
High Performance Cryptographic Engine
PANAMA: Hardware Implementation

G. Selimis, P. Kitsos, and O. Koufopavlou
VLSI Design Labotaroty

Electrical & Computer Engineering Department,
University of Patras Patras, Greece

Email: gselimis@ee.upatras.gr

 ABSTRACT
In this paper a hardware implementation of a dual operation
cryptographic engine PANAMA is presented. The
implementation of PANAMA algorithm can be used both as
a hash function and a stream cipher. A basic characteristic
of PANAMA is a high degree of parallelism which has as
result high rates for the overall system throughput. An other
profit of the PANAMA is that one only architecture
supports two cryptographic operations – encryption/
decryption and data hashing. The proposed system operates
in 96.5 MHz frequency with maximum data rate 24.7 Gbps.
The proposed system outperforms previous any hash
functions and stream ciphers implementations in terms of
performance. Additional techniques can increase the
achieved throughput about 90%.

1. INTRODUCTION
Today more and more sensitive data is stored digitally. Bank
accounts, medical records and personal emails are some
categories that data must keep secure. The science of
cryptography tries to encounter the lack of security. Data
confidentiality, authentication, non-reputation and data
integrity are some of the main parts of cryptography. The
evolution of cryptography drove in very complex
cryptographic models which they could not be implemented
before some years. The revolution of computers and
especially CMOS technology permit the design and the
implementation of systems with characteristics as limited
area resources, low power consumption and high speed.
Then due the CMOS technology known cryptographic
standards were implemented and today they provide secure
transactions.
The use of systems with increasing complexity, which
usually are more secure, has as result low rate of throughput.
Last years the authors of new cryptographic algorithms try to
suit high complexity transformations in systems with the
view of high throughput rates. The assistance of FPGA and
ASIC technologies in this road is substantial. FPGAs
especially, are used for efficient and flexible
implementations. When a current algorithm is broken and a
new standard is created (e.g. Advanced Encryption Standard-
AES [1]), it is perceivable that field devices are upgraded
with a new encryption algorithm [2]. In addition the

hardware implementations are more efficiency in FPGAs
than general purpose CPUs due to the fact that the algorithm
specifications suits much better in FPGA structure.

Typical application with high speed requirements is
encryption or decryption of video-rate in conditional access
applications (e-g pay TV). The modern networks have been
implemented to satisfy the demand for high bandwidth
multimedia services. Then the switches which they are
placed at the nodes of the network must provide high
throughput. So if there is a need for secure networks, the
systems in the network switches should not introduce delays.
PANAMA [3] is a cryptographic module that can be used
both as a cryptographic hash function and as stream cipher in
applications with ultra high speed requirements
In this paper an efficient implementation of the PANAMA is
presented. The introduced system works either as a hash
function or stream cipher. The proposed implementation is
suitable for application with ultra high speed data rates.
Comparisons with other previous published hash functions
and stream ciphers implementations prove that the proposed
one performs better in terms of overall system throughput.
This paper is organized as follows: In section 2 the main
features of Hash Functions and Stream Ciphers are
presented. In section 3 the PANAMA specifications are
given. The proposed Dual Operation Cryptographic Engine
PANAMA is presented in detail in section 4. The FPGA
synthesis results are given in section 5, and finally section 6
concludes the paper.

2. DEFINITIONS

2.1 Hash Functions
The operation of a Hash function H is to map an input of
arbitrary length into a fixed number of output bits, the hash
value. Hash functions are used in cryptography mainly for
authentication and digital signature schemes. The
requirements for a hash function are as follows:
• The input can be of any length.
• Fixed - length output.
• H(x) is relatively easy to compute for any given x.
• H(x) is one-way function which means that given a hash

value h, it is computationally infeasible to find some
input x such that H(x) = h.

• H(x) is collision-free which means it is computationally
infeasible to find any two messages x and y such that
H(x) = H(y).

2.2 Stream Ciphers

While block ciphers operate on large blocks of data, stream
ciphers typically operate on smaller units of plaintext,
usually bits. With a stream cipher, the transformation of
these smaller plaintext units will vary, depending on when
they are encountered during the encryption process. Stream
cipher generates what is called a keystream (a sequence of
bits used as a key). Encryption is accomplished by
combining the keystream with the plaintext, usually with
the bitwise XOR operation.

3. PANAMA ALGORITHM

The basic elements of PANAMA [3] algorithm are a finite
state machine with a 544-bit state which called stateα , an
8192-bit buffer and the state update transformation which
denoted by ρ . When the data of buffer and state machine
are updated then an iteration happens, Push or Pull. The
three possible modes for the PANAMA module are Reset,
Push and Pull. In Reset mode the state α and buffer are set
to 0. In Push mode an 8-word input is applied and there is
no output. In Pull mode there is no input and an 8-word
output is delivered. The buffer behaves as a linear feedback
shift register that ensures that input bits are injected into the
state α over a wide interval of iterations. In the Push mode
the input to the shift register is formed by the external input,
in the Pull mode, by part of stateα . Figure 1 shows the
Push and Pull modes of PANAMA.

ρ

α

310

ρ

α

0 31
p

buffer stage

Figure 1. Push (above) and Pull (below) modes of
PANAMA

The updating transformation ρ of the state has high
diffusion and distributed nonlinearity. It combines four
different transformations: one for nonlinearity (sigma stage-
σ), one for bit dispersion (theta stage-θ), one for inter-bit
diffusion (pi stage-π), and one of injection of buffer and

input bits (gamma stage- γ). The stage updating
transformation ρ is given by the formula:

γπθσρ ooo=
Symbol “o” denotes the associative comparison of
transformations where the right-most transformation
executed first.

The PANAMA hash function transforms the information of
arbitrary length to a hash result of 256 bits. It consists of
two processes: message padding and iteration phase. During
message padding the information is converted to a stream of
data which its length is multiple of 256 while during
iteration phase the cryptographic module follows the below
sequence diagram (Table 1).

Table 1. The sequence diagram of the hash function
Time step t Mode Input Output

0 reset ------ ------
1,…,V Push tp ------

V=1,…,V+32 Pull ------ ------
V+33 Pull ------ H

The PANAMA stream encryption scheme is initialized by
first loading the 256-bit key K, the 256-bit diversification
parameter Q and performing 32 additional blank pull
operations. During keystream generation an 8-word block z
is delivered at the output for every iteration. The full
scenario of encryption / decryption process is shown in
Table 2.

Table 2. The sequence diagram of the stream encryption scheme
Time step t Mode Input Output

0 reset ------ ------
1,…,V Push tp ------

V=1,…,V+32 Pull ------ ------
V+33 Pull ------ H

In practice, the diversification parameter allows for frequent
resynchronization without the need to change the key.

4. PROPOSED ARCHITECTURE
The proposed architecture is presented in Figure 2.

PADDING
UNIT PANAMA

CONTROL

256-bit

256-bit

KEY

PARAMETER Q

DATA

CRYPTO

HASH

BIT NUMBER
256-bit

256-bit

256-bit

256-bit

encryption/
decryption

decryption/
encryption

hash value

internal
memory

Figure 2. PANAMA - proposed architecture

The operation of PANAMA system has two options. It can
operate as keystream generator for data encryption and also
as hash function. In the following Figure 3 the PANAMA
proposed VLSI implementation is presented in detail.

register

array of registers

M
U
X

M
U
X

γ π θ σ

alpha state
α

transformation

register

A
N
D

C
O
N
T
R
O
L

Key 256-bit

Q 256-bit

H 256-bit

crypto

hash

256-bit

256-bit

256-bit

544-bit

544-bit

256-bit

256-bit

256-bit 256-bit

Figure 3. The PANAMA proposed architecture in details

The main components of proposed PANAMA crypto engine
are: the alpha stateα , the buffer, the transformation round
ρ and the control unit. The alpha state has memory storage
of 544 bits and it is implemented by (17 *32-bit) registers.
The same policy has been applied for the construction of
buffer. The buffer is an array of registers. As the Figure 3
shows shown that the buffer consists of 32 cells. Every cell
has 8 words or 8*32-bit registers. The use of registers is
preferred because the throughput value is increased
drastically compared with RAM implementation.
The control unit is a Finite State Machine. It controls the
output of the MUXes and of the AND gate. According the
values of the signals Reset, CRYPTO and HASH the panama
engine works either as a hash or data encryption. When
CRYPTO=1 then the values of key and parameter Q are
injected in the PANAMA block and after the appropriate
processing a sequence of bits are generated. When HASH=1
then the PANAMA block orders as hash function and a
sequence of 256 block of bits are injected in PANAMA
block
The updating transformation is an array of four
transformations each with its specific contribution. The aim
of these transformations is to introduce high diffusion and
distributed nonlinearity to system. The VLSI implementation
of transformation round ρ is shown in Figure 4. γ is an
invertible non linear transformation. It is composed of 18
basic components. Inside every component two 32- bit XOR
operations are executed. The permutation π combines cyclic
word shifts and a permutation of the word positions. The
operation of π has been implemented with 18 shift registers
which map every 32 bit input in the appropriate output while
the internal bits of every stream are shifted cyclic. θ is an
invertible linear transformation. It is composed of 18 main
components which every one executes a two 32-bit XORs as
shown in Figure 4. Finally transformation σ executes 18 32-
bit XOR operations between the bits ofθ ’s output and the
bits of buffer or input words. It is composed of 18 32-bit

XOR. Due the fact that one transformation is executed in a
clock cycle the whole system has very high throughput rate.

• •

32-bit 32-bit 32-bit

32-bit

iα 1+iα 2+iα

• •

• •

1 2 18
Shifting : LSB to MSB

012

3130
input

output
543

290 1 2

32-bit 32-bit

32-bit

iα 1+iα

XOR-32

XOR-32

32-bit
4+iα

XOR-32

OR-32

181 2

1 2 • • 18

1 2 • •

XOR-32

544-bit

544-bit

544-bit

544-bit

544-bit

•

•

•

• 18

•

256-bit

γ

π

θ

σ

Figure 4. The VLSI implementation of transformation
round ρ

In Figures 3 and 4 the arrow shows approximately the
middle of the system’s data path. In this point it could
placed a negative edge triggered register. As a result clock
period is reduced roughly in half. With this method [4] the
throughput can be increased about 90%. Due to the fact that
the system’s frequency is multiplied by a factor about 2.The
only penalty in this situation is the additional area resources
due the use of one extra 544-bit register.

5. HARDWARE SYNTHESIS RESULTS
The proposed architecture has been captured by using
VHDL. All the internal components of the design were
synthesized placed and routed using XILINX FPGA device
VIRTEX-E v405efg900. According to the Table 1 the hash
operation demands 32 rounds to eject the first hash value. In
this case throughput is computed by the

function R
R+32
256*0965,0 , where R is the number of 256-bit

packets which are injected to the system. When the
parameter R increases is easy to prove that the throughput
increases. If only one packet (R=1) injected for data hashing
the throughput is 748 Mbps and the system does not
operates efficiently. Figure 5 shows the system’s throughput
in relation with the number of the sequent packets for
hashing. Finally the maximum throughput can reach the
value of 24.7 Gbps

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

number of packets 256-bit for hashing

th
ro

ug
hp

ut
-G

pb
s

R
R+32
256*0965,0

Figure 5 The relation throughput-number of sequent packets

For the encryption/decryption mode 34 rounds are demanded
for the first key stream to be generated. After the
initialization phase a sequence of 256-bit key stream is
generated and 24.7 Gbps throughput value is achieved. Due
to the proposed PANAMA implementation is the first, no

previous performance metrics there are for this algorithm. So
comparison with other previous hash functions and stream
ciphers implementations are given in Table 3.

6. CONCLUSIONS
In this paper a first VLSI implementation of PANAMA
algorithm is presented. The system operates both as stream
cipher and a hash function. The comparison proves that the
proposed implementation outperform any previous
published hash function and stream cipher hardware
implementations. The system was synthesized, placed and
routed by using FPGA device. It reaches 24.7 Gbps
throughput at 96.6 MHz. A useful technique in order to
reduce the critical path is introduced with the usage of
negative edge-triggered register.

Table 3. Experimental Results and comparisons
Implementation FPGA CLBs Frequency-MHz Throughput-Mbps

MD5 [4] xilinx V1000FG680-6 880 21 165
MD5 [4] xilinx V1000FG680-6 4763 71.4 354
SHA-1[5] xilinx V300PQ240-6 2606 37 257
SHA-1[6] Altera EP20K1000EBC652-3 - 18 114
MD5[[6] Altera EP20K1000EBC652-3 - 18 192
SHA-1[7] xilinx V300E 1004 42.9 119
MD5[7] xilinx V300E 1004 42.9 146

SHA-2[7] xilinx V300E 1004 42.9 77
RIPEMD[7] xilinx V300E 1004 42.9 89
SHA-2[8] xilinx V200PQ240-6 1060 83 326
SHA-2[8] xilinx V200PQ240-6 1966 74 350
SHA-2[8] xilinx V200PQ240-6 2237 75 480

HASH

FUNCTIONS

Prop. PANAMA xilinx -E V600EFG900 4524 95.6 reaches 24700∗

RC4[9] xilinx XC4000E4013EPQ208-2 255 17.8 2.22
RC4[10] xilinx 2V250FG256 138 64 22

MULTI-S01[12] Hitachi’s HG73C cell library 139.5K 140 9.1
STREAM
CIPHERS

Prop. PANAMA virtex-e V600EFG900 4524 95.6 24700

∗ the accurate value of throughput is defined by the Figure 5

REFERENCES
[1] U.S Department of Commerce/National Institute of Standard and

Technology.FIPS PUB 197, Specification for the Advanced
Encryption Standard (AES), November 2001.

[2] T. Wollinger and C. Paar, “How secure are FPGAs in Cryptographic
Applications?”, in 13th International Conference on Field
Programmable Logic and Applications-FPL 2003,Lisbon, Portugal,
September 1-3, 2003.

[3] J. Daemen, and Craig Clapp, “Fast Hashing and Stream Encryption
with PANAMA” Fast Software Encryption: 5th International
Workshop, FSE'98, Paris, France, March 1998.

[4] P. Kitsos, M. D. Galanis, and O. Koufopavlou, "High-Speed
Hardware Implementations of the KASUMI Block Cipher", accepted
for presentation in IEEE International Symposium on Circuits &
Systems (ISCAS'04), Canada, May 23-26, 2004.

[5] Janaka Deepakumara, Howard M. Heys and R. Vanketersam, “FPGA
Implementation of MD5 hash algorithm”, in proc. of IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE 2001),
Toronto, Ontario, May 2001.

[6] N. Sklavos, P. Kitsos, K. Papadomanalakis and O. Koufopavlou,
“Random Number Generator Architecture and VLSI

Implementation”, in proc. of IEEE International Symposium on
Circuits and Systems (ISCAS 2002), USA, 2002.

[7] Yong Kyu Kang, Dae Won Kim, Taek Won Kwon, and Jun Rim
Choi, “An Efficient Implementation of hash function processor for
IPSEC”, in proc. of third IEEE Asia-Pacific Conference on ASICs,
Taipei, Taiwan, August 6-8, 2002.

[8] Snadra Dominicus, “A hardware implementation of MD4-family
algorithms”,in proc. of IEEE International Conference on Electronics
Circuits and systems (ICECS 2002), Croatia, September 2002.

[9] N. Sklavos and O. Koufopavlou, “On the hardware implementation of
the SHA-2 (256,384,512) hash functions”, in proc. of IEEE
International symposium on Circuits and systems (ISCAS 2003), may
25-28, Bangkok, Thailand, 2003.

[10] P. Hamalainen, M. Hannikainen, T. Hamalainen and J. Saarinen,
“Hardware Implementation of the improved WEP and RC4
Encryption Algorithms for Wireless Terminals”, the European Signal
Processing Conference, September 5-8, 2000, Tampere, Finland, pp.
2289-2292.

[11] P. Kitsos, G. Kostopoulos, N. Sklavos, and O. Koufopavlou,
"Hardware Implementation of the RC4 Stream Cipher", in 46th IEEE
Midwest Symposium on Circuits & Systems '03, December 27-30,
Cairo, Egypt, 2003.

[12] Hitachi, Ltd., “Self-Evaluation Report MULTI-S01”, 2001.

