		1: <25% of dactyl
	3: not applicable		1: present		2: <50% of dactyl
7.	Carpace granule	23.	Inner manus setiferous pits		3: >50% of dactyl
	0: absent		0: absent		4: to proximal tooth
	1: present		1: present		5: to base of finger
8.	Number of dactyl teeth	24.	Manus spines	38.	Finger tip color
	0: four		0: absent		0: absent
	1: five		1: present		1: present
	2: six	25.	Outer carpus carinae	39.	Male carapace size
	3: seven		0: absent		0: small (<75 mm width)
	4: eleven		1: present		1: medium ($\geq 75 \times \leq 180 \text{ mm width}$)
	5: twelve	26.	Outer carpus ridges		2: large (>180 mm width)
	6: many small		0: absent	40.	Relative leg length
9.	Outer dactyl carinae		1: present		0: small (<1.10)
	0: absent	27.	Carpus spines		1: medium (\geq 1.10 × \leq 1.20)
10	1: present		0: absent		2: large (>1.20)
10.	Outer dactyl ridges	20	1: present	41.	Relative claw size
	0: absent	28.	Merus spines		0: small (< 0.230)
1.1	1: present		0: absent		1: medium ($\geq 0.230 \times \leq 0.280$)
11.	Outer dactyl setilerous pits	20	1: present	10	2: large (>0.280)
	U: absent	29.	Prontal teeth shape	42.	Mechanical advantage 0 , small (<0.240)
12	1: present Outer destul satifarous grooves		1: hlunt		0. Small (< 0.540) 1. modium ($> 0.240 \times < 0.265$)
12.	Outer dactyr setherous grooves		1. Diulit 2. triongular		1. Incurum ($\geq 0.340 \land \geq 0.503$) 2: large (> 0.265)
	1. present		2. drangular 3. acute	43	2. range (~0.303) Relative dactyl length
13	Inner dactyl setiferous nits		4: none	чэ.	0: small (< 0.500)
1.5.	0. absent	30	Degree of production of front of carapace		1: medium (≥ 0.500) × <0.550)
	1: present	50.	0. none		2: large (>0.550)
14.	Number of dactyl spines		1: little	44	Relative propodus height
	0: none		2: moderate		0: small (<0.460)
	1: many small		3: high		1: medium ($\geq 0.460 \times \leq 0.500$)
	2: many large				2: large (>0.500)
	• •				

Note. All multistate characters (except 39) are ordered. Sources of information: Nations, 1975; Lawton and Elner, 1985 (characters 40–44); Jensen, 1995, and references therein.

APPENDIX 3

Morphological Data Matrix

P. cinctipes†	404233160100006000000000010123120110000?????
H. nudus†	30111014001100500000000001040120100000?????
C. antennarius	21111011001110001141100000111221022441102212
C. branneri	21111013011112211130110110112221132441021010
C. borealis	231021111011111101400001001?2130000441202212
C. gracilis	23100111101110201030000100100110000000120000
C. magister	10102113001102301130001110113110000??0210000
C. novaezealandiae	112021121011111101400001001121100004411?????
C. oregonensis	00112011001010001140000000101130101551022122
C. pagurus	11300210001100101020000000110311001441201111
C. productus	11201210001010001130101010100311001331201211

Note. Refer to Appendix 2 for character and state names. † Denotes outgroup taxa.

Note added in proof: Marincovich and Gladenkov (Nature 397: 149–151, 1999) provide stratigraphic evidence from molluscs and diatoms that the Bering Strait first opened 4.8 to 7.4 million years ago, which is consistent with our COI-based estimate.

REFERENCES

- Abele, L. G. (1991). Comparison of morphological and molecular phylogeny of the Decapoda. *Mem. Queens. Mus.* 31: 101–108.
- Anderson, W. R., and Ford, R. R. (1976). Early development, growth and survival of the yellow crab *Cancer anthonyi* Rathbun (Decapoda, Brachyura) in the laboratory. *Aquaculture* 7: 267–279.
- Bell, T. (1835). Observations on the genus *Cancer* of Dr. Leach (*Platycarcinus* Latrielle), with descriptions of three new species. *Trans. Zool. Soc. Lond.* 1: 335–342.
- Blake, R. W. (1985). Crab carapace hydrodynamics. *J. Zool. (Lond)* 207: 407–423.
- Bremer, K. (1994). Branch support and tree stability. *Cladistics* 10: 295–304.
- Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial DNA evolution. *Proc. Natl. Acad. Sci.* USA 91: 6491–6495.
- Bull, J. J., Huelsenbeck, J. P., Cunningham, C. C., Swofford, D. P., and Waddell, P. J. (1993). Partitioning and combining data in phylogenetic analysis. *Syst. Biol.* 42: 384–397.
- Carroll, J. C. (1982). Seasonal abundance, size composition, and growth of rock crab, *Cancer antennarius* Stimpson, off central California. J. Crustacean Biol. 2: 548–561.
- Carvacho, A. (1989). *Cancer johngarthi*, N. Sp. and *Cancer porteri* (Bell) (Crustacea, Decapoda): Comparisons and hypothesis. *Proc. Biol. Soc. Wash.* 102: 613–619.
- Clary, D. O., and Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of *Drosophila yakuba:* Nucleotide sequence, gene organization, and genetic code. *J. Mol. Evol.* 22: 252–271.
- Collins, T. M., Frazer, K., Palmer, A. R., Vermeij, G. J., and Brown, W. M. (1996). Evolutionary history of northern hemisphere *Nucella* (Gastropoda, Muricidae): Molecular, morphological, ecological, and paleontological evidence. *Evolution* 50: 2287–2304.
- Crespi, B. J., Carmean, D. A., Mound, L. A., Worobey, M., and Morris, D. (1998). Phylogenetics of social behavior in Australian gallforming thrips: Evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. *Mol. Phylogenet. Evol.* 9: 163–180.
- Creswell, P. D., and Marsden, I. D. (1990). Morphology of the feeding

apparatus of *Cancer novaezealandiae* in relation to diet and predatory behaviour. *Pac. Sci.* 44: 384–400.

- Creswell, P. D., and McLay, C. L. (1990). Handling times, prey size and species selection by *Cancer novaezealandiae* (Jacquinot, 1853) feeding on molluscan prey. *J. Exp. Mar. Biol. Ecol.* 140: 13–28.
- Cunningham, C. W. (1997). Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. *Syst. Biol.* 46: 464–478.
- de Queiroz, A., Donoghue, M. J., and Kim, J. (1995). Separate versus combined analysis of phylogenetic evidence. *Annu. Rev. Ecol. Syst.* 26: 657–681.
- Durham, J. W., and MacNeil, F. S. (1967). Cenozoic migrations of marine invertebrates through the Bering Strait Region. *In* "The Bering Land Bridge" (D. M. Hopkins, Ed.), pp. 326–349. Stanford Univ. Press, Stanford, CA.
- Eernisse, D. J., and Kluge, A. G. (1993). Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. *Mol. Biol. Evol.* 10: 1170–1195.
- Farris, J. S., Kallersjo, M., Kluge, A. G., and Bult, C. (1994). Testing significance of incongruence. *Cladistics* 10: 315–319.
- Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. *Evolution* **39**: 783–791.
- Garth, J. S., and Abbott, D. P. (1980). Brachyura: The true crabs. *In* "Intertidal Invertebrates of California" (R. H. Morris, D. P. Abbott, and E. C. Haderlie, Eds.), pp. 594–630. Stanford Univ. Press, Stanford, CA.
- Gladenkov, Y. B. (1979). Comparison of late Cenozoic molluscan assemblages in northern regions of the Atlantic and Pacific oceans. *Int. Geol. Rev.* 21: 880.
- Grant, W. S. (1986). Biochemical genetic divergence between Atlantic, *Clupea harengus*, and Pacific, *C. pallasi*, herring. *Copeia* (3): 714–719.
- Grant, W. S., and Stahl, G. (1988). Evolution of Atlantic and Pacific cod: Loss of genetic variation and gene expression in Pacific cod. *Evolution* 42: 138–146.
- Grant, W. S., Teel, D. J., Kobayashi, T., and Schmitt, C. (1984). Biochemical population genetics of Pacific halibut (*Hippoglossus stenolepis*) and comparison with Atlantic halibut (*H. Hippoglossus*). Can. J. Fish Aquat. Sci. 41: 1083–1088.
- Guinot, D. (1977). Propositions pour une nouvelle classification des Crustaces Decapodes Brachyoures. C.R. Hebd. Seances Acad. Sci. Ser. D 285: 1049–1052.
- Haeffner, P. A., Jr. (1976). Distribution, reproduction and moutling of

the rock crab, *Cancer irroratus* Say, 1917, in the mid-Atlantic Bight. *J. Nat. Hist.* 10: 377–397.

- Herman, Y., and Hopkins, D. M. (1980). Arctic oceanic climate in late Cenozoic time. *Science* 209: 557–562.
- Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. *Annu. Rev. Ecol. Syst.* 18: 23–42.
- Hillis, D. M. (1991). Discriminating between phylogenetic signal and random noise in DNA sequences. *In* "Phylogenetic Analysis of DNA Sequences" (M. M. Miyamoto and J. Cracraft, Eds.), pp. 278–294. Oxford Univ. Press, Oxford.
- Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses. *J. Hered.* 83: 189– 195.
- Hines, A. H. (1991). Fecundity and reproductive output in nine species of *Cancer* crabs (Crustacea, Brachyura, Cancridae). *Can. J. Fish. Aquat. Sci.* 48: 267–275.
- Hopkins, D. M. (1967). The Cenozoic history of Beringia: A synthesis. In "The Bering Land Bridge" (D. M. Hopkins, Ed.), pp. 451–484. Stanford Univ. Press, Stanford, CA.
- Hopkins, D. M. (1972). The paleogeography and climatic history of Beringia during late Cenozoic time. *Inter-Nord* 12: 121–150.
- Huelsenbeck, J. P. (1991). Tree-length distribution skewness: An indicator of phylogenetic information. Syst. Zool. 40: 257–270.
- Huelsenbeck, J. P., and Bull, J. J. (1996). A likelihood ratio test to detect conflicting phylogenetic signal. *Syst. Biol.* **45**: 92–98.
- Huelsenbeck, J. P., Bull, J. J., and Cunningham, C. W. (1996). Combining data in phylogenetic analysis. *Trends Ecol. Evol.* 11: 152–158.
- Imaizumi, R. (1962). Miocene Cancer of Japan. Sci. Rep. Tohoku Univ. Ser. 2 (Geol.) 5: 233–245.
- Ingle, R. W. (1981). The larval and post-larval development of the edible crab, *Cancer pagurus* Linnaeus (Decapoda: Brachyura). *Bull. Br. Mus. Nat. Hist. (Zool.)* 40: 211–236.
- Jamieson, B. G. M. (1990). The ultrastructure of the spermatozoa of *Peralomera lateralis* (Gray) (Crustacea, Brachyura, Dromiacea) and its phylogenetic significance. *Invertebr. Reprod. Dev.* 17: 39–45.
- Jensen, G. C. (1995). "Pacific Coast Crabs and Shrimps," Sea Challengers, Monterey, CA.
- Juan, C., Oromi, P., and Hewitt, G. M. (1995). Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus *Pimelia* (Tenebrionidae). *Proc. R. Soc. Lond, Ser. B* 261: 173–180.
- Juan, C., Oromi, P., and Hewitt, G. M. (1996). Phylogeny of the genus *Hegeter* (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequence. *Heredity* 76: 392–403.
- Keigwin, L. D., Jr. (1978). Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribean Sea cores. *Geology* 6: 630–634.
- Larson, A. (1994). The comparison of morphological and molecular data in phylogenetic systematics. *In* "Molecular Ecology and Evolution: Approaches and Applications" (B. Schierwater, B. Streiet, G. P. Wagner, and R. DeSalle, Eds.), pp. 371–390. Birkhäuser, Basel.
- Lawton, P., and Elner, R. W. (1985). Feeding in relation to morphometrics within the genus *Cancer*: Evolutionary and ecological considerations. *In* "Proceedings of the Symposium on Dungeness Crab Biology and Management" (B. R. Melteff, Ed.), pp. 357–379. Alaska Sea Grant Report No. 85-3, Univ. of Alaska.
- Lewin, R. (1985). Molecules vs. morphology: Of mice and men. *Science* 229: 743–745.
- Mackay, D. C. G. (1943). Temperature and the world distribution of crabs of the genus *Cancer. Ecology* 24: 113–115.

- MacNeil, F. S. (1965). Evolution and distribution of the genus *Mya*, and tertiary migration of Mollusca. *U. S. Geol. Surv. Professional Paper* 483-G: 51.
- Maddison, W. P., Donoghue, M. J., and Maddison, D. R. (1984). Outgroup analysis and parsimony. *Syst. Zool.* 33: 83–103.
- Miyamoto, M. M., and Fitch, W. M. (1995). Testing species phylogenies and phylogenetic methods with congruence. *Syst. Biol.* 44: 64–76.
- Nations, J. D. (1975). The genus *Cancer* (Crustacea: Brachyura): Systematics, biogeography and fossil record. *Nat. Hist. Mus. Los Angelos Cty. Sci. Bull.* 23.
- Nations, J. D. (1979). The genus *Cancer* and its distribution in time and space. *Bull. Biol. Soc. Wash.* 3: 153–187.
- Orensanz, J. M., and Galluci, V. F. (1988). Comparative study of postlarval life-history schedules in four sympatric species of *Cancer* (Decapoda: Brachyura: Cancridae). *J. Crustacean Biol.* 8: 187–220.
- Orensanz, J. M., Parma, A. M., Armstrong, D. A., Armstrong, J., and Wardrup, P. (1995). The breeding ecology of *Cancer gracilis* (Crustacea: Decapoda: Cancridae) and the mating systems of cancrid crabs. *J. Zool. (Lond)* 235: 411–437.
- Reilly, P. N., and Saila, B. (1978). Biology and ecology of the rock crab, *Cancer irroratus* Say, 1817, in southern New England waters (Decapoda, Brachyura). *Crustaceana* 34: 121–140.
- Remsen, J., and DeSalle, R. (1998). Character congruence of multiple data partitions and the origin of Hawaiian Drosophilidae. *Mol. Phylogenet. Evol.* 9: 225–235.
- Repenning, C. A. (1976). Adaptive evolution of sea lions and walruses. *Syst. Zool.* 25: 375–390.
- Rice, A. L. (1980). Crab zoel morphology and its bearing on the classification of the Brachyura. *Trans. Zool. Soc. Lond.* 35: 271–424.
- Saito, T. (1976). Geologic significance of coiling direction in the planktonic foraminifera *Pulleniatina*. *Geology* 4: 305–309.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Ann. Entomol. Soc. Am.* 87: 651–701.
- Spears, T., Abele, L. G., and Kim, W. (1992). The monophyly of brachyuran crabs: A phylogenetic study based on 18S RNA. *Syst. Biol.* 41: 446–461.
- Swofford, D. L. (1991). When are phylogeny estimates from molecular and morphological data incongruent? *In* "Phylogenetic Analysis of DNA Sequences" (M. M. Miyamoto and J. Cracraft, Eds.), pp. 295–333. Oxford Univ. Press, Oxford.
- Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. *Evolution* 37: 221–244.
- Vermeij, G. J. (1989a). Geographical restriction as a guide to the cause of extinction: The case of the cold northern seas during the Neogene. *Paleobiology* 15: 335–356.
- Vermeij, G. J. (1989b). Invasion and extinction: The last three million years of North Sea pelecypod history. *Conserv. Biol.* 3: 274–281.
- Vermeij, G. J. (1991). Anatomy of an invasion: The trans-Arctic interchange. *Paleobiology* 17: 281–307.
- Way, E. (1917). "Brachyura and Crab-like Anomura of Friday Harbour," Puget Sound Biological Station.
- Weymouth, F. W. (1910). Synopsis of the true crabs (Brachyura) of Monterey Bay, California. *Leland Stanford Junior Univ. Pub. Univ. Ser.* 4: 1–64.
- Zar, J. H. (1984). "Biostatistical Analysis," Prentice Hall International, Englewood Cliffs, NJ.