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 ABSTRACT 
In this paper a hardware implementation of a dual operation 
cryptographic engine PANAMA is presented. The 
implementation of PANAMA algorithm can be used both as 
a hash function and a stream cipher. A basic characteristic 
of PANAMA is a high degree of parallelism which has as 
result high rates for the overall system throughput. An other 
profit of the PANAMA is that one only architecture 
supports two cryptographic operations – encryption/ 
decryption and data hashing. The proposed system operates 
in 96.5 MHz frequency with maximum data rate 24.7 Gbps. 
The proposed system outperforms previous any hash 
functions and stream ciphers implementations in terms of 
performance. Additional techniques can increase the 
achieved throughput about 90%. 

1. INTRODUCTION 
Today more and more sensitive data is stored digitally. Bank 
accounts, medical records and personal emails are some 
categories that data must keep secure. The science of 
cryptography tries to encounter the lack of security. Data 
confidentiality, authentication, non-reputation and data 
integrity are some of the main parts of cryptography. The 
evolution of cryptography drove in very complex 
cryptographic models which they could not be implemented 
before some years. The revolution of computers and 
especially CMOS technology permit the design and the 
implementation of systems with characteristics as limited 
area resources, low power consumption and high speed. 
Then due the CMOS technology known cryptographic 
standards were implemented and today they provide secure 
transactions. 
The use of systems with increasing complexity, which 
usually are more secure, has as result low rate of throughput. 
Last years the authors of new cryptographic algorithms try to 
suit high complexity transformations in systems with the 
view of high throughput rates. The assistance of FPGA and 
ASIC technologies in this road is substantial. FPGAs 
especially, are used for efficient and flexible 
implementations. When a current algorithm is broken and a 
new standard is created (e.g. Advanced Encryption Standard-
AES [1]), it is perceivable that field devices are upgraded 
with a new encryption algorithm [2]. In addition the 

hardware implementations are more efficiency in FPGAs 
than general purpose CPUs due to the fact that the algorithm 
specifications suits much better in FPGA structure. 
 

Typical application with high speed requirements is 
encryption or decryption of video-rate in conditional access 
applications (e-g pay TV). The modern networks have been 
implemented to satisfy the demand for high bandwidth 
multimedia services. Then the switches which they are 
placed at the nodes of the network must provide high 
throughput. So if there is a need for secure networks, the 
systems in the network switches should not introduce delays. 
PANAMA [3] is a cryptographic module that can be used 
both as a cryptographic hash function and as stream cipher in 
applications with ultra high speed requirements  
In this paper an efficient implementation of the PANAMA is 
presented. The introduced system works either as a hash 
function or stream cipher. The proposed implementation is 
suitable for application with ultra high speed data rates. 
Comparisons with other previous published hash functions 
and stream ciphers implementations prove that the proposed 
one performs better in terms of overall system throughput. 
This paper is organized as follows: In section 2 the main 
features of Hash Functions and Stream Ciphers are 
presented. In section 3 the PANAMA specifications are 
given. The proposed Dual Operation Cryptographic Engine 
PANAMA is presented in detail in section 4. The FPGA 
synthesis results are given in section 5, and finally section 6 
concludes the paper. 

2. DEFINITIONS 

2.1 Hash Functions 
The operation of a Hash function H is to map an input of 
arbitrary length into a fixed number of output bits, the hash 
value. Hash functions are used in cryptography mainly for 
authentication and digital signature schemes. The 
requirements for a hash function are as follows: 
• The input can be of any length. 
• Fixed - length output. 
• H(x) is relatively easy to compute for any given x. 
• H(x) is one-way function which means that given a hash 

value h, it is computationally infeasible to find some 
input x such that H(x) = h.  



• H(x) is collision-free which means it is computationally 
infeasible to find any two messages x and y such that 
H(x) = H(y). 

2.2 Stream Ciphers 

While block ciphers operate on large blocks of data, stream 
ciphers typically operate on smaller units of plaintext, 
usually bits. With a stream cipher, the transformation of 
these smaller plaintext units will vary, depending on when 
they are encountered during the encryption process. Stream 
cipher generates what is called a keystream (a sequence of 
bits used as a key). Encryption is accomplished by 
combining the keystream with the plaintext, usually with 
the bitwise XOR operation.  

3. PANAMA ALGORITHM 

The basic elements of PANAMA [3] algorithm are a finite 
state machine with a 544-bit state which called stateα , an 
8192-bit buffer and the state update transformation which 
denoted by ρ . When the data of buffer and state machine 
are updated then an iteration happens, Push or Pull. The 
three possible modes for the PANAMA module are Reset, 
Push and Pull. In Reset mode the state α  and buffer are set 
to 0. In Push mode an 8-word input is applied and there is 
no output. In Pull mode there is no input and an 8-word 
output is delivered. The buffer behaves as a linear feedback 
shift register that ensures that input bits are injected into the 
state α  over a wide interval of iterations. In the Push mode 
the input to the shift register is formed by the external input, 
in the Pull mode, by part of stateα . Figure 1 shows the 
Push and Pull modes of PANAMA. 
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Figure 1. Push (above) and Pull (below) modes of 
PANAMA 

The updating transformation ρ  of the state has high 
diffusion and distributed nonlinearity. It combines four 
different transformations: one for nonlinearity (sigma stage-
σ ), one for bit dispersion (theta stage-θ ), one for inter-bit 
diffusion (pi stage-π ), and one of injection of buffer and 

input bits (gamma stage- γ ). The stage updating 
transformation ρ  is given by the formula: 

γπθσρ ooo=  
Symbol “o” denotes the associative comparison of 
transformations where the right-most transformation 
executed first. 
 

The PANAMA hash function transforms the information of 
arbitrary length to a hash result of 256 bits. It consists of 
two processes: message padding and iteration phase. During 
message padding the information is converted to a stream of 
data which its length is multiple of 256 while during 
iteration phase the cryptographic module follows the below 
sequence diagram (Table 1). 

Table 1. The sequence diagram of the hash function 
Time step t Mode Input Output 

0 reset ------ ------ 
1,…,V Push tp  ------ 

V=1,…,V+32 Pull ------ ------ 
V+33 Pull ------ H 

The PANAMA stream encryption scheme is initialized by 
first loading the 256-bit key K, the 256-bit diversification 
parameter Q and performing 32 additional blank pull 
operations. During keystream generation an 8-word block z 
is delivered at the output for every iteration. The full 
scenario of encryption / decryption process is shown in 
Table 2. 

Table 2. The sequence diagram of the stream encryption scheme 
Time step t Mode Input Output 

0 reset ------ ------ 
1,…,V Push tp  ------ 

V=1,…,V+32 Pull ------ ------ 
V+33 Pull ------ H 

In practice, the diversification parameter allows for frequent 
resynchronization without the need to change the key. 

4. PROPOSED ARCHITECTURE 
The proposed architecture is presented in Figure 2. 
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Figure 2. PANAMA - proposed architecture 

The operation of PANAMA system has two options. It can 
operate as keystream generator for data encryption and also 
as hash function. In the following Figure 3 the PANAMA 
proposed VLSI implementation is presented in detail. 
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Figure 3. The PANAMA proposed architecture in details 

The main components of proposed PANAMA crypto engine 
are: the alpha stateα , the buffer, the transformation round 
ρ  and the control unit. The alpha state has memory storage 
of 544 bits and it is implemented by (17 *32-bit) registers. 
The same policy has been applied for the construction of 
buffer. The buffer is an array of registers. As the Figure 3 
shows shown that the buffer consists of 32 cells. Every cell 
has 8 words or 8*32-bit registers. The use of registers is 
preferred because the throughput value is increased 
drastically compared with RAM implementation. 
The control unit is a Finite State Machine. It controls the 
output of the MUXes and of the AND gate. According the 
values of the signals Reset, CRYPTO and HASH the panama 
engine works either as a hash or data encryption. When 
CRYPTO=1 then the values of key and parameter Q are 
injected in the PANAMA block and after the appropriate 
processing a sequence of bits are generated. When HASH=1 
then the PANAMA block orders as hash function and a 
sequence of 256 block of bits are injected in PANAMA 
block  
The updating transformation is an array of four 
transformations each with its specific contribution. The aim 
of these transformations is to introduce high diffusion and 
distributed nonlinearity to system. The VLSI implementation 
of transformation round ρ  is shown in Figure 4. γ  is an 
invertible non linear transformation. It is composed of 18 
basic components. Inside every component two 32- bit XOR 
operations are executed. The permutation π  combines cyclic 
word shifts and a permutation of the word positions. The 
operation of π has been implemented with 18 shift registers 
which map every 32 bit input in the appropriate output while 
the internal bits of every stream are shifted cyclic. θ  is an 
invertible linear transformation. It is composed of 18 main 
components which every one executes a two 32-bit XORs as 
shown in Figure 4. Finally transformation σ  executes 18 32-
bit XOR operations between the bits ofθ ’s output and the 
bits of buffer or input words. It is composed of 18 32-bit 

XOR. Due the fact that one transformation is executed in a 
clock cycle the whole system has very high throughput rate.  
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Figure 4. The VLSI implementation of transformation 
round ρ  

In Figures 3 and 4 the arrow shows approximately the 
middle of the system’s data path. In this point it could 
placed a negative edge triggered register. As a result clock 
period is reduced roughly in half. With this method [4] the 
throughput can be increased about 90%. Due to the fact that 
the system’s frequency is multiplied by a factor about 2.The 
only penalty in this situation is the additional area resources 
due the use of one extra 544-bit register. 

5. HARDWARE SYNTHESIS RESULTS 
The proposed architecture has been captured by using 
VHDL. All the internal components of the design were 
synthesized placed and routed using XILINX FPGA device 
VIRTEX-E v405efg900. According to the Table 1 the hash 
operation demands 32 rounds to eject the first hash value. In 
this case throughput is computed by the 

function R
R+32
256*0965,0 , where R is the number of 256-bit 

packets which are injected to the system. When the 
parameter R increases is easy to prove that the throughput 
increases. If only one packet (R=1) injected for data hashing 
the throughput is 748 Mbps and the system does not 
operates efficiently. Figure 5 shows the system’s throughput 
in relation with the number of the sequent packets for 
hashing. Finally the maximum throughput can reach the 
value of 24.7 Gbps  
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Figure 5 The relation throughput-number of sequent packets 

For the encryption/decryption mode 34 rounds are demanded  
for the first key stream to be generated. After the 
initialization phase a sequence of 256-bit key stream is 
generated and 24.7 Gbps throughput value is achieved. Due 
to the proposed PANAMA implementation is the first, no 

previous performance metrics there are for this algorithm. So 
comparison with other previous hash functions and stream 
ciphers implementations are given in Table 3. 

6. CONCLUSIONS 
In this paper a first VLSI implementation of PANAMA 
algorithm is presented. The system operates both as stream 
cipher and a hash function. The comparison proves that the 
proposed implementation outperform any previous 
published hash function and stream cipher hardware 
implementations. The system was synthesized, placed and 
routed by using FPGA device. It reaches 24.7 Gbps  
throughput at 96.6 MHz. A useful technique in order to 
reduce the critical path is introduced with the usage of 
negative edge-triggered register. 

Table 3. Experimental Results and comparisons
Implementation FPGA CLBs Frequency-MHz Throughput-Mbps

MD5 [4] xilinx V1000FG680-6 880 21 165 
MD5 [4] xilinx V1000FG680-6 4763 71.4 354 
SHA-1[5] xilinx V300PQ240-6 2606 37 257 
SHA-1[6] Altera EP20K1000EBC652-3 - 18 114 
MD5[[6] Altera EP20K1000EBC652-3 - 18 192 
SHA-1[7] xilinx V300E 1004 42.9 119 
MD5[7] xilinx V300E 1004 42.9 146 

SHA-2[7] xilinx V300E 1004 42.9 77 
RIPEMD[7] xilinx V300E 1004 42.9 89 
SHA-2[8] xilinx V200PQ240-6 1060 83 326 
SHA-2[8] xilinx V200PQ240-6 1966 74 350 
SHA-2[8] xilinx V200PQ240-6 2237 75 480 

 
HASH 

FUNCTIONS 

Prop. PANAMA xilinx -E V600EFG900 4524 95.6 reaches 24700∗

RC4[9] xilinx XC4000E4013EPQ208-2 255 17.8 2.22 
RC4[10] xilinx 2V250FG256 138 64 22 

MULTI-S01[12] Hitachi’s HG73C cell library 139.5K 140 9.1 
STREAM 
CIPHERS 

Prop. PANAMA virtex-e V600EFG900 4524 95.6 24700 

                                                           
∗ the accurate value of throughput is defined by the Figure 5 
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