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CHAPTER I 

INTRODUCTION 

Steganography literally means covered writing and is the art of hiding secret 

messages within another seemingly innocuous message, or carrier [2]. The carrier 

could be any medium used to convey information, including wood or slate tablets, 

tiny photographs or word arrangements. With the advent of digital technology, the list 

of carriers has been made to include e-mails, audio and video messages, disk spaces 

and partitions and images. The following work describes a method of steganography 

for hiding large volumes of data using digital images as carriers. 

1.1 Steganography. Cryptography and Watermarking 

Steganography is commonly misinterpreted to be cryptography or 

watermarking. While they are related in many ways, there is a fundamental difference 

in the way they are defined and the problems to which they are applied. 

Steganography hides the very presence of secret data in the carrier, and when 

implemented in its pure form, a hacker can easily decipher and interpret the secret 

data once the presence of hidden data is detected. In cryptographic applications, the 

presence of secret data is not deliberately concealed, but the secret data is encrypted 

so that a hacker cannot easily decipher the secret data from its encrypted counterpart. 

In other words, while steganography makes the process of detecting the presence of 

secret information difficult (but allows easy decipherability), cryptography makes 

deciphering and interpreting the secret information difficult (but keeps its presence 

open). 

Hiding information to protect text, music, movies, and art is usually called 

watermarking, a reference to the Hght image of the manufacturer's logo pressed into 

paper when the watermarked object was made [12]. A watermark usually specifies 

information about the creator of the document, and how and who could use the 

document. In the case where the watermark is kept invisible, watermarking can be 



viewed akin to steganography [11]. In general, watermarks are more robust to 

malicious data processing than the secret data embedded using steganographic 

techniques. 

1.2 Steganography Model 

A model for hiding information in a carrier, using steganography, is shown in 

Figure 1.1 [2]. 
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Figure 1.1 Steganography model 

The stegokey is a password that may be used to encode the secret information 

to provide an additional level of security. The steganography application is an 

algorithm that that hides the secret message in the carrier, using the stegokey if 

necessary, and yields the stego-media. 



1.3 Hiding Data in Images-Image Steganography 

While there are numerous carriers available, the use of digital images as 

carriers is of particular interest. Even though audio and video files offer a much 

higher capacity to hide information, digital images are more easily disguised and can 

be exchanged on a much lower bandwidth. Image steganography techniques can be 

broadly classified into two categories-spatial domain techniques and transform 

domain techniques. Spatial domain techniques directly modify the image intensity 

values to embed the secret information. The most common spatial domain technique 

is the least significant bit (LSB) manipulation technique, where the LSB of the each 

intensity value is replaced with one bit of the secret data. Other spatial domain 

techniques include contrast adjustment, noise insertion etc. Transform domain 

techniques modify the transform coefficients of the image. The transform coefficients 

are obtained by applying transforms, such as the Fourier transform, discrete cosine 

transform or the wavelet transform, to the image [14, 15]. Since most images are 

compressed by manipulating transform domain coefficients, the transform domain 

techniques add a fair amount of robustness against the destruction of the secret data 

due to lossy image compression. 

1.4 Apphcations of Image Steganography 

Steganography finds tremendous scope in areas, where there is a need to 

protect the privacy of information or securely transmit covert information. Consider 

the case of a spy satellite in orbit. It could be easily made to appear as a regular 

weather satellite and if a high capacity image steganography system were available, 

the covert information the satellite gathers could easily be hidden in commonplace 

weather images. Steganography techniques can also be used to hide classified patient 

information in X-ray and scan images of the patient. This provides a secure method of 

associating patient records with their own X-rays and scans. Image steganography 

could also be used to embed secure information like customer name, account 

information and key presses in ATM camera feeds and numerous other legal 



applications. Of course, it could also be used for various illegal applications like 

storing inappropriate material on shared computers and smuggling proprietary 

information from offices. 

In this work, a spatial domain technique, called bit plane complexity 

segmentation (BPCS) steganography [1] that allows for hiding large chunks of data in 

images, is discussed and evaluated. Subtle and radical variations to the existing 

scheme are suggested and proven to provide a much higher capacity with a 

significantly improved PSNR. 

The remaining chapters are organized as follows. Chapter II describes the 

BPCS scheme and some subtle variations to the original scheme to improve its 

performance. In Chapter III, the shortcomings of the complexity measure used in the 

traditional scheme are discussed and measures to overcome these shortcomings are 

presented. In the final chapter, the results obtained by using the techniques discussed 

in Chapters II and HI are compared and conclusions drawn. 



CHAPTER II 

BPCS STEGANOGRAPHY 

Bit Plane Complexity Segmentation (BPCS) was introduced in 1998 by Eiji 

Kawaguchi and Richard O. Eason [1] to overcome the shortcomings of the traditional 

Least Significant Bit (LSB) manipulation techniques [2]. While the LSB 

manipulation technique works very well for most gray scale and RGB color images, it 

is severely crippled by its limitation in capacity, which is restricted to about one-

eighth the size of the base image. BPCS is based on the simple idea that the higher bit 

planes could also be used for embedding information provided they are hidden in 

seemingly "complex" regions. 

2.1 Complexity Measure 

The first step in BPCS Steganography is to find "complex" regions in the 

image where data can be hidden imperceptibly. There is no universal definition for 

the complexity of an image (or a region of an image). Kawaguchi and Niimi discuss 

two different complexity measures, one based on the length of the black-and-white 

border and another based on the number of connected areas that could be used to find 

the complex regions in an image [4]. 

2.1.1 Complexity measure based on the length of black and white border, a 

This measure is defined on the 4-connected neighborhood of a pixel. The total 

length of the black-and-white border is defined as the sum of the color changes along 

the rows and columns in the image. For example, a single white pixel surrounded by 

4 black pixels, i.e., having all its 4-connected neighbors as black pixels, will have a 

border length of 4 (2 color changes each along the rows and columns). Extrapolating 

this idea to a square binary image of size 2*̂  x 2'̂ , the minimum border length 

possible is 0, obtained for an all white or all black image, and the maximum border 

length possible is 2 2̂̂ ^ *(2^ - 1), for the black and white checker board pattern ((2^ -

1) changes along each of the 2*̂  rows plus the same along the columns). The image 



complexity measure, a, is then defined as the normalized value of the total length of 

the black and white border in the image, i.e. 

" = 2 x 2 " x V - l ) • 0^*^<2-2"-(2"-l)) . (21) 

here k is the actual length of the black and white border in the image. It is evident that 

a lies in [0, 1]. 

2.1.2 Complexity measure based on the number of connected areas, P 

This measure is again based on the 4-connected neighborhood, p is defined as 

m 
fi = Y ^ . (2.2) 

here m is the number of connected areas in the 2*̂  x 2*̂  square binary image. It is 

easily seen that P lies in [1/(2^ x 2"̂ ), 1] with the maximum in the range obtained for 

the checker board pattern and the minimum obtained for the plain white or plain black 

image. 

The assumption that the image is a square of size 2^ x 2"̂  severely cripples the 

applicability of these measures to all images, considering that images are not always 

perfectly square. To make these complexity measures more generic, they are applied 

to each exclusive 2" x 2" block, where n is typically between 2 and 4, of any MxN 

image. The only condition is that both M and N have to be divisible by 2". This limits 

higher values of n. Very small values for n (n = 1, 2) provide too much spatial 

localization for the complexity measures to be meaningful. In practice, n is fixed at 3 

so that the complexity measure is applied to each exclusive 8x8 block of the image. 

Figure 2.1 (a) and (b) show the a and p values for 2 typical 8x8 blocks. In 

practice is it found that, for 8x8 blocks, the a measure is more or less uniformly 

distributed in [0, 1] while the p measure tends to have a definite peak at P = 0.2 [4]. 

Hence the a measure is preferred for the BPCS application and is the only complexity 

measure discussed in the rest of this chapter. As already mentioned, the maximum 

values for a and P are obtained for the black and white checker board pattern shown 

in Figure 2.1 (c). 



™K 
Figure 2.1 a and P values for some 8x8 blocks 

2.2 Canonical Gray Coding System 

The complexity measures defined in Section 2.1 are defined only for binary 

images. Each 8-bit grayscale image can be spht into 8 binary planes, one plane for 

each of the 8 significant bits in the 8-bit binary representation of image intensity 

values. 24-bit color images are composed of three 8-bit planes, one each for Red, 

Green and Blue and can be split into 24 binary planes. The operation of splitting the 

image into its constituent binary planes is called Bit-Plane Slicing [5]. Bit-plane 

shcing can be done in the Pure-Binary Coding system (PBC) wherein the intensity 

values (for each plane in the case of RGB images) are represented as 8 bit binary 

numbers, but it suffers from a serious drawback. Consider an 8-bit image where a 

large portion of the image is composed of pixels whose intensity values alternate 

between 127 and 128. 127 is Oil HI 11 in binary and 128 is 10000000. Thus all 8 

corresponding bit-planes for the 2 pixels are different (coding theory people would 

say the 'distance' is 8). This idea of two numbers being very similar in value yet 

differing greatly in their binary representation, on a bit by bit basis, is called the 

"Hamming Cliff [6]. In such a region, if these 2 gray levels are sufficiently randomly 

distributed, all the 8 planes, including the MSB plane, corresponding to these regions 

would appear complex and hence would be replaced by data to be hidden. After 



embedding, 01111111 could easily become 11111111 and 10000000 could become 

00000000 and what was an intensity difference of just 1 gray level and was rather 

unnoficeable, now becomes a difference of 256 and appears as an eccentric white 

pixel next to a black pixel or vice-versa. 

This problem is easily alleviated by using the principle used in some 

electromechanical applications of digital systems where sensors are required to 

produce digital outputs that represent a mechanical position [3]. The coding system 

used is called the Canonical Gray Coding System (CGC), where successive decimal 

numbers differ in their representation by just one bit. It is a canonical system, as the 

binary system and the gray code system share a one-to-one correspondence. The 2 

numbers in the above example, 127 and 128, would be represented in CGC as 

01000000 and 11000000, respectively, and hence would not differ by more than 1 bit. 

Thus, the first step in BPCS Steganography is to convert the absolute intensity values 

(it is assumed that they lie in [0, 255]) into CGC by a 1-to-l, PBC-to-CGC mapping. 

This is followed by bit-plane decomposition on the CGC values, and the 8 binary 

images obtained are called the CGC images. The CGC images don't suffer from 

Hamming cliffs as regions that are rather smooth in the original image result in very 

few changes in the higher bit planes, and these regions are appropriately determined 

unsuitable for embedding data. 

Since 24-bit RGB color images provide a very high capacity for data hiding 

applications, all the following sections are discussed with 24-bit RGB images as 

reference. BPCS Steganography can also be applied, effectively, to 8-bit grayscale 

images. 

2.3 Resource Blocks and the Conjugation Operation 

Once the 24-bit image (base image) has been split into its 24 constituent bit-

planes, and the complexity, a, of each exclusive 8x8 block in each of the 24 bit-

planes has been found, the complexity of each block is compared with a threshold, ao. 

If a > ao, the block is deemed complex enough to be replaced by data blocks. The 



standard value used for ao is about 0.3. The data chunks that replace the complex 

blocks in the bit-plane image are called Data Blocks or Resource Blocks. The 

resource blocks are chunks of data obtained from any ASCII-encoded file (data or 

image files that can be read as a string of ACSII characters) called the Resource File. 

The resource file could be a text file or a Word document or even an image. Each 8 

byte block of a resource file forms an 8x8 resource block with the 8-bit binary 

representation of each byte forming the row of the 8x8 block. For example, a 

sequence of 8 characters from an MS word document 'This one' (8 characters 

including the blank space) would form an 8x8 resource block as shown in Figure 2.2 

(a) and a block of 8 consecutive blank spaces would form a block as shown in figure 

2.2 (b) since, 'T' is 01010100, 'h' is 01101000, blank space is 00100000 (32 in 

ASCII) and so on. 
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Figure 2.2 Resource blocks corresponding to 2 different 8-character sequences 

After the resource file is broken into 8-byte chunks and cast into 8x8 binary 

resource blocks, they are ready to replace the complex blocks in the bit-plane images, 

however, with one problem. A complex block denotes a block that appears noisy, and 

modifying such a block wouldn't be perceptible, unless, the modification results in 

making the block less complex than the threshold complexity value, ao. Consider the 

block shown in Figure 2.2 (b). This is a frequently encountered block as Word 

documents contain numerous stretches of blank space. 



The complexity of this block is 0.1429, which is far less than the ao value 

usually used. If this block replaces a complex block in the bit-plane image, a definite 

discrepancy arises, especially if it is in one of the higher order bit-planes. Also, the 

decoding module will not recognize the block, as it assumes that only the complex 

blocks have been replaced and hence only the complex blocks have valid informafion. 

To overcome this problem, the conjugation operation is introduced. 

Figure 2.1 (c) shows the most complex 8x8 block possible, with a complexity 

of 1. This block is denoted as Wc with its top-left value being 1. A similar checker­

board pattern with complexity 1 can be formed with the top-left value to be a 0, and 

that is denoted by Be. The all white and all black blocks are denoted by W and B. Wc 

is used for all future explanations, although all of it would apply to Be as well. The 

Wc block has a special property that when it is XORed (exclusive OR operation) with 

a non-complex block, P (say), of complexity say an < ao, then the resulting block, P*, 

has a complexity of (1 an) > ao. As with any XOR operation, the block P can be 

easily retrieved by XORing again with Wc. This operation of changing the complexity 

of a block by XORing with Wc is called the conjugation operation and is denoted by 

'*'. Figure 2.3(a) shows a non-complex (or simple) block, P (say), 2.3(b) is the 

perfectly complex block, Wc, and 2.3(c) is the conjugated block, P*, obtained by 

XORing corresponding pixels in Figures 2.3(a) and (b). 

(a) Non-complex (b) Perfectly complex (c) Conjugated block, P*, 
block, P, a = 0.1429 block. We, a = 1 a = 0.8571 

Figure 2.3 Example to illustrate the Conjugation operation 
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The 2 important properties of the conjugation operator can be summarized as: 

1. a(P*)=l-a(P) 

2. (P*)=̂  = P. 

The first property is used at the encoder to make the non-complex resource blocks 

complex, while the second property is used at the decoder to retrieve the original 

block. 

It happens that not all the resource blocks need to be made complex, as most 

of them are complex on their own. h becomes important to keep track of which 

blocks have been conjugated. This is done by using a Conjugation Map. For every 8 

byte block of the resource file, one bit is appended to the conjugation map to indicate 

if the block has been conjugated. A ' 1 ' implies the resource block has been 

conjugated, while a '0' implies the resource block was embedded as is. The 

conjugation map is finally embedded after embedding all the resource blocks. 

Again, it is possible that the conjugation map itself, when cast into 8x8 blocks, 

may not form a complex block, and it becomes necessary to specify a conjugation 

map for the conjugation map. This problem can be resolved in one of the following 

two ways: 

a. Form the conjugation map for the conjugation map and embed the same into some 

known complex section of the image, for example, the LSB planes. 

b. Read the bits in the conjugation map in blocks of 63 bits (padding the last block 

with zeros if necessary). Cast them into 8x8 blocks, making the first bit (top left 

bit) zero. If the block is complex, then embed it 'as is'. If it is not, then conjugate 

the block. The conjugation process automatically makes the top-left bit a one. 

This bit can be used by the decoder to understand that the block was conjugated at 

the encoder. 

This implementation uses the second method as it offers greater flexibility when 

dealing with images that may not necessarily have complex LSB planes. 

11 



2.4 File Headers and Other Overheads 

Each type of file (documents or images) has its own header which is included 

when the resource file is read, but some additional information about the file, like the 

file size, file name etc., must to be embedded with the file in order to perfectly 

reconstruct the files at the decoder. This information is attached as a 24-byte extemal 

header, for each file, and is embedded before each file. This is denoted as FH for File 

Header. The FH reserves 18 bytes for the file name with its extension, read as a 

string, and 6 bytes for the file size. Each byte in the 'file size' section of the header 

represents a digit. This fixes the maximum size of a single resource file to 999,999 

bytes. Also, the encoder needs to make note of the number of files, n, it is embedding. 

This information is embedded as the first byte of an 8-byte Overall Header denoted 

OH. The rest of the OH is reserved for future use and the OH is embedded as the first 

block, before any file is embedded. 

With all this information embedded with the resource files, the decoder only 

needs the encoded image (base image in which the resource files have been hidden) to 

retrieve all the information about the resource files including their names and sizes. 

After embedding all the headers and the respective resource files with their 

conjugation maps into the complex sections of the CGC bit-planes, the 24 bit-planes 

are put together, in sets of 8 each, to form an RGB image, and then they are converted 

back to PBC by using a Gray to Binary lookup table. This image is then saved as the 

encoded image, either with the same name as the original, wherein it replaces the 

original image, or with a new name. 

2.5 Encoding Procedure 

The steps involved in the encoding procedure can be summarized as follows: 

1. Read the image, convert the intensity values into Gray code and perform bit-plane 

decomposition. 

2. Determine a threshold for the complexity, ath. For each exclusive 8x8 block in the 

bit-planes, calculate the complexity a. If a > ath, mark up the 8x8 block to be 

12 



complex (say by marking it up with 1. For a 512x512 image, this "mark up" matrix 

would be 64x64, for each bit-plane). 

3. Get the number of resource files to be embedded, n, make it the first byte of the 

Overall Header (OH), and embed that into the first complex block of the base 

image, conjugating it if necessary. Repeat steps 4 to 7 'n' times or till the 

maximum embeddable capacity is reached. 

4. Read in the resource file and form it into a sequence (or vector) of ASCII values. 

Pad the sequence so that the number of bytes in the sequence is a multiple of 8. 

This is done because the encoder embeds blocks of 8 bytes at a time. Attach the 24 

byte file header containing the file name and size to it. 

5. Read the file header, 8 bytes at a time, and form it into 8x8 binary blocks. 

Calculate a for the block and do one of the following: 

(a) If a > ath, then embed the resource block "as is" into the 8x8 block marked 

' 1' in the base image (i.e., complex block in the base image) and append a 

'0' to the conjugation map to indicate that the block has not been 

conjugated. 

(b) If a < ath, then conjugate the resource block to increase its complexity to 

(1 - a) (it is assumed that ath is less than 0.5, which it usually is) and then 

embed the resource block "as is" into the 8x8 block marked ' 1' in the base 

image. Append a ' 1' to the conjugation map to indicate that the block has 

been conjugated. 

6. Break the conjugation map into blocks of 63 bits each, padding with zeros for the 

final block, if necessary. Make the first bit (top-left bit) of an 8x8 block '0' and add 

the 63 bit block, into it, by rows. If the block is complex, embed it "as is' into the 

next available complex block in the bit-plane base image. If the block is not 

complex, then conjugate it and embed it into the next available complex block in 

the bit-plane base image. For the file header there will be just one such block. 

7. Repeat steps 5 and 6 substituting the resource file sequence for the file header. 

13 



8. Put back the 24 bit-planes together to form 3 color planes, R, G & B, convert from 

CGC to PBC, and save the image, either under a new name or under the same name 

as its original to eliminate suspicion. This is the encoded image. 

2.6 Decoding Procedure 

The work of the decoder is to systematically reverse the operations at the 

encoder. The way the encoder is organized, all the blocks that are complex in the 

original image are complex in the encoded image as well. All that the decoding 

module has to do is tread through each 8x8 block in the bit-plane decomposed image 

(after converting from PBC to CGC), check if complex and decode the relevant data. 

The decoding procedure can be summarized as follows: 

1. Read the encoded image, convert the intensity values into Gray code and perform 

bit-plane decomposition. 

2. Use the fixed threshold for the complexity, ath, and mark up each 8x8 block in the 

bit-plane image with a ' 1 ' if it is complex. 

3. Retrieve the value of the number of files embedded in the encoded image, n, from 

the first byte of the first complex 8x8 block. Repeat steps 4-6 'n' times. 

4. Retrieve the next 4 complex blocks. The first three blocks contain the file header 

and the fourth block contains the conjugation map for this header (3 bits of this 63 

bit sequence). If the top-left bit of this fourth block is ' 1 ' , it means that the block 

was conjugated and has to be conjugated again to retrieve the original information 

(Property 2 of the conjugation operator). Convert this 8x8 block into a 63 bit 

sequence (excluding the top-left bit) and use the first 3 bits of this sequence to 

reconstruct the first 3 blocks. If a bit is one then it means that the corresponding 

block has to be conjugated to retrieve the original information. These reconstructed 

blocks form the 24 byte file header-an 18 byte file name and a 6 byte file size. 

5. The number of complex 8x8 blocks that form the file, Nf, will be ceil(file size/8) 

where the 'ceil' function rounds a value to the nearest integer towards infinity. 

Retrieve these Nf blocks and their corresponding conjugation map (which would 
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have been embedded as the next (ceil(Nf/63)) complex blocks after these Nf 

blocks) and reconstruct the original file sequence, using the same procedure as for 

the file header. 

6. Save the recovered file either under the original name, which is the 18 byte 'file 

name' parameter of the file header, or under a different name, to avoid destroying 

the original file. 

2.7 Calculation for the Total Overheads 

Although the exact overhead will depend on the exact size of the file, an 

approximate estimate can be easily made. Let 'n' be the number of files to be 

embedded, Ni, i = 1, 2...n, be the size of each file and C\ be the number of bytes added 

to the conjugation map for each file i. For every 8 bytes in file i, one bit is added to 

the conjugation map and every 63 conjugation map bits form 8 bytes of conjugation 

map info (including the 1 bit for the conjugation info of the conjugation map blocks). 

Thus, in effect, 8 bytes of conjugate map info are added for every 63x8 bytes of the 

data file. Apart from this, an 8 byte overall header (OH), a 24-byte file header (FHi) 

for every file i, and an 8 byte conjugation map for each file header are added. Let Fi 

be the size of each file. Putting this together, 

n „ 

Total overhead = OH + Z J ^^^ + 8 * n + X ^ ' (2-3) 
( = 1 i= i 

Fi * 8 ^. Fi 
where Cl = ^ Ci = . (2.4) 

63 * 8 63 

Substituting for FH and OH and putting 2.2 in 2.1 we get. 

Total overhead (in bytes) = 8 + 3 2 * ^ + 2 ^ — (2.5) 

The total overhead will be minimum when the number of bytes in the file is an 

exact multiple of 63. When a single large file is embedded, instead of a number of 

smaller files, the overhead tends to be of the order of (l/63)-rd of the file. 
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2.8 Variants and Suggestions for Improvement 

While the basic BPCS encoder/decoder, described in sections 2.1 to 2.7, 

works well, there are some subtle nuances that could be added to improve its 

performance. 

1. The resource blocks are embedded into complex sections of the CGC bit-planes. 

The choice of the order of bit-planes plays a significant role in keeping the encoded 

image unsuspicious. It is important that the embedded blocks be spread over all the 

3 color planes evenly and that they do not modify any particular color plane 

abnormally. This rules out the traditional ascending or descending order of 

sequences ([1, 2 ... 24] or [24, 23 ... 1]) as they modify one color first before going 

to the next (red first in the former and blue first in the latter). It was found that the 

following order, [24, 16, 8, 23, 15, 7, 22, 14, 6 ... 17, 9, 1], gives the best results, 

both in terms of encoding speed and PSNR. This ensures that complex sections in 

the LSB planes are replaced before the MSB planes are touched and that no color 

plane is preferentially encoded. 

2. The choice of the threshold for the complexity measure, ath, controls two 

complimentary parameters - the maximum data that can be hidden and the 

distortion in the encoded image. The distortion of the original image due to 

embedded data is measured in terms of its Peak Signal to Noise Ratio (PSNR), 

given by: 

PSNR =10 logi i ) (2.6) 
NMSE 

where the Normalized Mean Square Error (NMSE) is given by 

1 D N M 

NMSE= y y y {Ioriginal{j,k,l)-Idistorted{j,k,l)f . (2.7) 
255*255* M*N*Dt^t:tM 

Where longinai is the original image, Idistoned is the distorted, encoded image, MxNxD 

is the dimension of the image (Rows x Columns x Depth), and 255x255 is the 

maximum square intensity difference possible. 
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The value of ttth can be made arbitrarily small to accommodate more resource 

files, but that would cause the encoded image to look heavily distorted and would 

defeat the very purpose of steganography. Again, if a,h is kept high (very close to 

0.5), the maximum amount of data that can be stored in the image is reduced 

drastically. Hence, ath is fixed at 0.3 to strike a compromise between the 2 

complimentary parameters. 

A better way to determine ath would be to fix it adaptively instead of using a 

fixed threshold for all the bit planes. Since the three lower bit-planes (LSB planes 

8, 7, and 6) ai'e invaiiably complex and don't have a significant bearing on the final 

distortion, a lower threshold can be fixed for these planes while progressively 

increasing the thresholds in the higher, more significant, bit-planes. In [7], the 

author suggests a method for varying the threshold for another complexity 

measure. It turns out that a similar method for fixing ath gives significantly better 

results, not only in terms of PSNR but also in terms of the perceptible quality of the 

encoded image. For any bit-plane i of a particular color, ath' is fixed as: 

„, J«-(,•-l).<x„ l<,-<5l | p3^ 
I[0.0 6 < / < Slj 

where a and Oa are the mean and standard deviation of a for all possible 8x8 

blocks. The a and Oa values were calculated by fitting a Gaussian curve for the a 

values for 50,000 randomly generated 8x8 blocks were 0.5 and 0.0473 

respectively. Using these values, the a,h for the various bit-planes, for each color R, 

G or B, is given by, [0, 0, 0, 0.3108, 0.3581, 0.4054, 0.4527, 0.5], from MSB plane 

to LSB plane. 

3. Before embedding the resource blocks into the base image, the resource files could 

be passed through a lossless entropy encoder like an LZW encoder or an Adaptive 

Arithmetic Encoder. If the resource files were text files or MS Word documents, 

the lossless encoders provide a significant compression of the data. Apart from this, 

the lossless encoders also make the distribution of characters in the resource file 
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significantly random by eliminating redundancies, and hence more complex. Since 

these blocks would already be complex, they would not need to be conjugated, and 

hence would not leave a detectable pattern that a long sequence of blank spaces in 

the resource file could leave. 

With all these suggested improvements in place, there is still scope for 

increasing the data storage capacity and the PSNR of the encoded image. These can 

be achieved by inflicting some fundamental changes to the process explained in 

this chapter, including using new measures for calculating the complexity and 

some new ways to reduce the overheads. These modifications form the crux of the 

discussion in the following chapter. 



CHAPTER III 

NEW COMPLEXITY MEASURES 

The complexity measure, a, discussed in chapter II is probably not the best 

way to describe the complexity of an image (or a segment of the image). There are 

many cases where a really simple and regular pattern may return a high a value and 

may be wrongly deemed complex. In this chapter, the shortcomings of the a measure 

are discussed and new complexity measures which produce significantly better results 

when used with the BPCS scheme are suggested. 

3.1 Shortcomings of the a measure 

Consider the patterns shown in Figure 3.1. Both these pattems would qualify 

as a complex block if the value of ath is fixed at its usual value of 0.3. It is readily 

seen that the block shown in Figure 3.1(a) is a regular pattern or alternating black and 

white rows. If this block were to be replaced by a noisy block, the replacement is sure 

to make some noticeable changes to the region. 

(a) a = 0.5 (b) a = 0.4464 

Figure 3.1 Two different blocks that are not actually complex 
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Blocks, like the one shown in Figure 3.1(b), occur frequenfly in regions that 

he on the boundary of noise-like and informative regions, and modifying these 

regions may result in ruining the quality of the border regions and edges and making 

them prone to suspicion. Since these two appear to be completely different kinds of 

blocks, a complexity measure that works for one kind may not work for the other. In 

[7], the author proposes two different complexity measures Beta (p) and Gamma (y) 

that can be used in combination to overcome the disadvantages of using a alone. 

3.2 The P Complexity Measure 

This P complexity measure is different from the measure based on the number 

of connected components discussed in chapter II. This measure is based on the 

irregularity of the runs of black and white pixels (in the binary bit-plane images) 

along each row and column of an 8x8 block and helps in overcoming the 

disadvantage of applying the a measure to blocks such as the one in Figure 3.1(a). 

The logic behind this method is that if the distribution of the black and white pixels in 

a block has a regular periodicity, then the block should not be used for embedding. 

The P value of a block is calculated based on the histogram of both black and white 

pixels along each row and column of the block. 

Consider the arrangements of black and white pixels shown in Figure 3.2. 

^ m HH 
Ca) 

I^H 
(0 

(e) 

(h) 

(d) 

Figure 3.2 Some typical binary pixel sequences 
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While patterns like the one shown in Figure 3.1(a) are rather uncommon in practice, 

the runs of black and white pixels shown in figure 3.2 are mundane. Figure 3.2(a) 

shows one possible row of an 8x8 block that consists of: one run of three black pixels, 

one run of one white pixel, one run of two black pixels and one run of two white 

pixels. Note that only the maximum length of the run is considered. For example, a 

run of four white pixels should not be accounted for as two runs of two white pixels 

or four runs of one white pixel. The histogram of the run-lengths will be represented 

as, 

h[ l ]= l,h[2] = 2andh[3] = l, (3.1) 

here, h[i] is the frequency of runs of i pixels, either black or white. 

The inequality of the run-length distribution in a binary sequence (along a particular 

row or column) is represented by factor hs, given by 

n 

K = - Z * ' ] log 2/7, 

where Pi ~ 

(3.2) 

h[i] 
(3.3) 

If a sequence is formed by a periodic arrangement of black and white pixels, 

as in the case of the sequences of Figure 3.2(b), (c), (d) and (e), its hs value becomes 

zero. For each of those sequences, the probability of a particular run, pi, becomes one, 

as there are sequences of only one run-length for each of the sequences (3.2(b) has 8 

runs of length 1, 3.2(c) has 4 runs of length 2 each and so on). For the sequence of 

Figure 3.2(a), hs is 6. 

The hs values are normalized so that they lie in [0, 1], and the normalized hs is 

denoted as/z .̂. The normalization factor used is the highest possible value for hs, 

6.8548. This is obtained for a sequence that has pi = 3/5, p2 = 1/5 & ps = 1/5. The 

normalization factor can also be found by generating random black and white 

sequences of length 8, calculating the hs for each of those sequences and finding the 

maximum value of those. 
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Let n and Ci, for i = 1, 2, ... 8, be the i-th row and column of an 8x8 block. The 

run-length irregularity, p, of the block is defined as the minimum of the average of /j, 

values along the rows and the columns i.e. 

(3.4) 

(3.5) 

P = rmn{ / /^ ( r ) , / / ^ (c )} 

Where, H ^{r) = { / ? J r , ),..., h^{r^)} and 

H ,{c) = {h^{c,),..., h^{c,)} 

and X represents the mean of all the elements in the vector X. 

Figure 3.3 shows three 8x8 blocks and their corresponding a and P values. 

The block shown in figure 3.3(a) is the most complex block possible according to the 

a complexity measure, but if the p complexity measure were used, the complexity of 

this block becomes zero as there is no irregularity in the runs along the rows and 

columns of the block. The block in figure 3.3(b) is the same as the one in 3.1(b), and 

as mentioned earlier, a good complexity measure is supposed to retum a small value 

for this block, unlike the a and p measures. Figure 3.3(c) shows an 8x8 block for 

which the P measure completely fails. 

(b) a = 0.4464, 
p = 0.4945 

(c) a = 0.2857, 
p = 0.6937 

Figure 3.3 Three 8x8 blocks with a and P values 
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The block shown in Figure 3.3(c) is a typical example of a simple block for 

which the p measure returns a high value. In fact, even the a measure returns a value 

that reflects the non-complexity of the block more effectively. This calls for another 

complexity measure, which, when combined with the P measure, forms an effective 

measure to gauge the complexity of a block. This measure, y (gamma), based on the 

noisiness of borders in a block, is discussed in the next section. 

3.3 The 7 Complexity Measure 

If a resource file is embedded in regions on the boundary between noisy and 

informative regions (i.e., the regions that lie along the boundary of an object and the 

background), then the noisy regions tend to grow after embedding because they 

would be replaced by a completely noisy block. This results in making the changes to 

the blocks noticeable. Hence, such blocks should be avoided for embedding data. 

The y complexity measure is designed to retum low values for these blocks which lie 

on the boundary of informative and noisy regions, so that they will not be used for 

embedding the resource files. If the border noisiness, y, of a block is large enough, it 

cannot be on the boundary of a noisy and an informative region. 

The y measure is defined based on the difference between adjacent rows and 

columns as shown in Figure 3.4. The number of pixels at which two adjacent rows, rj 

and ri+i, differ is the number of ones in (r, © r,+,) where © represents a bit-wise 

XOR of corresponding pixels in the two rows. If ri and Cj are the i-th row and j-th 

column of an nxn block, i, j = 1,... 8, the border noisiness, y, of the block is defined as 

Y = —min{ E AP^{r)),Ef{P^{c))] , where (3.6) 
n. 

/ ' , ( r ) = {/?(r, e r,),..., p{r,^_, 0 r„ )} and 

P. (c) = {/7(c, © c,),..., p{c,^_, e c„ )} . (3.7) 

p(x) is the number of ones in a binary sequence x, and 
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E,(X) = 
V(X) 

max[V{X}) 

X = {Xj , . . . , x^}, m = n - \ 

V{X) = Variance of X , and X = Mean of X 

(3.8) 

— Difference 8 

— Difference 7 

— Difference 6 
— Difference .5 

— Difference 4 

—' Difference 2 

— Difference 1 

Figure 3.4 Difference between adjacent rows for an 8x8 block 

For an 8x8 block, Px(r) and Pfc) are each sequences of 7 numbers, the black 

and white borders counted for every pair of adjacent rows and columns. Ef is a weight 

calculated based on the variance of these two sequences and it lies in the range [0, n]. 

The variance, V(x), is the second moment of the sample about the mean (sample 

variance), and the maximum value of the variance is found by calculating the 

maximum variance over 50,000 random 8x8 blocks and is found equal to 15.6735 

(obtained for the sequence [8, 8, 8, 8, 0, 0, 0]). Taking the minimum of the two E/s, 

one calculated along the rows and another along the columns, helps in excluding 

those blocks which lie on a horizontal boundary or a vertical boundary but not both. 

Due to the normalizing factor, n, in equation 3.6, y lies in [0, 1]. A value of y close to 

zero means that the block is not complex and a large y value (close to 1) means that 

the black and white pixels are well-distributed throughout the block and hence the 

block is complex. 
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Figure 3.5 shows some 8x8 blocks and their corresponding a, p and y values. 

Figure 3.5(a), (b) and (c) repeat from Figure 3.3. In fact. Figure 3.5(a) is a typical 

example of why the y measure alone cannot be used to evaluate the complexity of a 

block. The black and white pixels in this block form a regular pattern and cannot be 

called complex. Only the p measure reflects the 'non-complexity' of the block while 

the a and y measures indicate the block to be perfectly complex. 

( a ) a = l , 
P = 0, 
y = l 

(a) a = 0.6518, 
p = 0.7999, 
7 = 0.5441 

(b) a = 0.4464, 
p = 0.4945, 
7 = 0.2400 

(a) a = 0.6250, 
P = 0.8249, 
7 = 0.5028 

(c) a = 0.2857, 
p = 0.6937, 
7 = 0.0476 

(c) a = 0.1696, 
P = 0.0867, 
7 = 0.0690 

Figure 3.5 Blocks with various complexity values (a, p, 7) 
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3.4 Threshold Values 

As in the case of the a complexity measure, a threshold has to be fixed for 

both p and 7 (Pt and 71,), and a block B is said to be complex if and only if 

J3{B) > fi, and riB) > 7,. (3.9) 

Again, the threshold values could be kept the same for all the planes or varied 

adaptively. The threshold values are determined by the mean ([i) and standard 

deviation (a) of the distribufions of p and 7, shown in Figure 3.6, and the order of 

planes. For any bit-plane i, of a particular color (say red), Pih and yih' are fixed as: 

0.0 6 < / < Sl 

^ _ . / 5 - a - l ) a , ,.,-<5L ^̂ _̂̂ ^ 

/ \jy-{i-l)(7, l < / < 5 l ! 
r,h=y ' } (3.11) 

I [0.0 6</<8l j 
Where, i = 1 is the most significant bit-plane and i = 8 is the least significant bit-

plane. Figure 3.6 shows the distribution of P and 7 values over 100,000 randomly 

generated 8x8 blocks. 

The mean and standard deviation of P and 7 were found by fitting a Gaussian 

curve to the distributions shown in Figure 3.6(a) and (b) and they are as follows: 

^ = 0.653 ; (7^ = 0.0728 ; r = 0.408 ; a^ = 0.0540; (3.12) 

The threshold for each plane can be fixed by substituting these values in equations 

3.10 and 3.11. The threshold values determined for planes 1 to 8 (Red) are reflected 

onto planes 9 to 16 (Green) and planes 17 to 24 (Blue). 

The default threshold values work well for most natural images, but the 

method makes for easy steganalysis, which refers to detecting and deciphering hidden 

data. For example, if an image region were all zeros (R = 0, G = 0, B = 0 

corresponding to plain black) or all ones (R = 255, G = 255, B=255 corresponding to 

plain white), the three LSB planes of each of the three colors, R, G and B, will still be 

used for embedding data, as their thresholds are zero, and the embedded data shows 

26 



up as visible discrepancy on the perfect original image. For such images, a simple 

fallback routine could be used, where the thresholds for planes 6, 7 and 8 are not 

made zero but reduced to arbitrarily low values. 

600 

A 500 

£ 400 

8 
S 3000 

Distr ibution of beta over 100,000 8x8 blocks 

(a) Distribution of P 

Distribution of gamma over 100.000 8x8 blocks 

AiJMm iulkuiu 
0.2 0.25 0.3 0.35 0.4 0.4S 

Value —^ 

(b) Distribution of 7 

0.5 0.55 0.6 0.65 

Figure 3.6 Distribution of P and 7 over 100,000 randomly generated 8x8 blocks 
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3.5 M-Sequences 

Most of steps involved in encoding resource files into an image and decoding 

those files, using the p and 7 complexity measures, are the same as ones used in the 

original BPCS scheme explained in Chapter 2. Just as in the original case, an RGB 

image is first read, its intensity values converted from PBC to CGC followed by bit-

plane decomposition of the CGC planes, and the complexity of each exclusive 8x8 

block determined according to the P and 7 complexity measures. Once the complexity 

of the blocks has been determined, the complex blocks are ready to be replaced by the 

resource blocks. As in the case of the original scheme (of Chapter 2), care has to be 

taken to ensure that the resource blocks themselves are complex enough for the 

decoder to distinguish the block as a block with hidden information. However, the 

process of making the 'simple' resource blocks 'complex' is not as simple as 

conjugating it. It is difficult to define conjugation operations for p and 7 as they are 

defined in a far more complicated way than a. The M-sequences provide a more 

generic solution to the problem of making simple resource blocks complex. 

Shift register sequences having the maximum possible period for an r-stage 

shift register are called maximal length sequences or M-sequences [8]. The M-

sequences are special cases of pseudo-random noise sequences (PN sequences) and 

can be implemented in much the same way using Linear Feedback Shift Register 

(LFSR) generators [9]. Figure 3.7 shows an m-stage linear feedback shift register 

where the square blocks represent a one-bit register (or flip-flop). The weight gi for 

any given tap i, where i = 1, 2 ..., m-1, is either 0, meaning no connection, or 1, 

meaning it is fed back. The weights go and g.̂  are always 1. In fact, gm is not a 

feedback connection but the serial input to the shift register. Any LFSR can be 

represented as a polynomial of variable X, called the generator polynomial, G(X), as 

G(X) = g„X' + 8,n-,X"'-' +...+g2X' + g,X + g, . (3.13) 
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Figure 3.7 Fibonacci implementation of an m-stage Linear Feedback Shift Register 

The reason for choosing gm to be one is evident from equation 3.13. If gm 

were not one, the order of LFSR would not be m. The m-bit number, with each bit 

corresponding to the state of each of the m registers, which indicates the initial state 

of the LFSR is called the seed. The weights gi could be anything, and each 

combination of the gi's produces a different sequence of m-bit pseudo-random 

numbers. However, they may not produce all possible m-bit numbers before starting 

to repeat the sequence. If the weights g,, and in turn the polynomial G(X), are 

carefully chosen, the LFSR can be made to generate each of the 2"" possible m-bit 

numbers before starting to repeat them, or in other words, they can also be said to 

generate maximal length sequences. Such a polynomial is called a primitive 

polynomial. A polynomial G(X), of degree m, is said to be primitive if: 

a. G(X), cannot be factored (i.e., it is prime), and 

b. G(X) is a factor of X"̂  + 1, where the length of the sequence, N, is 2"" - 1. 

LFSR's built using primitive polynomials have several interesfing properties, 

the most important being its ability to generate 2"'-l of the 2"" possible m-bit 

numbers, in a random order, before starting to repeat the numbers. The only condition 

is to initialize the LFSR using a non-zero seed. The one remaining state is the trivial 

or all zero state, which is generated with an all-zero seed. The usefulness of the M-

sequence stems from this "non-repeating" property (over a period of 2'"-l) of the 
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primifive polynomials. Equation 3.14 is an example of a primitive polynomial, G(X), 

defined 

G{X) = X'' + X' + X' + X+l. (3.14) 

This is a primitive polynomial of degree m = 64. Given a non-trivial seed (all 

registers in the LFSR are not uniformly zero), an LFSR based on this polynomial as 

its generator polynomial will make the 64-bit shift register emulate all of the possible 

2 -1 states (except the trivial state) before the repeating the seed. The actual maximal 

length sequence or the M-sequence is obtained by collecting the 2'''̂ -l output bits, i.e. 

the bit from the right-most register in figure 3.7, for each of the 2̂ '*-l exclusive states 

of the LFSR. Any N-tuple, where N equals the degree of the generator polynomial (N 

= 64 in this example), of the M-sequence at phase i, corresponds to a particular state 

of the LFSR. This N-tuple is represented as, 

m." = (m, , m.^,,..., m.^^_ , ) . (3.15) 

This N-tuple is referred to as an M-block thus making the M-sequence a stream of M-

blocks. 

3.5.1 M-sequence Block Stream Conversion (MBSC) 

Since the complexity is calculated for each 8x8 block of the base image, the 

resource files are divided into streams of 'k' 64 bit (8 byte) resource blocks, say Ro, 

R], ..., Rk-i. An M-sequence is generated using the LFSR shown in figure 3.7 using 

the generator polynomial of equation 3.14. Let m. ,?n,̂ | ,...,m.^^f._.^^^ represent 'k' N-

tuple M-blocks, where N = 64, of the M-sequence, starting at phase i. The basic idea 

is to perform a bit-wise XOR between the stream of k resource blocks and the stream 

of k M-blocks such that 

m,)^Pt''''' and r{R,)>7:'''\ (3.16) 

here 7i(Bj) represents the plane that contains the complex 8x8 base image block, Bj , 

and Ri is the resource block that is to be embedded in Bj, for i = 1, 2,..., k-1. 
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Since the number of possible N-tuples (2^^-l) is far greater than the number of 

blocks in a stream, k, which is usually fixed anywhere between 65 and 1000, it is not 

too difficult to find a phase 'p' such that the blocks 

fi„®<,/?,®m;,„,...,fl,_,©„,«,,_„„ 

satisfy equation 3.16. Also, since no two N-tuples in an M-sequence are the same, 

instead of taking 'k' exclusive N-tuples, an overiap of d, where d is a positive integer, 

could be allowed and the M-block stream redefined as 

N N N 

'"/ . ' ' " p w - ' ' " p + ( ; t - i ) , / . (3.17) 

Fixing d to be 1 eliminates the need to generate and store the extremely long M-

sequence because the N-tuple at each stage can be generated based on the previous 

state of the shift register and the generator polynomial. The MBSC was implemented 

with k = 200 and d = 1. 

Once the k resource blocks have been made complex with respect to the p and 

7 complexity measures, they can be embedded in k successive complex blocks in the 

bit plane base image. However, the decoder needs some additional information to 

decode the resource blocks. Since the k complex resource blocks were obtained by 

XORing the original resource blocks with K N-tuples of the M-sequence, the initial 

seed of the LFSR, the phase p, and the generator polynomial are the only information 

the decoder needs for extracting the resource blocks. The K N-tuples are chosen with 

the first N-tuple starting at phase p and each subsequent N-tuple starting from bit 'd' 

of the previous N-tuple. The generator polynomial can be found out from the first 2N-

tuple (i.e. the seed and the next N-tuple). This 2N-tuple is called the M-sequence key. 

The phase is specified by the N-tuple m^ . This N-tuple is called the phase key. The 

M-sequence key is embedded on two 8x8 blocks (since it is 16 bytes) before any of 

the resource blocks are embedded and the phase keys are embedded on one 8x8 

block. There is one phase key for every k block resource file stream. Since the M-

sequence key forms the first two blocks of information to be embedded, it is hidden in 

the least significant bit plane where the threshold complexity is zero. Hence the 
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complexity of the M-sequence key is not a big issue. However, this is not the case for 

the phase keys. The phase keys could be embedded anywhere on the base image, 

including the most significant bit-plane. Hence it is important to make sure that the 

phase keys themselves are complex. If a particular phase does not yield a complex N-

tuple, the next phase is tried fill a complex phase key can be found and only then is 

the MBSC attempted, starting from this phase. 

It is useful to have a seed with reasonable complexity, with respect to the P 

and 7 complexity measures, for the M-sequence generator. This seed, in turn, is 

generated using a 6-bit LFSR, with a generator polynomial G(X) = X^+X^+X'-i-X+l 

and seed 010101, which produces a 64-bit M-sequence. The implementation of the 

LFSR shown in figure 3.7 is called the Fibonacci implementation and is the one used 

for the MATLAB implementation. It is different from another implementation of the 

LFSR called the Galois implementation, where the contents of the shift register are 

modified at every step by a binary-weighted value of the output stage. 

An important difference between using the a measure and the p and 7 

measures is that in the case of the former only the non-complex resource blocks are 

made complex by conjugating, while in the latter case, all the resource blocks are 

subjected to the MBSC scheme, regardless of whether they are simple or complex. 

3.6 File Headers and Overall Headers 

Just as in the original case, some additional information about the file, like the 

file size, file name etc., must to be embedded with the file in order to perfectly 

reconstruct the files at the decoder. The conventions explained in section 2.4 for the 

original BPCS scheme, are used here as well. The///e header (FH) is again 24 bytes, 

with 18 bytes for the file name and 6 bytes for the file size, and is attached to every 

resource file that is to be embedded. The overall header (OH) is 8 bytes with the first 

byte containing the number of resource files embedded in the image and the rest of 

the bytes reserved for future use. With these headers in place, the files are all ready to 

be embedded into the base image, of course with all the necessary pre-processing. 
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3.7 Encoding Procedure 

The steps involved in encoding using the new complexity measures can be 

summarized as follows: 

1. Read the image, convert the intensity values into Gray code and perform bit-plane 

decomposition. 

2. Use equafions 3.10 and 3.11 to determine the complexity thresholds, Pth and yth, for 

each plane. For each exclusive 8x8 block in the bit-plane image, calculate the 

complexities p and 7. If the complexities of the block satisfy equation 3.9, mark the 

8x8 block to be complex. This is done by marking up a ' 1 ' on another matrix, 

called the comple.xit}' matrix, whose dimensions are one-eighth the bit-plane base 

image along the rows and columns. A 512x512x3 image would have a 64x64x24 

complexity matrix. The order of bit-planes followed for embedding is [24, 16, 8, 

23, 15, 7, 22, 14, 6 ... 17, 9, 1]; as this ensures that the least significant bit-planes of 

each color are embedded before the more significant ones are touched. 

3. Embed the 128-bit M-sequence key (2N-tuple) into the first two embeddable 8x8 

regions (complex regions) of the bit-plane image. The first N-tuple of this 2N-tuple 

is the seed for the 64-bit M-sequence generator (LFSR) and is the M-sequence 

generated using a 6-bit LFSR with seed '010101'. The second N-tuple is simply the 

next phase of this initial seed. 

4. Get the number of resource files to be embedded, n, make it the first byte of the 

overall header (OH), and make this 8x8 block the first block of the resource file 

stream. Repeat steps 5 to 8 'n' times or till the maximum embeddable capacity is 

reached. 

5. Read in the resource file and form it into a sequence (or vector) of ASCII values. 

Pad the sequence so that the number of bytes in the sequence is a multiple of 8. 

This is done because the encoder embeds blocks 8 bytes at a time. Attach a 24-byte 

file header (FH) containing the file name and file size to this sequence. Then attach 

this whole sequence to the resource file stream and make the number of bytes in 

the resource file stream a multiple of 8xk bytes, where k is the number of 8x8 
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blocks for which a unique phase key is generated, by padding the stream with 

zeros. Repeat steps 6 and 7 till the whole resource stream has been embedded. 

6. Read in k blocks, Ro, R,,..., R^.,, of 8 bytes (64-bits) each, from the resource file 

stream. Find a phase 'p' on the M-sequence, generated by the 64-bit LFSR using 

the generator polynomial in equation 3.14, such that k consecutive N-tuples 

starting at phase p, / ^ ; ,m;, , , . . . , ẑ ; , , , . , „ , when XORed with the k 

con-esponding resource blocks, yield a complex block stream. As a result, the 

following blocks are all complex with respect to the p and 7 complexity measures: 

Ro®fiJp ,Ri ® W/,+yv'---'^^-i ©"'/T+(A-i)yv The overiap between consecutive 

N-tuples is specified by d. These k blocks are called the complex resource blocks 

and the process of converting the resource file stream into complex blocks is called 

M-sequence Block Stream Conversion (MBSC). 

7. Embed the phase key (the N-tuple starting at phase p) and the k complex resource 

blocks in (k+1) consecutive complex 8x8 regions in the bit-plane base image. 

These (k+1) blocks can be found out by finding the ones in the complexity matrix. 

8. Clear the resource file stream. 

9. Put back the 24 bit-planes together to form 3 color planes, R,G and B, and convert 

from CGC to PBC and save the image, either under a new name or under the same 

name as its original to eliminate suspicion. This is the encoded image. 

3.8 Decoding Procedure 

Again, the function of the decoder is to reverse the modifications done on the 

resource file and retrieve them without any errors. The encoding module ensures that 

those blocks that were complex in the bit-plane base image are again complex in the 

encoded image, and the decoder can tread through these complex blocks and decode 

the relevant information. The decoding procedure can be summarized as follows: 

1. Read the encoded image, convert the intensity values into Gray code (CGC) and 

perform bit-plane decomposition. 
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2. Determine the complexity thresholds, pth and yth, for each plane using equations 

3.10 and 3.11. For each exclusive 8x8 block in the bit-plane image, calculate the 

complexities p and 7. If the complexities of the block satisfy equation 3.9, mark the 

8x8 block to be complex. This is done by marking up a ' 1 ' on the complexity 

matrix, in the same way as in the encoder. Follow the same bit-plane order as in the 

encoder to ensure that the blocks are decoded in the same order as they were 

encoded. 

3. From the first 2 complex 8x8 blocks, decode the 2N-tuple M-sequence key. If the 

generator polynomial for the LFSR is varied for each time the encoder is used, this 

M-sequence key can be used to find out the generator polynomial. 

4. The next complex block has the phase key needed to decode the first k blocks. This 

phase key is used to generate the next k m-blocks, m^ ,m^^^,..., m^^,,.,,^ , that 

can be simply XORed with the next k complex blocks (read into a stream of k 64-

bit blocks in a row major order) to retrieve the original resource blocks. The first 

byte of the first retrieved block is the number of embedded files, n. The next three 

blocks are the extemal file header (FH) inserted by the encoder, the first 18 bytes 

of which contain the file name and the last 6 bytes contain the file size. Use the file 

size parameter to recover the rest of the files, keeping in mind that every (k+1)"' 

block is a phase key that is to be used to recover the following k blocks. The 

number of k-block streams, including the first k-block stream that contains the 

headers, over which the first file is stored is ceil{(filesize + 4)l(S*k)), where 

ceil(x) of a real number x is the smallest integer greater than x. Save the recovered 

file either under the original name, which is the 18 byte file name parameter of FH, 

or under a different name. Repeat step 5, (n-1) times. 

5. Retrieve the phase key, from the next complex block, and use it to recover the next 

k blocks. The first three 8x8 blocks have the 24 byte FH. Again, use the file size 

parameter, which is the last 6 bytes of the file header, to recover the rest of the file. 

The number of k-block streams to be recovered to entirely recover the file 

is ceil((filesize + 4)/(8 * k)). Save the recovered file (similar to the first file). 
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3.9 Calculation for the Total Overheads 

As explained in section 2.7 for the original BPCS technique, the exact 

overheads can be calculated based only on the exact size of the embedded files. 

However, an estimate of the overheads can still be determined. Let 'n' be the number 

of files to be embedded, Nj, i = 1, 2 ... n, be the size of each file. A one-fime 8-byte 

overall header and a 24-byte file header, for each file, are added to the encoded 

image. For every k 8x8 blocks of each resource file, an 8-byte (one 8x8 block) phase 

key, p (say), is added and a one-time 16-byte M-sequence key, M (say), is added to 

the encoded image. Let Fi be the size of each file. Putting all these together, 

Total overhead = OH +Y^ FH . + M +Y^ K .p (3.18) 
/ = ! (=1 

Ki is the number of phase keys needed for file i and is given by, 

[ceil ((F, + 4)/A: *8) for i = l 1 

[cei/((F. + 3) / Jt * 8) for i = 2, 3 ... n J 

Substituting the values for OH, FH, M and p in 3.18, 

n 

Total overhead (in bytes) = 24 + 24 * n + J ] (K; * 8) (3.20) 
! = 1 

The total overhead will be minimized when the argument inside the ceil 

function in equadon 3.19 is an integer. When a single large file is embedded, instead 

of a number of smaller files, the FH and OH tend to become very small in comparison 

to the phase key overhead. The total overhead then depends almost entirely on the 

factor k and is approximately equal to 1/k. For the value of k used in the 

implementation, k = 200, the overhead is approximately one byte for every 200 bytes 

of resource file. This is less than one third of the overhead for the original BPCS 

scheme, which was proved to be approximately equal to one byte for every 63 bytes 

of the resource block (see section 2.7). 
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3.10 Suggestions for Improvement 

The biggest problem with the M-sequence method for making the blocks 

complex is that a phase key needs to be embedded once every k blocks. If k is too 

large then finding a phase of the M-sequence that produces k M-blocks that result in a 

complex resource block stream (of length k) becomes extremely time-consuming. 

This could be an even bigger problem for the higher bit-planes, where the threshold 

complexity is high. Consider a case where k is fixed at 1000. If a phase is found such 

that only 999 consecutive resource blocks can be converted into complex blocks, at 

this phase, the encoder has to restart the process of finding a phase and it could take a 

long time before 1000 consecutive M-blocks, to produce 1000 complex resource 

blocks, are found. However, the lower bit-planes (3 LSB planes for each color) have a 

zero threshold for P and 7, and hence any phase of the M-sequence would work. For 

these planes, k can be fixed arbitrarily large. 

One solution would be to fix a different k for the lower bit-planes than for the 

more significant bit-planes. A more generic solution would be vary k adaptively and 

inform the decoder about it. An extra block could be embedded as a header to each k 

block stream, specifying the value of k. The difficult part, however, is to ensure that 

this header block is always complex. Figure 3.8 gives a solution for this problem. 
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Figure 3.8 Format and example of the new block 
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In Figure 3.8(a), the pixels marked 'x' are the pixels (bits) used to embed the value of 

k. For this scheme to have a lower overhead than the original BPCS scheme, the 

value of k needs to be greater than 126 (approximately), because of the extra one 

block (8x8 block) overhead for each complex resource block stream. The encoder 

finds the first phase of the M-sequence, starting from a given seed, such that k lies in 

[127, 65535] (the upper limit results from using 2 bytes for k), which results in a 

complex resource block stream. Once the value of k has been found, the pixels 

marked 'y' in figure 3.8(a) are tweaked so that the complexity measures of this block 

are greater than the thresholds for the plane in which the block is to be embedded. An 

example, when k is 128, is shown in Figure 3.8(b). The last six rows in the 8x8 block 

have been adjusted so that the p value of the block is 0.7464 and 7 value is 0.4232, 

which are greater than the thresholds for any plane. In fact, the values for the last six 

rows shown in Figure 3.8 (b) works for most values of k, and instead of scouting for 

completely random values, a template of values for the last six rows could be 

maintained and the random scouting for the pixel values could be used only when all 

the values in the template fail. 

In summary, the P and 7 complexity measures can be used to effectively 

describe the complexity of images. Combined with MBSC, these measures can be 

used with the BPCS scheme to hide large amounts of data in images. The 

effectiveness of the schemes presented in chapters n and III are compared, analyzed 

and interpreted in the following chapter. 
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CHAPTER IV 

RESULTS AND CONCLUSION 

In this chapter, the performance of the new method, presented in chapter III, is 

compared with the performance of the original BPCS scheme, presented in chapter II, 

and the preeminence of the former is substantiated with appropriate results. First, the 

original BPCS scheme was implemented as explained in sections 2.5 and 2.6. The 

results obtained were further improved by applying the methods suggested in section 

2.8. The new complexity measures with MBSC were then implemented to overcome 

the shortcomings of the a measure used in chapter II. Finally, a Graphical User 

Interface (GUI) was developed to provide a user interactive interface to hide data files 

in images (See Appendix). All the coding and simulations were done using 

MATLAB. 

4.1 Original BPCS Scheme Using a Complexity Measure 

The results obtained by applying the original BPCS scheme and some variants 

suggested in chapter II are shown in figure 4.1. For any steganography scheme to 

work, it is necessary that the base image has a lot of high frequency features and 

colors. This ensures that there are a lot of complex regions in the image, which 

increases the amount of data that can be hidden in the image, and that the encoded 

image doesn't look visibly different from the original. The Baboon image, shown in 

figure 4.1(a), is probably the perfect image for steganographic applications. The 

image is a 512x512, 24 bits per pixel (bpp), bitmap color image. The image is about 

786KB in size and, depending on the method used and the number of files embedded, 

it can be used to hide up to 520KB of data. The methods are evaluated based on 

amount of data they allow to hide and the distortion the hidden data causes on the 

original image. 

39 



'•^..•l^Kf,:; ••,., .̂^ 

(a) Original 512x512 image 

(c) Descending order of bit-planes 

(b) A 128x128 section of (a) 

- ^̂ 5 ^•i> t 

(d) Ordered bit-planes 

(e) Adaptive a (f) Compressed data files, adaptive a 

Figure 4.1 Images showing the result of applying the BPCS scheme and other variants 
suggested in chapter II 
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Image 

(c) 

(d) 

(e) 

(f) 

Max. embeddable 

(bytes) 
532270 

532270 

469909 

469933 

Bytes embedded 

(bytes) 
309090 

309090 

309090 

308276 

% of max 

embedded 
58.07 

58.07 

65.77 

65.59 

PSNR 

(dB) 
22.6848 

35.0760 

35.2949 

35.3363 

(g) Table comparing the images (c)-(f) with respect to data embedded and PSNR 

Figure 4.1 Continued 

Other than m the case where the data is embedded using a descending order of 

bit-planes ([24, 23 ... 3, 2, 1]), there is no visible degradation of the original unage if 

the images (origmal and the encoded image) are viewed in thek original sizes. 

However, if the images were zoomed to larger sizes, say 2:1 or 3:1, the pixel pattems 

start to reveal some discrepancies from the original image. For this reason, only a 

small 128x128 section, containing a good sample of all the colors in the original 

image, is used for analysis. Figure 4.1(b) shows one such section, zoomed to twice its 

original size. Figure 4.1(c) shows the same 128x128 section of the encoded image, 

where the encoded image is the original image, shown in Figure 4.1(a), with 309090 

bytes of hidden information. The encoder in this case follows the descending order of 

bit-planes rule wherein the blue plane is embedded before the green and red planes. It 

can be easily seen that this image has more blue regions than in the original image. 

Since the amount of data hidden in the original image is only 58.07% of maximum 

amount of data that can be hidden in the image (from Figure 4.1 (g)), the data has been 

hidden almost completely m the blue planes. This causes the image to look visibly 

different from the original image and resuhs in a low PSNR. 
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Figure 4.1(d) shows the result of embedding in the lower bit-planes of each 

color before starting with the higher bit-planes. The order explained in section 2.8 

was used. It is easily seen that this image looks very similar to the original image and 

this is reflected on the high PSNR value obtained for this image. Figure 4.1(e) is the 

section of the encoded image in which the thresholds for the bit-planes are fixed 

according to equation 2.8. The improvement in image quality, over 4.1(d) which uses 

a fixed threshold of 0.3, is actually much better than indicated by the improvement in 

PSNR. Figure 4.2 shows the number of embeddable blocks in each bit-plane using a 

fixed threshold scheme and an adaptive threshold scheme. 
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Comparison of number of embeddable blocks for the 2 methods 

Adaptive threshold 
Fixed threshold 

10 15 
Bit Plane Number —> 

25 

Figure 4.2 Graph comparing the number of blocks modified in each plane using fixed 
and adaptive thresholds 

It is apparent that the adaptive threshold scheme uses fewer of the more 

significant bit-plane blocks than the fixed threshold scheme. This is important as 
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modifying the more significant bit-planes tend to cause visible distortion to the image 

and make them more suspicious. However, the compromise is the reduction in the 

maximum amount of data that can be hidden in the base image. The effective amount 

of information hidden in the image can be increased by passing the resource files 

through an entropy coder. In general, MS Word and PDF documents can be 

compressed to half their original sizes (on average). Figure 4.1(f) actually contains 

641245 bytes, which is actually about 82% of the size of the image, compressed to 

less than half its size by passing it through an Adaptive Arithmetic Encoder [10]. The 

entropy encoder also helps in making the resource file blocks complex, as they try to 

pack in the information bits together by removing redundancies. Since most 

documents have long runs of blank spaces, using an entropy coding module dispenses 

with having blocks like the one shown in Figure 2.3 (c) embedded throughout the 

image. 

The table in Figure 4.1(g) summarizes the results discussed above. The PSNR 

was found using the relation in equadon 2.7. Although, the PSNR is used as the 

measure to evaluate the distortion, it does not describe the effectiveness of data hiding 

methods perfectly as most data hiding methods rely on explicitly modifying the 

intensity values, which affect the PSNR. The way the PSNR is calculated, even for 

the same size of the data embedded, the content of the resource files and the order in 

which the files are embedded can cause the PSNR values to be different. The amount 

of data stored in image 4.1(f) is not same as the amount of data stored in the other 

cases, as it is difficult to predict the exact size of the files post compression. 

4.2 New Complexity Measures with MBSC 

The result obtained by applying the complexity measures, p and 7, combined 

with MBSC, is shown in Figure 4.3. Figure 4.3(a) is the same 128x128 secdon of the 

Baboon image as in Figure 4.1(b) and Figure 4.3(b) is the corresponding section of 

the encoded image, encoded using the P and 7 measures. 
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(a) Section of original image (b) Section of encoded image 

Image Max. embeddable 

(bytes) 

Bytes embedded 

(bytes) 

% of max embedded PSNR 

(dB) 

(b) 476657 309090 64.84 36.0701 

(c) Statistics of the encoded image 

Figure 4.3 Data hiding using the P and 7 measures 

It is readily seen that there is no perceptible difference between the original 

and the encoded images. Also, using the P and 7 measures provides a greater capacity 

than the corresponding BPCS variant (BPCS using adaptive a. Figure 4.1(e)). The 

PSNR of the encoded image in Figure 4.3(b) is significantiy higher than the PSNR for 

any of the images obtained using the BPCS technique with the a complexity measure. 
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4.3 Variation of PSNR with Amount of Data Embedded 

The PSNR of the encoded image depends almost exclusively on the amount of 

data embedded. As the amount of data embedded in the original image increases, the 

number of areas in the original image also increases. This causes the PSNR to 

decrease as the Mean Squared Error (MSE), and hence the Normalized Mean Square 

Error (NMSE), between the original and the encoded image increases. A plot of the 

PSNR for various percentages of data embedded (with respect to the maximum 

embeddable), for the baboon image, is shown in Figure 4.4. The variation is almost 

perfectly lineai". 
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Figure 4.4 Plot of percentage of maximum data embedded with PSNR 

4.4 Dependence of Embedding Capacity on the Base Image 

The resource files are embedded in complex regions of the base image. If the 

image has a smooth background and if the objects in the image itself are plain, with 

very few features, the image forms a very bad base image with very low capacity. 
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Figure 4.5(a)-(c) show three standard images, which are used to test image processing 

algorithms, and the maximum amomit of data that can be hidden in them, using the p 

and 7 measures. In all the cases, it is assumed that a single large file is being 

embedded into the base image. Even from the appearance of the images, the Baboon 

image can be expected to have a much larger capacity than Airplane and the Fruits 

images. This is also reflected on the actual values. 

(c) Baboon 
Max. Capacity 
476609 bytes 

(b) Airplane 
Max. Capacity 
353377 bytes 

(a) Fruits 
Max. Capacity 
343538 bytes 

Figure 4.5 Three test images and their maximum capacity 

4.5 Conclusions 

In conclusion, it can be seen that BPCS steganography can be effectively used 

to build a system that hides large chunks of data in images. The variations to the 

original scheme, introduced in section 2.8, significantly improve the performance of 

the original scheme. The p and y complexity measures, used in combination, are 

better representative of the complex regions in the image than the a measure, and 

combined with the theory of M-sequences, they provide a high-capacity, low-

overhead, technique for hiding data in images. 
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4.6 Future Scope 

The future of this work lies in extending it to existing lossy compression 

schemes and providing improved security against hackers. In [13] the authors extend 

the BPCS technique to the popular embedded zerotree wavelet (EZW) scheme and 

claim that it could be extended to other wavelet-based, low bit-rate codecs. Since 

most images are compressed prior to transmission, applying the BPCS technique in 

the transform domain (wavelet domain in this case) improves the robustness of the 

embedded data to image compression. However, the embedding capacity is 

substantially reduced. The steganography method presented here can also be 

combined with some cryptography method to keep the data non-decipherable even if 

it were detected. The reserve bytes in the header could also be used to encode a 

password or a key, which would have to be matched to decode the rest of the data. 
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APPENDIX 

This section contains screenshots of the MATLAB GUI developed for 

embedding data into images and retrieving the information from encoded images. 

When the GUI is initially loaded, the menu shown in Figure A.l is displayed. This 

menu lets the user select between the encoder and the decoder, which are shown in 

Figures A.2 and A.3, respectively. The encoder lets the user embed up to five files 

into the base image and displays the statistics like the maximum amount of data that 

can be embedded, size of the data actually embedded, encoding time, PSNR of the 

encoded image etc. The decoding module retrieves the resource files from an encoded 

image. 

•3 encodf?jgui BMilfllilllllif'llin'lllll 11̂  —\—nrr- fpimiffftnyimii—'iZ,i-- -t 

MAIN MENU 

Do you want to .. 

Encode 1 Decode 

Ezil 1 

»i^™Bmjmai.-'»_|l.,| X| 

Figure A. 1 Main menu 
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Figure A.2 Encoding module 
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Image to extract daita from 
DECODE DATA 

Load the image to decode data L - B J 11 

File number 1 extfacted. . 
File name: m_secLgen_new.m 

,Re si?e; 3G2 

File number 2 extiacted... 
File name • myself new. doc 

File size 30208 
File number 3 extracted . 

File name oora new new.doc 
File size: 25600 

File number 4 extracted... 
File name : results new txt 

File size 1892 

File number 5 extracted... 
RIe name oora_new txt 

,Re size- 2440 

Decode a total of 5 files 
Decoding time 21 121 Sees 

Mainmenul j ^wt |j 

Figure A.3 Decoding module 
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