
HIGH CAPACITY DATA HIDING SYSTEM USING

BPCS STEGANOGRAPHY

by

YESHWANTH SRINIVASAN, B.E.

A THESIS

IN

ELECTRICAL ENGINEERING

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

Approved

Dean of the Graduate School

December, 2003

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Brian Nutter, without whose help I would

never have finished my thesis in such a short duration. His enthusiasm and

resourcefulness has helped me at every stage during my thesis, and otherwise, and to

say the least, he has been more than a mere thesis advisor to me. Next, I would like to

thank Dr. Sunanda Mitra for her support and encouragement. Her energy and

commitment has seldom ceased to amaze me. I would also like to thank Dr. Tanja

Karp for agreeing to be on my graduate committee and evaluating my work.

Finally, I would like to thank all my family and friends, especially my parents,

for helping me get to where I am today.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF FIGURES v

LIST OF ABBREVIATIONS vi

CHAPTER

1. INTRODUCTION 1

1.1. Steganography, Cryptography and Watermarking 1

1.2. Steganography Model 2

1.3. Hiding Data in Images-Image Steganography 3

1.4. Applications of Image Steganography 3

2. BPCS STEGANOGRAPHY 5

2.1. Complexity Measure 5

2.1.1. Complexity measure based on the length of black and white
border, a 5

2.1.2. Complexity measure based on the number of connected areas, p.. 6

2.2. Canonical Gray Coding System 7

2.3. Resource Blocks and the Conjugation Operation 8

2.4. File Headers and Other Overheads 12

2.5. Encoding Procedure 12

2.6. Decoding Procedure 14

2.7. Calculation for the Total Overheads 15

2.8. Variants and Suggestions for Improvement 16

3. NEW COMPLEXITY MEASURES 19

3.1. Shortcomings of the a Measure 19

3.2. The P Complexity Measure 20

3.3. The Y Complexity Measure 23

3.4. Threshold Values 26

3.5. M-sequences 28

i l l

3.5.1. M-sequence Block Stream Conversion (MBSC) 30

3.6. File Headers and Overall Headers 32

3.7. Encoding Procedure 33

3.8. Decoding Procedure 34

3.9. Calculation for the Total Overheads 36

3.10. Suggestions for Improvement 37

4. RESULTS AND CONCLUSION 39

4.1. Original BPCS Scheme Using a Complexity Measure 39

4.2. New Complexity Measures with MBSC 43

4.3. Variation of PSNR with Amount of Data Embedded 45

4.4. Dependence of Embedding Capacity on the Base Image 45

4.5. Conclusions 46

4.6. Future Scope 47

REFERENCES 48

APPENDEK 50

IV

LIST OF FIGURES

1.1 Steganography model 2

2.1 a & P values for some 8x8 blocks 7

2.2 Resource blocks corresponding to 2 different 8-character sequences 9

2.3 Example to illustrate the Conjugation operation 10

3.1 Two different blocks that are not actually complex 19

3.2 Some typical binary pixel sequences 20

3.3 Three 8x8 blocks with a & p values 22

3.4 Difference between adjacent rows for an 8x8 block 24

3.5 Blocks with various complexity values (a, P, y) 25

3.6 Distribution of P and y over 100,000 randomly generated 8x8 blocks 27

3.7 Fibonacci implementation of an m-stage Linear Feedback Shift Register ... 29

3.8 Format and example of the new block 37

4.1 Images showing the result of applying the BPCS scheme and other variants
suggested in Chapter II 40

4.2 Graph comparing the number of blocks modified in each plane using fixed
and adaptive thresholds 42

4.3 Data hiding using the P and y measures 44

4.4 Plot of percentage of maximum data embedded with PSNR 45

4.5 Three test images and their maximum capacity 46

A. 1 Main menu 50

A.2 Encoding module 51

A.3 Decoding module 51

LIST OF ABBREVIATIONS

2D two-dimensional

PBC Pure Binary Coding

CGC Canonical Gray Coding

BPCS Bit Plane Complexity Segmentation

LFSR Linear Feedback Shift Register

MBSC M-sequence Block Stream Conversion

VI

CHAPTER I

INTRODUCTION

Steganography literally means covered writing and is the art of hiding secret

messages within another seemingly innocuous message, or carrier [2]. The carrier

could be any medium used to convey information, including wood or slate tablets,

tiny photographs or word arrangements. With the advent of digital technology, the list

of carriers has been made to include e-mails, audio and video messages, disk spaces

and partitions and images. The following work describes a method of steganography

for hiding large volumes of data using digital images as carriers.

1.1 Steganography. Cryptography and Watermarking

Steganography is commonly misinterpreted to be cryptography or

watermarking. While they are related in many ways, there is a fundamental difference

in the way they are defined and the problems to which they are applied.

Steganography hides the very presence of secret data in the carrier, and when

implemented in its pure form, a hacker can easily decipher and interpret the secret

data once the presence of hidden data is detected. In cryptographic applications, the

presence of secret data is not deliberately concealed, but the secret data is encrypted

so that a hacker cannot easily decipher the secret data from its encrypted counterpart.

In other words, while steganography makes the process of detecting the presence of

secret information difficult (but allows easy decipherability), cryptography makes

deciphering and interpreting the secret information difficult (but keeps its presence

open).

Hiding information to protect text, music, movies, and art is usually called

watermarking, a reference to the Hght image of the manufacturer's logo pressed into

paper when the watermarked object was made [12]. A watermark usually specifies

information about the creator of the document, and how and who could use the

document. In the case where the watermark is kept invisible, watermarking can be

viewed akin to steganography [11]. In general, watermarks are more robust to

malicious data processing than the secret data embedded using steganographic

techniques.

1.2 Steganography Model

A model for hiding information in a carrier, using steganography, is shown in

Figure 1.1 [2].

Stegokey
(password)

Cover Media
(carrier)

Steganog
applicati

(,

jrap

3n

v=

r

S
hy

k

w

hi(

-J-i L

Stego-media
(carrier with

hidden message)

Message to hide

Cover medium + embedded message + stegokey = stego-medium

Figure 1.1 Steganography model

The stegokey is a password that may be used to encode the secret information

to provide an additional level of security. The steganography application is an

algorithm that that hides the secret message in the carrier, using the stegokey if

necessary, and yields the stego-media.

1.3 Hiding Data in Images-Image Steganography

While there are numerous carriers available, the use of digital images as

carriers is of particular interest. Even though audio and video files offer a much

higher capacity to hide information, digital images are more easily disguised and can

be exchanged on a much lower bandwidth. Image steganography techniques can be

broadly classified into two categories-spatial domain techniques and transform

domain techniques. Spatial domain techniques directly modify the image intensity

values to embed the secret information. The most common spatial domain technique

is the least significant bit (LSB) manipulation technique, where the LSB of the each

intensity value is replaced with one bit of the secret data. Other spatial domain

techniques include contrast adjustment, noise insertion etc. Transform domain

techniques modify the transform coefficients of the image. The transform coefficients

are obtained by applying transforms, such as the Fourier transform, discrete cosine

transform or the wavelet transform, to the image [14, 15]. Since most images are

compressed by manipulating transform domain coefficients, the transform domain

techniques add a fair amount of robustness against the destruction of the secret data

due to lossy image compression.

1.4 Apphcations of Image Steganography

Steganography finds tremendous scope in areas, where there is a need to

protect the privacy of information or securely transmit covert information. Consider

the case of a spy satellite in orbit. It could be easily made to appear as a regular

weather satellite and if a high capacity image steganography system were available,

the covert information the satellite gathers could easily be hidden in commonplace

weather images. Steganography techniques can also be used to hide classified patient

information in X-ray and scan images of the patient. This provides a secure method of

associating patient records with their own X-rays and scans. Image steganography

could also be used to embed secure information like customer name, account

information and key presses in ATM camera feeds and numerous other legal

applications. Of course, it could also be used for various illegal applications like

storing inappropriate material on shared computers and smuggling proprietary

information from offices.

In this work, a spatial domain technique, called bit plane complexity

segmentation (BPCS) steganography [1] that allows for hiding large chunks of data in

images, is discussed and evaluated. Subtle and radical variations to the existing

scheme are suggested and proven to provide a much higher capacity with a

significantly improved PSNR.

The remaining chapters are organized as follows. Chapter II describes the

BPCS scheme and some subtle variations to the original scheme to improve its

performance. In Chapter III, the shortcomings of the complexity measure used in the

traditional scheme are discussed and measures to overcome these shortcomings are

presented. In the final chapter, the results obtained by using the techniques discussed

in Chapters II and HI are compared and conclusions drawn.

CHAPTER II

BPCS STEGANOGRAPHY

Bit Plane Complexity Segmentation (BPCS) was introduced in 1998 by Eiji

Kawaguchi and Richard O. Eason [1] to overcome the shortcomings of the traditional

Least Significant Bit (LSB) manipulation techniques [2]. While the LSB

manipulation technique works very well for most gray scale and RGB color images, it

is severely crippled by its limitation in capacity, which is restricted to about one-

eighth the size of the base image. BPCS is based on the simple idea that the higher bit

planes could also be used for embedding information provided they are hidden in

seemingly "complex" regions.

2.1 Complexity Measure

The first step in BPCS Steganography is to find "complex" regions in the

image where data can be hidden imperceptibly. There is no universal definition for

the complexity of an image (or a region of an image). Kawaguchi and Niimi discuss

two different complexity measures, one based on the length of the black-and-white

border and another based on the number of connected areas that could be used to find

the complex regions in an image [4].

2.1.1 Complexity measure based on the length of black and white border, a

This measure is defined on the 4-connected neighborhood of a pixel. The total

length of the black-and-white border is defined as the sum of the color changes along

the rows and columns in the image. For example, a single white pixel surrounded by

4 black pixels, i.e., having all its 4-connected neighbors as black pixels, will have a

border length of 4 (2 color changes each along the rows and columns). Extrapolating

this idea to a square binary image of size 2*̂ x 2'̂ , the minimum border length

possible is 0, obtained for an all white or all black image, and the maximum border

length possible is 2 2̂̂ ^ *(2^ - 1), for the black and white checker board pattern ((2^ -

1) changes along each of the 2*̂ rows plus the same along the columns). The image

complexity measure, a, is then defined as the normalized value of the total length of

the black and white border in the image, i.e.

" = 2 x 2 " x V - l) • 0^*^<2-2"-(2"-l)) . (21)

here k is the actual length of the black and white border in the image. It is evident that

a lies in [0, 1].

2.1.2 Complexity measure based on the number of connected areas, P

This measure is again based on the 4-connected neighborhood, p is defined as

m
fi = Y ^ . (2.2)

here m is the number of connected areas in the 2*̂ x 2*̂ square binary image. It is

easily seen that P lies in [1/(2^ x 2"̂), 1] with the maximum in the range obtained for

the checker board pattern and the minimum obtained for the plain white or plain black

image.

The assumption that the image is a square of size 2^ x 2"̂ severely cripples the

applicability of these measures to all images, considering that images are not always

perfectly square. To make these complexity measures more generic, they are applied

to each exclusive 2" x 2" block, where n is typically between 2 and 4, of any MxN

image. The only condition is that both M and N have to be divisible by 2". This limits

higher values of n. Very small values for n (n = 1, 2) provide too much spatial

localization for the complexity measures to be meaningful. In practice, n is fixed at 3

so that the complexity measure is applied to each exclusive 8x8 block of the image.

Figure 2.1 (a) and (b) show the a and p values for 2 typical 8x8 blocks. In

practice is it found that, for 8x8 blocks, the a measure is more or less uniformly

distributed in [0, 1] while the p measure tends to have a definite peak at P = 0.2 [4].

Hence the a measure is preferred for the BPCS application and is the only complexity

measure discussed in the rest of this chapter. As already mentioned, the maximum

values for a and P are obtained for the black and white checker board pattern shown

in Figure 2.1 (c).

™K
Figure 2.1 a and P values for some 8x8 blocks

2.2 Canonical Gray Coding System

The complexity measures defined in Section 2.1 are defined only for binary

images. Each 8-bit grayscale image can be spht into 8 binary planes, one plane for

each of the 8 significant bits in the 8-bit binary representation of image intensity

values. 24-bit color images are composed of three 8-bit planes, one each for Red,

Green and Blue and can be split into 24 binary planes. The operation of splitting the

image into its constituent binary planes is called Bit-Plane Slicing [5]. Bit-plane

shcing can be done in the Pure-Binary Coding system (PBC) wherein the intensity

values (for each plane in the case of RGB images) are represented as 8 bit binary

numbers, but it suffers from a serious drawback. Consider an 8-bit image where a

large portion of the image is composed of pixels whose intensity values alternate

between 127 and 128. 127 is Oil HI 11 in binary and 128 is 10000000. Thus all 8

corresponding bit-planes for the 2 pixels are different (coding theory people would

say the 'distance' is 8). This idea of two numbers being very similar in value yet

differing greatly in their binary representation, on a bit by bit basis, is called the

"Hamming Cliff [6]. In such a region, if these 2 gray levels are sufficiently randomly

distributed, all the 8 planes, including the MSB plane, corresponding to these regions

would appear complex and hence would be replaced by data to be hidden. After

embedding, 01111111 could easily become 11111111 and 10000000 could become

00000000 and what was an intensity difference of just 1 gray level and was rather

unnoficeable, now becomes a difference of 256 and appears as an eccentric white

pixel next to a black pixel or vice-versa.

This problem is easily alleviated by using the principle used in some

electromechanical applications of digital systems where sensors are required to

produce digital outputs that represent a mechanical position [3]. The coding system

used is called the Canonical Gray Coding System (CGC), where successive decimal

numbers differ in their representation by just one bit. It is a canonical system, as the

binary system and the gray code system share a one-to-one correspondence. The 2

numbers in the above example, 127 and 128, would be represented in CGC as

01000000 and 11000000, respectively, and hence would not differ by more than 1 bit.

Thus, the first step in BPCS Steganography is to convert the absolute intensity values

(it is assumed that they lie in [0, 255]) into CGC by a 1-to-l, PBC-to-CGC mapping.

This is followed by bit-plane decomposition on the CGC values, and the 8 binary

images obtained are called the CGC images. The CGC images don't suffer from

Hamming cliffs as regions that are rather smooth in the original image result in very

few changes in the higher bit planes, and these regions are appropriately determined

unsuitable for embedding data.

Since 24-bit RGB color images provide a very high capacity for data hiding

applications, all the following sections are discussed with 24-bit RGB images as

reference. BPCS Steganography can also be applied, effectively, to 8-bit grayscale

images.

2.3 Resource Blocks and the Conjugation Operation

Once the 24-bit image (base image) has been split into its 24 constituent bit-

planes, and the complexity, a, of each exclusive 8x8 block in each of the 24 bit-

planes has been found, the complexity of each block is compared with a threshold, ao.

If a > ao, the block is deemed complex enough to be replaced by data blocks. The

standard value used for ao is about 0.3. The data chunks that replace the complex

blocks in the bit-plane image are called Data Blocks or Resource Blocks. The

resource blocks are chunks of data obtained from any ASCII-encoded file (data or

image files that can be read as a string of ACSII characters) called the Resource File.

The resource file could be a text file or a Word document or even an image. Each 8

byte block of a resource file forms an 8x8 resource block with the 8-bit binary

representation of each byte forming the row of the 8x8 block. For example, a

sequence of 8 characters from an MS word document 'This one' (8 characters

including the blank space) would form an 8x8 resource block as shown in Figure 2.2

(a) and a block of 8 consecutive blank spaces would form a block as shown in figure

2.2 (b) since, 'T' is 01010100, 'h' is 01101000, blank space is 00100000 (32 in

ASCII) and so on.

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

1

1

0

0

1

1

0

(a)

1

0

0

0

0

1

1

1

0

0

0

I

0

1

1

0

0

0

I

1

0

1

0

1

T

h

i

s

o

n

e

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 0

1 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 2.2 Resource blocks corresponding to 2 different 8-character sequences

After the resource file is broken into 8-byte chunks and cast into 8x8 binary

resource blocks, they are ready to replace the complex blocks in the bit-plane images,

however, with one problem. A complex block denotes a block that appears noisy, and

modifying such a block wouldn't be perceptible, unless, the modification results in

making the block less complex than the threshold complexity value, ao. Consider the

block shown in Figure 2.2 (b). This is a frequently encountered block as Word

documents contain numerous stretches of blank space.

The complexity of this block is 0.1429, which is far less than the ao value

usually used. If this block replaces a complex block in the bit-plane image, a definite

discrepancy arises, especially if it is in one of the higher order bit-planes. Also, the

decoding module will not recognize the block, as it assumes that only the complex

blocks have been replaced and hence only the complex blocks have valid informafion.

To overcome this problem, the conjugation operation is introduced.

Figure 2.1 (c) shows the most complex 8x8 block possible, with a complexity

of 1. This block is denoted as Wc with its top-left value being 1. A similar checker­

board pattern with complexity 1 can be formed with the top-left value to be a 0, and

that is denoted by Be. The all white and all black blocks are denoted by W and B. Wc

is used for all future explanations, although all of it would apply to Be as well. The

Wc block has a special property that when it is XORed (exclusive OR operation) with

a non-complex block, P (say), of complexity say an < ao, then the resulting block, P*,

has a complexity of (1 an) > ao. As with any XOR operation, the block P can be

easily retrieved by XORing again with Wc. This operation of changing the complexity

of a block by XORing with Wc is called the conjugation operation and is denoted by

'*'. Figure 2.3(a) shows a non-complex (or simple) block, P (say), 2.3(b) is the

perfectly complex block, Wc, and 2.3(c) is the conjugated block, P*, obtained by

XORing corresponding pixels in Figures 2.3(a) and (b).

(a) Non-complex (b) Perfectly complex (c) Conjugated block, P*,
block, P, a = 0.1429 block. We, a = 1 a = 0.8571

Figure 2.3 Example to illustrate the Conjugation operation

10

The 2 important properties of the conjugation operator can be summarized as:

1. a(P*)=l-a(P)

2. (P*)=̂ = P.

The first property is used at the encoder to make the non-complex resource blocks

complex, while the second property is used at the decoder to retrieve the original

block.

It happens that not all the resource blocks need to be made complex, as most

of them are complex on their own. h becomes important to keep track of which

blocks have been conjugated. This is done by using a Conjugation Map. For every 8

byte block of the resource file, one bit is appended to the conjugation map to indicate

if the block has been conjugated. A ' 1 ' implies the resource block has been

conjugated, while a '0' implies the resource block was embedded as is. The

conjugation map is finally embedded after embedding all the resource blocks.

Again, it is possible that the conjugation map itself, when cast into 8x8 blocks,

may not form a complex block, and it becomes necessary to specify a conjugation

map for the conjugation map. This problem can be resolved in one of the following

two ways:

a. Form the conjugation map for the conjugation map and embed the same into some

known complex section of the image, for example, the LSB planes.

b. Read the bits in the conjugation map in blocks of 63 bits (padding the last block

with zeros if necessary). Cast them into 8x8 blocks, making the first bit (top left

bit) zero. If the block is complex, then embed it 'as is'. If it is not, then conjugate

the block. The conjugation process automatically makes the top-left bit a one.

This bit can be used by the decoder to understand that the block was conjugated at

the encoder.

This implementation uses the second method as it offers greater flexibility when

dealing with images that may not necessarily have complex LSB planes.

11

2.4 File Headers and Other Overheads

Each type of file (documents or images) has its own header which is included

when the resource file is read, but some additional information about the file, like the

file size, file name etc., must to be embedded with the file in order to perfectly

reconstruct the files at the decoder. This information is attached as a 24-byte extemal

header, for each file, and is embedded before each file. This is denoted as FH for File

Header. The FH reserves 18 bytes for the file name with its extension, read as a

string, and 6 bytes for the file size. Each byte in the 'file size' section of the header

represents a digit. This fixes the maximum size of a single resource file to 999,999

bytes. Also, the encoder needs to make note of the number of files, n, it is embedding.

This information is embedded as the first byte of an 8-byte Overall Header denoted

OH. The rest of the OH is reserved for future use and the OH is embedded as the first

block, before any file is embedded.

With all this information embedded with the resource files, the decoder only

needs the encoded image (base image in which the resource files have been hidden) to

retrieve all the information about the resource files including their names and sizes.

After embedding all the headers and the respective resource files with their

conjugation maps into the complex sections of the CGC bit-planes, the 24 bit-planes

are put together, in sets of 8 each, to form an RGB image, and then they are converted

back to PBC by using a Gray to Binary lookup table. This image is then saved as the

encoded image, either with the same name as the original, wherein it replaces the

original image, or with a new name.

2.5 Encoding Procedure

The steps involved in the encoding procedure can be summarized as follows:

1. Read the image, convert the intensity values into Gray code and perform bit-plane

decomposition.

2. Determine a threshold for the complexity, ath. For each exclusive 8x8 block in the

bit-planes, calculate the complexity a. If a > ath, mark up the 8x8 block to be

12

complex (say by marking it up with 1. For a 512x512 image, this "mark up" matrix

would be 64x64, for each bit-plane).

3. Get the number of resource files to be embedded, n, make it the first byte of the

Overall Header (OH), and embed that into the first complex block of the base

image, conjugating it if necessary. Repeat steps 4 to 7 'n' times or till the

maximum embeddable capacity is reached.

4. Read in the resource file and form it into a sequence (or vector) of ASCII values.

Pad the sequence so that the number of bytes in the sequence is a multiple of 8.

This is done because the encoder embeds blocks of 8 bytes at a time. Attach the 24

byte file header containing the file name and size to it.

5. Read the file header, 8 bytes at a time, and form it into 8x8 binary blocks.

Calculate a for the block and do one of the following:

(a) If a > ath, then embed the resource block "as is" into the 8x8 block marked

' 1' in the base image (i.e., complex block in the base image) and append a

'0' to the conjugation map to indicate that the block has not been

conjugated.

(b) If a < ath, then conjugate the resource block to increase its complexity to

(1 - a) (it is assumed that ath is less than 0.5, which it usually is) and then

embed the resource block "as is" into the 8x8 block marked ' 1' in the base

image. Append a ' 1' to the conjugation map to indicate that the block has

been conjugated.

6. Break the conjugation map into blocks of 63 bits each, padding with zeros for the

final block, if necessary. Make the first bit (top-left bit) of an 8x8 block '0' and add

the 63 bit block, into it, by rows. If the block is complex, embed it "as is' into the

next available complex block in the bit-plane base image. If the block is not

complex, then conjugate it and embed it into the next available complex block in

the bit-plane base image. For the file header there will be just one such block.

7. Repeat steps 5 and 6 substituting the resource file sequence for the file header.

13

8. Put back the 24 bit-planes together to form 3 color planes, R, G & B, convert from

CGC to PBC, and save the image, either under a new name or under the same name

as its original to eliminate suspicion. This is the encoded image.

2.6 Decoding Procedure

The work of the decoder is to systematically reverse the operations at the

encoder. The way the encoder is organized, all the blocks that are complex in the

original image are complex in the encoded image as well. All that the decoding

module has to do is tread through each 8x8 block in the bit-plane decomposed image

(after converting from PBC to CGC), check if complex and decode the relevant data.

The decoding procedure can be summarized as follows:

1. Read the encoded image, convert the intensity values into Gray code and perform

bit-plane decomposition.

2. Use the fixed threshold for the complexity, ath, and mark up each 8x8 block in the

bit-plane image with a ' 1 ' if it is complex.

3. Retrieve the value of the number of files embedded in the encoded image, n, from

the first byte of the first complex 8x8 block. Repeat steps 4-6 'n' times.

4. Retrieve the next 4 complex blocks. The first three blocks contain the file header

and the fourth block contains the conjugation map for this header (3 bits of this 63

bit sequence). If the top-left bit of this fourth block is ' 1 ' , it means that the block

was conjugated and has to be conjugated again to retrieve the original information

(Property 2 of the conjugation operator). Convert this 8x8 block into a 63 bit

sequence (excluding the top-left bit) and use the first 3 bits of this sequence to

reconstruct the first 3 blocks. If a bit is one then it means that the corresponding

block has to be conjugated to retrieve the original information. These reconstructed

blocks form the 24 byte file header-an 18 byte file name and a 6 byte file size.

5. The number of complex 8x8 blocks that form the file, Nf, will be ceil(file size/8)

where the 'ceil' function rounds a value to the nearest integer towards infinity.

Retrieve these Nf blocks and their corresponding conjugation map (which would

14

have been embedded as the next (ceil(Nf/63)) complex blocks after these Nf

blocks) and reconstruct the original file sequence, using the same procedure as for

the file header.

6. Save the recovered file either under the original name, which is the 18 byte 'file

name' parameter of the file header, or under a different name, to avoid destroying

the original file.

2.7 Calculation for the Total Overheads

Although the exact overhead will depend on the exact size of the file, an

approximate estimate can be easily made. Let 'n' be the number of files to be

embedded, Ni, i = 1, 2...n, be the size of each file and C\ be the number of bytes added

to the conjugation map for each file i. For every 8 bytes in file i, one bit is added to

the conjugation map and every 63 conjugation map bits form 8 bytes of conjugation

map info (including the 1 bit for the conjugation info of the conjugation map blocks).

Thus, in effect, 8 bytes of conjugate map info are added for every 63x8 bytes of the

data file. Apart from this, an 8 byte overall header (OH), a 24-byte file header (FHi)

for every file i, and an 8 byte conjugation map for each file header are added. Let Fi

be the size of each file. Putting this together,

n „

Total overhead = OH + Z J ^^^ + 8 * n + X ^ ' (2-3)
(= 1 i= i

Fi * 8 ^. Fi
where Cl = ^ Ci = . (2.4)

63 * 8 63

Substituting for FH and OH and putting 2.2 in 2.1 we get.

Total overhead (in bytes) = 8 + 3 2 * ^ + 2 ^ — (2.5)

The total overhead will be minimum when the number of bytes in the file is an

exact multiple of 63. When a single large file is embedded, instead of a number of

smaller files, the overhead tends to be of the order of (l/63)-rd of the file.

15

2.8 Variants and Suggestions for Improvement

While the basic BPCS encoder/decoder, described in sections 2.1 to 2.7,

works well, there are some subtle nuances that could be added to improve its

performance.

1. The resource blocks are embedded into complex sections of the CGC bit-planes.

The choice of the order of bit-planes plays a significant role in keeping the encoded

image unsuspicious. It is important that the embedded blocks be spread over all the

3 color planes evenly and that they do not modify any particular color plane

abnormally. This rules out the traditional ascending or descending order of

sequences ([1, 2 ... 24] or [24, 23 ... 1]) as they modify one color first before going

to the next (red first in the former and blue first in the latter). It was found that the

following order, [24, 16, 8, 23, 15, 7, 22, 14, 6 ... 17, 9, 1], gives the best results,

both in terms of encoding speed and PSNR. This ensures that complex sections in

the LSB planes are replaced before the MSB planes are touched and that no color

plane is preferentially encoded.

2. The choice of the threshold for the complexity measure, ath, controls two

complimentary parameters - the maximum data that can be hidden and the

distortion in the encoded image. The distortion of the original image due to

embedded data is measured in terms of its Peak Signal to Noise Ratio (PSNR),

given by:

PSNR =10 logi i) (2.6)
NMSE

where the Normalized Mean Square Error (NMSE) is given by

1 D N M

NMSE= y y y {Ioriginal{j,k,l)-Idistorted{j,k,l)f . (2.7)
255*255* M*N*Dt^t:tM

Where longinai is the original image, Idistoned is the distorted, encoded image, MxNxD

is the dimension of the image (Rows x Columns x Depth), and 255x255 is the

maximum square intensity difference possible.

16

The value of ttth can be made arbitrarily small to accommodate more resource

files, but that would cause the encoded image to look heavily distorted and would

defeat the very purpose of steganography. Again, if a,h is kept high (very close to

0.5), the maximum amount of data that can be stored in the image is reduced

drastically. Hence, ath is fixed at 0.3 to strike a compromise between the 2

complimentary parameters.

A better way to determine ath would be to fix it adaptively instead of using a

fixed threshold for all the bit planes. Since the three lower bit-planes (LSB planes

8, 7, and 6) ai'e invaiiably complex and don't have a significant bearing on the final

distortion, a lower threshold can be fixed for these planes while progressively

increasing the thresholds in the higher, more significant, bit-planes. In [7], the

author suggests a method for varying the threshold for another complexity

measure. It turns out that a similar method for fixing ath gives significantly better

results, not only in terms of PSNR but also in terms of the perceptible quality of the

encoded image. For any bit-plane i of a particular color, ath' is fixed as:

„, J«-(,•-l).<x„ l<,-<5l | p3^
I[0.0 6 < / < Slj

where a and Oa are the mean and standard deviation of a for all possible 8x8

blocks. The a and Oa values were calculated by fitting a Gaussian curve for the a

values for 50,000 randomly generated 8x8 blocks were 0.5 and 0.0473

respectively. Using these values, the a,h for the various bit-planes, for each color R,

G or B, is given by, [0, 0, 0, 0.3108, 0.3581, 0.4054, 0.4527, 0.5], from MSB plane

to LSB plane.

3. Before embedding the resource blocks into the base image, the resource files could

be passed through a lossless entropy encoder like an LZW encoder or an Adaptive

Arithmetic Encoder. If the resource files were text files or MS Word documents,

the lossless encoders provide a significant compression of the data. Apart from this,

the lossless encoders also make the distribution of characters in the resource file

17

significantly random by eliminating redundancies, and hence more complex. Since

these blocks would already be complex, they would not need to be conjugated, and

hence would not leave a detectable pattern that a long sequence of blank spaces in

the resource file could leave.

With all these suggested improvements in place, there is still scope for

increasing the data storage capacity and the PSNR of the encoded image. These can

be achieved by inflicting some fundamental changes to the process explained in

this chapter, including using new measures for calculating the complexity and

some new ways to reduce the overheads. These modifications form the crux of the

discussion in the following chapter.

CHAPTER III

NEW COMPLEXITY MEASURES

The complexity measure, a, discussed in chapter II is probably not the best

way to describe the complexity of an image (or a segment of the image). There are

many cases where a really simple and regular pattern may return a high a value and

may be wrongly deemed complex. In this chapter, the shortcomings of the a measure

are discussed and new complexity measures which produce significantly better results

when used with the BPCS scheme are suggested.

3.1 Shortcomings of the a measure

Consider the patterns shown in Figure 3.1. Both these pattems would qualify

as a complex block if the value of ath is fixed at its usual value of 0.3. It is readily

seen that the block shown in Figure 3.1(a) is a regular pattern or alternating black and

white rows. If this block were to be replaced by a noisy block, the replacement is sure

to make some noticeable changes to the region.

(a) a = 0.5 (b) a = 0.4464

Figure 3.1 Two different blocks that are not actually complex

19

Blocks, like the one shown in Figure 3.1(b), occur frequenfly in regions that

he on the boundary of noise-like and informative regions, and modifying these

regions may result in ruining the quality of the border regions and edges and making

them prone to suspicion. Since these two appear to be completely different kinds of

blocks, a complexity measure that works for one kind may not work for the other. In

[7], the author proposes two different complexity measures Beta (p) and Gamma (y)

that can be used in combination to overcome the disadvantages of using a alone.

3.2 The P Complexity Measure

This P complexity measure is different from the measure based on the number

of connected components discussed in chapter II. This measure is based on the

irregularity of the runs of black and white pixels (in the binary bit-plane images)

along each row and column of an 8x8 block and helps in overcoming the

disadvantage of applying the a measure to blocks such as the one in Figure 3.1(a).

The logic behind this method is that if the distribution of the black and white pixels in

a block has a regular periodicity, then the block should not be used for embedding.

The P value of a block is calculated based on the histogram of both black and white

pixels along each row and column of the block.

Consider the arrangements of black and white pixels shown in Figure 3.2.

^ m HH
Ca)

I^H
(0

(e)

(h)

(d)

Figure 3.2 Some typical binary pixel sequences

20

While patterns like the one shown in Figure 3.1(a) are rather uncommon in practice,

the runs of black and white pixels shown in figure 3.2 are mundane. Figure 3.2(a)

shows one possible row of an 8x8 block that consists of: one run of three black pixels,

one run of one white pixel, one run of two black pixels and one run of two white

pixels. Note that only the maximum length of the run is considered. For example, a

run of four white pixels should not be accounted for as two runs of two white pixels

or four runs of one white pixel. The histogram of the run-lengths will be represented

as,

h[l]= l,h[2] = 2andh[3] = l, (3.1)

here, h[i] is the frequency of runs of i pixels, either black or white.

The inequality of the run-length distribution in a binary sequence (along a particular

row or column) is represented by factor hs, given by

n

K = - Z * '] log 2/7,

where Pi ~

(3.2)

h[i]
(3.3)

If a sequence is formed by a periodic arrangement of black and white pixels,

as in the case of the sequences of Figure 3.2(b), (c), (d) and (e), its hs value becomes

zero. For each of those sequences, the probability of a particular run, pi, becomes one,

as there are sequences of only one run-length for each of the sequences (3.2(b) has 8

runs of length 1, 3.2(c) has 4 runs of length 2 each and so on). For the sequence of

Figure 3.2(a), hs is 6.

The hs values are normalized so that they lie in [0, 1], and the normalized hs is

denoted as/z .̂. The normalization factor used is the highest possible value for hs,

6.8548. This is obtained for a sequence that has pi = 3/5, p2 = 1/5 & ps = 1/5. The

normalization factor can also be found by generating random black and white

sequences of length 8, calculating the hs for each of those sequences and finding the

maximum value of those.

21

Let n and Ci, for i = 1, 2, ... 8, be the i-th row and column of an 8x8 block. The

run-length irregularity, p, of the block is defined as the minimum of the average of /j,

values along the rows and the columns i.e.

(3.4)

(3.5)

P = rmn{ / /^ (r) , / / ^ (c)}

Where, H ^{r) = { / ? J r ,),..., h^{r^)} and

H ,{c) = {h^{c,),..., h^{c,)}

and X represents the mean of all the elements in the vector X.

Figure 3.3 shows three 8x8 blocks and their corresponding a and P values.

The block shown in figure 3.3(a) is the most complex block possible according to the

a complexity measure, but if the p complexity measure were used, the complexity of

this block becomes zero as there is no irregularity in the runs along the rows and

columns of the block. The block in figure 3.3(b) is the same as the one in 3.1(b), and

as mentioned earlier, a good complexity measure is supposed to retum a small value

for this block, unlike the a and p measures. Figure 3.3(c) shows an 8x8 block for

which the P measure completely fails.

(b) a = 0.4464,
p = 0.4945

(c) a = 0.2857,
p = 0.6937

Figure 3.3 Three 8x8 blocks with a and P values

22

The block shown in Figure 3.3(c) is a typical example of a simple block for

which the p measure returns a high value. In fact, even the a measure returns a value

that reflects the non-complexity of the block more effectively. This calls for another

complexity measure, which, when combined with the P measure, forms an effective

measure to gauge the complexity of a block. This measure, y (gamma), based on the

noisiness of borders in a block, is discussed in the next section.

3.3 The 7 Complexity Measure

If a resource file is embedded in regions on the boundary between noisy and

informative regions (i.e., the regions that lie along the boundary of an object and the

background), then the noisy regions tend to grow after embedding because they

would be replaced by a completely noisy block. This results in making the changes to

the blocks noticeable. Hence, such blocks should be avoided for embedding data.

The y complexity measure is designed to retum low values for these blocks which lie

on the boundary of informative and noisy regions, so that they will not be used for

embedding the resource files. If the border noisiness, y, of a block is large enough, it

cannot be on the boundary of a noisy and an informative region.

The y measure is defined based on the difference between adjacent rows and

columns as shown in Figure 3.4. The number of pixels at which two adjacent rows, rj

and ri+i, differ is the number of ones in (r, © r,+,) where © represents a bit-wise

XOR of corresponding pixels in the two rows. If ri and Cj are the i-th row and j-th

column of an nxn block, i, j = 1,... 8, the border noisiness, y, of the block is defined as

Y = —min{ E AP^{r)),Ef{P^{c))] , where (3.6)
n.

/ ' , (r) = {/?(r, e r,),..., p{r,^_, 0 r„)} and

P. (c) = {/7(c, © c,),..., p{c,^_, e c„)} . (3.7)

p(x) is the number of ones in a binary sequence x, and

23

E,(X) =
V(X)

max[V{X})

X = {Xj , . . . , x^}, m = n - \

V{X) = Variance of X , and X = Mean of X

(3.8)

— Difference 8

— Difference 7

— Difference 6
— Difference .5

— Difference 4

—' Difference 2

— Difference 1

Figure 3.4 Difference between adjacent rows for an 8x8 block

For an 8x8 block, Px(r) and Pfc) are each sequences of 7 numbers, the black

and white borders counted for every pair of adjacent rows and columns. Ef is a weight

calculated based on the variance of these two sequences and it lies in the range [0, n].

The variance, V(x), is the second moment of the sample about the mean (sample

variance), and the maximum value of the variance is found by calculating the

maximum variance over 50,000 random 8x8 blocks and is found equal to 15.6735

(obtained for the sequence [8, 8, 8, 8, 0, 0, 0]). Taking the minimum of the two E/s,

one calculated along the rows and another along the columns, helps in excluding

those blocks which lie on a horizontal boundary or a vertical boundary but not both.

Due to the normalizing factor, n, in equation 3.6, y lies in [0, 1]. A value of y close to

zero means that the block is not complex and a large y value (close to 1) means that

the black and white pixels are well-distributed throughout the block and hence the

block is complex.

24

Figure 3.5 shows some 8x8 blocks and their corresponding a, p and y values.

Figure 3.5(a), (b) and (c) repeat from Figure 3.3. In fact. Figure 3.5(a) is a typical

example of why the y measure alone cannot be used to evaluate the complexity of a

block. The black and white pixels in this block form a regular pattern and cannot be

called complex. Only the p measure reflects the 'non-complexity' of the block while

the a and y measures indicate the block to be perfectly complex.

(a) a = l ,
P = 0,
y = l

(a) a = 0.6518,
p = 0.7999,
7 = 0.5441

(b) a = 0.4464,
p = 0.4945,
7 = 0.2400

(a) a = 0.6250,
P = 0.8249,
7 = 0.5028

(c) a = 0.2857,
p = 0.6937,
7 = 0.0476

(c) a = 0.1696,
P = 0.0867,
7 = 0.0690

Figure 3.5 Blocks with various complexity values (a, p, 7)

25

3.4 Threshold Values

As in the case of the a complexity measure, a threshold has to be fixed for

both p and 7 (Pt and 71,), and a block B is said to be complex if and only if

J3{B) > fi, and riB) > 7,. (3.9)

Again, the threshold values could be kept the same for all the planes or varied

adaptively. The threshold values are determined by the mean ([i) and standard

deviation (a) of the distribufions of p and 7, shown in Figure 3.6, and the order of

planes. For any bit-plane i, of a particular color (say red), Pih and yih' are fixed as:

0.0 6 < / < Sl

^ _ . / 5 - a - l) a , ,.,-<5L ^̂ _̂̂ ^

/ \jy-{i-l)(7, l < / < 5 l !
r,h=y ' } (3.11)

I [0.0 6</<8l j
Where, i = 1 is the most significant bit-plane and i = 8 is the least significant bit-

plane. Figure 3.6 shows the distribution of P and 7 values over 100,000 randomly

generated 8x8 blocks.

The mean and standard deviation of P and 7 were found by fitting a Gaussian

curve to the distributions shown in Figure 3.6(a) and (b) and they are as follows:

^ = 0.653 ; (7^ = 0.0728 ; r = 0.408 ; a^ = 0.0540; (3.12)

The threshold for each plane can be fixed by substituting these values in equations

3.10 and 3.11. The threshold values determined for planes 1 to 8 (Red) are reflected

onto planes 9 to 16 (Green) and planes 17 to 24 (Blue).

The default threshold values work well for most natural images, but the

method makes for easy steganalysis, which refers to detecting and deciphering hidden

data. For example, if an image region were all zeros (R = 0, G = 0, B = 0

corresponding to plain black) or all ones (R = 255, G = 255, B=255 corresponding to

plain white), the three LSB planes of each of the three colors, R, G and B, will still be

used for embedding data, as their thresholds are zero, and the embedded data shows

26

up as visible discrepancy on the perfect original image. For such images, a simple

fallback routine could be used, where the thresholds for planes 6, 7 and 8 are not

made zero but reduced to arbitrarily low values.

600

A 500

£ 400

8
S 3000

Distr ibution of beta over 100,000 8x8 blocks

(a) Distribution of P

Distribution of gamma over 100.000 8x8 blocks

AiJMm iulkuiu
0.2 0.25 0.3 0.35 0.4 0.4S

Value —^

(b) Distribution of 7

0.5 0.55 0.6 0.65

Figure 3.6 Distribution of P and 7 over 100,000 randomly generated 8x8 blocks

27

3.5 M-Sequences

Most of steps involved in encoding resource files into an image and decoding

those files, using the p and 7 complexity measures, are the same as ones used in the

original BPCS scheme explained in Chapter 2. Just as in the original case, an RGB

image is first read, its intensity values converted from PBC to CGC followed by bit-

plane decomposition of the CGC planes, and the complexity of each exclusive 8x8

block determined according to the P and 7 complexity measures. Once the complexity

of the blocks has been determined, the complex blocks are ready to be replaced by the

resource blocks. As in the case of the original scheme (of Chapter 2), care has to be

taken to ensure that the resource blocks themselves are complex enough for the

decoder to distinguish the block as a block with hidden information. However, the

process of making the 'simple' resource blocks 'complex' is not as simple as

conjugating it. It is difficult to define conjugation operations for p and 7 as they are

defined in a far more complicated way than a. The M-sequences provide a more

generic solution to the problem of making simple resource blocks complex.

Shift register sequences having the maximum possible period for an r-stage

shift register are called maximal length sequences or M-sequences [8]. The M-

sequences are special cases of pseudo-random noise sequences (PN sequences) and

can be implemented in much the same way using Linear Feedback Shift Register

(LFSR) generators [9]. Figure 3.7 shows an m-stage linear feedback shift register

where the square blocks represent a one-bit register (or flip-flop). The weight gi for

any given tap i, where i = 1, 2 ..., m-1, is either 0, meaning no connection, or 1,

meaning it is fed back. The weights go and g.̂ are always 1. In fact, gm is not a

feedback connection but the serial input to the shift register. Any LFSR can be

represented as a polynomial of variable X, called the generator polynomial, G(X), as

G(X) = g„X' + 8,n-,X"'-' +...+g2X' + g,X + g, . (3.13)

28

Figure 3.7 Fibonacci implementation of an m-stage Linear Feedback Shift Register

The reason for choosing gm to be one is evident from equation 3.13. If gm

were not one, the order of LFSR would not be m. The m-bit number, with each bit

corresponding to the state of each of the m registers, which indicates the initial state

of the LFSR is called the seed. The weights gi could be anything, and each

combination of the gi's produces a different sequence of m-bit pseudo-random

numbers. However, they may not produce all possible m-bit numbers before starting

to repeat the sequence. If the weights g,, and in turn the polynomial G(X), are

carefully chosen, the LFSR can be made to generate each of the 2"" possible m-bit

numbers before starting to repeat them, or in other words, they can also be said to

generate maximal length sequences. Such a polynomial is called a primitive

polynomial. A polynomial G(X), of degree m, is said to be primitive if:

a. G(X), cannot be factored (i.e., it is prime), and

b. G(X) is a factor of X"̂ + 1, where the length of the sequence, N, is 2"" - 1.

LFSR's built using primitive polynomials have several interesfing properties,

the most important being its ability to generate 2"'-l of the 2"" possible m-bit

numbers, in a random order, before starting to repeat the numbers. The only condition

is to initialize the LFSR using a non-zero seed. The one remaining state is the trivial

or all zero state, which is generated with an all-zero seed. The usefulness of the M-

sequence stems from this "non-repeating" property (over a period of 2'"-l) of the

29

primifive polynomials. Equation 3.14 is an example of a primitive polynomial, G(X),

defined

G{X) = X'' + X' + X' + X+l. (3.14)

This is a primitive polynomial of degree m = 64. Given a non-trivial seed (all

registers in the LFSR are not uniformly zero), an LFSR based on this polynomial as

its generator polynomial will make the 64-bit shift register emulate all of the possible

2 -1 states (except the trivial state) before the repeating the seed. The actual maximal

length sequence or the M-sequence is obtained by collecting the 2'''̂ -l output bits, i.e.

the bit from the right-most register in figure 3.7, for each of the 2̂ '*-l exclusive states

of the LFSR. Any N-tuple, where N equals the degree of the generator polynomial (N

= 64 in this example), of the M-sequence at phase i, corresponds to a particular state

of the LFSR. This N-tuple is represented as,

m." = (m, , m.^,,..., m.^^_ ,) . (3.15)

This N-tuple is referred to as an M-block thus making the M-sequence a stream of M-

blocks.

3.5.1 M-sequence Block Stream Conversion (MBSC)

Since the complexity is calculated for each 8x8 block of the base image, the

resource files are divided into streams of 'k' 64 bit (8 byte) resource blocks, say Ro,

R], ..., Rk-i. An M-sequence is generated using the LFSR shown in figure 3.7 using

the generator polynomial of equation 3.14. Let m. ,?n,̂ | ,...,m.^^f._.^^^ represent 'k' N-

tuple M-blocks, where N = 64, of the M-sequence, starting at phase i. The basic idea

is to perform a bit-wise XOR between the stream of k resource blocks and the stream

of k M-blocks such that

m,)^Pt''''' and r{R,)>7:'''\ (3.16)

here 7i(Bj) represents the plane that contains the complex 8x8 base image block, Bj ,

and Ri is the resource block that is to be embedded in Bj, for i = 1, 2,..., k-1.

30

Since the number of possible N-tuples (2^^-l) is far greater than the number of

blocks in a stream, k, which is usually fixed anywhere between 65 and 1000, it is not

too difficult to find a phase 'p' such that the blocks

fi„®<,/?,®m;,„,...,fl,_,©„,«,,_„„

satisfy equation 3.16. Also, since no two N-tuples in an M-sequence are the same,

instead of taking 'k' exclusive N-tuples, an overiap of d, where d is a positive integer,

could be allowed and the M-block stream redefined as

N N N

'"/ . ' ' " p w - ' ' " p + (; t - i) , / . (3.17)

Fixing d to be 1 eliminates the need to generate and store the extremely long M-

sequence because the N-tuple at each stage can be generated based on the previous

state of the shift register and the generator polynomial. The MBSC was implemented

with k = 200 and d = 1.

Once the k resource blocks have been made complex with respect to the p and

7 complexity measures, they can be embedded in k successive complex blocks in the

bit plane base image. However, the decoder needs some additional information to

decode the resource blocks. Since the k complex resource blocks were obtained by

XORing the original resource blocks with K N-tuples of the M-sequence, the initial

seed of the LFSR, the phase p, and the generator polynomial are the only information

the decoder needs for extracting the resource blocks. The K N-tuples are chosen with

the first N-tuple starting at phase p and each subsequent N-tuple starting from bit 'd'

of the previous N-tuple. The generator polynomial can be found out from the first 2N-

tuple (i.e. the seed and the next N-tuple). This 2N-tuple is called the M-sequence key.

The phase is specified by the N-tuple m^ . This N-tuple is called the phase key. The

M-sequence key is embedded on two 8x8 blocks (since it is 16 bytes) before any of

the resource blocks are embedded and the phase keys are embedded on one 8x8

block. There is one phase key for every k block resource file stream. Since the M-

sequence key forms the first two blocks of information to be embedded, it is hidden in

the least significant bit plane where the threshold complexity is zero. Hence the

31

complexity of the M-sequence key is not a big issue. However, this is not the case for

the phase keys. The phase keys could be embedded anywhere on the base image,

including the most significant bit-plane. Hence it is important to make sure that the

phase keys themselves are complex. If a particular phase does not yield a complex N-

tuple, the next phase is tried fill a complex phase key can be found and only then is

the MBSC attempted, starting from this phase.

It is useful to have a seed with reasonable complexity, with respect to the P

and 7 complexity measures, for the M-sequence generator. This seed, in turn, is

generated using a 6-bit LFSR, with a generator polynomial G(X) = X^+X^+X'-i-X+l

and seed 010101, which produces a 64-bit M-sequence. The implementation of the

LFSR shown in figure 3.7 is called the Fibonacci implementation and is the one used

for the MATLAB implementation. It is different from another implementation of the

LFSR called the Galois implementation, where the contents of the shift register are

modified at every step by a binary-weighted value of the output stage.

An important difference between using the a measure and the p and 7

measures is that in the case of the former only the non-complex resource blocks are

made complex by conjugating, while in the latter case, all the resource blocks are

subjected to the MBSC scheme, regardless of whether they are simple or complex.

3.6 File Headers and Overall Headers

Just as in the original case, some additional information about the file, like the

file size, file name etc., must to be embedded with the file in order to perfectly

reconstruct the files at the decoder. The conventions explained in section 2.4 for the

original BPCS scheme, are used here as well. The///e header (FH) is again 24 bytes,

with 18 bytes for the file name and 6 bytes for the file size, and is attached to every

resource file that is to be embedded. The overall header (OH) is 8 bytes with the first

byte containing the number of resource files embedded in the image and the rest of

the bytes reserved for future use. With these headers in place, the files are all ready to

be embedded into the base image, of course with all the necessary pre-processing.

32

3.7 Encoding Procedure

The steps involved in encoding using the new complexity measures can be

summarized as follows:

1. Read the image, convert the intensity values into Gray code and perform bit-plane

decomposition.

2. Use equafions 3.10 and 3.11 to determine the complexity thresholds, Pth and yth, for

each plane. For each exclusive 8x8 block in the bit-plane image, calculate the

complexities p and 7. If the complexities of the block satisfy equation 3.9, mark the

8x8 block to be complex. This is done by marking up a ' 1 ' on another matrix,

called the comple.xit}' matrix, whose dimensions are one-eighth the bit-plane base

image along the rows and columns. A 512x512x3 image would have a 64x64x24

complexity matrix. The order of bit-planes followed for embedding is [24, 16, 8,

23, 15, 7, 22, 14, 6 ... 17, 9, 1]; as this ensures that the least significant bit-planes of

each color are embedded before the more significant ones are touched.

3. Embed the 128-bit M-sequence key (2N-tuple) into the first two embeddable 8x8

regions (complex regions) of the bit-plane image. The first N-tuple of this 2N-tuple

is the seed for the 64-bit M-sequence generator (LFSR) and is the M-sequence

generated using a 6-bit LFSR with seed '010101'. The second N-tuple is simply the

next phase of this initial seed.

4. Get the number of resource files to be embedded, n, make it the first byte of the

overall header (OH), and make this 8x8 block the first block of the resource file

stream. Repeat steps 5 to 8 'n' times or till the maximum embeddable capacity is

reached.

5. Read in the resource file and form it into a sequence (or vector) of ASCII values.

Pad the sequence so that the number of bytes in the sequence is a multiple of 8.

This is done because the encoder embeds blocks 8 bytes at a time. Attach a 24-byte

file header (FH) containing the file name and file size to this sequence. Then attach

this whole sequence to the resource file stream and make the number of bytes in

the resource file stream a multiple of 8xk bytes, where k is the number of 8x8

33

blocks for which a unique phase key is generated, by padding the stream with

zeros. Repeat steps 6 and 7 till the whole resource stream has been embedded.

6. Read in k blocks, Ro, R,,..., R^.,, of 8 bytes (64-bits) each, from the resource file

stream. Find a phase 'p' on the M-sequence, generated by the 64-bit LFSR using

the generator polynomial in equation 3.14, such that k consecutive N-tuples

starting at phase p, / ^ ; ,m;, , , . . . , ẑ ; , , , . , „ , when XORed with the k

con-esponding resource blocks, yield a complex block stream. As a result, the

following blocks are all complex with respect to the p and 7 complexity measures:

Ro®fiJp ,Ri ® W/,+yv'---'^^-i ©"'/T+(A-i)yv The overiap between consecutive

N-tuples is specified by d. These k blocks are called the complex resource blocks

and the process of converting the resource file stream into complex blocks is called

M-sequence Block Stream Conversion (MBSC).

7. Embed the phase key (the N-tuple starting at phase p) and the k complex resource

blocks in (k+1) consecutive complex 8x8 regions in the bit-plane base image.

These (k+1) blocks can be found out by finding the ones in the complexity matrix.

8. Clear the resource file stream.

9. Put back the 24 bit-planes together to form 3 color planes, R,G and B, and convert

from CGC to PBC and save the image, either under a new name or under the same

name as its original to eliminate suspicion. This is the encoded image.

3.8 Decoding Procedure

Again, the function of the decoder is to reverse the modifications done on the

resource file and retrieve them without any errors. The encoding module ensures that

those blocks that were complex in the bit-plane base image are again complex in the

encoded image, and the decoder can tread through these complex blocks and decode

the relevant information. The decoding procedure can be summarized as follows:

1. Read the encoded image, convert the intensity values into Gray code (CGC) and

perform bit-plane decomposition.

34

2. Determine the complexity thresholds, pth and yth, for each plane using equations

3.10 and 3.11. For each exclusive 8x8 block in the bit-plane image, calculate the

complexities p and 7. If the complexities of the block satisfy equation 3.9, mark the

8x8 block to be complex. This is done by marking up a ' 1 ' on the complexity

matrix, in the same way as in the encoder. Follow the same bit-plane order as in the

encoder to ensure that the blocks are decoded in the same order as they were

encoded.

3. From the first 2 complex 8x8 blocks, decode the 2N-tuple M-sequence key. If the

generator polynomial for the LFSR is varied for each time the encoder is used, this

M-sequence key can be used to find out the generator polynomial.

4. The next complex block has the phase key needed to decode the first k blocks. This

phase key is used to generate the next k m-blocks, m^ ,m^^^,..., m^^,,.,,^ , that

can be simply XORed with the next k complex blocks (read into a stream of k 64-

bit blocks in a row major order) to retrieve the original resource blocks. The first

byte of the first retrieved block is the number of embedded files, n. The next three

blocks are the extemal file header (FH) inserted by the encoder, the first 18 bytes

of which contain the file name and the last 6 bytes contain the file size. Use the file

size parameter to recover the rest of the files, keeping in mind that every (k+1)"'

block is a phase key that is to be used to recover the following k blocks. The

number of k-block streams, including the first k-block stream that contains the

headers, over which the first file is stored is ceil{(filesize + 4)l(S*k)), where

ceil(x) of a real number x is the smallest integer greater than x. Save the recovered

file either under the original name, which is the 18 byte file name parameter of FH,

or under a different name. Repeat step 5, (n-1) times.

5. Retrieve the phase key, from the next complex block, and use it to recover the next

k blocks. The first three 8x8 blocks have the 24 byte FH. Again, use the file size

parameter, which is the last 6 bytes of the file header, to recover the rest of the file.

The number of k-block streams to be recovered to entirely recover the file

is ceil((filesize + 4)/(8 * k)). Save the recovered file (similar to the first file).

35

3.9 Calculation for the Total Overheads

As explained in section 2.7 for the original BPCS technique, the exact

overheads can be calculated based only on the exact size of the embedded files.

However, an estimate of the overheads can still be determined. Let 'n' be the number

of files to be embedded, Nj, i = 1, 2 ... n, be the size of each file. A one-fime 8-byte

overall header and a 24-byte file header, for each file, are added to the encoded

image. For every k 8x8 blocks of each resource file, an 8-byte (one 8x8 block) phase

key, p (say), is added and a one-time 16-byte M-sequence key, M (say), is added to

the encoded image. Let Fi be the size of each file. Putting all these together,

Total overhead = OH +Y^ FH . + M +Y^ K .p (3.18)
/ = ! (=1

Ki is the number of phase keys needed for file i and is given by,

[ceil ((F, + 4)/A: *8) for i = l 1

[cei/((F. + 3) / Jt * 8) for i = 2, 3 ... n J

Substituting the values for OH, FH, M and p in 3.18,

n

Total overhead (in bytes) = 24 + 24 * n + J] (K; * 8) (3.20)
! = 1

The total overhead will be minimized when the argument inside the ceil

function in equadon 3.19 is an integer. When a single large file is embedded, instead

of a number of smaller files, the FH and OH tend to become very small in comparison

to the phase key overhead. The total overhead then depends almost entirely on the

factor k and is approximately equal to 1/k. For the value of k used in the

implementation, k = 200, the overhead is approximately one byte for every 200 bytes

of resource file. This is less than one third of the overhead for the original BPCS

scheme, which was proved to be approximately equal to one byte for every 63 bytes

of the resource block (see section 2.7).

36

3.10 Suggestions for Improvement

The biggest problem with the M-sequence method for making the blocks

complex is that a phase key needs to be embedded once every k blocks. If k is too

large then finding a phase of the M-sequence that produces k M-blocks that result in a

complex resource block stream (of length k) becomes extremely time-consuming.

This could be an even bigger problem for the higher bit-planes, where the threshold

complexity is high. Consider a case where k is fixed at 1000. If a phase is found such

that only 999 consecutive resource blocks can be converted into complex blocks, at

this phase, the encoder has to restart the process of finding a phase and it could take a

long time before 1000 consecutive M-blocks, to produce 1000 complex resource

blocks, are found. However, the lower bit-planes (3 LSB planes for each color) have a

zero threshold for P and 7, and hence any phase of the M-sequence would work. For

these planes, k can be fixed arbitrarily large.

One solution would be to fix a different k for the lower bit-planes than for the

more significant bit-planes. A more generic solution would be vary k adaptively and

inform the decoder about it. An extra block could be embedded as a header to each k

block stream, specifying the value of k. The difficult part, however, is to ensure that

this header block is always complex. Figure 3.8 gives a solution for this problem.

X

X

y
y
y
y
y

y

X

X

y
y
y

y
y

y

X

X

y

y
y

y

y
y

X

X

y
y
y
y

y
y

X

X

y
y
y

y
y

y

x
X

y
y
y

y
y

y

X

X

y
y
y
y

y
y

X

X

y
y
y

y
y
y

(a) Header block
format

(b) An example
Header block

Figure 3.8 Format and example of the new block

37

In Figure 3.8(a), the pixels marked 'x' are the pixels (bits) used to embed the value of

k. For this scheme to have a lower overhead than the original BPCS scheme, the

value of k needs to be greater than 126 (approximately), because of the extra one

block (8x8 block) overhead for each complex resource block stream. The encoder

finds the first phase of the M-sequence, starting from a given seed, such that k lies in

[127, 65535] (the upper limit results from using 2 bytes for k), which results in a

complex resource block stream. Once the value of k has been found, the pixels

marked 'y' in figure 3.8(a) are tweaked so that the complexity measures of this block

are greater than the thresholds for the plane in which the block is to be embedded. An

example, when k is 128, is shown in Figure 3.8(b). The last six rows in the 8x8 block

have been adjusted so that the p value of the block is 0.7464 and 7 value is 0.4232,

which are greater than the thresholds for any plane. In fact, the values for the last six

rows shown in Figure 3.8 (b) works for most values of k, and instead of scouting for

completely random values, a template of values for the last six rows could be

maintained and the random scouting for the pixel values could be used only when all

the values in the template fail.

In summary, the P and 7 complexity measures can be used to effectively

describe the complexity of images. Combined with MBSC, these measures can be

used with the BPCS scheme to hide large amounts of data in images. The

effectiveness of the schemes presented in chapters n and III are compared, analyzed

and interpreted in the following chapter.

38

CHAPTER IV

RESULTS AND CONCLUSION

In this chapter, the performance of the new method, presented in chapter III, is

compared with the performance of the original BPCS scheme, presented in chapter II,

and the preeminence of the former is substantiated with appropriate results. First, the

original BPCS scheme was implemented as explained in sections 2.5 and 2.6. The

results obtained were further improved by applying the methods suggested in section

2.8. The new complexity measures with MBSC were then implemented to overcome

the shortcomings of the a measure used in chapter II. Finally, a Graphical User

Interface (GUI) was developed to provide a user interactive interface to hide data files

in images (See Appendix). All the coding and simulations were done using

MATLAB.

4.1 Original BPCS Scheme Using a Complexity Measure

The results obtained by applying the original BPCS scheme and some variants

suggested in chapter II are shown in figure 4.1. For any steganography scheme to

work, it is necessary that the base image has a lot of high frequency features and

colors. This ensures that there are a lot of complex regions in the image, which

increases the amount of data that can be hidden in the image, and that the encoded

image doesn't look visibly different from the original. The Baboon image, shown in

figure 4.1(a), is probably the perfect image for steganographic applications. The

image is a 512x512, 24 bits per pixel (bpp), bitmap color image. The image is about

786KB in size and, depending on the method used and the number of files embedded,

it can be used to hide up to 520KB of data. The methods are evaluated based on

amount of data they allow to hide and the distortion the hidden data causes on the

original image.

39

'•^..•l^Kf,:; ••,., .̂^

(a) Original 512x512 image

(c) Descending order of bit-planes

(b) A 128x128 section of (a)

- ^̂ 5 ^•i> t

(d) Ordered bit-planes

(e) Adaptive a (f) Compressed data files, adaptive a

Figure 4.1 Images showing the result of applying the BPCS scheme and other variants
suggested in chapter II

40

Image

(c)

(d)

(e)

(f)

Max. embeddable

(bytes)
532270

532270

469909

469933

Bytes embedded

(bytes)
309090

309090

309090

308276

% of max

embedded
58.07

58.07

65.77

65.59

PSNR

(dB)
22.6848

35.0760

35.2949

35.3363

(g) Table comparing the images (c)-(f) with respect to data embedded and PSNR

Figure 4.1 Continued

Other than m the case where the data is embedded using a descending order of

bit-planes ([24, 23 ... 3, 2, 1]), there is no visible degradation of the original unage if

the images (origmal and the encoded image) are viewed in thek original sizes.

However, if the images were zoomed to larger sizes, say 2:1 or 3:1, the pixel pattems

start to reveal some discrepancies from the original image. For this reason, only a

small 128x128 section, containing a good sample of all the colors in the original

image, is used for analysis. Figure 4.1(b) shows one such section, zoomed to twice its

original size. Figure 4.1(c) shows the same 128x128 section of the encoded image,

where the encoded image is the original image, shown in Figure 4.1(a), with 309090

bytes of hidden information. The encoder in this case follows the descending order of

bit-planes rule wherein the blue plane is embedded before the green and red planes. It

can be easily seen that this image has more blue regions than in the original image.

Since the amount of data hidden in the original image is only 58.07% of maximum

amount of data that can be hidden in the image (from Figure 4.1 (g)), the data has been

hidden almost completely m the blue planes. This causes the image to look visibly

different from the original image and resuhs in a low PSNR.

41

Figure 4.1(d) shows the result of embedding in the lower bit-planes of each

color before starting with the higher bit-planes. The order explained in section 2.8

was used. It is easily seen that this image looks very similar to the original image and

this is reflected on the high PSNR value obtained for this image. Figure 4.1(e) is the

section of the encoded image in which the thresholds for the bit-planes are fixed

according to equation 2.8. The improvement in image quality, over 4.1(d) which uses

a fixed threshold of 0.3, is actually much better than indicated by the improvement in

PSNR. Figure 4.2 shows the number of embeddable blocks in each bit-plane using a

fixed threshold scheme and an adaptive threshold scheme.

4500

4000

3500

3000

3 2500

e 2000

1500

1000

500

Comparison of number of embeddable blocks for the 2 methods

Adaptive threshold
Fixed threshold

10 15
Bit Plane Number —>

25

Figure 4.2 Graph comparing the number of blocks modified in each plane using fixed
and adaptive thresholds

It is apparent that the adaptive threshold scheme uses fewer of the more

significant bit-plane blocks than the fixed threshold scheme. This is important as

42

modifying the more significant bit-planes tend to cause visible distortion to the image

and make them more suspicious. However, the compromise is the reduction in the

maximum amount of data that can be hidden in the base image. The effective amount

of information hidden in the image can be increased by passing the resource files

through an entropy coder. In general, MS Word and PDF documents can be

compressed to half their original sizes (on average). Figure 4.1(f) actually contains

641245 bytes, which is actually about 82% of the size of the image, compressed to

less than half its size by passing it through an Adaptive Arithmetic Encoder [10]. The

entropy encoder also helps in making the resource file blocks complex, as they try to

pack in the information bits together by removing redundancies. Since most

documents have long runs of blank spaces, using an entropy coding module dispenses

with having blocks like the one shown in Figure 2.3 (c) embedded throughout the

image.

The table in Figure 4.1(g) summarizes the results discussed above. The PSNR

was found using the relation in equadon 2.7. Although, the PSNR is used as the

measure to evaluate the distortion, it does not describe the effectiveness of data hiding

methods perfectly as most data hiding methods rely on explicitly modifying the

intensity values, which affect the PSNR. The way the PSNR is calculated, even for

the same size of the data embedded, the content of the resource files and the order in

which the files are embedded can cause the PSNR values to be different. The amount

of data stored in image 4.1(f) is not same as the amount of data stored in the other

cases, as it is difficult to predict the exact size of the files post compression.

4.2 New Complexity Measures with MBSC

The result obtained by applying the complexity measures, p and 7, combined

with MBSC, is shown in Figure 4.3. Figure 4.3(a) is the same 128x128 secdon of the

Baboon image as in Figure 4.1(b) and Figure 4.3(b) is the corresponding section of

the encoded image, encoded using the P and 7 measures.

43

(a) Section of original image (b) Section of encoded image

Image Max. embeddable

(bytes)

Bytes embedded

(bytes)

% of max embedded PSNR

(dB)

(b) 476657 309090 64.84 36.0701

(c) Statistics of the encoded image

Figure 4.3 Data hiding using the P and 7 measures

It is readily seen that there is no perceptible difference between the original

and the encoded images. Also, using the P and 7 measures provides a greater capacity

than the corresponding BPCS variant (BPCS using adaptive a. Figure 4.1(e)). The

PSNR of the encoded image in Figure 4.3(b) is significantiy higher than the PSNR for

any of the images obtained using the BPCS technique with the a complexity measure.

44

4.3 Variation of PSNR with Amount of Data Embedded

The PSNR of the encoded image depends almost exclusively on the amount of

data embedded. As the amount of data embedded in the original image increases, the

number of areas in the original image also increases. This causes the PSNR to

decrease as the Mean Squared Error (MSE), and hence the Normalized Mean Square

Error (NMSE), between the original and the encoded image increases. A plot of the

PSNR for various percentages of data embedded (with respect to the maximum

embeddable), for the baboon image, is shown in Figure 4.4. The variation is almost

perfectly lineai".

55

50

45

A
I

CO

S 4 0
en
•z.
w

Plot of % of Max. embedded vs PSNR

35

30

25
20 30 40 50 60 70

% of maximum embeddable —>
80 90 100

Figure 4.4 Plot of percentage of maximum data embedded with PSNR

4.4 Dependence of Embedding Capacity on the Base Image

The resource files are embedded in complex regions of the base image. If the

image has a smooth background and if the objects in the image itself are plain, with

very few features, the image forms a very bad base image with very low capacity.

45

Figure 4.5(a)-(c) show three standard images, which are used to test image processing

algorithms, and the maximum amomit of data that can be hidden in them, using the p

and 7 measures. In all the cases, it is assumed that a single large file is being

embedded into the base image. Even from the appearance of the images, the Baboon

image can be expected to have a much larger capacity than Airplane and the Fruits

images. This is also reflected on the actual values.

(c) Baboon
Max. Capacity
476609 bytes

(b) Airplane
Max. Capacity
353377 bytes

(a) Fruits
Max. Capacity
343538 bytes

Figure 4.5 Three test images and their maximum capacity

4.5 Conclusions

In conclusion, it can be seen that BPCS steganography can be effectively used

to build a system that hides large chunks of data in images. The variations to the

original scheme, introduced in section 2.8, significantly improve the performance of

the original scheme. The p and y complexity measures, used in combination, are

better representative of the complex regions in the image than the a measure, and

combined with the theory of M-sequences, they provide a high-capacity, low-

overhead, technique for hiding data in images.

46

4.6 Future Scope

The future of this work lies in extending it to existing lossy compression

schemes and providing improved security against hackers. In [13] the authors extend

the BPCS technique to the popular embedded zerotree wavelet (EZW) scheme and

claim that it could be extended to other wavelet-based, low bit-rate codecs. Since

most images are compressed prior to transmission, applying the BPCS technique in

the transform domain (wavelet domain in this case) improves the robustness of the

embedded data to image compression. However, the embedding capacity is

substantially reduced. The steganography method presented here can also be

combined with some cryptography method to keep the data non-decipherable even if

it were detected. The reserve bytes in the header could also be used to encode a

password or a key, which would have to be matched to decode the rest of the data.

47

REFERENCES

1. Eiji Kawaguchi, Richard O. Eason, "Principle and Applications of BPCS-
Steganography." SPIE's International Symposium on Voice, Video and Data
Communications, (1998-11).

2. Neil F. Johnson, Zoran Duric, Sushil Jajodia, Information hiding:
Steganography and Watermarking- Attacks and Countermeasures, Kluwer
Academic Publishers, 2001.

3. John F. Wakeriy, Digitcd Design Principles and Practices, II ed.. Prentice
Hall, 1990.

4. Eiji Kawaguchi, Michiharu Niimi, "Modeling Digital Image into Informative
and Noise-Like Regions by Complexity Measure," Information Modeling &
Knowledge Bases IX, lOS Press, pp.255-265, April, 1998.

5. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing 2nd ed.,
Pearson Education Asia .Singapore, 2002.

6. Richard Eason, "A Tutorial On BPCS Steganography and Its Apphcations,"
Proceedings of Pacific Rim workshop on Digital Steganography 2003, pp. 18-
31 (invited paper), Kitakyushu, Japan, July 2003.

7. Hioki Hirohisa, "A Data Embedding Method Using BPCS Principle With
New Complexity Measures," Kyoto University, Japan. http://www.i.h.kyoto-
u.ac.ip/%7Ehioki/research/DH/hioki steg02 revised paper.pdf

8. V. N. Yarmolik, S. N. Demidenko, Generation and Application of
Pseudorandom Sequences for Random Testing, John Wiley & Sons, 1988.

9. New Wave Instruments, "Linear Feedback Shift Registers - Implementation,
M-sequence Properties and Feedback Tables", http://www.newwaveinstru-
ments.com/resources/articles/m sequence linear feedback shift register Ifsr
.htm

10. Ian H. Witten, Radford M. Neal, John G. Cleary, "Arithmetic Coding for data
Compression," Communications of the ACM, June 1987, Volume 30, No. 6.

48

http://www.i.h.kyotou.ac.ip/%7Ehioki/research/DH/hioki
http://www.i.h.kyotou.ac.ip/%7Ehioki/research/DH/hioki
http://www.newwaveinstruments.com/resources/articles/m
http://www.newwaveinstruments.com/resources/articles/m

11. Stefan Katzenbeisser, Fabien A. P. Petitcolas, Information Hiding -
Techniques for Steganography and Digital Watermarking, Artech House, Inc.,
2000.

12. Peter Wayner, Disappearing Cryptography - Information Hiding:
Steganography ^Watermarking, II ed., Morgan Kaufmann Publishers, 2002.

13. Hideki Noda, Jeremiah Spaulding, Mahdad N.Shirazi, Michiharu Niimi, Eiji
Kawaguchi, "Application of Bit-plane Decomposition Steganography to
Wavelet Encoded Images", Proceedings of the IEEE International Conference
on image Processing , Rochester, NY, September 2002, pp. II-909-II-912

14. X.-G. Xia, C. G. Boncelet, and G. R. Arce, "A muldresoludon watermark for
digital images," Proeedings of the IEEE International Conference on image
Processing, Santa Barbara, CA, October 1997, pp. 548-551.

15. Ki-Hyeok Bae, Sung-Hwan Jung, "A New Information Hiding Using Wavelet
Coefficient Relation in JPEG 2000", Dept. of Computer Engineering,
Changwon National University, Korea.

16. The Mathworks Inc., Image Processing Toolbox 4.1.

49

APPENDIX

This section contains screenshots of the MATLAB GUI developed for

embedding data into images and retrieving the information from encoded images.

When the GUI is initially loaded, the menu shown in Figure A.l is displayed. This

menu lets the user select between the encoder and the decoder, which are shown in

Figures A.2 and A.3, respectively. The encoder lets the user embed up to five files

into the base image and displays the statistics like the maximum amount of data that

can be embedded, size of the data actually embedded, encoding time, PSNR of the

encoded image etc. The decoding module retrieves the resource files from an encoded

image.

•3 encodf?jgui BMilfllilllllif'llin'lllll 11̂ —\—nrr- fpimiffftnyimii—'iZ,i-- -t

MAIN MENU

Do you want to ..

Encode 1 Decode

Ezil 1

»i^™Bmjmai.-'»_|l.,| X|

Figure A. 1 Main menu

50

Base tmage to hide dala

hnage with embedded data

ENCODE DATA

Load the image lo hide data

MoK slorable: 87112 bytes

Load file 1

Load (ile 2

Load file 3

Load file 4

Load [ile 5

Lo.vl;,-,.-.,^ II (-

Finished embedding

Number of file(s) 5
Total size : 65944 b^ites

% of h^ax storable : 75.7002
Final PSNR 39.0453dB
Encoding time 9,744 Sees

l^ain menu!

^

Load

I M J J

, , - ,-„ .

1 , , . •

L...>J

r,-,h.-<1

Exit

II

II
II
P
II
II
II

II

JnJLiSi

Figure A.2 Encoding module

9SB&

Image to extract daita from
DECODE DATA

Load the image to decode data L - B J 11

File number 1 extfacted. .
File name: m_secLgen_new.m

,Re si?e; 3G2

File number 2 extiacted...
File name • myself new. doc

File size 30208
File number 3 extracted .

File name oora new new.doc
File size: 25600

File number 4 extracted...
File name : results new txt

File size 1892

File number 5 extracted...
RIe name oora_new txt

,Re size- 2440

Decode a total of 5 files
Decoding time 21 121 Sees

Mainmenul j ^wt |j

Figure A.3 Decoding module

51

In presenting this thesis in partial fulfillment of the requirements for a

master's degree at Texas Tech University or Texas Tech University Health Sciences

Center, I agree that the Library and my major department shall make it freely

available for research purposes. Permission to copy this thesis for scholariy purposes

may be granted by the Director of the Library or my major professor. It is

understood that any copying or publication of this thesis for financial gain shall not

be allowed without my further written permission and that any user may be Hable for

copyright infringement.

Agree (Permission is granted.)

Stv/dent Signature Date

Disagree (Permission is not granted.)

Student Signature Date

