
Systems

File No. S370-36
Order No. GC20-1812-1

IBM Virtual Machine
Facility /370:
EXEC User's Guide

Release 2 PLC 11

This publication is for those VM/370 users who want
to use the Conversational Monitor System (CMS) EXEC
facilities. The CMS EXEC facilities enable a user to
define new CMS commands that are combinations of
existing CP and CMS commands. The new commands,
called EXEC procedures, are usually created using the
CMS Editor.

This publication tells the user how to:

• Use the CMS EXEC facilities.
• Code EXEC control statements.
• Build EXEC procedures.
• Enter EXEC procedures into the system.

• Invoke EXEC procedures.

A prerequisite publication is the IBM Virtual Machine
Facility/370: EDIT Guide, Order No. GC20-1805.

This edition, GC20-1812-1, is a reprint of GC20-1812-0 incorporating
changes released in the following Technical Newsletters:

GN20-2635 (dated December 17, 1973)
GN20-2637 (dated March 29, 1974)
GN20-2651 (dated January 30, 1975)

This edition applies to R~1~~2~ l g1£ 11 (Program Level Change) of IBM
Virtual Machine Faci~ity/370 and to all sutsequent releases until
otherwise indicated ~n new editions or Technical Newsletters This
edition does not make GC20-1812-0, or the above listed TBLs obsolete.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systems,
consult the latest J~~ ~I2~~~LJ&Q ~B~ ~I2~§!LJ1Q ~iElig~~~E!I' Order No.
GA22-6822, and its !i~~Y~l ~~Q~~g~ ~~~~l~!~B!, Order No. GC20-0001, for
the editions that are applicable and current.

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change.

Requests for copies of IBft publications should be made to your IBft
representative or to the IBft branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, co •• ents may be addressed to
IBft Corporation, Vft/370 publications, 24 Hew England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBft.

© Copyright International Business Machines Corporation 1972, 1973,
1974, 1975

This publication describes the
Conversational Monitor System (CMS) EXEC
facilities available to VM/370 users. It
contains both introductory and reference
information about the EXEC facilities for
any VM/370 users who want to use them. In
addition, it contains a section that
illustrates many useful techniques of EXEC
procedure design and implementation.

To use this book effectively, you should
have a general understanding of basic
programming techniques such as branching
and looping, as well as an understanding of
CftS procedures, CMS commands, and the CMS
Editor.

This book contains four major sections
and an Appendix:

• The "Introduction" discusses the EXEC
facilities and their relationship to the
VM/370 system. It also tells how to
invoke and create an EXEC procedure.

• "Using the CftS
describes the three
EXEC facilities:

- The EXEC command.
- The EXEC files.

EXEC
parts

- The EXEC interpreter.

Facilities"
of the CMS

• "EXEC Control statements" defines three
types of EXEC state.ents (execution
control, built-in functions, and special
variables), and describes each control
statement in detail. This section
contains the main portion of the
reference material in the book.

• "Building EXEC Procedures" illustrates
several techniques of EXEC design. This
section shows you how to create EXEC
procedures and control their execution.
It contains most of the examples to be
found in this book.

= "Appendix A: EXEC Control Statement
Summary" provides a quick-reference
summary of the EXEC control statements,
which you may find helpful after you
have learned to use them.

Examples of EXEC statements and
procedures are found throughout this book,
but they are concentrated in the "Building
EXEC Procedures" section. You can refer to
this section for examples as you read the
control state.ent descriptions, or you can
read the entire book once from front to
back, then use the "EXEC Control
statements" section and "Appendix A: EXEC
Control statement Summary" for reference
purposes.

Users of the IBM 3277 Display station
(also called the "3270") should note the
3270 equivalents of terms in this book that
refer to IBM 2741 Communication Terminals.
These are as follows:

• The equivalent of the RETURN key on a
2741 is the ENTER key on a 3270.

• output that is "typed"
"displayed" at a 3270.

at a 2741 is

Because there is no T!B key on a 3270.
one of the 3270 program function keys
should be set to define tab characters.

The differences between 3270s and 2741s
are fully described in the IBft Virtual
!achine Facility/370: ~ Guidi:-order No:
GC20=T8os.

PREREQUISITE PUBLICATIOI

The IBft Virtual Machine Pacili1IL370: ~
Guidi:- -order- 10. GC20-180S, is a
prerequisite for understanding the use of
the CftS Editor and EDIT subcommands, which
you will need in order to create EXEC
procedures.

IE! OPERANDS lOR &COJTROl

!!~: Program Feature

Tvo new operands, 8SG and N08SG, have
been added to the &COiTROL control
statement.

The information about PROFILE EXEC
procedutes, return codes, stacking,
EXEC file record leng~hs, and EDIT
macros has been clarified.

Summary of Amendaents
for GC20-1812-0

as updated by GN20-2651
V8/370 Release 2 PLC 11

~EiDteDED~~: Documentation Only

We have included informaticn about the
&EXEC special variable.

~~iD!~D~Df~: Documentation Only

We have corrected the example of EDIT
macro usage.

Summary of Amendments
for GC20-1812-0

as updated by GN20-2637
VM/370 Release 2 PLC 1

~ainten~n£~: Documentation Only

This change clarifies the paragraph
under ~Executable Statements~ on page
11. This change also affects
"Assignment statements" on page 13 and
the sample EXEC procedure on page 59.

Maintenan£~: Documentation Only

The EXEC procedure example on page 59
of the section titled 'Building EXEC
Procedures' is changed.

Summary of Amendments
for GC20-1812-0

As Updated by GN20-2635
VM/370 Release 1 PLC 13

IITRODUCTIOB • • • • • • •
Invoking In EXEC Procedure
Writing an EXEC Procedure •••

USING THE CftS EXEC FICILITIES.
The EXEC Co.mand • • • • • • •
EXEC Files • • • • • • • •

Bonexecutable Statements •
Executable Statements.

The EXEC Interpreter • • •

• .7
• .7
• .8

• 10
10

• 11
• 11
• 11
• 14

17
17

• 17
18

• 18

EXEC COITROl ST1TE!E!TS. •
Execution Control Statements

SIRGS Control Statement •••
SBEGPUBCH Control Statement.
SBEGSTICK Control Statement.
SBEGTYPE Control Statement • •
SCONTINUE Control Statement.
SCOBTROL Control Statement •
SEND Control Statement •

• • • • 19
• 19

19
• 20

SERROR Control Statement • • 21
• 21 SEXIT Control Statement.

SGOTO Control Statement.
&IF Control Statement. •
SLOOP Control Statement.
SPUICH Control Statement
SREAD Control Statement. •
SSKIP Control Statement. •

• • • • • 22
.. 22
• 23

• • • • • 24

SSP ACE Control Statement
SSTICK Control Statement
STIftE Control Statement. • • • •
STYPE Control Statement.

Built-in Functions • • • • • •
SCONCAT Built-in Function ••
SDATATYPE Built-in Function.
SLENGTH Built-in Function.
SLITERAL Built-in Function
SSUBSTR Built-in Function. • •

Special Variables. • • • •
SEXEC Special Variable •
Sn Special variable ••••
SGLOBAL Special Variable • •

• 24
• 25
• 25
• 26

26
• 27
• 27
• 28
• 28

28
• 29
• 29
• 30
• 30
• 30
• 30

SGLOBILn special Variable. • •
SINDEX Special Variable. • ••
SLIBEBUft Special Variable.
SREIDFLAG Special variable • •
SRETCODE Special variable.
STYPEPLAG Special Variable • •

User-Defined Variables • •

30
• • 31
• • 31
• • 31
• • 31
• • 31
• • 32

BUILDING EXEC PROCEDURES • • • • • 33
Passing Arguments to an EXEC Procedure • 33

Checking for the Proper Number of
!rqu~ents e • • • • • • • • • • • • • 34

Checking for the Length of an Argument 34
Checking for a Specific Argument • 35

Communicating with a Terminal. • • • • • 35
Reading Data from a Terminal • • • • • 36
Typing Data at a Terminal~ • • • • • • 37

Logic Control in an EXEC Procedure • • • 40
Labels in an EXEC Procedure. • • • • • 40
Conditional Execution with the SIF

Statement • • • • • • • • • • • • 41
Branching with the SGOTO Statement •• 43
Branching with the SSKIP Statement •• 44
Using Counters for Loop Control. • • • 44
Loop Control with the SLOOP Statement. 45

Controlling Execution of CftS Commands. • 47
Placing a Co.mand in the Console Stack 47

Checking for Execution Errors. • • • • • 49
Identifying Error Handling Routines •• 50
Checking for CftS Error Return Codes. • SO
Recognizing EXEC Processing Errors 5i

Special EXEC Piles • • • • • • • 53
PROFILE EXEC • • • • • • • • • • • • • 54
CftS EXEC • • • • • • • • • • • • • • • 55
EDIT ftacros •••••••••••••• 56

Controlling the CftS Batch Facility • • • 57
Sample Procedures for Batch Execution. 58

An Annotated EXEC Procedure. • • • 61

APPENDIX A: EXEC CONTROL STATEftEIT
SUMMARY • • • • • •

INDEX. • •

• • 63

67

The CMS EXEC facilities enable you to define new CMS commands that are
combinations of existing CP and CMS commands. The new commands, called
EXEC procedures, are usually created using the eMS Editor.

In some respects, an EXEC procedure provides facilities similar to
those of an OS cataloged procedure. When an EXEC procedure is invoked,
it represents a sequence of commands that are executed acccrding to the
logic control statements defined in the EXEC procedure.

You can create simple EXEC procedures that execute several frequently
used commands~ or you can devise complex EXEC procedures that test
several logical conditions before deciding whether or not to execute a
command. The logical capabilities in the EXEC processor are controlled
with statements similar to the IF/THEN, GOTO, DO, and LOOP statements
familiar to high-level language users.

An EXEC procedure is created by placing a selected sequence cf
commands in an EXEC file. An EXEC file can have any valid CMS filename
and filemode, but it must have a filetype of EXEC. EXEC files are made
up of fixed length records up to 130 characters long. Each record
consists of one CMS command or EXEC control statement. (A CP command can
be entered in an EXEC file by using the CMS command CP.)

Although EXEC files are usually created by using the CMS Editor, they
can also be created by an option of the LISTFILE command, by reading a
card file from the user's virtual reader, or by a user program.

To invoke an EXEC procedure, you enter the CMS command EXEC, followed by
the filename of the EXEC file wanted and, optionally, a list of
arguments. When you are in CMS command mode, you may omit the initial
word EXEC, thus invoking the EXEC procedure simply by entering the
filename.

You can invoke an EXEC procedure by filename because when a CMS
command is entered at a terminal, CMS first searches for an EXEC
procedure by that name, then for a regular CMS command module by that
name. Therefore, if an EXEC procedure has the same name as a CMS
command module, the EXEC procedure is always executed instead of the
command. The CMS command of the same name can then be invoked within
the EXEC prodedure.

Note: When a
handled by an
is not made.
explicitly.

CMS command is issued in a user program, the request is
SVC (Supervisor Call), and the search of EXEC procedures

In this case, an EXEC procedure can be invoked

When an EXEC file is invoked, the EXEC interpreter controls the
execution of the procedure, substituting values for EXEC variables where
required, and passing control to CMS for execution of eMS commands.

Introduction 7

The EXEC interpreter can manipulate argument lists, thus allowing the
user to pass arguments to the EXEC procedure when it is invoked. Eefore
a command in the EXEC file is executed, each variable in it is
temporarily replaced by the corresponding argument from the argument
list that was specified when the EXEC procedure was invoked. Use of
these variable arguments thus permits great flexibility in co.mand
execution within the EXEC procedure.

The concepts introduced in the preceding paragraphs are discussed in
greater detail later in this book. At this point, however, you can see
that the EXEC facilities provide you with a powerful tool that you can
use to develop your own command language or set cf operating
procedures.

Once you have designed an EXEC procedure, you can enter it into the
VM/370 system in several ways:

1. By punching cards, which are then read via the real system card
reader and the user's virtual reader.

2. By using the CMS Editor to enter input lines into a C!S file.

EXEC files can also be created by a user program or by the CMS
LISTFILE command. Regardless of which method is used, the format of the
entered statements is basically the same. Only one C!S com.and or EXEC
control statement may be entered per card or card image. CftS commands
must be in the same format as they would be if you entered them from a
terminal~

To use the CMS Editor to create an EXEC file, enter the command:

EDIT filename EXEC

where the filename is any valid C!S filename. The filetype of EXEC is
required. The C!S Editor automatically places a limit of 80 characters
on the input line length, and translates all entered lowercase
characters to uppercase.

If the EXEC file specified in the EDIT command is a new file, the
message:

NEW FILE:
EDIT:

is displayed at the terminal. You can then type in the INPUT subcommand
and start entering input lines as soon as the Editor replies, as
follows:

input
INPUT:
(Begin entering input lines.)

End each input line by pressing the RETURN key (or the ENTER
3270 display station). When you have finished entering input,
EDIT mode by pressing the RETURN key again. If the file
corrections, you can save it by typing in the FILE subcommand.
is stored and control returns to the CMS environment.

8 IBM VM/370: EXEC User's Guide

key on a
return to
needs no
The data

You can execute an EXEC file created in this way by typing in "EXEC
filename", or simply by typing in the filename. You can examine its
contents either by displaying it at a terminal using the CMS TYPE
command, or by printing it on the system printer using the eMS PRINT
command.

The preceding description of the CMS Editor identifies only a few of
the Editor functions that may be useful in creating and editing EXEC
files. For a more complete discussion of the eMS Editor, refer to the
!~nl.Q:];DIl ~'y!~~.

Introduction 9

This section describes the three major parts of the CMS EXEC facility:

1. The EXEC command, which initiates CMS execution of an EXEC file.

2. The EXEC files, which contain sequences of CMS commands and EXEC
control statements.

3. The EXEC interpreter, which analyzes each statement in an EXEC file
before CMS executes the procedure.

Each of these items is described in greater detail under a separate
heading.

The EXEC command executes one or more CMS commands or EXEC contrel
statements contained in a specified EXEC file, allowing a sequence of
commands to be executed by issuing a single command. If this command is
entered from the CMS command mode, but not nested within another EXEC
procedure, the initial word EXEC may be omitted. This technique is
known as "implied EXEC." The format of the EXEC command is:

r----------------------------
EXec fname (args-•••]

L----__________ . ________ ___
------------------------------.-----------------~

fname

args

specifies the filename ef a file containing one or more CMS
commands to be executed. The filetype of the file must be EXEC
and the file must be fixed format, with a logical record length
of up to 130 characte~s.

specify the arguments to replace the numeric variables in the
specified EXEC file. within an EXEC file, up to thirty symbolic
variables may be used, each one indicated by an ampersand (&)
followed by an integer ranging from 1 to 30, to indicate values
which are to be replaced when the EXEC file is executed.

The EXEC interpreter assigns the arguments to symbolic
variables in the order in which they appear 1n the argument
list. For example, each time an &1 appears in a line within the
EXEC, the first argument specified with the EXEC command
temporarily replaces the &1, the second argument specified with
the EXEC command replaces &2, and so on, to the ~th argument ef
the EXEC command.

If the percent sign (%) is used in place of an argument, the
EXEC interpreter ignores the corresponding variable in all the
commands that refer to that variable. If the EXEC file contains
more variables than arguments given with the EXEC command, the
EXEC interpreter assumes that the higher-numbered variables are
missing, and CMS ignores the higher-numbered variables when it
executes the com.and.

10 IBM VM/370: EXEC User's Guide

An EXEC file is a CMS data file that can contain CMS commands and EXlC
control statements.

EXEC files can be created with the CMS Editor, by punching cards, by
a user program, or by the CMS LISTFILE command. An EXEC file can
contain up to 4096 lines. When you create an EXEC file using the CMS
Editor, the record length defaults ~o 80 characters, unless you use the
LRECL option of the EDIT command to specify up to 130 characters.
However, the EXEC interpreter only processes the first 72 characters of
the records (no matter what the record length actually is) unless you do
one of the following:

1. specify &BEGPUNCH ALL, to give you access to the first 80
characters of each record that follows, up to the next &END control
statement.

2. Specify &BEGTYPE ALL or &BEGSTACK ALL, to give you access to all
130 characters of each record that follows, up to the next &END
control statement.

If you do not specify the ALL option, EXEC will use only 72 characters
of each record.

If you have a command line longer than 72 characters, you can stack
that command following an &BEGSTACK ALL statement. This will enable yeu
to issue a command line up to 130 characters long.

EXEC files
nonexecutable.

consist of two types of statements:
Each type is discussed below.

NONEXECUTABLE STATEMENTS

executable and

A nonexecutable statement in an EXEC file is one that begins with an
asterisk (*) and mayor may not contain text. These statements are for
use as comment statements and are ignored during EXEC interpretation and
processing.

EXECUTABLE STATEMENTS

An executable statement in an EXEC file is any statement that does not
begin with an asterisk. These statements consist of data items which
are strings of contiguous nonblank characters separated by blanks. Four
classes of executable statements are recognized by the EXEC interpreter:

1. Null statements.
2. CMS commands.
3. Assignment statements.
4. Control statements.

Each of these statement classes is discussed under a separate
heading. In addition, labels, user-defined variables, and special EXEC
variables are discussed in relation to assignment statements and control
statements.

Using the CMS EXEC Facilities 11

lull State.ent§

A null state.ent is an executable state.ent in which the nu.ber of data
ite.s is zero. A blank line is a null state.ent.

A label in an IIIC procedure begins with a hyphen (dash), and contains
up to seven additional alpha.eric characters. A label can be placed in
front of (on the same line as) a CftS co •• and or IIIC control state.ent.
A latel is often the object of a branching control state.ent, such as
&GOTO or &LOOP.

When searching for a label, the EIEC interpreter exa.ines only the
first word on a line. Therefore, avoid any label na.es that appear as
the first word of a line within the scope of an &BEGPURCH, &BEGSTACK, or
&BEGTYPE control statement.

The EXIC interpreter considers an executable statement as a CftS co •• and
if the first data item does not start with an a.persand or asterisk. (A
label can precede a CftS co •• and.) CftS executes the co •• and i •• ediately.
When CftS finishes execution, it returns control to the IXIC file, and
places the .co.pletioD. code fro. the . cas co.aand . in .the specialEI!C
variable &BITCODI.

Any valid CftS co •• and may be included in an IXEC file. CP co •• ands
.ay be included by prefixing the desired co •• and with the CftS "CP"
co •• and. Another EIEC procedure .ay be invoked by prefixing its
filena.e with the CftS co •• and "EXEC".

Bote: When in CftS co •• and .ode, the co •• ands CP and IIEC are not
required; they can be implied. These prefixes are required only when
these co •• ands are invoked fro. an EIEC procedure or a user program, or
when you have used the CftS co •• and SIT to set i.plied CP co •• ands
(lftPCP) or i.plied EIEC com.ands (lftPEI) off.

In an EXEC procedure you can use two types of variables: user-defined
variables and special EXEC variables.

User-defined variable names begin with an ampersand (&) and contain
up to seven additional characters. These variables can contain numeric
or alphameric data, and must be initialized hy the user. They can be
used for al.ost any purpose, .uch as user-defined variables in a
high-level language progra. are used.

12 IBft Vft/370: EIEC User's Guide

special EXEC variables follow the saae naaing conventions as
user-defined variables, and also contain the saae types of data (nuaeric
or character values). The special EXEC variables, however, are
initialized and set by the EXEC interpreter. The user can exaaine their
contents, but in general, he cannot change thea.

Variables are used extensively in assignment stateaents, which are
discussed next.

Using the CMS EXEC Facilities 12.1

An assignment statement is a statement in which a variable symbol is
assigned a value. The statement takes the form:

&variable = ae

&variable is a variable symbol which must be preceded by the ampersand
and followed by a blank.

ae is
to
be

1 •

2.

an arithmetic expression, the value of which is assigned
&variable each time the statement is executed. ae must
preceded by a blank and may be any of the following:

A single data item, such as ABC or 194.

An arithmetic expression, consisting of a sequence of
data items that possess positive or negative integral
values and are separated by plus or minus signs, such
as 3 - 4 + -11 - 00.

3. A built-in function followed by its arguments, for
example, &SUBSTR & 1 2 1. (Built-in functions are
discussed under a separate heading.)

As in other programming languages, the result of the
the right of the equal sign is placed in (assigned to)
named on the left of the equal sign (the target).

expression to
the variable

Leading zeros can be removed from a numeric quantity by performing
~vwc arithmetic operation vu it and
variable. For example, the statements:

&X = 00012
&TYPE &X
&X = &X + 0
&TYPE &X

result in the printed lines:

00012
12

aSSl.gnl.ng L_ _,... .. " ~
\..uc .LCO:>U.L\..

when the statements are executed in an EXEC procedure.

.&-~
\..V O:>VUIC

~Q!~: The data item immediately following the target of an assignment
statement must be a literal equal sign (=), and not an EXEC variable
that has the value of an equal sign. Conversely, if an equal sign is to
be the first data item following an EXEC control word (see "Control
statements" below), then it must be specified as an EXEC variable that
has the value of an equal sign, and not as a literal equal sign.
Otherwise, the statement is interpreted as an assignment statement, and
(if it is valid as such) the control word is thereafter treated as a
variable.

Using the eMS EXEC Facilities 13

An executable statement is a control statement if the first data item is
an EXEC control word and the second data item is not an equal sign,
except that a control statement may be preceded by a label. Examples of
control words are:

&GOTO
&EXIT
&IF

Control statements begin with a control word, which is usually
followed by a list of data items and, in some cases, by additional lines
of data. control statements provide the means by which the user can
control the execution of his EXEC procedure. The &IF control word, for
example, can establish a conditional test, and a branch (&GOTO) can be
taken if the test condition is met. Techniques for controlling EXEC
logic are described in the section entitled "Building EXEC Procedures."
The control words, and the rules for their use, are described
individually in a later section entitled "EXEC Control statements."

The EXEC interpreter examines each statement in an EXEC file when the
file is invoked for execution. Except where specifically stated
otherwise, data lines read from an EXEC file are truncated at column 72,
and lines read from a terminal are truncated at column 130. All
nonexecutable statements (comments) are ignored. Executable statements
are interpreted, one_at a time, in tlte following sequence.

1. Except for those commands that accept a line of data (an arbitrary,
unsubstituted, collection of words) as an argument, the words
forming a statement are "tokenized." That is, each word is treated
as an eight character quantity and is padded with bla nks or
truncated,. as necessary.

2. The tokens are then searched for the names of any special EXEC
variables, which are replaced by their values. However, if a token
is the target of an assignment statement, the name of the variable
is retained. Tokens in a statement are then searched for the names
of user-defined variables, which are replaced by values as follows:

• Each token is scanned for ampersands (&), starting with the
rightmost character of the token.

• If an ampersand is found, then it, with the rest of the token to
the right, is taken as a name. Then:

IF it is the name of an active variable,
THEN it is replaced (in the token) by the value assigned to the

variable;

IF it is the name of an EXEC keyword,
THEN it is left unaltered;

ELSE it is repl aced (in t he token) by blanks.

An EXEC keyword is a
either of the special

control word, a built-in function, or
tokens &$ and &*. Any token formed is

14 IBM VM/370: EXEC User's Guide

padded with blanks or truncated (as necessary) to maintain a
length of eight characters.

• Scanning resumes at the next character to the left, and the
procedure is repeated until the token is exhausted. However, if
the token is the target of an assignment statement, scanning for
ampersands effectively stops before the leftmost character of
the token is reached, because a variable name must be retained
as the assignment target.

Using the CMS EXEC Facilities 14.1

Note that any characters that are substituted are not scanned
for ampersands. They are, however, included in the next name if
another ampersand is found to the left.

This processing makes it possible to simulate the effects of
subscripted variables. For example, the sequence:

&X = 123
&TYPE ABC &X ABC&X OOOOOO&X

yields the printed line:

ABC 123 ABC123 00000012

The sequence:

&X&I = 5
&1 = &1 -
&X&I = &1 +

&X2 = 5
&1 = 1
&X1 = 2

&X = &X&I + &X&X&I
&TYPE ANSWER IS &X

&X = &X1 + &X2 or &X 2 + 5

yields the printed line:

ANSWER IS 7

3. If at this point a token is entirely blank, it is discarded from
the statement. The next token is deemed to immediately follow the
previous one.

A final token of blanks is added to any EXEC statement that is
syntactically invalid if doing so makes the statement syntactically
valid. For example:

&BLANK =
&TYPE
&LOOP 3 &X NE

4. The statement is analyzed syntactically, and either passed to CMS
or executed. When control returns from CMS, or the EXEC control
statement has been executed, the EXEC interpreter examines the next
statement in the file.

!~t~: The sUbstitution process is performed each time a statement is
interpreted. Thus, a variable could contain a different value each time
the statement containing the variable is interpreted. In this way, the
same line can be executed as an entirely different statement on
different occasions. For example, in the following EXEC procedure:

&ARGS ASSEMBLE MYFILE
&SKP = 0
-EX &1 &2 &3 &4
&SKIP &SKP
&ARGS PRINT MYFILE LISTING
&SKP = 3
&GOTO -EX

Using the CMS EXEC Facilities 15

the statement labeled -EX is executed the first time as:

ASSEMBLE MYFILE

and the second time as:

PRINT MYFILE LISTING

at which point the &SKIP statement branches to the end of the EXEC file.

16 IBM VM/370: EXEC User's Guide

The EXEC control statements are grouped into three main categories:

• Execution control statements, which control the logic flow of the
EX EC procedure.

• Built-in functions, which provide special services to the EXEC user.

• special variables, which contain particular values or perform
specific functions during EXEC processing.

Fach of these categories is discussed in this section. The
individual control statements are discussed under the category headings.

The execution control statements determine what is to be done within an
EXE: procedure. They are used to control logic flow; to communicate
with a terminal, a user program, or the VM/370 system; or to create
output files via the user's virtual punch.

Each of the execution control statements is fully described under a
~eparate heading, including syntactic specifications. They are presented
in alphabetical order. Usage examples and implementation techniques and
sugg~stions are found in the section entitled "Building EXEC
Procedures. II

&lRGS CONTROL STATEMENT

The &ARGS control statement allows the user to redefine the value of one
or more arguments during EXEC processing. The format of the &ARGS
control statement is:

r ,
&ARGS [a r g 1 [ar g 2 ••• [ar 9 n]]] I L ________ --__ J

&ARGS is used to redefine the variables &1, &2, ••• , &n with the
values specified by arg1, arg2, ••• , argn, and reset the special
variable &INDEX to the number of variables thus redefined. Up to 18
numeric variables can be redefined by an &ARGS control statement. The
remaining variables (through &30) are set to blanks. (The &READ control
word can be used to read a list of arguments from the terminal.)

EXEC Control Statements 17

&BEGPUNCH CONTROL STATEMENT

The &BEGPUNCH control statement heads a list of one or more lines to b~
spooled to the user's virtual punch. The list of lines to be punched is
followed by the control statement &END. The format of the &BEGPUNCH
control statement is:

r-
I &BEGPUNCH
~
I line1
< line2
<
<
I linen
~
I &END
L-_____ ~

[ALL]
------------------------------,

I
--------------~

I
>
>
> ,
i
1

&BEGPUNCH punches line1, line2, ••• , linen to the card punch, without
tokenizing them. No substitution is performed on any untokenized data.
The lines are normally truncated at column 72 and padded with blanks to
fill an 80-column card; truncation can be avoided by specifying the
option ALL, in which case data can occupy columns 73 to 80. The list of
lines to be punched is terminated by a line in which the control
statement &END starts in column 1. (The &PUNCH control word can be used
to spool a single line of tokens to the punch.)

&BEGSTACK CONTROL STATEMENT

The &BEGSTACK control statement heads a list of one or more lines to be
placed in the user's console input stack. The list of lines to be
stacked is followed by the control statement &END. The format of the
&BEGSTACK control statement is:

r---~---------------------
I r , r ,
1 &BEGSTACK I!!!QI IALLI
I ILIFOI L

1 L J

~
I line1
< line2
<
<
I linen
~-
I &END
L

-------------,
I
I
I
I
~

I
>
>
>
I
i
I

J

&BEGSTACK stacks line1, line2, ••• , linen in the terminal input
buffer, without tokenizing them. No sUbstitution is performed on any
untokenized data. The lines are normally stacked FIFO (first in, first
out), but this can be changed by specifying the option LIFO (last in,
first out). The lines are normally truncated at column 72, but this can
be avoided by specifying the option ALL, in which case data can occupy
columns 73 to 130. The list of lines to be stacked is terminated by a
line in which the control statement &END starts in column 1. (The &STACK

18 IBM VM/370: EXEC User's Guide

control word can be used to place a single line of tokens in the console
input buffer.)

&BEGTYPE CONTROL STATEMENT

The &BEGTYPE control statement heads a list of one or more lines to be
typed on the user's terminal. The list of lines to be typed is followed
by the control statement &END. The format of the &BEGTYPE control
statement is:

,
I &BEGTYPE [ALL] I , ---\
I line1 I
< line2 >
< >
< >
I linen I
l- i
1 &END I
L--- J

&BEGTYPE types line1, line2, ••• , linen at the user's terminal,
without tokenizing them. No SUbstitution is performed on any
untokenized data. The lines are normally truncated at column 72, but
this can be avoided by specifying the option ALL, in which case data can
occupy columns 73 to 130. The list of lines to be typed is terminated
by a line in which the control statement &END starts in column 1. (The
&TYPE control word can be used to type a single line of tokens at the
terminalo)

&CONTINUE CONTROL STATEMENT

The &CONTINUE control statement instructs the EXEC interpreter to
process the next statement in the EXEC file. The format of the &CONTINUE
control statement is:

r-----------------------------,---,
I &CONTINUE I i
L

&CONTINUE is generally used in conjunction with an EXEC label (for
example, -LAB &CONTINUE) to provide a branch address for &ERROR, &GOTO,
and other branching statements. &CONTINUE is the default action taken
when an error is detected in processing a CMS command.

&CONTROL CONTROL STATEMENT

The &CONTROL control statement instructs the EXEC interpreter how to
handle the typing of various information messages at the user's
terminal. The format of the &CONTROL control statement is:

EXEC Control Statements 19

r , r , r , r ,
&CORTROL lapp I ITI!!E I IPACK I I!!SQ I

IERRORI 1].QI!!1JI IROPACKI INOMSGI
1~11~ I L .J L .J L .J

IALL I
L .J

&CORTROL sets the characteristics of terminal typecut of execution
messages until further notice.

OPP Do not type any C!!5 commands as they are executed in this EXEC
procedure, nor any return codes that .ay result.

ERROR Type only those C!!S commands that result in a nonzero return
code, and type the return code.

C!!S Type each C!!S command as it is executed, but type the return
code only if it is nonZero.

ALL Type every executable statement as it is executed, and type any
nonzero return codes from C!!S commands.

TI!!E Include the time-of-day
the execution summary.
ALL is specified.

value with each C!!S command printed in
This operand is effective only if CMS cr

ROTI!!E Do not include the time-of-day value with C!!S commands printed
in the execution summary.

PAeK Pac:ktheliues· o£the execution summary so that surplus hlankS
are removed from the typed lines.

ROPACK Do not pack the lines of the execution summary.

!!SG Do not suppress the "PILE NOT FOUND" message if it is issued by
the following commands when they are invoked from an EXEC
procedure: ERASE, LISTFILE, RERA!!E, or STATE.

RO!!SG Suppress the "FILE NOT FOUNt" message if it is
ERASE, LISTFILE, RENAME, or STATE commands are
EXEC procedure.

issued when the
invoked from an

On entry to an EXEC file, the default settings for &CONTROL are:

CMS NOTIME PACK MSG

Each operand remains set until explicity reset by another &CONTROL
statement.

&ERD CONTROL STATEMENT

The &ERD control statement marks the end of a list of one or more lines
that began with an &BEGPUNCH, &BEGSTACK, or &BEGTYPE control statement.
The format of the &END control statement is:

&END

20 IBM VM/370: EXEC User's Guide

The lines between the &BEGPUNCH, &BEGSTACK, or &BEGTYPE control
statement and the terminating &END control statement are bandIed as
untokenized lines of data. The &END control word must begin in column 1
to be recognized as a termination instruction.

&ERROR CONTROL STATEMENT

The &ERROR control statement specifies an action to be taken when a CMS
command returns with an error return code. The format of the &ERROR
control statement is:

&ERROR action _____________________-J

&ERROR tells the EXEC
following any CMS command
return code that is not
statement.

interpreter to perform the specified ac~~on
that yields an error return code (that is, a
zero). The action can be any executable

ihat happens next depends upon the type and consequences of the
action. If the action specified is a CMS command that also yields an
error return code, then the EXEC interpreter types an error message and
exits from the file; otherwise (unless the action causes a transfer of
control), execution resumes at the line following the CMS command that
caused the action to be executed. On entry to an EXEC file, the action
is set to continue processing (that is, &CONTINUE).

The error message typed by the EXEC interpreter is:

(811) ERROR IN &ERRCR ACTION

Additional information about this
under the heading "Recognizing EXEC
entitled "Building EXEC Procedures."

and other error messages is found
Processing Errors" in the section

!21~: The words following the &ERROR control word are saved in an
unscanned format, and sUbstitution for any variables among them is
performed dynamically (if the occasion arises) after obtaining a nonzero
return code from a subsequent CMS command.

&EXIT CONTROL STATEMENT

The SEXIT control statement causes an exit from the current EXEC file.
The format of the &EXIT control statement is:

&EXIT
r ,
I return-code I
I Q I
L

&EXIT tells the EXEC interpreter to exit to the next higher level cf
control with the specified return code. If the exit is taken from a
nested EXEC procedure, control passes to the calling EXEC procedure. If
the exit is taken from a first-level EXEC procedure, control passes to
CMS.

EXEC Control Statements 21

If you do not specify a return code, a normal exit with a return code
of zero is taken. You can specify the special variable &RETCODE to
return the completion code from the most recently executed CftS co.mand.

Alternatively, in the &EXIT control statement, you can specify your
own variable, which you set to a numeric value earlier in the EXEC
procedure. Then when you exit from the procedure, this value will
appear as the return code. This can be useful if your EXEC procedure
sets the variable to one value if it executes one branch and another
value if it executes another branch; the EXIT return code will shew

I which branch was executed.

&GOTO CONTROL STATEMENT

The &GOTO control statement transfers control to a specific location in
the BXEC procedure. Execution then continues at the location that is
branched to. The format of the &GOTO control statement is:

&GOTO

{
TOP }
line-number
label

&GOTO transfers control to the top of the BXEC file, to a given line,
or to the line starting with the specified label.

The first character of a label must be a hyphen (minus sign). You
can attach a label to any executable statement as the first token on the
line. Scanning for a label starts on the line following the &GOTO
statement, goes to the end of the file, then to the top of the file, and
(if unsuccessful) ends on the line above the &GOTO statement. If aore
than one statement in the file has the same label, the first one
encountered by these rules satisfies the search.

&GOTO is commonly used to branch based on some conditional test, such
as an &IP control statement.

&IP CONTROL STATEMENT

The SIP control statement allows you to conditionally execute statements
in your EXEC .procedure. The format of the &IP statement is:

&IP EQ
NE
LT
LE
GT
GE

executable-statement

&IP tells the EXEC interpreter to determine whether the condition
expressed is true or false. If the condition is true, the executable
statement is processed. If the condition is false, processing continues
with the next line in the EXEC procedure.

22 IBM VM/370: EXEC User's Guide

The analysis of the conditional expression proceeds as follows:

1. Token1 and token2 are syntactically examined r and any substitutions
to be made are performed.

2. The tokens are compared according to the comparison operation
specified.

3. If the comparison is truer the executable statement is processed

4. If the comparison is falser control passes to the next statement in
the EXEC procedure.

The executable statement can be any valid EXEC control statement or
CMS command. (Another &IP control statement can be specified as the
executable statement for up to three levels of nesting.)

The special token &$ is interpreted as "any of the variables &1r &2r
0 •• f,nr" and the special token &* is interpreted as "all of the variables
&1, &2, ••• r &n."

The comparison is arithmetic only when both comparands are numeric;
in all other cases, a logical comparison is made. The comparison
operators must be specified as shown. They are interpreted as follows:

EQ equals
NE not equal
LT less than
LE less than or equal to (not greater than)
GT greater than
GE greater than or equal to (not less than)

SLOOP CONTROL STATEMENT

The SLOOP control statement describes a loop through the FXEC procedure,
including the conditions for exit from the loop. The format of the SLOOP
control statement is:

r--,
I &LOOP I {n } { m } i
I I label condition I
L

_____ J

SLOOP executes the following n lines, or down to (and including) the
line starting with label, for m times, or until the specified condition
is satisfied. A value must be specified for each parameter in the &LOOP
statement.

The values of nand m (if given)
4095.

must be positive integers from 0 to

The first character of the label name (if given) must be a hyphen,
and the label must be specified r as the first token on the line, in an
executable statement that lies below the &LOOP statement.

EXEC Control Statements 23

The syntax of the exit condition (if given) is the same as that in
the &IF statement. The condition is always tested before executing the
loop. Thus, if the condition is met, the loop is not executed.

When loop execution is complete, control passes to the next statement
following the end of the loop. Loops may be nested up to four levels
deep. All nested loops may end at the same label, if desired.

&PU~CH CONTROL STATEMENT

The &PUNCH control statement causes a string
to be directed to the user's virtual punch.
control statement is:

r
I &PUNCH tok1 [tok2 ••• [tokn]]
L

of eight-character tokens
The format of the &PUReH

_________________ ----J

&PURCH punches a card containing the tokens tok1, tok2, ••• , tokn.
The card is padded with blanks or truncated, as necessary, to fill an
SO-column card. The tokens, as punched, are separated from each other
by a single blank. Any tokens longer than eight characters are left
justified and truncated on the right.

To punch one or more lines of untokenized data, use the &BEGPUNCH and
SEND control statements.

&RPAD CONTROL STATEMENT

The &READ control statement reads one or more lines of data from the
user's terminal. The format of the &READ control statement is:

r--- ,
I I r , I
I &READ I I nil
I 1 11 1 I
I I 1 ARGS I I
I I IVARS var1 [var2 ••• [varn]] I I
I I L .J I L___ ----J

&READ reads the next n lines from the terminal and treats them as if
they had been in the EXEC file; or it reads a single line, assigns the
tokens in it to the arguments &1, &2, ••• , &n, and resets the special
variable &INDEX to the number of arguments thus set; or it reads a
single line and assigns the tokens in it to the variables var1, var2,
.•• , varn (this does not reset &INDEX).

If n is specified, reading from the terminal stops when n lines have
been read, or when an &LOOP statement or a statement that transfers
control is encountered. If an &READ statement is encountered, the
number of lines to be read by it is added to the number outstanding.

24 IBM VM/370: EXEC User's Guide

The variables varl, var2, ••• , varn, if specified, are scanned in the
same way as if they appeared on the left-hand side of an assignment
statement. If no variable names are specified, no data is read from the
terminal. Any data entered is lost.

If no operands are specified, &READ is assumed by default.

&SKIP CONTROL STATEMENT

The &SKIP control statement causes a specified number of lines in the
EXEC file to be skipped. The format of the &SKIP control statement is:

r
I
I &SKIP
I
I

r ,
I n I
I 1 I
L .J

L---________ ~ ____ ----------

,
I
I
I
!

&SKIP passes over and ignores the next n lines of the EXEC file if n
is greater than zero. If n is less then zero, &SKIP transfers control
to the line that is n lines above the current line. If n equals zero,
&SKIP transfers control to the next line. If end-of-file is reached
during the skip operation, the EXEC file returns control to CMS.

If n specifies a position before the beginning of the EXEC file, an
error results. See the discussion of error messages under the heading
"Recognizing EXEC Processing Errors" in the "Building EXEC Procedures"
section.

If no number is specified, &SKIP 1 is assumed by default.

&SPACE CONTROL STATEMENT

The &SPACE control statement types a specified number of blank lines at
the user's terminal. The format of the &SPACE control statement is:

r--- -----------,
I r , I
I &SPACE I n I I
I I 1 I I
I L .J I
L--- .J

If no number is specified, &SPACE 1 is assumed by default.

EXEC Control statements 25

&STACK CONTROL STATEMENT

The &STACK control statement causes a single data line to be stacked in
the terminal input buffer. The format of the &STACK control statement
is:

r----------~---,

&STACK

L

r ,
I X!X.Q I [tok 1 [tok2 ••• [tokn]]]
ILIFO I
L .J ___________________________________ J

&SfACK places a line in the terminal input buffer containing the
tokens tokl, tok2, ••• , tokn, or places a null line in the buffer if no
tokens are specified. The line is normally stacked FIFO (first in,
first out), but this can be changed by specifying the LIFO option (last
in, first out). The tokens, as stacked, are separated from each other
by a single blank.

You can stack CMS Immediate commands in the terminal input buffer,
just as you can stack any other commands. In fact, you can stack any
data at all in the terminal input buffer. The data need not be a valid
cornmanc. •

.!!9!:~: The Logical Line End character is a hexadecimal '15'. CMS
routines do not process the symbolic pound sign (#) as a logical line
end character (that is, do not translate it to X'15') unless the user
does the following:

1. Changes or turns off the Logical Line End character via the CP
TRRMINAL command.

uses the EDIT subcommand ALTER to
automatically convert the # character
X' 15' •

cause the CMS Editor to
(or some other character) to

To enter one or more untokenized lines into the terminal input
buffer, use the &BEGSTACK and &END control statements.

&TIME CONTROL STATEMENT

The &TIME control statement determines what timing information is typed
at the user's terminal after each CMS command is executed. The format
of the &TIME control statement is:

r
I
I &TIME
I
I
I
I

r ,
ION I
IOFF I
IRESETI
ITYPE I
L

.--------------------------------,
I
I
I
I
I
I L __ J

26 IBM VM/370: EXEC User's Guide

The &TIME control statement can be used to type timing information in
the form:

T=x.xx/y.yy hh:mm:ss

where:

x.xx is the virtual CPU time used since it was last reset in
the current EXEC file.

y~yy is the total CPU time used since it was last reset in the
current EXEC file.

hh:mm:ss is the actual time of day in hours:minutes:seconds.

The CPU times are set to zero before the execution of the first
statement in the EXEC file, and are set to zero (reset) whenever timing
information is printed.

ON

OPF

RESET

TYPE

Resets the CPU times before every CMS command, and prints the
timing information on return. If the &CONTROL control statement
is set to CMS or ALL, the printing of the timing information is
followed by a blank line.

Does not automatically reset the CPU times before every CMS
command, nor does it print the timing information on return. OFF
is the initial setting.

Performs an immediate reset of the CPU times.

Types the current timing information (and resets the CPU times).

&TYPE CONTROL STATEMENT

The STIPE control statement prints a line of tokens at the user's
terminal. The format of the &TYPE control statement is:

r
I &TYPE tok1 [tok2 .•• [tokn]] L ___ ____

STYPE prints at the terminal a line containing the tokens tok1, tok2,
•.. , tokn. The tokens, when typed, are separated from each other by a
single blank. To print one or more untokenized lines at the terminal,
use the &BEGTYPE and &END control statements.

An EXEC built-in function consists of the name of the function and,
usually, a list of arguments. Built-in function names are EXEC
keywords, and start with an ampersand. With the exception of &LITERAL,
a built-in function is recognized only if it appears as a token
immediately following the equal sign of an assignment statement. Each of
the built-in functions is described under a separate heading.

EXEC Control Statements 27

&CONCAT BUILT-IN FUNCTION

The &CONCAT function creates a concatenated string of tokens to be
assigned to a user-defined variable. The format of the &CONCAT function
is:

r--,
I SCONCAT tok1 [tok2 ••• [tokn]] I
L J

&CONCAT concatenates the tokens tok1, tok2, ••• , tokn into a single
token, with a maximum length of eight characters. This function is
recognized only on the right-hand side of an assignment statement. For
example:

&A **
•
•
•

&B &CONCAT xx &A 45
&TYPE &B

Results in the printed line:

XX**45

lithe concatenated token is longer than eight characters, the data
is left justified and truncated on the right.

&DATATYPE BUILT-IN FUNCTION

The &DATATYPE function determines whether
token is alphabetic or numeric data.
function is:

the contents of the specified
The format of the &DATATYPE

r--,
I &DATATYPE I token I
L __

J

The result of the &DATATYPE function has the value NUM or CHAR,
depending on the data type of the specified token. This function is
recognized only on the right-hand side of an assignment statement.

&LENGTH BUILT-IN FUNCTION

The &LENGTH function determines the number of non blank characters in the
specified token. The format of the &LENGTH function is:

r --------------------------------------,
I &LENGTH token I
• -------------'

28 IBM VM/370: EXEC User's Guide

The result of the &LENGTH function is the number of non blank
ch~racters in the specified token. This function is recognized only on
the right-hand side of an assignment statement.

&LITERAL BUILT-IN FUNCTION

The &LITERAL function instructs the EXEC interpreter to handle the
specified token literally, without substituting for any variables in it.
The format of the &LITERAL statement is:

r ._------,
I frLITERAL token I
L

______________________________ J

The &LITERAL function causes the EXEC interpreter to use the literal
value of the specified token without sUbstitution. This function is
recognized anywhere in an executable statement. For example:

&X = **
&TYPE &LITERAL &X EQUALS &X

Results in the printed line:

&X EQUALS **

&SUSSTR BUILT-IN FUNCTION

The &SUBSTR function creates a substring of specified characters from a
specified token. The format of the &SUBSTR function is:

r---,
&SUBSTR token i [j] l ___ J

The result of the &SUBSTR function extracts part of the specified
token that starts at character i, with length of j; or that starts at
character i and runs to the end of the token if j is not specified. The
values of i and j (if given) must be positive integers. This function
is recognized only on the right-hand side of an assignment statement.
For example:

&A = &SUBSTR ABCDE 2 3
&TYPE &A

Results in the printed line:

BCD

EXEC Control statements 29

EXEC special variables are of two types: numeric and
numeric variables are those from &0 through &30. Keyword
those that have special meaning to the EXEC interpreter.
the special variables &* and &$, which are used to define
&IF and &LOOP control statements. The special variables
under separate headings in alphabetical order.

&EXEC SPECIAL VARIABLE

keyword. The
variables are

They include
conditions in
are discussed

The &EXEC special variable is the name of the EXEC file. This variable
cannot be set explicitly by the user, but it can be examined and tested.

&N SPECIAL VARIABLE

The &n special variable represents the numeric variables &0 through &30.
When an EXEC file is invoked, &0 is set to its filename by the EXEC
interpreter. The other numeric variables from &1 to &30 are initialized
to arguments that are passed to the EXEC file (if any). Each numeric
variable can contain up to eight alphameric characters.

The numeric variable &n is ignored when n is negative or greater than
30, or when n is greater than the number of arguments supplied when the
EXEC command is issued. The numeric variables can be reset by either an
&IRGS or &READ ARGS control statement.

An argument can be set to blanks by assigning it a percent sign (~)
when invoking the EXEC procedure, in an &ARGS control statement, or in
an &READ ARGS control statement.

&GLOEAL SPECIAL VARIABLE

The &GLOBAL special variable contains the recursion level of the EXEC
interpreter. Since the EXEC interpreter can handle up to 19 levels of
recursion, the value of &GLOBAL can range from 0 through 19. This
variable cannot be set explicitly by the user, but it can be examined
and tested.

&GLOEALN SPECIAL VARIABLE

The &GLOBALn special variable represents the variables &GLOBALO through
&GLOEAL9. These variables hold integral numeric values that can be set
explicitly by the user. They are all initially set to 1. Unlike other
EXEC variables, these can be used to communicate between different
recursion levels of the EXEC interpreter.

!~~: The EXEC interpreter can handle up to 19 levels of recursion.

30 IB~ V~/370: EXEC User's Guide

&INDEX SPECIAL VARIABLE

The &INDEX special variable contains the number of arguments passed to
the EXEC procedure. Since up to 30 arguments can be passed to an EXEC
procedure, the value of &INDEX can range from 0 through 30.

Although the user does not set this variable explicitly, it is reset
by an &ARGS or &READ ARGS control statement. &INDEX can be examined to
determine the number of active arguments in the EXEC procedure.

&LINENUM SPECIAL VARIABLE

The &LINENUM special variable contains the current line number in the
EXEC file. Since an EXEC file can contain up to 4096 lines, the value
of &LINENUM can range from 0 to 4095e This variable cannot be set
explicitly by the user, but it can be examined and tested.

&READFLAG SPECIAL VARIABLE

The &READFLAG special variable contains the value CONSOLE or STACK,
depending on whether an attempt to read from the userls terminal would
obtain a physical line from the terminal or a logical line from the
terminal input buffer (console stack). This variable cannot be set
explicitly by the user, but it can be examined and tested.

&RETCODE SPECIAL VARIABLE

The &RETCODE special variable contains the return code from the most
recently executed CMS command. &RETCODE can contain only integral
numeric values (positive or negative), and is set after each CMS command
is executed. This variable can be examined, tested, and changed by the
user i but changing it is not recommended. To specify a return code cn
exit from an EXEC procedure, use the &EXIT control statement.

&TYPEFLAG SPECIAL VARIABLE

The &TYPEFLAG special variable contains the value RT (resume typing) or
BT (halt typing), depending on the value of the console output flag.
This variable cannot be set explicitly by the user, but it can be
examined and tested.

EXEC Control Statements 31

An BXBC user can define and manipulate his own variables in an EXEC
procedure. The name of a user-defined variable must begin with an
a.persand (&) that is followed by a string of up to seven alphameric
characters, at least one of which is not a number.

When you choose a na.e for a variable, be careful not to choose a
na.e that is an EIEC special variable (&BIBC, &RBTCODE, etc.).

The EIBC subco •• ands that begin with an ampersand can also be used as
user variables, but then they will not be executed as subcemmands. Fer
exa.ple, if you specify:

&TYPB = QUBRY
&TIPE USERS

the BIBC interpreter will execute the command:

QUERY USERS

User-defined variables can be used for any purpose in an EXBC
procedure, and can contain any type of data. The user is, therefore,
responsible for validating any data in a variable before using it. For
exa.ple, a character variable should not be added to a nu.eric variable
under nor.al circu.stances.

A user variable is .ost often defined by entering it into the EIEC
file as the receiving field of an assignment statement. It is usually
initialized by the expression that makes up the other half of the same
assignment state.ent. For example, to define a counter and initialize
it to 99, the user could enter:

&COUBTER = 99

This counter could then be manipulated by such control statements as:

&LOOP -LOOPBBD &COUBTER LE 0
&COUITBB = &COUITBB - 1
-LOOPEBD &COBTIBUE

This loop decreases the value of the counter by one each time through
the loop, then exits when the counter value equals zero.

The user can define similar variables
Further examples of user variables are
section, "Building BIEC Procedures."

32 IBft Vft/370: EIBC User's Guide

throughout his EXEC
found throughout the

file.
next

Previous sections have described the functions and syntax of the
control statements, built-in functions, and special variables.
section shows you how to use these EXEC facilities, along with
commands, to simplify operation of your CMS virtual machine. Using
procedures, you can:

EXEC
This

CMS
EXEC

• Catalog frequently used sequences of commands, such as those used to
assemble or compile a program.

• Create interactive procedures for such purposes as form letters,
teaching a new user about the system, or generating reports.

• ~ontrol the execution of jobs by the CMS Batch Facility.

« Define special EXEC files, called EDIT macros, that can be used by
the eMS Editor.

• Specify the operating characteristics of your virtual machine in a
sp2cial EXEC file called the PROFILE EXEC.

The following discussions illustrate some of the techniques you can
use to create EXEC files and control their execution.

Arguments can be passed to an EXEC procedure in two ways:

1. By specifying them when the EXEC file is invoked.

2. By entering them from the terminal in response to an &READ ARGS
control statement.

In addition, arguments can be set. explicitly within the EXEC file by
issuing an &ARGS control statement. The arguments are assigned to the
numeric variables &1, &2, ••• , &n, and the special variable &INDEX is
set to the number of arguments that are assigned to numeric variables.

While up to 30 arguments can be passed to an EXEC file, only 19
tokens can" appear in any single EXEC statement. Thus, to pass arguments
to all 30 numeric variables, you may need to use the &READ ARGS control
statement. For example, to assign values to the 30 numeric EXEC
variables, you could use the following EXEC statement:

&READ ARGS

This statement reads an input line from the terminal and assigns the
arguments specified to their corresponding numeric variables. Thus, if
30 arguments are entered in response, then all 30 numeric variables are
set.

Building EXEC Procedures 33

An argument can be set to blanks by assigning it a percent sign (%)
when invoking the EXEC procedure, when issuing an &ARGS control
statement, or when responding to an &READ ARGS control statement. For
example, the statements:

&ARGS A % B
&TIPE &1 &2 ** &3

result in the printed line:

A ** B

After the arguments have been assigned to their corresponding numeric
variables, they can be examined, tested, and manipulated at will. Two
useful tests are discussed under the next two headings.

CHECKING FOR THE PROPER NUMBER OF ARGUMENTS

Although you can pass up to 30 arguments to an EXEC procedure,
more common for an EXEC procedure to be designed to expect a
specific arguments that determine how it is executed.

it is
few

One way to find out if all the expected arguments are present is to
check the &INDEX special variable. For example, if you create an EXEC
procedure that manipulates a CMS file, you may need to know the filename
and filetype of the file. In this case, your EXEC procedure can check
to make sure that at least two arguments are entered (which could be a
filename and filetype), as follows:

&IP &INDEX LT 2 &EXIT 16

The result of this statement is to execute the next instruction in
the EXEC file if the value of &INDEX is equal to or greater than 2, or
to exit from the current EXEC procedure with a return code of 16 if the
value of &INDEX is less than 2.

After you have determined that the number of arguments passed is
correct, then you can examine the individual arguments for correctness.

CHECKING FOR THE LENGTH OF AN ARGUMENT

An argument passed to an EXEC procedure can be up to eight characters
long. Arguments longer than eight characters are left justified and
truncated on the right when they are assigned to their corresponding
numeric variables.

In many cases, you may know that an argument should be a specific
number of characters. When the proper length of an argument is known,
you can use the &LENGTH built-in function to see if the entered data is
the correct length. For example, suppose that the first argument can be
a number up to five digits long. In this case, you can make sure that
this limit is observed by coding:

&LIMIT = &LENGTH &1
&IF &LIMIT GT 5 &EXIT &LIMIT

34 IBM VM/370: EXEC User's Guide

The result of these statements is to assign the length of the
variable &1 to the user-defined variable &LIMIT, then if the value in
&LIMIT is equal to or less than 5, execute the next instruction in the
EXEC file. If the value of &LIMIT is greater than 5, an exit is taken
from the EXEC procedure with a return code that specifies the erroneous
value in &LIMIT.

If your EXEC procedure expects an argument that
characters long, you can perform a similar test by
(greater than) ~o NE (not equal) in the &IF statement.

is exactly five
changing the GT

After the preliminary checking of arguments has been done, you can
perform any other tests that seem necessary. In many cases, you may
want to check for specific values. Some techniques for doing this
checking are discussed under the next heading.

CHECKING FOR A SPECIFIC ARGUMENT

When your EXEC procedure expects a specific value to be passed in the
argument list, you can check for the presence of the argument in two
ways, depending on its positional importance.

When the argument is expected to be in a specific location in the
list, you can check for it in that position. For example, if you create
an EXEC procedure to handle files with a specific filetype, you can make
sure that the filetype is entered as the second argument. If the
filetype you expect is ASSEMBLE, the checking statement could be:

&IF S2 NE ASSEMBLE SEXIT 4

In this case, if the second argument is ASSEMBLE, the next statement
in the EXEC procedure is executed. Otherwise, an exit is taken with a
return code of 4.

When it does not matter where in the argument list the expected value
appears, you could code:

&IF s* NE ASSEMBLE SEXIT 4

In this case, the
passed has a value of
string ASSEMBLE, then
procedure is executed.

exit is taken only when none of the arguments
ASSEMBLE. If anyone of them is the character
the next sequential statement in the EXEC

One of the facilities available to the EXEC user is the ability to
communicate with an interactive terminal. EXEC procedures can be
designed to display informational messages, prompt the user for specific
data, produce form letters, and perform other similar functions. This
section shows you how to create EXEC control statements to do some of
these things.

Building EXEC Procedures 35

READING DATA FROM A TERMINAL

When an EXEC procedure is invoked, arguments can be passed to it in the
invoking command line. After the EXEC procedure begins execution,
however, the only way you can pass new data to it from your terminal is
in response to an &READ control statement. For example, suppose you
want to enter some CMS command under a particular set of circumstances,
but not at any other time. You can avoid testing for the particular set
of circumstances in the EXEC procedure by simply issuing the &READ
control statement, as follows:

SREAD

The person at the terminal now has to decide what to enter. If the
situation calls for the defined CMS command, it can be entered; if the
required conditions are not met, he can simply press the Return key to
enter a null line. The entered line is treated as though it had been in
the EXEC file all along.

If you want to read in some new arguments, simply code:

SREAD ARGS

The arguments entered at the terminal are tokenized and assigned to
th~ir eorresponding numeric variables (the first argument to &1, the
second to &2, and so on). Up to 30 arguments can be entered in response
to an SHEAD ARGS contro~statementi

When you want to assign arguments to specific variables in the EXEC
procedure, you can do this by coding:

&READ VARS &varname1 &varname2 [•••]

where &varname1 is the name of the variable to which
is assigned, &varname2 is the name of the variable
argument is assigned, and so on. Since a line in an
contain up to 19 tokens, up to 17 named variables
response to a single &READ VARS control statement.

the first argument
to which the next
EXEC procedure can
can be set by the

!Qig: Be aware of the difference between &READ ARGS and &READ VARS.
f,READ ARGS always assigns the response tokens to the numeric variables
&1, &2, etc. &READ VARS assigns the response tokens to the variables
specified in the variable list. Thus, if you want to pass more than 30
data items to the EXEC, you can assign the first 30 to the numeric
variables with a response to &READ ARGS, then assign as many more as
desired to named variables with responses to &READ VARS statements.

Just as you can instruct an EXEC procedure to read data from your
terminal, so can you have the EXEC procedure type data at your terminal.
The next section shows you some of the techniques for typing data at a
terminal.

36 IBM VM/370: EXEC User's Guide

TYPING DATA AT A TERMINAL

An EXEC procedure can be coded to type three different kinds of data at
a terminal:

1. Lines of tokenized data, which are typed one at a time by the &TYPE
control statement.

2. Lines of untokenized data,
&BEGTYPE control statement,
control statement.

which are typed by specifying the
then the lines of data, then the &END

3. Records from a CMS file, which are typed by specifying the CMS TYPE
command with appropriate parameters.

You can also check a special EXEC variable (&TYPEFLAG) to determine
whether or not to send output to a terminal. For example, if the
terminal has suppressed typing, it is a waste of system resources to
send data to it.

In addition to these methods of explicitly controlling typing of data
at a terminal, the user can occasionally receive messages from the EXEC
interpreter and CMS commands. You can control the typeout of some of
these messages by specifying certain options of the &CONTROL statement,
as described in the section on "Checking for Execution Errors. Ii

The &TYPE control statement can bA used to type a line of tokens at a
terminal. The tokens can be user-defined variables, special EXEC
variables, self-defining terms, or any of the 30 numeric variables. If
a token in an &TYPE statement is longer than eight characters, it is
left-justified and truncated on the right.

To type a line of data to a terminal, for example, you could enter:

&TYPE THIS IS THE MESSAGE

These tokens are all self-defining terms less than eight characters
long. The resulting typed line appears at the terminal as:

THIS IS THE MESSAGE

To type the value of an EXEC variable, simply enter the variable as
one of the tokens in the &TYPE statement, as follows:

&TYPE &INDEX &RETCODE

The terminal output will display the current values of &INDEX and
&RETCODE. For example,

3 0

would type at the terminal if the current value of &INDEX is 3 and the
current value of &RETCODE is o.

Building EXEC Procedures 37

Up to 18 tokens can be typed by a single &TYPE control statement. If
you want to type a line longer than 18 words, or if you want to type one
or more lines of untokenized data, you can use the &BEGTYPE and &END
control statements, which are described next.

~Qt~: If you want to type variable data, such as the value of &INDEX,
you must use &TYPE instead of &BEGTYPE.

When you want to type a word longer than eight characters at a terminal,
you need to use the &BEGTYPE control statement, since the &TYPE
statement edits data items into 8-character tokens. One or more data
lines can be specified between the &BEGTYPE statement and a following
&END control statement, which terminates the list of data lines.

Under normal circumstances, data lines are truncated at column 72.
If you want to type data lines longer than this (up to 130 characters) ,
you can specify the ALL option on the &BEGTYPE control statement, as
follows:

&BEGTYPE ALL
data line of 85 characters
data line of 108 char acters
data line of 63 characters
&END

This specification turns off the truncation at column 72, and permits
the first two lines (of 85 and 108 characters) to type as specified.

Because the data lines controlled by &BEGTYPE are not tokenized, no
substitution for EXEC variables is made before typing begins. Thus, if
you want to type the contents of an EXEC variable, you must use the
&TYPE control word (you cannot use &BEGTYPE). For example, the entered
lines:

&BEGTYPE
&INDEX ARGUMENTS WERE PASSED
trEND

would type at the terminal, when the EXEC procedure is executed, as
follows:

&INDRX ARGUMENTS WERE PASSED

The &INDEX specification is not recognized as an EXEC variable
because it appears in an untokenized data line. Note that if the &TYPE
contLol statement is used to type this data line, the word ARGUMENTS is
truncated to eight characters, as follows:

&TYPE &INDEX ARGUMENTS WERE PASSED

yields, when the value of &INDEX is 3:

3 ARGUMENT WERE PASSED

where the last letter of ARGUMENTS has been truncated.

In addition to using the &TYPE and &BEGTYPE control statements, you
can use the CMS TYPE command to display part or all of a selected eMS
file at a terminal. Use of the CMS TYPE command is discussed next.

38 IBM VM/370: EXEC User's Guide

You can use the CMS TYPE command to type part or all of a CMS file at a
terminal. A complete description of the TYPE command is found in the
.!]nl~: ~.QJ!J!.21!g 1.21!g.Y.2g~ .§.!!ig~ !2!: g~!!~!:.21]§~!:§, Order No. GC20-1804'.
For purposes of this discussion, however, you need to know that the the
filename and filetype of the file to be typed must be entered~ and that
you can specify the lines where typing is to begin and end, as follows:

TYPE filename filetype [begin [end]]

The filename, filetype, begin, and end values can be specified when
the EXEC file is created, or they can be coded as EXEC variables and
assigned values when the EXEC procedure is executed.

!21~: If you do not specify a teginning line for typing the first line
of the file is assumed. If you do not specify an ending line for
typing, the last line of the file is assumed.

Fer examFle, to type the first 23 lines of a
ASSE~BLE at a terminal, you could create' an
explicitly defines these values, as follows:

TYPE PGM3 ASSEMBLE 1 23

CMS file named PGM3
EXEC procedure that

If you want to make your EXEC procedure more general, however, you
can let the TYPE parameters be numeric variables that are assigned
values when the command line is analyzed by the EXEC interpreter. For
example, the line:

TYPE &1 &2 &3 &4

can be set up to type any part of any CMS file ty invoking the EXEC that
contains it with different arguments. If the name of the EXEC file
containing this line is TYPEOUT, a specification of:

TYPEOUT MYFILE EXEC

causes all the lines in the CMS file named MYFILE EXEC to be typed at
the requestor's terminal, while a specification of:

TYPEOUT PGM9 COBOL 1 130

causes lines 1 through 130 in the CMS file named PGM9 COBOL to be typed
out at the requestor's terminal.

Although the examples shown here do little more than the TYPE command
itself, you can see how inclusion of a generalized CMS TYPE command in
an EXEC file can extend the communication facilities between EXEC
procedure and terminal. The EXEC procedure can find out what values to
assign to the TYPE parameters by issuing an &READ ARGS control
statement, or ty using arguments that were passed when the EXEC
procedure was invoked.

Before typing any data at a terminal, your EXEC procedure may want to
check the outFut flag to make sure the terminal is receiving typed data.
This procedure is discussed next.

Building EXEC Procedures 39

The special EXEC variable &TYPEFLAG always contains one of two character
string values, RT or HT. The RT characters mean that the terminal is
accepting typeout, while the 1 HT characters mean that the terminal has
suppressed typeout. Since the typeout to a terminal involves ove~head in
both eMS and CP, you can make more efficient use of system resources if
you do not use CMS and CP functions when they are not required.

When a terminal has suppressed typing, you can set up an EXEC control
statement that avoids any attempt to type data at the terminal, as
follows:

&IF &TYPEFLAG EQ HT &GOTO -NOTYPE
&TYPE ANY NUMBER OF DATA LINES
-NOTYPE &CONTINUE

The execution of this EXEC segment is determined by the setting of
&TYPEFLAG. If it contains the value RT, the branch to -NOTYPE is not
taken, and the next instruction is executed. If it contains the value
HT, the branch to -NOTYPE is taken, and no data lines are typed at the
terminal.

!Qi~: While you cannot explicitly set the &TYPEFLAG variable in your
EXEC procedure, you can examine its contents at any time, and move its
value to some other variable if desired.

Another major facility available to the EXEC user is the ability to
control the execution of an EXEC procedure by testing conditions and
branching to different statements based on the results of testing. This
section shows you how to set up conditional execution paths in an EXEC
procedure, including such techniques as IF/THEN, GOTO, and fixed loops.

LABELS IN AN EXEC PROCEDURE

In many instances, an execution control statement in an EXEC procedure
causes a branch to a particular statement that is identified by a label.
The rules and conventions for creating syntactically corrent EXEC labels
are relatively simple:

1. A label must begin with a hyphen (dash), and must have at least one
additional character following the hyphen.

2. Up to seven additional alphameric characters may follow the hyphen
(with no intervening blanks).

3. A label name may be the object of an &GOTO or &LOOP control
statement.

4. A label that is branched to must be the first token on a line. It
may stand by itself, with no other tokens on the line, or it may
precede an executable CMS command or EXEC control statement.

40 IBM VM/370: EXEC User's Guide

The following are examples of correct use of labels:

&GOTO -LAB1
-LAB1
-LAB2 &CONTINUE
-CHECK &IF &INDEX EQ 0 &GOTO -EXIT
&IF &INDEX LT 5 &SKIP
-EXIT &EXIT 4
&TYPE &LITERAL &INDEX VALUE IS &INDEX

The following examples of label usage are incorrect for the rea~
indicated:

-LABELING More than 8 characters
&SKIP -4LINES Not object of &GOTO or &LOOP

No alphameric characters included
&EXIT -EXIT Label not first token on line

BLANKS Blanks between hyphen and other characters

You will find that EXEC labels are useful in controlling the logic
flow through your EXEC procedures. Further examples of label usage are
found throughout the rest of this book.

CON9ITIONAL EXECUTION WITH THE &IF STATEMENT

~he main tool available to you for controlling conditional execution in
an EXEC procedure is the &IF control statement. The &IF control
statement provides the decision-making ability that you need to set up
conditional branches in your EXEC procedure.

One approach to decision-making with &IF is to compare the equality
(or inequality) of two tokens, and perform some action based on the
result of the comparison. When the comparison specified is true, the
executable statement is executed. When the comparison is false, control
passes to the next sequential statement in the EXEC procedure. An
2xample of a simple &IF statement is:

&IF EQ 2 &TYPE MATCH FOUND

since the equality specified is
(Gry?Z MATCH FOUND) is not executed,
statement in the EXEC procedure.

false, the executable statement
and control passes to the next

Although this example is coded correctly, it is not very useful. In
fact, most &IF statements establish a comparison between a variable and
a constant, or between two or more variables. For example, if a
terminal user could properly enter a YES or NO response to a prompting
message issued to him, you could set up &IF statements to check the
response as follows:

&READ ARGS
&IF &1 EQ YES &GOTO -YESANS
&IF &1 EQ NO &GOTO -NOANS
&TYPE &1 IS NOT A VALID RESPONSE (MUST BE YES OR NO)
&EXIT
-YESANS

~NOANS

Building EXEC Procedures 41

In this example, the branch to -YESANS is taken if the entered
argument is YES; otherwise, control passes to the next &IF statement.
The branch to -NOANS is then taken if the argument is NO; otherwise,
control passes to the &TYPE statement, which types the entered argument
in an error message and exits.

The test performed in an &IF statement need not be a simple test of
equality between two tokens; other types of comparisons can be tested,
and more than two variables can be involved. The tests that can be
performed are:

~1J!!!.Q! ~~~!!!!!g,
EQ A equals 1)

NE A does not equal B
LT A is less than B
LE A is less than or equal to B (not greater than)
GT A is greater than B
GE A is greater than or equal to B (not less than)

The special tokens &$ and &* can be specified to include the entire
range of numeric variables &1 through &30, as follows:

• The special token &$ is interpreted as "any of the variables &1, &2,
••• , &30." That is, if the value of anyone of the numeric variables
satisfies the established condition, then the &IF statement is
considered to be true. The statement is false only when none of the
variables fulfills the specified requirements.

• The special token &* is interpreted as "all of the variables &1, &2,
••• , &30." That is, if the value of each of the numeric variables
sa~i:sfies the establisbed condition, then the &IF statement is
considered to be true. The statement is false when at least one of
the variables fails to meet the specified requirements.

If an &IF statement specifies a special token (&* or &$) that is null
because no values were supplied for any of the numeric variables, the
token cannot be successfully compared. The &IF statement is therefore
considered a null statement. Execution continues at the next sequential
statement.

As an example of using special tokens, suppose you want to make sure
that some particular value is passed to the EXEC. You can check to see
if any of the arguments satisfy this condition, as follows:

&IF &$ EQ PRINT &SKIP 2
&TYPE PABM LIST MUST INCLUDE PRINT
&EXIT

In this example, the
none of the arguments
PRINT.

path to the &TYPE statement is
passed to the EXEC equal the

taken only when
character string

The action to be executed as a result of &IF testing is frequently an
&GOTO control statement. The next discussion examines the use of &GOTO
in conjunction with &IF, as well as by itself as an unconditional branch
instruction.

42 IBM VMj370: EXEC User's Guide

BRANCHING WITH THE &GOTO STATEMENT

The &GOTO Opt10ns allow you to transfer control within your EXEC
procedure in three ways:

1. Directly to the top of the EXEC file (&GOTO TOP).

2. To a ~articular line within the EXEC file (&GOTO linenum, where
linenum specifies the line number to which control is passed).

3. To a specified EXEC label somewhere in the EXEC file (&GOTO label,
where label specifies the label to which control is passed) •

The scan for a line number or label begins on the line IOilowing the
&GOTO specification, proceeds to the bottom of the file, then wraps
around to the top of the file and continues to the line immediately
preceding the &GOTO specification.

If the label or line number is not found during the scan, an error
exit from the EXEC procedure is taken and an error message is typed. If
the label or line number is found, control is passed to that location
and execution continues.

The &GOTO control statement can be coded wherever an executable
statement is permitted in an EXEC procedure. One of its common uses is
in conjunction with the &IP control statement. Por example, in the
statement:

&IP &INDEX EQ 0 &GOTO -ERROR

the branch to the statment labeled -ERROR is taken only when the value
of the &INDEX special variable is zero. In all other cases, control
passes to the next sequential statement in the EXEC procedure.

Another common use of &GOTO is to specify where to pass control if an
error occurs in CMS command processing. You can determine whether or
not an error occurred in CMS command processing by examining the special
variable &RETCODE, but you may want to perform this analysis in a single
subroutine instead of checking the return code after each CMS command
completes execution. To pass control to a subroutine labeled -PINDERR,
for example, you could code the &ERROR control statement as follows:

&ERROR &GOTO -PINDERR

The use of the &ERROR control statement is more fully illustrdted in
the section on "Checking for Execution Errors".

An &GOTO statement can also stand alone as an EXEC control statement.
When coded as such, it forces an unconditional branch to the specified
location. Por example, to pass control unconditionally to the top of
the EXEC procedure, simply enter:

&GOTO TOP

Further examples of &GOTO usage are found throughout the rest of this
book.

Building EXEC Procedures 43

BRANCHING WITH THE &SKIP STATEMENT

The &SKIP control statement provides you with a second method of passing
control to various points in an EXEC procedure. Instead of branching to
a named or numbered location in an EXEC procedure, &SKIP passes control
a specified number of lines forward or backward in the file.

When you want to pass control to a point that precedes the current
liner simply determine how may lines backward you want to go, and code
ESKIP with the desired negative value. For example, to use &SKIP for
loop control, you could enter statements as follows:

frIF &INDEX EQ 0 &EXIT 12
&TYPE COUNT IS &1
&1 = &1 - 1
&IF &1 GT 0 &SKIP -2

When this EXEC procedure is invoked, it checks to make sure that at
least one argument was passed to it. If an argument is passed, it is
assumed to be a number that indicates how many times the loop is to
execut80 The loop executes until the count in &1 is zero. If the
argument entered is zero, the loop executes only once, typing out:

COUNT IS 0

If no argument is passed, an exit is taken with a return code of 12.

Just as you can pass control backward using &SKIP, you can also pass
contr0l forward by specifying how many lines to skip. For example, to
ha ltd Ie a conditional exit frOID a I'l EXEC procedure, you could code the
following:

~IF &RETCODE EQ 0 &SKIP
&EXIT &RETCODE

where the branch around the &EXIT statement is taken whenever the value
of f,RETCODE equals zero. If the value of &RETCODE does not equal zero,
control passes out of the current EXEC procedure with a return code that
is the nonzero value in &RETCODEo Note that when no &SKIP operand is
specified, a value of 1 is assumed.

USING COUNTERS FOR LOOP CONTROL

A primary consideration in designing a section of an EXEC procedure that
is to be executed a number of times is how the number of executions is
controlled. One simple way to control the execution of a sequence of
instructions is to create a loop that tests and modifies a counter.

Pefore entering the loop, the counter is initialized to some value.
Each time through the loop, the counter is adjusted (up or down) toward
some limit value. When the limit value is reached (the counter value is
the same as the limit value), control passes out of the loop and it is
not executed again.

The example in the previous section, "Branching With the &SKIP
statement," uses a counter to control the execution of the loop. The
counter in that example is the numeric variable &1, which is initialized
by an argument passed when the EXEC procedure is invoked. Each time
throngh the loop, the value in &1 is decremented by one. When the value
of &1 reaches zero, control passes from the loop to the next sequential
statement (in the example, control returns to CMS).

44 IBM VM/370: EXEC User's Guide

There are several ways of setting, adjusting, and testing counters.
Some ways to set counters are:

• By reading arguments from a terminal, such as:

&HEAD VARS &COUNT1 &COUNT2

• By arbitrary assignment, such as:

&COUNTER = 43

• By assignment of a variabl'e value or expression, such as:

SCOUNTS = &INDEX - 1

Counters can be adjusted up or down by any increment or decrement
that ueets your purposes. For example:

&COUNTEM = &COUNTEM - &RETCODE
&COUNT1 = &COUNT + 100

Counters can be tested by the &IF control statement for a specific
v~lue, a range of values, or a simple equality to zero. For example,
suppos~ a counter should contain a value from 5 to 10 inclusive:

&IP &COUNT LT 5 &SKIP
&IF &COUNT LE 10 &SKIP
STYPE &COUNT IS NOT WITHIN RANGE 5-10

If the value of &COUNT is less than 5, control passes to the &TYPE
c~ntrol statement, which types out tne erroneous value and an
explanatory message. If the value of &COUNT is greater than or equal to
5, the next statement checks to see if it is less than or equal to 10.
ft this is true, then the value is between 5 and 10 inclusive, and the
typeout of the error message is skipped.

Further examples of counter usage for loop control are found
throughout the rest of this book.

LOOP CONTROL WITH THE &LOOP STATEMENT

A co~venient way of controlling execution of
statements is with the &LOOP control statement.
be set up in four ways:

a sequence of EXEC
An &LOOP statement can

1. To execute a particular number of statements a specified number of
times.

2. To execute a particular number of statements until a specified
condition is satisfied.

3. To execute the statements down to (and including) the statement
identified by a label a specified number of times.

4. To execute the statements down to (and including) the statement
identified by a label until a specified condition is satisfied.

Building EXEC Procedures 45

The numbers specified for the num~er of lines to execute and the
nuaber of tiaes through the loop .ust be positive. In addition, if a
label is used to define the limit of the loop, it must follow the &LOOP
state.ent (it cannot precede the &LOOP statement).

The decision as to which fora of the &LOOP state.ent is intended is
based on the nuaber of tokens in the statement after scanning and
sUbstitution for any EXEC variables. If the conditional form is
intended, and the first co.parand or the coaparator is given in the form
of an EXEC variable, then the value of the variable .ust not be blank at
the time the statement is interpreted.

In the conditional form, the tokens forming the conditional phrase
are saved in an unscanned format, so that substitution for any EXIC
variables can be performed dynamically before each execution of the
loop. For example, the statements:

&X = 0
&LOOP -END &X EQ 2
&X = &X + 1
-END &TYPE &X

are interpreted and executed as follows:

1. The variable &X is assigned a value of O.

2. The &LOOP statement is interpreted as a conditional ferm; that is,
to loop to -END until the value of &X equals 2.

3. The variable &1 is incremented by one and is then typed~-

4. Control returns to the head of the loop, where &X is tested to see
if it equals 2. If it does not, the loop is executed again. When
&X does equal 2, control is passed to the EXEC statement
immediately following the end of the loop (in this case, an exit
from the EXEC procedure is taken).

The typed lines resulting fro. a execution of this EXEC are:

1
2

at which time the value of &X equals 2, and the leop is not executed
again.

Another exa.ple of conditional loop control is as fellows:

&Y = &LITERAL A&B
&LOOP 2 .&X EO &LITIRAL .&
&X = &SUBSTR &Y 2 1
&TIPE 8X

These state.ents are interpreted and executed as follows:

1. The variable 8Y is set to the literal A&B.

2. The two statements following the SLOOP stateaent are to be executed
until the value of &X is &. Notice the periods that precede the
values to be compared in the &LOOP statement. The first time this
statement is executed, the variable &X bas not been initialized to
any value and, therefore, is considered a null string. Since the

46 IBM Ve/370: EXEC User's Guide

EXEC interpreter ignores null strings, a period has been added to
the &X to give it a recognizable value. A period must also be added
to the constant & so the two values can compare correctly. (Any
character that is not significant to the EXEC interpreter can be
used instead of a period.)

3. The variable &X is set to the value of the second character in the
variable &Y, which is a literal ampersand (&).

4. The ampersand is typed once, and the loop does not execute again
because the condition that the value of &1 be a literal ampersand
is met.

Further examples of loop control with the &LOOP statement are found
throughout this book.

Building EXEC Procedures 46.1

eMS commands .u an EXEC procedure can be executed sequentiallYi under
control of EXEC control statements, or they can be placed (stacked) in
the terminal input buffer for later execution. You already know how to
set up an EXEC procedure to control execution of CMS commands, and also
how to execute CMS commands sequentially. This section shows you how to
stack CMS commands for later execution.

PLACING A COMMAND IN THE CONSOLE STACK

The &STACK control statement allows you to stack a line of tokens in the
terminal input butter (aLSO called the console stack). Normally, the
line of tokens comprises a CMS command (or subcommand) and its
parameters, although a null line can also be stacked by omitting the
tokens. In fact, the data placed in the stack need not be a command at
all. S(~e the heading "An Annot<'l.ted EXEC Procedure" for an example of
such stackinge

Lines placed in the console stack by &STACK are normally stacked FIFO
(first in, first out), but you can explicitly specify LIFO (last in,
first out) by entering LIFO as the first token following &STACK.

~Q~~: The Logical Line End character is a hexadecimal '15'. CMS
routines do not process the symbolic line end character (#).

The stacking facilities are especially useful in designing EXEC
procedures that use such CMS commands as EDIT. You can use the &STACK
control statement to set EDIT subcommands in the console stack, then
execute the EDIT command itself. For example, suppose you wanted to
define a special filetype that is to contain uppercase and lowercase
characters. Since the EDIT command assumes only uppercase characters
for dll filetypes except MEMO and SCRIPT, you need to specify the EDIT
subcommand CASE M each time you edit a file with the special filetype.
If the special filetype is called TABLE, you could use the following
EXEC procedure to control the eMS EDIT command:

SIF &INDEX LT 2 &EXIT 12
&IF &2 NE TABLE &SKIP
&STACK CASE M
EDIT &1 &2 &3 &4 &5 &6

When this EXEC is invoked, it expects to find at least two arguments,
although up to SlX may be passed. The first argument must be a
filename, and the second a filetype. If fewer than two arguments are
passed, an exit with a return code of 12 is taken.

If the filetype specified (&2) is not TABLE, the next sequential
statement is skipped. In this case, an EDIT command is issued by
specLtylng the arguments that were passed to the EXEC procedure. An
exit is taken on return from eMS.

If the filetype specified is TABLE, control passes to the next
sequential statement in the file. This statement stacks the EDIT
subcommand CASE M in the terminal input buffer. When the EDIT command
is issued (in the next statement), the first time the Editor reads from
the terminal buffer, it reads the CASE M subcommand. The person working
at the terminal is thus freed from having to enter CASE M when editing a
TABLE file.

Building EXEC Procedures 47

If you want to stack one or more untokenized lines in the console
stack, you can use the &BEGSTACK and &END control statements, which are
discussed next.

Using the &BEGSTACK and &END control statements, you can place
untokenized lines of data in the terminal input buffer (also called the
console stack). Normally, a line consists of a CMS command (or
subcommand) and its parameters. since the line is untokenized, no
substitution is performed by the EXEC interpreter before the line is
placed in the console stack.

As with the &STACK control statement, you can specify whether the
lines are to be executed on a FIFO (first in, first out) or LIFO (last
in, first out) basis.

Lines of data are normally truncated at column 72, but you can
specify the option ALL in the &BEGTYPE statement to extend the data
entry area to 80 characters (or to 130 characters if the EDIT command
specifies LRBCL 130).

Consider another example using subcommands of the CMS EDIT command.
~his time, in addition to allowing uppercase and lowercase characters,
you want to set tabs at columns 1, 10, and 20, and you want the short
prompting message to appear wheri an invalid EDIT subco.mand is entered.
Using a filetype of TABLE for files that require this special treatment,
Y3D could enter the EXEC procedure as follows:

&IF &INDEX LT 2 &EXIT 12
&Ir &2 NE TABLE &GOTO -EDIT
&BEGS'rACK
CASE M
TABSt:T 1 10 20
SHORT
SEND
-EDIT EDIT &1 &2 &3 &4 &5 &6

The analysis of the arguments passed is similar to that discussed in
the previous example for &STACK. In this EXEC procedure, a branch is
taken to the label -EDIT when the filetype specified in the variable &2
is not TABLE. When the filetype is TABLE, control passes to the
&BPGSTACK control statement, which places the lines down to &END in the
console stack. The EDIT command is then executed. The first three
lines read from the terminal buffer are the subcommands that were
stacked there. Thus, the person working at the terminal is freed from
having to enter the CASE M, TABSET 1 10 20, and SHORT subcommands when
editing a TABLE file.

You can check the status of the console stack within your EXEC
procedure by exam1n1ng the &READFLAG special variable, which is
discussed next.

48 IBM VM/370: EXEC User's Guide

During EXEC processing, you may need to k ow whether or not any data
lines are stacked in the terminal input bu fer. You can determine this
quickly and easily by examining the spec al variable &READFLAG. If
&READFLAG contains the value CONSOLE, the next attempt to read from the
terminal obtains a physical line from the real terminal. If &READFLAG
contains the value STACK, the next attempt to read from the terminal
obtains a line from the terminal input buffer.

Note: You cannot set this variable explicitly, but you can examine it and- save its value in some other variable at any point in an EXEC
nrnrp{lnrp_
r-------~-

For example, if successful completion of an EXEC procedure requires
at least one data line to be stacked in the terminal input buffer, you
might set up the following test just before leaving the EXEC procedure:

&IF &READFLAG EQ STACK &EXIT
&TYPE PROCESS ERROR; NO LINES IN STACK
&EXIT 16

If at least one line is in the stack, the normal exit is taken with a
return code of zero. When no lines appear in the stack, the value of
&READFLAG is not STACK, so control passes to the following &TYPE
statement, which types an error message and exits with a return code of
16.

!Q~g: &READFLAG can contain only the two values CONSOLE and STACK.

It is usually good programming practice to check for errors during
execution of a program. This is as true for EXEC procedures as it is
for any formal programming language. Three major types of errors can be
detected during EXEC processing:

1. Errors in number, type, or contents of arguments passed to an EXEC
procedure. Checking for these kinds of errors has already been
discussed under the heading IIPassing Arguments to an EXEC
Procedure."

2. Errors in CMS command processing. Checking for these kinds of
errors is controlled by specifying an &ERROR control statement that
passes control to an analysis routine whenever a CMS command error
occurs. These techniques are discussed under the following
headings, "Identifying Error Handling Routines" and "Checking for
CMS Error Return Codes."

3. Errors in EXEC interpreter processing. These kinds of errors
usually result in an error exit from the EXEC procedure. The EXEC
interpreter types an error message and a return code, and returns
to CMS. The messages and return codes are discussed under the
heading "Recognizing EXEC processing Errors."

Building EXEC Procedures 49

IDENTIFYING ERROR HANDLING ROUTINES

When an error is detected in processing a CMS command, a return code
indicating the severity of the error is passed back to the EXEC
interpreter. The EXEC interpreter then activates the &ERROR control
statement currently in effect. If none has been specified, &CONTINUE is
assumed, and no error processing is performed.

An &ERROR control statement can specify that any executable statement
be processed when an error is recognized. However, if the action taken
is itself a CMS command that also yields an error return code, the EXEC
interpreter types an error message and exits from the EXEC procedure.

H2!g: An &ERROR control statement must be set up before the CMS
commanns for which it is to handle errors are executed. Thus, the
effect of an &ERROR control statement ranges from the point at which it
is entered until the next &~RROR statement is encountered.

A simple error action is to exit from the EXEC procedure, passing the
return code from the CMS command back to the user. For exampl~:

SERROR &EXIT &RETCODE

In ~nother EXEC procedure, you may want to check the severity of the
error before takin~ any action. For example:

&ERROH &IF &RETCODE LT 12 &GOTO -FIX
&EXIT &RETCODE

-FIX (Analysis routine begins here.)

When the value of &RETCODE is 12 or more, the branch to -FIX is not
taken, ann the &EXIT statement that follows is executed. When the
return code is less than 12, the branch to the error analysis routine at
-FIX is taken.

Once control passes to the error analysis section of an EXEC
procedure, you can test the &RETCODE special variable to determine what
kind of error occurred. This technique is discussed next.

CHECKING FOR CMS ERROR RETURN CODES

When an EXEC procedure passes control to an error analysis routine, it
is usually because the error discovered is not very serious, and may be
one that can be contained by performing some corrective action. Before
you can take any corrective action, though, you need to know exactly
what the error 1S. One way to determine the cause of the error is to
examine the return code in the special EXEC variable &RETCODE.

50 IBM VM/370: EXEC User's Guide

For example, suppose you want to set up an analysis routine to
identify return codes 1 through 11 (anything greater than 11 is set up
t~ cause an immediate exit). When a return code is identified, control
is passed to a corresponding routine that attempts to correct the error.
You could set up such an analysis routine as follows:

-ERRANAL
&CNT = a
&LOOP 2 &CNT EQ 12
ElF &RETCODE EQ &CNT &GOTO -FIX&CNT
SCNT = SCNT + 1

-FIXO &GOTO -ALLOK
-FIX 1..
- FIX2 •••

-FIX10".Q
~FIX11.oo

--ALLOK •••

When the value of the &CNT variable equals the return code value in
SRETCODE, the branch to the corresponding -FIX routine is taken. Each
corre-ctive routine performs actions depending on its code.

~hen you want to pass the value of &RETCODE out of the EXEC
procedure, you can simply specify it in the &EXIT statement, as follows:

SPXIT &RETCODE

Further examples of the use of the &RETCODE special variable are
found throughout the rest of this book.

RECOGNIZING EXEC PROCESSING ERRORS

Just as errors can occur in CMS command execution, so can they occur in
EXEC control statement processing. When the EXEC interpreter finds an
error, it types the message:

ERROR IN EXEC FILE fname, LINE nn -- error description

where:

fname
is the filename of the EXEC file in which the error was detected.

nn
is the line number in the file at which the error occurred.

error description
is one of the conditions described below. A return code is passed
back to the calling program; the return codes are shown with the
messages to which they belong.

Building EXEC Procedures 51

Return
Code
-802--

An error occurred in attempting to process an &SKIP or &GOTO
statement. For &SKIP, a value that specifies a position
before the beginning of the EXEC file may have been
sp~cified. For &GOTO, the target specification may have been
omitted.

804 TOO MANY ARGUMENTS

The user has tried to pass more than 30 arguments to the
specified EXEC at the line indicated. If more than 30
variables must be used, define your own and initialize them
with an &READ VARS control statement.

805 MAX DEPTH OF LOOP NESTING EXCEEDED

Up to four nested loop~ using the &LOOP control statement may
be specified. If more than this are required, use another
technique for loop control for additional levels of nesting.

806 D~SK OR TERMINAL READ ERROR

An error occurred while reading from a disk or user terminal.
Try the EXEC procedure again. If the error persists, contact
you computer center for assistance.

807 INVALID SYNTAX

The syntax of the indicated statement is incorrect. Correct
the error and try the EXEC procedure again.

808 INVALID FORM OF CONDITION

The conditional expression in the indicated statement is
invalid. This error can arise due to faulty logic, but when
the logic is correct, it occurs most often when some required
argument is not passed to the EXEC procedure.

809 INVALID ASSIGNMENT

The assignment in the indicated statement is invalid. The
types of errors that can cause this message to appear are
like those for INVALID FORM OF CONDITION (808).

810 MISUSE OF SPECIAL VARIABLE

One of the special EXEC variables was improperly used in the
indicated statement. Review the rules for use of the special
EXEC variables and ~orrect the error before attempting to use
the EXEC procedure again.

52 IBM VM/370: EXEC User's Guide

Return
f9Q~ __

811

The action specified when the indicated &ERROR statement was
executed resulted in a processing error. You should correct
both errors before attempting to use the EXEC procedure
again.

812 CONVERSION ERROR

An error occurred in the indicated statement when the EXEC
interpreter attempted to convert one type of data to another.
This can happen when you try to perform arithmetic operations
on alphabetic data. Correct the error and try the EXEC
procedure again.

813 TOO MANY TOKENS IN STATEMENT

No more than 19 tokens can appear in a single EXEC statement.
Reduce the number of tokens in the indicated statement and
try the EXEC procedure again.

814 MISUSE OF BUILT-IN FUNCTION

One of the EXEC built-in functions was improperly used in the
indicated statement. Review the rules for use of the
built-in functions and correct the error before attempting to
use the EXEC procedure again.

815 EOP FOUND IN LOOP

The end of the EXEC file was encountered at the indicated
statement while execution was being controlled by an &LOOP
control statement. Check for an incorrect limit value or a
failure to attain an exit condition during loop execution.
When the error is corrected, try the EXEC procedure again.

816 INVALID CONTROL WORD

The EXEC interpreter does not recognize a control word in the
indicated statement. Locate and correct the error before
using the EXEC procedure again.

Note: None of the EXEC processing errors can be corrected dynamically.
Dep~nding on the error, you must either correct the indicated error and
invoke the EXEC procedure again, or simply invoke the EXEC again with
correct arguments.

Certain EXEC files have special uses in a eMS virtual machine. They
are:

• pgOFILE EXEC, which allows a user to set up his own operating
environment within CMS.

• eMS EXEC, which is a file of 80-character records created by the CMS
LISTFILE command.

• EDIT macros, which are special EXEC files that contain only EXEC
control words and EDIT subcommands.

Building EXEC Procedures 53

Each of these special EXEC files is discussed in this section under a
separate heading.

PROFILE EXEC

1 PROFILE EXEC is an EXEC procedure that tailors a CMS virtual machine
to the user's specifications. If you usually enter several commands to
change your virtual machine after you load CMS, you should set up your
own PROFILE EXEC to execute these commands for you. This will save you
the trouble of entering these commands every time you IPL CMS.

A PROFILE EXEC can be as simple or as complex as you require. It is
a normal EXEC file, and thus it can contain any valid EXEC control
statements or CMS commands. The only thing that makes it special is its
filename, PROFILE, which causes it to be executed the first time you
press the RETURN key after loading CMS.

Usually, the first thing you do after loading CMS is to type a CMS
command. When you press the RETURN key to enter this command, CMS
searches your A-disk for a file with a filename of PROFILE and a
filetype of EXEC. If such a file exists, it is executed before the
first CMS command entered is executed. Because you do not do anything
special to cause your PROFILE EXEC to execute, you can say that it
executes "automatically."

!2!~: You can prevent your PROFILE EXEC from executing automatically by
entering:

ACCESS (NOPROF)

as the first CMS command after you IPL CMS. You can enter:

PROFILE

at any time during a eMS session to execute the PROFILE EXEC.

For example, if you want to set
redefines the blip characters and CMS
the following PROFILE EXEC:

&CONTROL OFF
SET BLIP *
SET RDYMSG SMSG

up a CMS virtual machine that
Ready message, you could create

In addition to establishing an operating environment, you could also
perform such functions as linking to another minidisk, accessing it, and
manipulating files that are found on it. An Assembler Language
programmer may want to include a GLOBAL command in his PROFILE EXEC to
ensure access to the CMS and OS macro libraries, while a PL/I user would
want to have the PL/I Program Product libraries available.

An example of a PROFILE EXEC to do some of these things is:

&CONTROL OFF
LINK PUBS 191 291 RR RDPAS
ACCESS 291 B/A
GLOBAL MACLIB CMSLIB OSMACRO
SET BLIP Z
SET RDYMSG SMSG

!2!~: You can use &EXIT to specify a return code to be displayed when
the PROFILE EXEC finishes processing. If the return code yeu specify in

54 IBM VM/370: EXEC User's Guide

this way depends on the value of SRETCODE, the return code is displayed
only if you have executed the PROFILE EXEC by entering

PROFILE

If the PROFILE EXEC is executed automatically, however, the return code
is not displayed. Only the normal C~S ready message (R;) is displayed,
to show that C~S has executed the PROFILE EXEC.

For example, suppose your PROFILE EXEC is:

SCOITROL OFF
SET RDYBSG SBSG
GLOBAL TXTLIB CDBLIB
SIF SRETCODE BE 0 &BXIT
SEXIT

If this PROFILE EXEC is executed automatically and CDBLIB cannot be
found~ the following message is issued:

FILE 'CDBLIB TXTLIB' lOT FOUID.
R;

If the same EXEC is executed by your entering

PROFILE

the return code is displayed, as follows:

FILE 'CDBLIB TXTLIB' lOT FOOID.
R (00001) ;

If the file is found, the normal CBS ready message is issued in either
case.

CftS EXEC

A CBS EXEC file is a special file
created on a user's priaary disk by
format of each record in the file is:

S1 S2 filename filetype filemode

of SO-character records that is
the CBS LISTFILE command. The

The variables S1 and S2 are standard EXEC numeric variables. The
filename, filetype, and filemode are those specified in the LISTFILE
command. (The LISTFILE command is described in the Vft/~70: ~2!!!ng

~run!~g~ g!!i9'! 12!: §!nnal y~!§.)

JUdicious use of the LISTFILE command and CBS EXEC can save much
repetitive work in certain situations. For example, if you have several
files with a filetype of ASSE!BLE that you want punched so that they can
be transferred to some other user, you can do this in two ways:

1. You can enter the co.mand:

DISK DUBP filename ASSEftBLl

for each file to be .oved. If many files are involved, this can be
a tedious, time-consuming procedure.

Building EXEC Procedures 55

2. You can create a C!S EXEC file by entering the com.and:

LISTFILE * ASSEftBLE * (EIEC)

which creates a file named C!S EXEC with SO-character records in
the format described previously. One record is created for each
file found with a filetype of ASS!!BLE. You could then issue the
command:

CMS DISK DUMP

When the CMS EXEC is executed, the argument DISK is assigned to &1,
DUMP is assigned to &2, and a DISK DUftP command is thus created for
each record in the file.

If your virtual punch is spooled to the user to whom you want
the files to go, each file is punched to that user.

The CftS EXEC variables &1 and &2 can be assigned any arguments that
create a valid CftS cOllmand or EXEC control statement. (NO arguments
need be specified at all, if desired).

A more comprehensive example of the use of the
CftS EXEC is found in the section entitled
Procedure."

EDIT ftACROS

LISTFILE command and
"An Annotated EXEC

If you have a good knowledge of the CftS EXEC facilities, you can write
your own EDIT macros. You must ensure that any EDIT macro you write
checks t:he v-alidity of its operands and displays an error message if
necessary.

The conventions followed when creating EDIT macros are:

1. EXEC files that are EDIT macros have a filename that starts with a
dollar sign ($) and a filetype of EXEC. These files are referred
to as EDIT macro files.

2. An EDIT macro subcommand consists of the name of an EDIT macro file
(including the initial $), possibly followed by operands.

3. An EDIT macro file contains only EDIT subcommands and EXEC control
statements. EDIT macros can execute only in EDIT mode.

Operands of an EDIT macro must be separated from the macro name, and
froll each other w by at least one blank. Percent signs (~) cannot be
entered as operands, since they have a special meaning to the EXEC
interpreter. Operands passed to an EDIT macro are subject to the same
rules as any other EXEC file (that is, the length of an operand must not
exceed eight characters).

When you create the macro, IftAGE mode must be off if you include tab
characters (X'05').

All EDIT subcommands in EDIT macros must re stacked (that is, you
must specify &STACK or &BEGSTACK before the EDIT subcommands). If your
EDIT macro uses variables, you should use &STACK rather than &BEGSTACK,
since &BEGSTACK inhibits substitution of variables.

If an EDIT macro is issued, and the EDIT macro
the Editor issues the message ?EDIT:. If an

56 IBft VM/370: EXEC User's Guide

file does not exist,
EDIT macro is used

incorrectly, the Editor displays a message, and the macro is ignored.
If an EDIT macro is assigned to X or Y, it is an error to issue that X
or Y subcommand with a numeric operand other than 0 or 1.

Some EDIT macros use the CftS DESBUl command during their execution
(for example, $DUP and $ftOVE). If stacked lines exist when one of these
macros is invoked, the macro deletes the stacked lines and issues the
message STACKED LINES CLEARED BY (macro name). This also occurs in
user-written macros if ~he CftS line end character has been used to stack
additional sub commands after the macro is issued.

A user-written EDIT macro that uses first-in, first-out (FIFO)
stacking should ensure that the stack is initially clear. You do this
by including in your EDIT macro the line

&IF &READFLAG EQ STACK DESBUF

before you stack anything. The CESBUF command clears the ccnsole
stack. Alternatively; your EDIT macro can use last-in, first-out (LIFO)
stacking to avoid having to initially clear the console stack.

If the operation of an EDIT macro is completed without an error, the
Editor clears any stacked lines and issues the message STACKED LINES
CLEARED. Thus, the macro has no effect on the Editor or its contents.

To avoid having the Editor type during execution of your EDIT macros,
you can specify that your EDIT macros operate with verification off.
You can accomplish this without losing your setting by stacking PRESERVE
and VERIFY OFF for execution first, and RESTORE for execution last.

Do not interrupt the execution of an EDIT macro by pressing the ATTN
(attention) key or its equivalent.

An example of an EDIT macro that you could write is the following,
which puts a continuation character in column 72 of an Assembler
Language source statement. Remember to issue the EDIT subcommand IftAGE
OFF before you create this EXEC, because it includes tab characters.

&CONTROL OFF
&BEGSTACK
PRESERVE
VERIFY OFF
TRUNC *
TABS 1 72
&END
&STACK REPEAT &1
&BEGSTACK
OVERLAY C

(Enter a blank and a tab character between OVERLAY and C.)
RESTORE
&END

If you name this file $CONT EXEC, then when you want to put a
continuation character in column 72, you can:

1. Enter the Assembler Language source statement (except for the
continuation character) •

2. Enter a null line to get into EDIT mode (from INPUT mode).

3. Invoke the $CONT EXEG to put a continuation character in column
72.

4. Enter INPUT mode and continue entering source statements.

Building EXEC Procedures 56.1

Two EDIT macros are supplied with Y8/370: $DUP and $80YE. These are
described in "section 4. EDIT 8acros" in the !!l37Q: EDIT Guide.
"Appendix B. User-Written EDIT 8acros" in the Y8/370: !RlI Guij!
describes other EDIT .acros that you can create and .ay find useful.

56.2 IBB V8/370: EXEC User's Guide

The EXEC facilities provide you with a convenient way of controlling the
CMS Batch Facility. Using EXEC procedures, you can simulate terminal
control of your batch job execution, while freeing yourself of the
repetitious tasks involved in preparing input for the batch card reader.

Since the CMS Batch Facility executes commands in the same way as a
normal CMS virtual machine, you can submit data to it in three primary
ways:

1. Invoke EXEC procedures in your virtual machine to punch the
necessary commands to the batch card reader.

2. Punch EXEC files to the batch card reader in such a way that the
EXEC files are loaded on the batch machine's primary disk, and are
then executed in the batch machine.

3. PunCh appropriate commands to the batch card reader to cause the
batch machine to link to a user disk and invoke an EXEC procedure
that resides on that disk.

Of course, any combination of these (or other) methods may serve the
pur~ose of a particular user job. Methods 2 and 3 also show how to make
a data file (such as a source file for an assembly) available to the
batch machine. You can either punch the data file (preceded by
appropriate eMS commands) directly to the batch reader, or punch a
series of commands that enable the batch machine to link to a user disk
and have access to the data file.

To simulate actual console input, the batch machine truncates
trailing blanks from every recora 1~ reads from its card reader and
determines the length of the line read accordingly. Thus, a blank
record is treated as a null line.

The only exception to the normal batch machine handling of 1* (end of
job) and blank records is that of using 1* as an end-of-file indicator
when MOVEFILE is executing and reading from the console (batch card
reader). The 1* is translated to a null line 50 that blank data records
can be read in as data, and so that MOVEFILE can recognize an
~nj-of-file from the console. This is the only time that the batch
machine does not interpret 1* as an end-of-job indicator, and the only
condition when a blank record is treated as a blank card-image record
rather than as a null line.

This use of the MOVEFILE command is helpful with input method 2
above, in which the data file may be preceded with two FILEDEF commands
and a MOVEFILE command, and followed by a 1* record. If the input data
file is defined as residing at the console, MOVEFILE reads the data file
from the console and recognizes the null line (the 1* record translated
by the CMS Batch Facility) as the end of the data file.

Building EXEC Procedures 57

SAMPLE PROCEDURES POR BATCH EXECUTION

The sample EXEC procedures in this section can be used to assemble
Assembler Language source files under control of the CMS Batch Facility.
The three EXEC files are named BATCH EXEC r INPUT EXEC r and ASSEMBLE
EXEC.

1. BATCH EXEC

* THIS EXEC SUBMITS ASSEMBLIES/COMPILATIONS TO CMS BATCH

* * - PUNCH BATCH JOB CARD;
* ~ CALL INPUT EXEC TO PUNCH DATA FILE;
* ~ CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH EXECUTABLE COMMANDS

* &CONTROL ERROR
&IP &INDEX GT 2 &SKIP 2
&TYPE CORRECT FORM IS: BATCH USERID FNAME FTYPE (LANGUAGE)
&EXIT 100
&ERROR &GOTO -ERRl
CP SPOOL D CONT TO BATCHCMS
&PUNCH /JOB &1 1111 &2
EXEC INPUT &2 &3
EXEC &3 &2 & 1
&PUNCH /*
CP SPOOL D NOCONT
CP CLOSE D
CP SPOOL DOFF
&EXIT
-ERR 1 &EXIT 100

2. I NPUT EXEC

* CORRECT FORM IS: INPUT FNAME FTYPE

* * PUNCH DATA FILE FOR BATCH PROCESSOR; THE /* LINE BEHIND THE
* DATA FILE IS TRANSLATED TO A NULL LINE BY BATCH SO THAT MOVEFILE
* RECOGNIZES THE END OF THE DATA SET.

* &CONTROL ERROR
&ERROR &GOTO -ERR3
&PUNCH FILEDEF INMOVE TERM (BLOCK 80 LRECL 80 RECFM F
&PUNCH FILEDEF OUTMOVE DISh &1 &2 (BLOCK 80 LRBeL 80 RECfM F
&PUNCH MOVEFILE
PUNCH &1 &2 * (HOB EADER)
&PUNCH /*
&EXIT
-ERR3 &EXIT 103

3. ASSEMBLE EXEC

* CORRECT FORM IS: ASSEMBLE FNAME USERID

* * PUNCH COMMANDS TO:
* - INVOKE CMS ASSEMBLER
* - RETURN TEXT DECK TO CALLER

* &CONTROL ERROR
&ERROR &GOTO -ERR2
&PUNCH CP LINK &2 191 199 RR PASS= RPASS
&BEGPUNCH
ACCESS 199 B/B
GLOBAL MACLIB UPLIB CMSLIB OSMACRO
RELEASE 199

58 IBM VM/370: EXEC User's Guide

&END
&PUNCH CP MSG &2 ASMBLING '&1 •
&PUNCH ASSEMBLE &1 (PRINT NOTERM)
&PUNCH CP MSG &2 ASSEMBLY DONE
&PUNCH CP SPOOL D TO &2 NOCONT
&PUNCH PUNCH &1 TEXT A 1 (NOHEADER)
&BEGPUNCH
CP CLOSE D
CP SPOOL DOFF
CP DETACH 199
&END
&EXIT
-ERR2 &EXIT 102

These EXEC files use both methods of making data files available to
the batch machine for job execution, that is, the user's macro library
UPLIB is on his 191 disk. Instead of punching the file to the batch
card reader and using MOVEFILE to write the file to the batch machine=s
disk (as he does with the source file), the user enables the batch
machine to link to his disk and gain access to the macro library needed
for the assembly.

This section describes the sequence of events that occur when the sample
job is submitted to the eMS Batch Facility. The BATCH EXEC is invoked,
with arguments, as follows:

!~£min~l lIpeout
batch name payroll assemble

PUN FILE 0073 TO BATCHCMS
R;

CP
CMS

At this point, the BATCHCMS reader file contains the following'
statements (in the same general form as a FIFO console stack) :

IJOB NAME 1111 PAYROLL
FILEDEF INMOVE TERM (BLOCK 80 LRECL 80 RECFM F
FILEDEF OUTMOVE DISK PAYROLL ASSEMBLE (BLOCK 80 LRECL 80 RECFM F
MOVEFILE

source file (PAYROLL ASSEMBLE)

1*
CP LINK NAME 191 199 RR PASS= RPASS
ACCESS 199 BIB
GLOBAL MACLIB UPLIB CMSLIB OSMACRO
RELEASE 199
CP MS~ NAME ASMBLING 'PAYROLL'
ASSEMBLE PAYROLL (PRINT NOTERM)
CP MSG NAME ASSEMBLY DONE
CP SPOOL D TO NAME NOCONT
PUNCH PAYROLL TEXT A 1 (NOHEADER)
CP CLOSE D
CP SPOOL DOFF
CP DETACH 199
1*

Building EXEC Procedures 59

Eventually, the following messages appear on the user console (if
connected) :

tlg§.§.sg~
FROM BATCHCMS: JOB 'PAYROLL' STARTED

FROM BATCHCMS: ASMBLING 'PAYROLL' User job

FROM BATCHCMS: ASSEMBLY DONE. User job

PUN FILE 0082 FROM BATCHCMS CP

FROM BATCHCMS: JOB 'PAYROLL' ENDED Batch

At this point, the user has the resultant object deck (PAYROLL TEXT)
in his card reader.

If an installation is running the CMS Batch Facility for non-CMS users,
a series of EXEC files could be stored on the system disk so that each
user need only include a card to invoke the system EXEC, which in turn
would ~xecute the correct CMS commands to process his data.

For example, if a non-CMS user wanted to
fil~s, the following BATFORT EXEC file could
residence disk:

compile FORTRAN source
be stored on the system

-SCONTROL OFF
FILEDEF INMOVE TERM (RECFM F BLOCK 80 LREeL 80
FILEDEF OUTMOVE DISK &1 FORTRAN A1 {RECFM F LRBCL 80 BLOCK 80
MOVFILE IN OUT
GLOBAL TXTLIB FORTRAN
FORTGI & 1 (PRINT)
&FORTRET = &RETCODE
SIF &RETCODE NE 0 &GOTO -EXIT
PUNCH &1 TEXT A 1 (NOHEADER)
-EXIT &EXIT &FORTRET

Using this EXEC, the non-CMS user could place a real card deck in the
systp.m card reader (the first job must have a CP userid card). The
statements to invoke the BATFORT EXEC would be as follows:

IJOB JOEUSER 1234 JOB10
BATFORT JOEFORT

source file

1*
1*

The BATFORT EXEC moves the source
disk with a file identification of
compiler is then invoked, and if the
file is punched for JOEUSER.

(end-of-file indicator)
(end-of-job indicator)

file onto the batch machine work
JOEFORT FORTRAN. The FORTRAN Gl
return code is 0, the JOEFORT TEXT

Additional functions may be added to this EXEC procedure, or others
may be written and stored on the system disk to provide, for example, a
compile, load, and execute facility. These EXEC procedures would allow
an installation to accommodate the non-CMS users and maintain common
user procedures.

60 IBM VM/370: EXEC User's Guide

The following EXEC procedure could be used to assemble all the ASSEMBLE
files on a user's primary disk (A-disk). The numbers to the left of
each statement are not part of the EXEC file, but are simply reference
points for the discussion that follows the EXEC procedure.

1 &CONTROL ERROR
2 LISTFILE * ASSEMBLE A1 (EXEC)
3 EXEC CMS &STACK
4 GLOBAL MACLIB &2 CMSLIB
5 &LOOP -LOOPEND &READFLAG EQ CONSOLE
6 &READ ARGS
7 ASSEMBLE &1
8 &ASMRET = &RETCODE
9 &IF &RETCODE GT 4 &SKIP 2
10 PRINT &1 LISTING A1
11 ERASE &1 LISTING A1
12 -LOOPEND &CONTINUE
13 &EXIT &ASMRET

The function of each of the statements in this sample EXEC procedure
is as follows:

1. The &CONTROL statement specifies that only those CMS commands that
result in a nonzero return code are to be typed at the user's
terminal. In addition, the return code is typed in the CMS ready
message.

2. The LISTFILE command creates a CMS EXEC file that contains the
names of all the files on the user's A-disk that have a filetype of
ASSEMBLE. For each ASSEMBLE file found, a record is created in the
CMS EXEC file in the following format:

3.

&1 &2 filename ASSEMBLE A1

The CMS EXEC is invoked with
record in the CMS EX~C file is
in the following format:

filename ASSEMBLE A1

the arqument &STACK. Thus, each
placed in the terminal input buffer

4. The GLOBAL command locates and gains access to the macro libraries
required for the assembly. The user can specify any library he
wishes by passing an argument to the EXEC procedure in the second
argument position.

5. The loop that is created by &LOOP executes each statement down to,
and including, the label -LOOPEND, until such time as the special
variable &READFLAG has a value of CONSOLE. As lono as there are
records in the console stack (placed there by statement 3), the
loop continues to execute.

6. The &READ statement reads a line from the console stack, assigning
it tokens to the numeric variables &1, &2, &3, etc.

7. The ASSEMBLE command causes the file named in the variable &1 to be
assembled.

8. This statement saves the return code from the Assembler in the
user-defined variable &ASMRET.

,
Building EXEC Procedures 61

9. The &IF statement checks to see if the return code from the
Assembler is greater than four. If it is, the next two lines are
skipped. If not, no skipping of lines occurs, and control passes
to the next sequential statement.

10. The PRINT command causes the LISTING file of assembled source
statements to be spooled to the user's virtual printer.

11. When the LISTING file has been spooled, it is erased to make room
for the next one (if any) •

12. This statement marks the end of the loop defined in statement 5.

13. When the loop is through executing, &EXIT passes control back to
eMS with the return code from the most recent assembly (contained
in &ASMRET), not from the most recently executed CMS command (which
might be ERASE).

Many other combinations and variations are possible in the
construction of EXEC procedures. The reader is encouraged to
investigate the capabilities of the EXEC facilities in depth. The uses
to which EXEC procedures can be put in your VM/370 system should be
limited only by your imagination and any performance criteria that must
be 'll~t.

62 IBM VM/370: EXEC User's Guide

The charts in this section provide a quick reference summary of the EXEC
control statements and built-in functions. Should you need more
information than that in the charts, see the appropriate discussion in
the body of this book.

EXEC Command
Description control Statements and Built-in Functions

EX EC EXec fn [args •••]
Invokes EXEC files. The formats of the EXEC control statements

and built-in functions are as follows:

Defines or redefines
arguments in the
EXEC file.

Punches the
following lines of
this EXEC file
into cards.

Stacks the following
lines of this EXEC
file into the
terminal input
buffer.

Types the follow
ing lines of this
EXEC file at the
terminal.

Concatenates tokl
and tok2 into a
single token.

Used in conjunction
with an EXEC label
to provide an
address for branch
statements.

Supplies the
console printout
parameters for the
execution phase of
the EXEC file.

Allows the token
to be known from
this point on by its
composition (that
is, numeric or
character data) •

&A RGS [a rg 1 [a rg 2 •••]]

&BEGPUNCH

&BEGSTACK

&BEGTYPE

&CONCAT

&CONTINUE

[ALL]

r , r ,
I l11Q I I ALL I
ILIFOI L .J

L .J

[ALL]

tok 1 {tok2 ••• }

r , r , r ,
&CONTROL IOFF I ITIME I IPA£~ I

I ERROR I I NOTIME I I NOPACK I
I £11~ I L .J L .J

IALL I
L .J

&DATATYPE tok

r ,

111~~ I
INOMSGI
L .J

L-____________________ . ________________________ __

Appendix A: EXEC Control Statement Summary 63

r
EXEC Command
Description

Indicates the
completion of the
action started by
&BEGPUNCH, &BEG
STACK, or &BEGTYPE.

Provides an execu
tion path for a
previous EXEC file
statement that
resulted in a non
zero return code.

Exits from the
EXEC file with a
qiven return code.

Transfers control
to a defined
location.

Allows statement
execution if the
comparison is
satisfied.

Indicates the num
ber of nonblank
characters in the
f ollowi ng token.

Allows the use of
the literal value
of the token with
out substitution.

Repetitively exe
cutes a sequence
of statements a
defined number of
times or until a
specific condition
is achieved.

Punches a card
with the defined
tokens.

Reads the next
line (or lines)
from the terminal
and treats the
data as part of
the EXEC file.

-----------~--------------------,

Control Statements and Built-in Functions

&END

&ERROR action

r ,
&EXIT I return-code I

I Q I
L

&GOTO

{
TOP }
line-number
label

&IF

{
tok 1 } ~ EQ &$ NE
&* LT {&

t&*0$k2} executable
statement

&LENGTH tok

LE
GT
GE

&LITERAL tOK

&LOOP ~ondition }

&PUNCH tok 1 [tok2 •••]

r
&READ In

I 1
IARGS
IVARS var1 [var2 •••]

,

L J

l __ __

64 IBM VM/370: EXEC User's Guide

r
I EXEC Command
I Description I Control statements and Built-in Functions I
1--1

L

Skips sa bseguent
statements or
transfers control
up or down in the
~XEC fileQ

Types blank lines
at the terminal.

stacks a line of
tokens in the
terminal input
buffero

l:;'xtracts the
d~sired string of
characters from
the given token.

'='ypes a t the
terminal time infor
mation pertaining
to ~XEC file
execution.

~: ypes at the
terminal a line
containing the
indicated tokens.

, r , ,
, SSKIP I n I I
I , 1 I I
I L ,

I I
I ,
, r, I
I &SPACEI n , I
I I .1. , I
I L.J I
~ r I

&STACK I "T 1i'('\ I
I£.:!:':'~I [tok 1 [tok 2 ...
ILIFO'
L .J

&SUBSTR tok i [j]

r , r ,
STIME ION, I RESET,

IOFF, ,TYPE,
L J L J

&TYPF. tok1 [tok2 •••

_____________ .J

Appendix A: EXEC Control Statement Summary 65

S$ special token 23
use of 42

s* special token 23
use of 42

S character, use of in variable
SIRGS control stateaent 11

use of 33
SBEGPURCH control statement 18

use of 11
SBEGSTICK control stateaent 18

use of 11,48
SBEGTYPE control stateaent 19

use of 11,38
SCORCIT built-in function 28
SCOITlIU! control state.eDt 19

use of 61
SCONTBOL control stateaent 19

use of 61
SDITITYPE built-in function 28
SEND control stateaent 20

use of 38
SERROR control stateaent 21

use of 43,50
SEXIT control stateaent 21

use of 44,61
SGLOBIL special variable 30
&GLOBALn special variable 30
SGOTO control stateaent 22

use of 43
SIF control statement 22

use of 41,42,61
SINDEX special variable 31

use of 34
&LENGTH built-in function 28

use of 34
SLINEIU! special variable 31
SLITERIL built-in function 29

use of 46
SLOOP control statement 23

use of 45,61
Sn special variable 30

use of 61
SPURCH control statement 24
SREID control stateaent 24

use of 33,36,61
SREIDFLIG special variable 31

use of 49,56.1,61
SRETCODE special variable 31

use of 22,50,61
&SKIP control stateaent 25

use of 44
SSPICE control stateaent 25
SSTICK control statement 26

use of 41,61
&SOBSTB built-in function 29

use of 46
&TI!E control statement 26
&TYPE control stateaent 21

use of 31
&TYPEFLIG special variable 31

use of 40

names 12

Index

$DUP IDIT .acro 56.1,56.2
$!OYE EDIT aacro 56.1,56.2

I sign, use of 10,56

= sign, use of 13

I
adjusting counters 45
aapersand (&), use of in variable naaes 12
analysis, of EXEC stateaents 15
annotated IXIC procedure 61
arguaents

checking for nuaber of 34
checking for specific 35
checking length of 34
determining nuaber of 31
in EXIC coaaand 10
passing to an EXEC procedure 33
reading froa a terainal 24,36

ISSE!BLE coa.and 61
assigning a value to a counter 45
assigning values to syabolic variables 10
assignaent stateaents 13
avoiding substitution in a token 29

B
Batch Facility

CftS
controlling with EXEC procedures 51
executing the saaple EXEC procedure

59
for non-C!S users 60
saaple EXEC procedures for 58

blank lines, typing 25
blank tokens, handling of 15
branch stateaents

&GOTO 22
&SKIP 25
use of 43

branching
with &GOTO 22,43
with &SKIP 25,44

building IXIC procedures 33
built-in functions

EXEC
&COIiCIT 28
&DITITYPI 28
&LEIiGTH 28
&LITIBIL 29
SSUBSTR 29

Index 61

C
cataloged procedures, 05 7
checking

CMS

for a specific arguaent 35
for CMS error return codes 50
for execution errors 49
for length of an arguaent 34
for nuaber of arguaents 34

Batch Facility, controlling 57
Editor 8
error return codes, checking for 50
execution, controlling 47
files, typing at a terminal 39

CMS commands
as EXEC statements 12
ASSEMBLE 61
CP 12
DISK 55
EDIT 8
EXEC 7,10
executing 7
GLOBAL 61
LISTFILE 8,61
PRIIT 9,61
TYPE 9,39

CMS EXEC
described 55
example of 55

code
return

examining 31
specifying 21

coa.and line, length of 11
comllands

as EXEC stateaents 12
ASSEMBLE 61
CMS, executing 7
CP 12
DESBUF 56.1
DISK 55
EDI1: 8
EXEC 7,10
GLOBAL 61
invoking from an EXEC procedure 12
LISTFILE 8,61
longer than 72 characters 11
placing in a console stack 47
PRINT 9,61
reading from a terminal 24
TERMINAL 26
TYPE 9,39

coamunicating with a terainal 35
comparison operations

examples of 42
specifying 23

concatenating a string of tokens 28
conditional execution

control of 22
with SIF statement 41
with SLOOP stateaent 45

console output flag 31
console stack

clearing 56.1
placing lines in 18

example of 48
placing tokens in 26

example of 47
using to control CMS execution 47

68 IBM VM/370: EXEC User's Guide

control
logical, setting up 40
of conditional execution 22
of EXEC processing loops 23
of lIessage typing 19
passing via &GOTO 22,43
passing via SSKIP 25

control prograa (§!! CP)
control stateaents

EIEC 17
SARGS 17
SBEGPUICH 18
SBEGSTICK 18
SBEGTYPE 19
&COITINUE 19
SCOliTROL 19
SEND 20
&ERROR 21
SEIIT 21
SGOTO 22
SIF 22
&LOOP 23
SPUICH 24
SREAD 24
SSKIP 25
&SPACE 25
SSTACK 26
STIlt! 26
STYPE 27
built-in functions 27
execution control 17
skipping 25
special variables 30
suaaary of 63

in EIEC procedures 14
control word, defined 14
contro-llin<J ex:ecuti-on of CftS co •• ands 47
controlling the CMS Batch Facility 57
Conversational Monitor System (§~ CMS)
counters, defining and using 44
CP coamand 12
CP comaands

invoking from an EXEC procedure 12
TERMIIAL 26

D
data

placing in a console stack 18
punching 18,24
reading froll a terminal 24,36
typing at a terminal 19,37

data length, deterllining 28
data type, determining 28
defining variables 32
DESBUF command 56.1
DISK cOllmand 55

E
EDIT command 8
EDIT macros

SDUP 56.1,56.2
SMOVE 56.1,56.2
described 56
ex ample of 56. 1

Editor, CMS 8
ending EIEC processing 21
equal sign (=), use of 13
error handling routines, identifying 50

error messages, EXEC processing 51
error return codes, checking for 50
errors

CftS command processing
default action 19
handling 21

execution, checking 49
examining the output flag 40
examining the read status flag 49
example of an EDIT macro 56.1
example of an EXEC procedure 61
EXEC built-in functions 27

&CONCAT 28
&D'A TA TYPE 28
&LENGTH 28
&LITERAL 29
&SUESTR 29

EXEC command 10
EXEC control statements 17

&ARGS 17
&BEGPUBCB 18
&BEGSTACK 18
&BEGTYPE 19
&COBTIBUE 19
&COBTROL 19
&END 20
&ERROR 21
&EIIT 21
&GOTO 22
&IF 22
&LOOP 23
&PUBCH 24
&READ 24
&SKIP 25
&SPACE 25
&STACK 26
&TlftE 26
&TYPE 27
summary of 63

EXEC facilities, using 10
EXEC files

described 11
format of 7
number of lines in 11
record lenght of 11
special types 53
writing 8

EXEC interpreter
function of 14
processing 7

EXEC procedure
annotated 61
building 33
creating 7
for a non-CftS user 60
invoking 7
labels in 40
passing arguments to 33
writing 8

EXEC sta tellents
described 11
summary of 63

EXEC variables
defined 12
special

&GLOBAL 30
&GLOBALn 30
&INDEX 31
&LIN~NUft 31
&n 30

&READFLAG 31
&RETCODE 31
&TYPEFLAG 31

executable statements 11
execution

conditional
control of 22
with &IF statement 41
with &LOOP statement 45

controlling via console stack 47
of an EIEC procedure 7

execution contrel statements 17
execution errors, checking for 49
execution paths, defining 42
exit, froll an EXEC procedure 21
extracting a substring 29

F
filename, in EXEC command 10
files

CftS, typing at a terminal 39
EXEC

defined 11
format of 7
number of lines in 11
record length of 11
special 53
writing 8

flag
output status 31

checking 40
read status 31

checking 49
format, of EXEC files 7
functions, EXEC built-in 27

G
GLOBAL command 61
global variables, using 30

I
identifying error handling routines 50
IftAGE subcommand 56
interpreter, EXEC, function of 14
invoking an EXEC procedure 7

L
labels

examples of use 41
for EXEC statements 12
in an EXEC procedure 40
syntax and use 40

leading zeros, removal of 13
length of arguments, checking 34
length of data, determining 28
length of record, changing default 11
line number, determining 31
lines

blank, typing 25
typing at a terminal 38

LISTFILE command 8,61
lists, argument, in EXEC command 10

Index 69

logic control
in an EXEC procedure 40
passing of 22,25
setting up 40

loop control 23
with SLOOP 45
with counters 44

LRECL option 11

II
macros, EDIT, described 56
messages

control of typing 19
error, fro. EXEC processing 52

I
nonexecutable state.ents 11
null statements 12
nu.ber of arguments

checking 34
deterllining 31

nu.eric variables
assigning values to 10
defined 30

o
operators, comparison, specifying 23
OS, cataloged procedures 7
output status flag 31

checking 40

P
parameters, reading from a terminal 24
passing arguments to an EXEC procedure 33
passing control

with SGOTO 43
with SSKIP 44

paths, defining 42
percent sign (I), use of 10,56
period (.), use of 46
placing a command in the console stack 47
placing several lines in the console stack

48
PRINT command 9,61
procedure, EXEC (§~~ EXEC procedure)
processing

control of 22
errors

default action 19
EXEC 51
specifying handling of 21

messages, default action 19
PROFILE EXEC

described 54
example of 54

punching data 18,24

R
read status flag 31

checking 49

70 IBII VII/370: EXEC User's Guide

reading data fro. a terminal 24,36
recognizing EXEC processing errors 51
record length, changing default 11
removal of leading zeros 13
repetitious statements, control of 23
return codes

CIIS, checking for 50
deter.ining 31
EXEC processing 51,52
specifying 21

routines, for error handling 50

S
sample EXEC procedure

annotated 61
for CIIS Batch Facility 58

executing 59
scanning, of tokens 14
sequence, of EXEC interpretation 14
setting counters 45
simulation, of subscripted variables 15
skipping lines in an EXEC file 25
spaces, inserting between lines 25
special EXEC files 53

CIIS EXEC 55
EDIT macros 56
PROFILE EXEC 54

special tokens (S$ and S*)
defined 23
null 42
use of 42

special variables 12.1,30
specific arguments, checking for 35
stack, console, using to control CftS
. ex·ecution4·7
stacking, LIFO 50,56.1
stacking EDIT subcommands in EDIT macros

56
stacking lines in the console stack 18,26
statements

EXEC control 17
executable 11

assignment 13
CftS com.ands 12
control 14
null 12

nonexecutable 11
status flag

output 31
read 31

stopping EXEC processing 21
subscripting variables, simulation of 15
substitution

avoiding 29
of EXEC variables 15

substring, taking a 29
summary, of EXEC control statements 63
suppressed typing, avoiding 40
symbolic variables

assigning values to 10
defining 30

synt~x, of EXEC labels 40
syntax analysis, procedure 15

T
tab characters 56

terminal
communication with l5
reading data from 36
timing information typed at 26
typing CBS files at 39
typing data at 37

TERBIBAL co •• and 26
terminal input buffer (§!§ console stack)
testing counters 45
tests, conditional 42
timing information, typed at terminal 26
token, dafined 14
tokens

blank 15
concatenating 28
creation of 14
placing in a console stack 26,41
punching 24
special (&$ and &*) 23
typing at a terminal 27,37

tLansfeLLing contLol 22,25
TYPE co •• and 9,39
type of data, determining 28
typeout flag, checking 40
typing

data 19,27,37
messages, control of 19
of blank lines 25
records from a CBS file 37
suppressed 40
timing information 26
tokens 21
variable data 38

typing a CBS file 39
typing a single line of tokens 37
typ~ng data at a terminal 37
typing more than one line of data 38

U
user-defined variables 32

use of 22,61
using counters for loop control 44
using the CBS EXEC facilities 10

v
variables

numeric 30

W

reading from a terminal 24,36
special EXEC 30

&GLOBIL 30
&GLOBILn 30
&IIDEX 31
&LIIEIUB 31
&n 30
&REID1LAG 31
&RETCODE
&TYPEPLAG 31
numeric 30

subscripted, simulating 15
substitution for 15
typing contents of 37
used in EXEC statements 12
user-defined 32

word, control, defined 14
writing an EXEC procedure 8

Z
zeros, leading, removal of 13

Index 71

READER'S COMMENTS

Title: IBM Virtual Machine Facility/370: Order No. GC20-1812-1
EXEC User's Guide

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

[j Customer Engineer o Manager o Programmer
o Engineer o Mathematician o Sales Representative
o instructor o Operator o StudentiTrainee

How did you use this publication?

o Systema Analyst
o Systems Engineer
o Other (explain below)

o Introductory text o Reference manual o Student/D Instructor text o Other (explain) ________________________ _

Did you find the material easy to read and understand? 0 Yes

Did you find the material organized forconvenient use? 0 Yes

Specific criticisms (explain below)
Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and other comments:

o No (explain below)

o No (explain below)

Thank you f0r your cooperation. No pO$tage necessary if mailed in the U.S.A.

GC20-1812-1

YOUR COMMENTS PLEASE ...

This manual is one of a series which serves as a reference source for

systems analysts, programmers, and operators of I BM systems. Your

comments on the back of this form will be carefully reviewed by the

persons responsible for writing and publishing this material. All com

ments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in

utilizing your IBM system should be directed to your IBM representative

or to the I BM sales office serving your locality.

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD

POSTAGE WILL BE PAID BY

IBM CORPORATION
VM/370 PUBLICATIONS

24 NEW ENGLAND EXECUTIVE PARK

BURLINGTON, MASS. 01803

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Internat!one!)

FOLD

FIRST CLASS

PERMIT NO. 172

BURLINGTON, MASS.

FOLD

: ~
: 3'
: »
'0'
• :I
'(0

:---1
.~

• en'
:c
• :I
• en

C)
c a:
CD

C)
(")
N
<;'
...a
00
...a

GC20-1812*1

;:1, 'I

IBM World l __ • eorpor n .: . .. i'
821 United ~tfon~ Plaza, ~ew York, N~ Yotif 10011
(lntematlonal) i

	01
	02
	03
	04a
	04b
	04c
	06
	07
	08
	09
	10
	11
	12.0
	12.1
	13
	14.0
	14.1
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46.0
	46.1
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56.0
	56.1
	56.2
	57
	58
	59
	60
	61
	62
	63
	64
	65
	67
	68
	69
	70
	71
	replyA
	replyB
	xBack

