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Glossary

Average path length/diameter: the mean shortest path between all nodes in

the network.

Betweenness: the number of shortest paths that the focal node lies on.

Bipartite graph: a network with two distinct types of node.

Closeness: the mean shortest path between a focal node and all other nodes in

the network.

Component: a group of nodes that are mutually interconnected.

Clustering coefficient: a measure of the proportion of neighboring nodes that

can be reached through the nodes other neighbors; calculated as the proportion

of a focal nodes neighbors who are themselves neighbors.
Although pairwise interactions have always had a key

role in ecology and evolutionary biology, the recent

increase in the amount and availability of biological data

has placed a new focus on the complex networks

embedded in biological systems. The increased avail-

ability of computational tools to store and retrieve

biological data has facilitated wide access to these data,

not just by biologists but also by specialists from the

social sciences, computer science, physics and math-

ematics. This fusion of interests has led to a burst of

research on the properties and consequences of net-

work structure in biological systems. Although tra-

ditional measures of network structure and function

have started us off on the right foot, an important next

step is to create biologically realistic models of network

formation, evolution, and function. Here, we review

recent applications of network thinking to the evolution

of networks at the gene and protein level and to the

dynamics and stability of communities. These studies

have provided new insights into the organization and

function of biological systems by applying existing

techniques of network analysis. The current challenge

is to recognize the commonalities in evolutionary and

ecological applications of network thinking to create a

predictive science of biological networks.

Degree/Connectivity: the number of edges that connect the focal node to other

nodes.

Degree distribution: the frequency distribution of the individual node degree

for an entire network.

Directed graph: nodes in a directed graph are connected by an asymmetric

relationship, such as predation.

Edge: interacting nodes are connected by edges.

Graph theory: a branch of mathematics dealing primarily with the statistical

description of static networks.

Long-tailed distribution: any degree distribution that decreases more slowly

than exponentially over a portion of the range.

Motif: a small pattern within a network. For example, a feedback loop where

two nodes each effect the other.

Node: an individual element within a network.

Poisson degree distribution: a network formed by randomly connecting a fixed

number of nodes has a Poisson degree distribution. Such distributions are

characterized by a modal hump at the mean degree with exponentially

decreasing tails.

Power-law degree distribution: a network with a degree distribution described

by f ðkÞZbkKa; also called scale-free distributions because there is no modal

hump.

Preferential attachment model: the formation of a network by connecting

nodes to nodes that already have many connections.

Shortest path: the path that traverses the minimum number of edges between

the two nodes.

Small-world property: a network is said to have the small-world property if the

diameter of the network is small relative to the size (total number of nodes) of

the network.
Introduction

During the late 1970s, a flight attendant named Gaetan
Dugas regularly visited gay bathhouses throughout North
America and, over the course of the next several years,
had sexual intercourse with hundreds of individuals. By
1981, a small group of men displaying an unusual array of
symptoms, the likes of which were typically only seen in
immuno-suppressed adults, began to appear in hospitals
in New York, Los Angeles and San Francisco [1–4]. In the
course of follow-up work with 40 of these patients, it was
discovered that they were all part of a single network of
sexual contacts, with Dugas, ‘Patient Zero’, at its center
[1,3]. That all of these patients shared a common attribute
(i.e. direct or indirect contact with Dugas within a network
of sexual partners) contributed to the early conclusion
that AIDS was caused by a sexually transmitted blood-
borne agent [1,3,4]. This early application of network
thinking to the spread of the AIDS epidemic was the first
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of many such attempts to use the existing mathematical
theory of networks to understand epidemiological pro-
cesses in general, and HIV in particular.

In human sexual contact networks, most individuals
have just one sexual partner, whereas a small class of
individuals might have tens or hundreds of partners per
year. The frequency distribution of sexual partners
typically follows a ‘power-law’ distribution (see Glossary).
The specific structure of the network helps us to not only
trace the origin and cause of diseases, but also predict the
potential success of interventions, such as quarantine and
vaccination [5,6]. In particular, the power-law distribution
common to sexual contact networks allows the spread of
diseases with extremely low transmission rates [7–11], but
high levels of clustering (Box 1) can reduce the rate of
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Undirected graph: nodes in an undirected graph are connected by a symmetric

relationship, such as physical interactions.
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Box 1. What is a network?

A network is any collection of units potentially interacting as a system.

In the most simple case, a network can be represented by a set of

uniform nodes connected by undirected edges, as in Figure Ia. The

nodes can represent units at most levels of the biological hierarchy,

from genes and proteins to neurons and organs and limbs, and from

individuals in a population to species in a community. Edges usually

represent some kind of interaction between nodes, including tran-

scriptional control, biochemical interaction, energy flow and species

interactions.

Mathematical approaches can be used to understand the behavior

of networks depending on the level of resolution and degree of

quantification desired (Box 2). The recent explosion of work on

biological networks has mostly utilized results from graph theory, in

part because it enables the properties and behavior of a network to be

quantified in a few simple statistics. In particular, the node degree

distribution has been reported for a wide array of networks because it

is easy to measure and can help to determine how the network was

formed [14].

The degree distribution is an example of an aggregate statistic: it

can be obtained solely by examining the properties of individual

nodes within the network, the degree of the node in this case. For

example, the degree distribution of a food web can be calculated by

observing a species in the network at random and counting the

species that it eats or is eaten by. We would then be able to plot the

degree distribution, but would not be able to draw the network. The

clustering coefficient, however, can only be calculated by observing

larger fragments of the network [14]. We need to be able to observe

both the connections from a focal node and the connections made by

its neighbors. Recently, researchers have focused their attention

above the level of individual nodes to look at the distribution of

network motifs, which will be important if motif structure is related to

modular functionality.

Whereas clustering coefficients and network motifs are local

properties of networks, the shortest path between two nodes depends

on the structure of the entire network (Figure Ia) Statistics based

on measuring shortest path lengths, such as closeness and

betweenness, can be perturbed by changes far removed from

the focal node [14,32]. Network diameter, relative to the total

number of nodes, is a global measure of how integrated the

network is. Networks with small diameters relative to the number

of nodes are said to have the small-world property and often have

a few highly connected nodes that make it possible to traverse the

network rapidly [14].

Several models of random network formation can be compared to

the statistical features of observed networks. These can all be

considered neutral models in that the network is built through a

series of random steps that are not affected by the structure of the

network. The oldest such model forms the network out of N nodes,

where two nodes are connected with probability p. This yields a

Poisson degree distribution in the limit of large N (Figure Ib) [14,65].

Biological networks, however, tend to have more asymmetry in node

degree than appears in Poisson networks. There are many nodes with

only one or a few connections, but there are also a few nodes with

many more connections than the average degree, leading to a long-

tailed degree distribution.

One way to achieve a long-tailed degree distribution is the

preferential attachment model of Barabasi et al. [67,68]. In this

model, the network is initialized with a few unconnected nodes. New

nodes are added to the network and are more likely to have edges

connecting them to highly connected nodes. This causes a ‘rich get

richer’ phenomenon that produces networks with power-law degree

distributions that appear linear on a log–log plot (these are also known

as scale-free* networks) (Figure Ib) [67,68].
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Figure I. Representation of a network. (a) The nodes are represented by circles and squares and vary in degree between zero and four. Edges are represented by solid

black lines. The central nodewith degree 4 is shaded darker green. The network is divided into three components of varying size, outlined with a dashed line. The shortest

path between square node 1 and square node 2, illustrated by dashed arrows, takes four steps. The central dark-green node has the highest betweenness, lying on 41

shortest paths (as an exercise, find the node on 35 shortest paths). Component B has a high clustering coefficient because all of sets of three nodes are connected within a

triangle of edges. (b) Comparison of the degree distributions produced by models of network formation, each with mean connectivity of 3, shown on a log–log plot.

Poisson random networks have degree distributions characterized by a modal degree, in this case set to 3. The preferential attachment model produces a power-law

degree distribution that appears linear.

* The term ‘scale-free’ is something of a misnomer as it has nothing to do with any spatial scale or distance scale within the network. It refers only to the feature of the

degree distribution where the probability of a node having k*c edges is a fraction (dependant on only c) of the probability of a node having k edges.
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spread [12,13]. These applications of the network
approach show that taking note of higher order descrip-
tions of network structure can yield unique insights into
disease transmission and biological networks in general.

Here, we review and illustrate some of the basic
concepts underlying network analysis, using case studies
drawn from ecology and evolutionary biology (see [14] for
an in-depth mathematical review and [15] for a review
that includes dynamical systems). Networks exist at all
scales of biological organization, from genes that interact
through mutual regulation to interacting species in
communities [16–19] (Figure 1). In spite of some recent
major advances in network studies, we are still in the
‘natural history’ phase of this field, discovering the basic
structure of biological networks at a variety of scales.

In its most useful form, the network approach focuses
on components of network structure that cannot be
recreated from observing individual nodes alone. It is in
Figure 1. The use of network concepts to explore the structure and function of a variety of

(c) and species within an ecosystem (d). (a) The network of regulatory interactions in the y

by binding the regulatory regions of other regulatory genes [16]. (b) The protein interac

(c) The genetic relationship of populations of the cactus Lophocereus schottii [18]. In this

the connected populations. (d) Predator–prey interactions in the Chesapeake Bay food w
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this area that the network approach has the most power to
change the way that we understand biological processes,
but it is also here that theoreticians face some of the most
exciting and difficult challenges. Network studies in
biology have now reached a turning point, where empirical
studies must provide the motivating details for novel
theory, and theoretical studies must provide a rigorous
predictive framework in which to test hypotheses about
network formation and network function.

A renewed focus on the nature of interactions within
biological networks is being motivated by developments
along two axes. First, in the past few years, ecological
observatories, GIS systems, microarray studies and
genome projects have provided an avalanche of data,
highlighting the complex nature of biological systems. The
second axis has developed as researchers have attempted
to understand the nature and consequences of this
complexity using theories developed to analyze network
biological systems fromgenes (a) and proteins (b) to individuals within a population

east Saccharomyces cerevisiae, where genes encoding transcription factors interact

tion network in which proteins that physically interact are connected by edges [17].

graph, edge length represents the fraction of the total genetic variation explained by

eb [19]. Reproduced, with permission from [16] (a), [17] (b), [18] (c) and [19] (d).
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structure in other contexts (e.g. in physics, computer
science and social science). Graph theoretic methods
(Box 1) have received much attention, probably because
the level of analysis is based on the presence or absence of
interactions and ignores variation in the strength of
interactions. This methodology fits well with our current
understanding of large networks, but new theoretical
techniques must be developed in parallel with advances in
our ability to resolve biological networks at finer and more
quantitative scales (Box 2).

Gene and protein networks

The first molecular networks were characterized over 50
years ago by Donald Nicholson [20]. With the advent of
modern molecular tools, researchers can now characterize
protein–protein interaction networks [21] and gene regu-
latory networks [16] with ever-increasing accuracy. These
molecular networks have structures that are similar to
one another and even bear similarity to non-biological
networks. For example, metabolic, gene regulatory and
protein–protein interaction networks all have an approxi-
mately power-law degree distribution (Box 1) [22–24],
where most nodes in the network interact with just one
other node, although a few can interact with tens or
hundreds of others.

Protein–protein interaction networks

This similarity in network structure across different types
of network is mirrored in the conservation of network
features over millions of years. In a comparison of protein–
protein interaction networks across yeast, worms and
flies, a recent study found that many of the local
structures within molecular networks have been con-
served over deep evolutionary time [25]. Over the past few
years, a series of studies has shown that the structure of
nodes within a network has several evolutionarily import-
ant features. Jeong et al. [26] showed that the most highly
connected proteins in the protein interaction network
were three times more likely to be essential for survival
than were weakly connected proteins. More highly
connected proteins are also more pleiotropic [27], evolve
more slowly [28], and are less likely to be lost over
evolutionary time [29].

Evolutionary biologists now face two complementary
challenges: understanding how evolutionary forces shape
network structure and how network structure, in turn,
determines organismal function. To this end, biologists
have begun to expand their study of networks beyond
connectivity to include other network attributes. Some of
these descriptors are relatively local. For example, the
connectivity of nodes that are connected to one another
tends to be negatively correlated. Highly connected nodes
are less likely to be connected to other highly connected
nodes than one would expect by chance [30]. Maslov and
Sneppen [30] suggest that this negative correlation
prevents unwanted ‘cross talk’ between different func-
tional modules within a network. Similarly, many net-
works appear to contain large numbers of small, local
motifs. For example, in the yeast gene regulatory network,
feed-forward loops are about seven times more frequent
than expected [31].
www.sciencedirect.com
Other attributes, such as ‘betweenness’ and modularity
(Box 1), depend on broadermeasures of network structure.
The essentiality of proteins is even more highly correlated
with betweenness than it is with connectivity [32].

Metabolic pathways

Network analyses of metabolism have been used to
understand the selective forces that act on pathway
function. In metabolic or biosynthetic pathways, we
might expect that upstream genes, which have the
potential to influence a relatively large number of down-
stream processes, should be under stronger selection than
are genes further downstream. Consistent with this
expectation, in the anthocyanin pathway in Ipomea,
genes that are upstream in the pathway tend to evolve
relatively slowly in a variety of taxa [33]. Here again, the
position of a gene within the larger network structure is
the important unit of analysis, whereas local measures
(e.g. connectivity) are insufficient. This pattern is, how-
ever, far from universal. Some enzymes at the top of the
glycolytic pathway of Drosophila appear to be under weak
or diversifying selection [34,35].

Robustness

One of the more interesting system-wide properties of
networks is robustness [36,37]. Robustness refers to the
relative insensitivity of a particular function or structure
to change in the face of environmental or genetic
perturbations. The Escherichia coli metabolic network,
for example, is highly robust to damage. For most enzymes
in the network, a change in concentration or complete loss
has little effect on overall network function [38,39], both
because of redundancy at the gene level and because the
network itself encodes distributed robustness [40]. How-
ever, organisms are not adapted to constant laboratory
conditions and genetic networks face strong selection to
perform well under a variety of environmental conditions.
Many yeast enzymes that appear to be redundant under
typical laboratory conditions are essential under other
growth conditions [41].

Gene-regulatory networks

Some of the most exciting results in the study of molecular
networks have come from the analysis of gene interaction
networks, from large-scale surveys of epistatic inter-
actions between pairs of single-gene mutants [42] to
analyses of how gene regulatory networks shape patterns
of development. In the developing fly larva, the network of
regulatory genes and proteins that gives rise to segment
polarity is robust to substantial changes in initial
conditions and kinetic rate constants [43]. Similarly, the
regulatory network that determines sex inDrosophila can
maintain its function in the face of a relatively large
variety of different mutations [44]. Whereas some genes
can be selected to preserve function under a range of
conditions, others might be selected to vary in response to
environmental changes. A recent study of phenotypic
plasticity in yeast genes found that genes regulated by a
relatively large number of upstream genes tend to show
greater variation in expression levels across a range of
environments [45].

http://www.sciencedirect.com


Box 2. Alternative representations of networks

Real biological systems are unique and complex, and network

representations will necessarily involve condensing some of that

information. For example, the enzymes in a metabolic network can be

thought of as nodes that are connected by the substrates that they

metabolize. However, the activity of each enzyme will depend in

different ways onmany factors, such as the concentration of substrate,

temperature and pH. By representing this network as enzyme nodes

connected by reaction edges, we lose information about the rates of

reaction, but gain the ability to calculate network statistics and to

compare different networks. We can think of the amount of

information that is retained as the level of resolution of a network

(Figure I). This resolution will depend on how much functional

information is encoded by the nodes and edges (i.e. how much of

the variation in node and edge behavior is retained in the network

representation).

In undirected graphs (Figure Ia), only the topology of the network is

retained, and all further analysis will focus exclusively on that feature.

For example, the protein–protein interaction network represents the

presence or absence of physical interactions between proteins. All

proteins are treated as identical in terms of their function in the

network, and all interactions are represented by a single edge type.

More information is retained in directed graphs (Figure Ib), where the

direction of interactions is indicated by an arrow. In food-web

networks, for example, one species is linked to another by predation,

so edges must contain this directional information. Even more

information will be preserved if information about the magnitude of

the interaction effects is included (often as the width of the arrow).

In the preceding networks, all nodes are treated as identical, but, in

some cases, it might be crucial to keep track of different types of node

using a bipartite graph (Figure Ic). For example, sexual contact

networks that involve males and females will have two distinct types

of node. The distinct characteristics of these nodes might affect

various processes, such as the way in which a sexually transmitted

disease spreads through the network.

Finally, networks can contain functional information, where each

node and the interactions between the nodes are unique

(Figure Id). In this kind of network, as much information as

possible is preserved while describing the network (e.g. through

differential equations or logical operators). For example, a

representation of a developmental network might include tran-

scription rates and information about the functional integration of

signals from other genes. Likewise, representations of food webs

can include competition coefficients and functional responses.

Although this kind of network is essential for studying how

dynamic processes on networks act, there are currently few

general mathematical results that can be broadly applied. The

level of network resolution necessary to address specific problems

in biological networks remains an open question.
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Figure I. Representations of biological systems at different levels of network resolution. For example, in (a), the protein interaction network consists of a single type of

node, protein, and a single kind of edge, physical interaction. (b) Representations of food webs often retain directional information showing the relationship between

predators and prey. (c) In some networks, the state of individuals is variable. For example, in sexual contact networks, male and female individuals exhibit different

behaviors. (d) Gene regulatory networks can include non-linear integration of transcription factors from several genes. This functional information can be retained to

describe the network topologically and as a system of differential equations.
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Whereas most studies of gene regulatory networks
have focused on network function, one study illustrates
the different ways in which networks can fail to function.
In many species of ants, workers do not develop wings. In
an analysis of the gene regulatory network responsible for
wing development, Abouheif and Wray [46] show that, in
ant castes where wings are produced, gene regulation for
wing development has been conserved over several
hundred million years. By contrast, among castes that
do not produce wings, a different regulatory gene was
disrupted in each of four species.

Food webs and community stability

A longstanding question in community ecology centers
around the relationship between food-web structure and
the stability of the community [47,48]. Mathematical
ecologists have used dynamic models to explore how the
size and connectivity of food webs determines how stable a
community will be in the face of fluctuations in density
[49], or invasion of new species [50], and the long-term
persistence of the community under non-linear population
dynamics [51]. In these studies, network parameters were
assumed to be random (and uniformly distributed)
whereas the network structure itself was typically
assumed to be complete (all species interact with every
other species). These assumptions produced networks that
had interesting complex dynamics but had uniform net-
work structure unlike real-world communities [52].

Degree distributions

Studies of network structure in food webs generally agree
that mean path lengths are short and that the degree
distribution is not Poisson (Box 1), rejecting the trivial
hypothesis that food webs are assembled by randomly
connecting an existing set of species [53–57]. These
studies disagree, however, on whether the degree distri-
butions are best fit by a power-law or by some other
distribution. This disagreement stems from the lack of
objective statistical tests to compare degree distributions
and from the fact that food webs vary in their structure.
Some questions remain about the way that data on
community structure are converted to food webs, and it
has been suggested that this process could bias our
perception of food webs [58,59]. In particular, although
many authors use trophic species (groups of species that
both consume the same prey and are consumed by the
same predators) to define nodes in food webs, in plant–
animal interaction networks nodes are often resolved to
the species level. Further study is needed to determine
whether the discrepancies in observed degree distri-
butions are best explained by the differences in the coding
of network structure or by biological differences between
food webs and plant–animal interaction networks.

Community stability and network robustness

Just as some of the most promising work on molecular
networks has been on the problem of robustness (explor-
ing what happens when we remove or alter nodes in a
network) there is a related (and much deeper) vein
running through the study of ecological networks. In
particular, ecologists have set out to assess how removing
www.sciencedirect.com
or replacing native species with exotic invaders can alter
food-web structure [19,60,61]. The effects of these pertur-
bations throughout the rest of the network can be
measured by the number of secondary extinctions and by
the break-up of the network into smaller components.
These studies show that, on average, removal of the most
connected species causes more secondary extinctions than
does the random removal of species [60,61]. However, in at
least one study, removal of species with low connectivity
sometimes had a large effect on the community [61],
reinforcing the notion that keystone species are not
strictly defined by high connectivity [52].

In particular, Allesina and Bodini [62] demonstrate
that conceptualizing food webs as energy-flow networks
can produce more striking results. They describe food
webs based not on direct interaction, but on the notion of
‘dominating’ nodes that act as energy bottlenecks for
resources flowing to other members of the food web. For
example, the only herbivore in a tri-trophic community of
plants, herbivores and predators would represent an
energy bottleneck: all energy that reached the predator
class must pass through the single herbivore. When the
network is reformulated in this way, the species with large
numbers of connections are species that act as energy
bottlenecks and, thus, cause large numbers of secondary
extinctions when removed. Therefore, highly connected
species in the food web are expected to cause more
secondary extinctions to the degree that connectivity is
correlated with energy flow.

Beyond network topology

The network approach to food webs has primarily
achieved general results by ignoring dynamical processes
operating on such networks. However, the removal of a
species can have subtle effects that extend beyond those
caused by the direct effect it has on the species with which
it directly interacts. Solé and Montoya [60] point out that
fragmentation of a food web might destabilize the
community because of dynamic effects within isolated
compartments of the network (Box 1), in a similar way to
the removal of a keystone species. Ongoing work aims at
combining known topological features of food webs with
quantitative variation in species interactions to predict
community stability [63,64]. The challenge for future
studies is to incorporate these quantitative features of
networks without losing the simplifying power of analyses
based on network topology alone.

Toward predictive theories of biological networks

The case studies that we have discussed so far demon-
strate that the application of existing network approaches
to biological systems can yield valuable insights. Future
progress, however, will depend on a synergistic interplay
between network thinking and biological processes.

The dynamics of biological network formation

The mathematical treatment of network formation has
generally assumed that networks are formed by random
processes involving homogeneous sets of nodes (Box 1)
[65–68], but life is characterized by variation and change.
To develop better models of biological networks, we must
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account for three key features of biological networks: (i)
networks can gain or lose nodes; (ii) the properties of nodes
can change; and (iii) external forces can act on network
structure. In particular, we need to incorporate the effect
that natural selection might have not only on individual
nodes (e.g. genes or species), but also on the whole network
structure. The specific properties of the biological entities
that comprise these networks will also influence the
dynamics of network formation.

A realistic model of genetic network formation will need
to include patterns of gene duplication and loss, the way
that evolution of genes changes existing interactions, and
the effect of natural selection on network structure.
Toward this goal, the preferential attachment model
(Box 1) [67,68] has been extended to include gene
duplication and loss [69–71]. In particular, Wagner [70]
has shown that a roughly power-law distribution can
emerge simply through a neutral model of the repeated
duplication and loss of genes, which creates a kind of
preferential attachment. This does not, however, demon-
strate that the preferential attachment model is the
hypothesis with the best fit; other models have produced
similar degree distributions. For example, Kunin et al.
[72] create a network with a power-law distribution by
assuming that proteins are most likely to connect with
other proteins in the same functional class. In addition, as
researchers look more closely at network structure, higher
order network features emerge. Networks with power-law
degree distributions can still differ in terms of clustering
[13], motif frequency [31,73], nestedness [74] and fractal
structure [75]. Finally, the role that natural selection has
in the evolution of network structure remains unknown.
Even if neutral models are sufficient to explain the
patterns in networks at their current state of resolution,
alternative hypotheses are needed to direct future
empirical work.

In contrast to gene networks, we need to incorporate a
different array of biological phenomena, including local
extinction, immigration, behavioral changes in foraging,
and evolution of species interactions, to understand the
formation of food webs [54,76–79]. Several models of
community formation are based on niche subdivision,
where species are arrayed on a linear niche axis, and can
produce many of the features of observed food webs
[54,76]. The addition of spatial and phylogenetic effects
can alter the predicted food-web topology and sometimes
produce a better fit with observed communities [78,79]. A
major challenge is to include evolutionary and spatial
dynamics in a single framework to predict not only the
structure, but also the functional dynamics of food webs.

The emergence of network robustness

In network studies, we often equate robustness with a
structural phenomenon: the preservation of a single giant
component in the network. But robustness is also related
to important functional concepts in biology, including
canalization in evolutionary theory [80] and community
stability in ecology [48]. Networks that have significant
variance in node connectivity, regardless of whether they
are best described by power-law degree distributions, are
robust to random removal of nodes [5,60,61,81]. As a
www.sciencedirect.com
result of this finding, several authors have suggested that
high variance in connectivity is an evolved feature of
network topology [23,35]. However, other more local
network features, such as feedback regulation, might
also be responsible for robustness, as has been suggested
for developmental networks [43,82,83] and has been
reported to evolve in computer simulations [84].
The relationship between network form and function

There are only a few examples where we have a good
understanding of how network topology determines the
way in which networks function and respond to change
[43,49,82,83,85–88]. For example, working from the set of
logical functions in the segment polarity network in
Drosophila, developmental patterns can be generated in
a robust way [82,83]. Likewise, the predator–prey
relationships in food webs are sometimes sufficient to
predict food-web stability [49,87]. Unfortunately, there is
no single function that networks perform in all biological
situations. This heterogeneity in network function creates
a major stumbling block for our ability to predict function
from structure. For instance, in studies of protein–protein
interaction networks, we can relate a host of biologically
interesting phenomena to network structure. However, we
have yet to explain adequately the relationship between
these network measures, such as connectivity or between-
ness, and biologically relevant measures, such as fitness.
The current explanation for these relationships is that
rapid information transfer within genetic networks is
adaptive. However, genetic networks do not function in
the same way as information exchanging nodes on the
internet; selection acts on the dynamic output of the
network, which is unlikely to be optimized solely by
maintaining the flow of information between genetic
states. Whereas rapid progress has been made in
identifying the existence of connections between genes,
proteins and species, it might be some time before large-
scale techniques are developed to map the quantitative
and functional relationships that define biological net-
works (Box 2). To this end, a qualitative theory of
quantitative networks must be developed to determine
the connections between the structure of networks and
their adaptive value.
Conclusion

Many features and processes of ecological and evolution-
ary systems can be well represented by networks of
interacting elements. The real usefulness of network
thinking becomes most apparent in cases where the
novel insights that we gain when we observe the entire
network far outstrip what we learn from an analysis of its
parts. As biologists, we still face several impediments as
we try to create a science of networks that begins with the
necessary formalisms of mathematical network theory,
but which incorporates the complex realities of evolution-
ary biology and ecology. Currently, most measures of
network structure strongly depend on how the network is
defined, especially in terms of relationships between
network parameters and network function. Furthermore,
to test adequately hypotheses about network structure, we
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need to make sure that we are using null models that
reflect biological reality.

As ecologists and evolutionary biologists develop new
approaches to these problems, they will no doubt benefit
from increased crosstalk, as their problems are likely to
have more common features than either have with classic
mathematical network models. The hope is that network
approaches will free us from the Gordian knot of
accumulated data to reveal the global patterns behind
large-scale ecological and evolutionary processes. The fear
is that all of the fine structure will still matter in the end,
leaving us tangled in detail. The next decade should show
us how the knot is undone.
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