First-class labels for extensible rows
Technical report: UU-CS-2004-051

Daan Leijen

Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

daan@cs.uu.nl

Abstract

This paper describes a type system for extensible
records and variants with first-class labels; labels are
polymorphic and can be passed as arguments. This in-
creases the expressiveness of conventional record calculi
significantly, and we show how we can encode intersec-
tion types, closed-world overloading, type case, label
selective calculi, and first-class messages. We formally
motivate the need for row equality predicates to express
type constraints in the presence of polymorphic labels.
This naturally leads to an orthogonal treatment of unre-
stricted row polymorphism that can be used to express
first-class patterns.

Based on the theory of qualified types, we present an
effective type inference algorithm and efficient compila-
tion method. The type inference algorithm, including
the discussed extensions, is fully implemented in the
experimental Morrow compiler.

1 Introduction

Records and variants provide a convenient way to con-
struct data types. Furthermore, record calculi can be
used as a foundation for features as objects and mod-
ule systems. Over the years, many aspects of record
calculi have been studied, including polymorphic exten-
sion, record concatenation, type directed compilation,
and even label-less calculi.

The holy grail [6] of polymorphic extensible record
calculi are first-class labels, where labels are polymor-
phic and can be passed as arguments. First-class labels
increase the expressiveness of conventional record cal-
culi significantly, and we will show how we can encode
many interesting programming idioms, including inter-
section types, closed-world overloading, type case, label
selective calculi, and first-class messages.

One of the earliest works on first-class labels was
done by Gaster and Jones [5, 4]. They describe a poly-
morphic type system for extensible records and vari-

ants based on the theory of qualified types. Unfortu-
nately, as we show later in this article, type inference
for their proposed extension is incomplete. Sulzmann
acknowledges this problem and describes a record cal-
culus with first-class labels as an instance of HM(X)
[27, 28, 29], but this calculus is not extensible and lacks
a general compilation method. Shields and Meijer intro-
duce an intriguing label-less calculus, A", where records
with first-class labels can be encoded with opaque types
[25, 24]. However, due to general type equality con-
straints, A" is a very complicated system. We wanted
to explore an alternative point in the design space with
a simpler calculus where labels are explicit; indeed, we
can express many of the motivating examples of At"
without having to work from first principles.

We base our calculus directly on the original record
system of Gaster and Jones, with two important tech-
nical differences: we introduce row equality predicates
to express required type constraints in the presence
of polymorphic labels, and we move the language of
rows into the predicate language to ensure complete-
ness of type inference. Furthermore, our system is the
first to naturally describe row polymorphic operations,
and it completely avoids the complex unification prob-
lems, and resulting restriction to non-empty rows, as
described by Gaster [4]. Being able to use unrestricted
row polymorphism, we can express first-class extensible
patterns and views [30].

We have fully implemented our type inference algo-
rithm, including discussed extensions like row polymor-
phic operations, in the experimental Morrow compiler
[12]. Indeed, Morrow can infer all the types of the ex-
amples in this paper. However, at the time of writing,
the code generator for Morrow is not yet complete.

In our calculus, row terms are no longer part of the
type language but are only present in the predicate lan-
guage, to ensure completeness of type inference with
polymorphic labels. By not folding labels back into
the language of types, we also reduce the complexity
of improvement with respect to At". Unfortunately, the



improvement algorithm, and thus the test for satisfia-
bility, ambiguity, and entailment, is still exponential.
However, just like normal type inference, we believe
that the worst case is unlikely to occur in practical pro-
grams. This intuition is largely confirmed by practical
experience with the Morrow compiler.

In Section 2 we give an overview of conventional ex-
tensible records and variants a la Gaster and Jones [5].
In Section 3 we extend this calculus with first-class poly-
morphic labels, and we discuss many interesting exam-
ples in the following section. Section 5 discusses first-
class patterns. Section 6 and 7 formally define our cal-
culus, and give the typing rules and an inference algo-
rithm. Section 8 describes simplification and improve-
ment, and discusses complexity issues. We finish with
a discussion of related work and the conclusion.

2 Records and variants

There are two dual concepts to describe the structure of
data types: products group data items together, while
sums describe a choice between alternatives. Here are
two examples of both operations:

type Point = Int x Int
type Fvent = Char + Point

In most programming languages, we can name the com-
ponents of a product and sum with a label. A labeled
product is called a record (or struct), while a labeled
sum is called a variant (or union, or data type). We de-
scribe records with curly braces {}, and variants with
angled brackets ():

type Point = {x:: Int,y :: Int}
type Fuvent = (key :: Char, mouse :: Point)

We can see that both records and variants are described
by a sequence of labeled types, which we call a row. In
this article, we enclose rows in banana brackets (). For
convenience, we leave these out when the row is directly
enclosed by a record or variant brackets. For example,
the unabbreviated type of a Point is {(z:: Int, y:: Int))}.

2.1 Extensible rows

Following Gaster and Jones [5], we consider an exten-
sible row calculus where a row is either empty or an
extension of a row. The empty row is written as () and
an extension of a row r with a label [ and type 7 is
written as (! :: 7 | r). Here is an example of a row that
can be used to describe coordinates:

(z::dnt | (y:=Int | (D))

To reduce the number of brackets, we use the following
abbreviations:

(hoomiy ey by i T
(hoemy e by |T)

(hoer e (s
(hom o (| r

=T (D))

The fields of a row are distinguished by their label and
not by their position, and we consider rows equal up to
permutation of their fields:

(l:amab|r)=(m=blualr)

2.2 Lacks contraints

For the purposes of this paper, we restrict ourselves to
rows without duplicate labels. Without this constraint,
fields can not be addressed unambiguously and, as a
result, some programs can not be assigned a principal
type [31]. A particularly elegant approach to enforce
uniqueness of labels are lacks (or insertion) constraints
[5, 25]. A predicate (\[) restricts r to rows that do not
contain a label [. In general, a row extension ([::a | r)
is only valid when the predicate (r\[) holds. For clarity,
we always write the lacks constraints explicitly in this
paper, but a practical system can normally infer them
from row expressions automatically, which simplifies the
type signatures a lot.

2.3 Record operations

A record interprets a row as a product of types. The
empty record is the only ground value with an empty
record type:

{4}
Furthermore, there are three basic operations that can

be performed on records, namely selection, restriction,
and extension:

(—.1) zVra. (M) ={lzalr}—a
(=1 sVra. (D) = {lza|r}—{r}
{Il=_]_}aVra.(N\)=a—-{r}—>{l:a]|r}

Note that we assume a distfix notation where argument
positions are written as “_”. Furthermore, we explicitly
quantify all types in this paper, but practical systems
can normally use implicit quantification. The three ba-
sic record operations are not arbitrary but based on the
corresponding primitive operations on products in cate-
gory theory or logic. Note that all type schemes contain
a predicate (r\l) to ensure the validity of row extension.
For repeated record extension on terms, we apply the
same abbreviations as for row extension on types. The
basic operations can be used to implement a number of
other common operations like update and rename:

{l:==x]r} {l=2|r-1}
{lml|r}={m=ril|r-1}



2.4 Variant operations

A variant interprets a row as a sum of types. Dual to
records, the basic operations are based on the corre-
sponding operations on sums in category theory. The
primitives consist of the empty variant, injection, em-
bedding, and decomposition:

() =)

(I=_) wVra. (N)=a —{{zalr)
(I =) wVra. (M) =(r)—{=al|r)
(le_?_:_)uVrab.(N\l)=(lza]|r)— (a —b)

—((r)—b)—0b

Concrete implementations can provide special pattern
matching syntax that use the primitive decomposition
operator. Here is a short example to demonstrate basic
record selection and a possible pattern matching syntax:

showFEvent :: Fvent — String
showFvent e
= case e of
(key =c¢)  — "key " H showChar ¢
(mouse = p) — "mouse " H showlnt p.x
+H ", " H showlnt p.y

test = showEvent (key = *a’)

2.5 Implementation

A naive implementation of records would use a dynamic
map from labels to values. Unfortunately, this prevents
constant time access to the components of the record.
Ohori [18], Gaster and Jones [5], and Shields and Meijer
[25] represent records as contiguous blocks of memory
where the type of the record is used to calculate the
runtime offsets of its fields.

In the presence of polymorphic extensible rows, the
offset of a field must sometimes be passed at runtime.
This seems rather complicated at first, but, in a shin-
ing instance of the Curry-Howard isomorphism, runtime
offsets directly correspond to lacks predicates. That is,
each lacks predicate is translated to an implicit runtime
parameter that carries the evidence for that predicate,
namely an offset into the record. In the general treat-
ment of qualified types, this is just an instance of evi-
dence translation [9]. As an example, we consider the
following expression:

{male = True, age = 31, name = "Daan"}.male

After evidence translation, the record is represented by
a contiguous block of memory (31, True, "Daan"), where
the order is determined by the lexicographical order of
the labels. The field is selected by passing evidence to
a general selection function:

(Aevr — rlev]) 1 (31, True, "Daan")

Note that we write r[i] to select the ith field of a mem-
ory block. The offset 1 is the evidence for the predicate
(age :: Int, name :: String)\male, that resulted from se-
lecting the male field. It is resolved to 1 as male is
larger than age but smaller than name. Gaster and
Jones describe the formal translation from lacks predi-
cates to evidence [5] and we will not repeat that here.
Note that common transformations like inlining can be
used to optimize this expression. As such, the calcu-
lus combines the flexibility of dynamic offset resolution
with the efficiency of static offsets.

It is also straightforward to support efficient vari-
ant operations. Variants are represented at runtime by
tagged values. The evidence for a variant operation is
not interpreted as an offset but as the value of its tag,
and it enables constant time matching of variant values.

3 First class labels

In the previous section, we have described a conven-
tional set of record and variant operations. Labels are
considered part of the syntax of the language and each
basic operation was described as a family of functions
parameterized by the labels. For example, it is not pos-
sible to write a general select function:

select vl =1r.l

As it stands, the [ parameter is unrelated to the con-
stant [ label. The function simply selects the constant
label [, i.e. its type is:

select :¥rab. (N\l)={l=a|r}—-b—a

In this article we describe an extension where labels be-
come first-class values that can be passed as arguments.
On the type level, we introduce a new type constructor
Lab, where a value of type Lab [ is the term representa-
tion of a label [. The basic record and variant operations
are now primitive functions that take a label as an ar-
gument. For example, the types of record selection and
restriction become:

() =Vria.(N\D)={lza|r} —>Labl— a
(- —2)aVrla. (N)={l:a|r} - Labl — {r}

These functions are now polymorphic in the label [.
Furthermore, the [ parameter to the Lab constructor
nicely captures the connection between the label value
and the label type; without it, we can not express the
necessary typing constraints. A lacks predicate is now
a binary constraint that takes a row and a label as ar-
guments.



3.1 Label constants

With labels as first-class citizens, we can create func-
tions that use labels passed as arguments. For example,
the zero function creates a record with two zero values
when given two distinct labels:

zero ::¥lm. ((m :: Int)\l)
= Lab | — Lab m — {l:: Int, m :: Int}
zerolm={l=0,m =0}

However, to use a function like zero, we need initial
label constants. We write a constant label type [ as
@I[. On the term level, we introduce a family of label
constructors that are also written as @I:

@[ :: Lab @]

The zero function can now be called with specific con-
stant labels:

origin :: {Qz :: Int, Qy :: Int}
origin = zero Qzr Qy

The explicit annotation of label constants quickly be-
comes a burden as most labels are constant in practice.
To simplify notation, we use the following constantifi-
cation rule in Morrow: an identifier that is only used
in label positions, is regarded as a constant label. An
identifier is in a label position when it is used as a label
in a row or as a selector. The constantification rule is
used for both labels in types and labels in terms. In the
following example, the [ label is a variable, while the i
label is regarded as a constant label:

favio (i Int)\l) = Lab | — {1 :: Int, i :: Int}
Fl={l=0,i=0}

In Morrow, the quantification is implicit and the lacks
predicate is inferred from the record expression. The
type of f can therefore also be written as:

fuLabl— {l:Int, i: Int}

The weakness of constantification is that it is possible to
invalidate code by adding a binding with an identifier
that previously only occurred in label positions. We
have not found this a problem yet in Morrow, but more
practical experience is needed. Actually, many times
this is an advantage, as we could redefine a label with
a simple top-level definition.

3.2 Equality predicates

First class labels seem an innocent extension at first. In-
deed the thesis of Gaster [4] describes first-class labels as
a straightforward extension of extensible records. How-
ever, first-class labels require a new predicate to enjoy
completeness of type inference. For example, the fol-
lowing program is not typeable in a naive extension:

frim=rl+rm

The type we could give to f using lacks predicates is
not as general as we would expect, as it restricts the
labels [ and m to be distinct:

favrim. ((m: Int | r)\l, r\m)
= {l:Int,m:: Int | r} — Lab m — Lab | — Int

Sulzmann acknowledges this problem in his thesis [29]
where he describes an instantiation of HM(X) [17]
with first-class labels, called REC!. In this system,
only record update and selection are label polymorphic;
record construction is still restricted to constant labels.
Due to this restriction, has predicates suffice to type all
operations, and the type of f becomes:

favrim. (l:Int € r,m:: Int € 1)
= {r} — Labm — Lab | — Int

Unfortunately, as discussed by Sulzmann [29], it is not
straightforward to extend HM(REC!) to label polymor-
phic record extension.

We will instead use row equality predicates. The
predicate (r ~ s) restricts row r and s to equal rows.
The row equality predicate arises naturally as the most
general predicate from the row unification rule of Gaster
and Jones [5]. This rule is approximately:

(l:1)€s re~(s—1)

(loT|r) ~s

As we show later, there is not always a unique unifier
between rows in the presence of polymorphic labels, and
row equality predicates can be viewed as a delayed unifi-
cation. As is apparent from the row unification rule, has
constraints alone lose information; namely r ~ (s —[).
This property is sometimes stated as “has constraints
encode only positive information”. This is no problem
when only selection and update are label polymorphic,
but record extension can not be typed with has pred-
icates alone. In an unpublished report by Sulzmann
[28], in addition to the has predicate, the distinct pred-
icate is introduced especially to capture the required
type constraints. In contrast, it is easy to express has
predicates in terms of row equality:

(lza)er = S\, (l:als)~r (freshs)
Morrow uses the above equivalence to allow has predi-
cates as convenient syntactic sugar. However, for clar-
ity, we normally use explicit lacks and row equality
predicates in this paper. Using row equality predicates,
we can now assign the following principal type to f:

faVrstim. (S\l, \m,r ~ (l:: Int | s)),
re~ (m:Int|t))
= {r} — Labl — Lab m — Int



Note that we can substitute r with either row to get an
equivalent type signature:

foVstim. (s\l,m\t,(l:: Int | s) ~ (m:: Int | t])
={l:Int|s} — Labl— Labm — Int

4 Expressiveness of first-class labels

This section shows that first-class labels do not only get
rid of families of primitive functions, but also increase
the expressiveness of our calculus. We assume the defi-
nition of a polymorphic label any:

any :: V1. Lab [
any = L

With strict semantics, the any label can also be defined
with an abstract phantom datatype for labels [13]:

data Lab a = Lab String | Any

any :: V1. Lab 1
any = Any

Such definition also gives a straightforward implemen-
tation for showing and comparing labels.

4.1 Intersection types

Using the polymorphic any label, we can select an ar-
bitrary field from a record. This can be used to encode
an intersection type. For example:

intBool ::¥rila. (N\l,(l:=a|r) ~
(4 :: Int,b:: Bool)) = a
intBool = {i = 1,b = True}.any

The only possible instances of a are Int or Bool, depend-
ing on the context. As such it can be seen equivalent
to the type Int A Bool in an intersection type discipline
[19, 22]. Here is an example of the use of intBool:

n = if intBool then intBool + 1 else 0

On first sight, it seems that even though the expression
type checks, the expression will fail at runtime since any
is undefined. However, the label values themselves are
not used by selection at runtime; only the evidence pro-
vided by the (r\l) predicate is used to select the proper
field. The two occurrences of intBool above each unify
with a different type, and the predicate (r\[) is resolved
to either (4 :: Int)\b or (b :: Bool)\i, corresponding to
the appropiate offset at runtime. After evidence trans-
lation, the example looks like:

intBool ev = (Airl — r[i]) ev (True,1) any
n = if (intBool 0) then (intBool 1) + 1 else 0

The implicit evidence parameter ensures that the cor-
rect value is chosen based on the type context. On the

side, we remark that the type of intBool can also be
written more conveniently as:

intBool ::Vla. ((1::a) € (i:: Int,b:: Bool)) = a

We have not done so yet to illustrate clearly that lacks
predicates correspond to the runtime evidence. How-
ever, in the next sections we will freely use this notation
as convenient syntactic sugar.

4.2 Overloading

Using intersection types, we can encode a form of closed
world type overloading. This view of overloading is
adopted by many object-oriented languages, for exam-
ple in Java. It assumes that all definitions for an over-
loaded identifier are known, and requires that each defi-
nition is declared at a distinct type. As an example, we
show how to overload addition in Morrow. The example
is adapted from Shields [24] where a similar encoding
was presented based on AU, First, we declare a record
that contains all primitive addition functions:

type PlusRec = {int :: Int — Int — Int,
float :: Float — Float — Float}

plusRec :: PlusRec
plusRec = {int = pluslnt, float = plusFloat }

The (+) operator simply selects one of these functions
using any:

(+) =Via. ((I:: a) € PlusRec)) = a
(+) = plusRec.any

Addition can now be used at different types:
ok = (142,1.0 4 2.0)

Just like the previous example, the evidence passed to
(+) selects the appropiate addition function based on
the type context. In conventional closed-world over-
loading, each overloaded definition must be sufficiently
monomorphic to resolve the overloading statically, but
this is not necessary in our system. We show an ex-
ample by Shields [24] where we overload the identifier
nList over functions that return a list with either one
or two arguments:

nList ::Vlabe. ((1::a) € (one:: b — [b],
two::c— c—[c])) = a
nList = {one = A\x — [z],two = Az y — [z, y]}.any

Note that we do not experience the simplification lim-
itations described by Shields [24] as we always use ex-
plicit labels. Besides closed-world overloading, we also
have the open-world view of overloading, as adopted by
Haskell. The type of each definition is required to be
an instance of a certain type scheme, but the defini-
tions do not have to be in scope at each point of use.



As suggested by Shields [24], we can encode open-world
overloading using implicit parameters [14], but a full
discussion is beyond the scope of this paper.

4.3 Type case

Using the same mechanism as with intersection types,
we can also encode a form of type case. Given a record
of functions, we select any function and apply it to the
type case argument:

typecase ::¥riab. (N\l) =a—{l:a|r}—b
typecase ¢ v = (r.any)

Note that this differs from the usual notion of type case,
since the result of the operation can also depend on the
type of the argument. We shall see in Section 5 how
we can use row polymorphic operations to enforce that
all functions return the same result type. The function
typecase does not perform any runtime checking; the
evidence for the predicate 7\l determines which function
is selected, which is resolved at compile-time and passed
at run-time as a fixed offset.

4.4 Label selective functions

As shown by Sulzmann [28], we can also encode a label
selective calculus along the lines of Garrigue [3]. In a
label selective calculus, each function argument is asso-
ciated with a label. Effectively, the arguments form a
record, but we can still use curried function application.
As an example, we create a label selective function Imap
from the standard map function:

map :: (a — b) — [a] — [b]
map f xs = ...
Imap ::Vimabede. ((m :: e)\l,
(l::d,m:e) ~ (fun::a— b, list:: [a]))
= (Lab l,d) — (Lab m,e) — [b]
Imap (I, z) (m,y) =let r={l=2z,m =y}
in map r.fun r.list

square xs = lmap (list, xs) (fun, \i — 7 * 1)

We use label polymorphic record extension here and the
type of Imap cannot be expressed with has constraints
alone. Sulzmann [28] specifically introduces the distinct
predicate to capture the necessary type constraints.

4.5 Type selective functions

A type selective function determines the role of an ar-
gument based on its type. In general we can encode
functions that take arguments of a different type in any
permutation. As an example, we implement a func-
tion permute that transforms any two argument func-

tion into a function that takes its arguments in any or-
der. First, we define a record that holds both variants:

type Perm a b ¢ = {normal::a — b — c,
flipped ::b — a — c}

Next, we define a function that constructs a permuta-
tion record from a two-argument function:

permRec ::Vabe. (a — b — ¢) — Perm a b ¢
permRec [ = {normal = f, flipped = Az y — [ y x}

Finally, we use any to select either function:

permute ::Vlabed. ((1:: d) € Perm a b ¢)
=(a—>b—c)—d
permute f = (permRec f).any

Using permute, a function with two arguments of a dif-
ferent type can take them in any order:

square s = let pmap = permute map
in pmap xs (Ai — i % Q)

We can also apply permute to a function that takes two
arguments of equal type. However, when such function
is used, the type inferencer complains about unresolved
predicates since the lacks predicate can not be resolved
unambigiously. This is a weakness of our approach;
deferring unifications may lead to an expressive system,
but as a result, errors are also reported late.

4.6 First-class messages

In object-oriented languages, methods are invoked by
sending a message. Even though messages are central
to object-orientation, they are not first-class citizens in
most object-oriented languages, and most languages re-
sort to dynamic type checks in the presence of poly-
morphic messages. As a result, there has been a lot of
research into static type systems for dynamic messages
[26, 15, 16]. First-class messages can also be viewed as
first-class labels in a record of functions, and we can
directly encode the proxy example by Nishimura [16]:

type Fitp = (put :: String — 10 (), ...)
ftp = {Ftp}
ftp = {put = ...}
prozy :Vrila. ((I::a) €r)
= {new ::r — {send :: Lab | — a}}
prozy = {new = Aobj — {send = Am — obj.m}}
forozy ::Vla. ((1::a) € Ftp) ={send :: Lab | — a}
foroxy = prozy.new ftp
submit :: 10 ()
submit = fproxy.send Qput "paper.ps"

Of course, although we can encode first-class messages,
we still lack the usual contravariance and subtyping



rules associated with object-oriented languages. In our
calculus, the subtype relation between records is always
explicit through polymorphic row extension.

5 First-class patterns

Our basic system can be naturally extended with row
polymorphic type operations. Using those operations,
we can express first-class patterns. Instead of introduc-
ing special syntax for destructing variants as shown in
Section 2.4, we just use a normal function case that
takes a record of functions as the pattern. Based on the
variant label, the case function applies the correspond-
ing function from the record to the variant value. Here
is an example in Morrow, where we calculate the sum
of a list of integers:

newtype List a = List (nil = {},
cons :: {hd :: a, tl :: List a})
sum :: List Int — Int
sum (List xs)
= case xs {nil = r — 0,
cons = A\r — r.hd + sum r.tl}

Just like Haskell, Morrow uses a newtype declaration
to express recursive types. A newtype constructor like
List only serves as a hint to the type inferencer and has
no runtime representation. The pattern that we use to
match on the list variant is just a normal record, and
patterns become first-class polymorphic and extensible
entities. As a result, we can express views on data types
[30]. Here is an example of a function snoc that gives a
reversed view on lists:

snoc xs r = case (reverse xs) r

last zs = snoc zs {nil = Ar — L,

cons = A\r — r.hd}

Note that we can implement the case function very ef-
ficiently: the tag of the variant corresponds directly to
the offset in the record! Even though patterns are first
class, a practical system should probably add syntactic
sugar to support nested patterns. Conventional pattern
matching also supports default patterns; this is much
harder to accomodate in our system as a single default
pattern represents a family of fields [2].

Gaster and Jones [5] describe two dual type opera-
tions, to and from, to give a principal type to row poly-
morphic functions such as case. These type operations
are built into the type inferencer and are treated as key-
words in the language. The to operator is recursively
defined as:

toa () (D
toa(l=b|r)=(l:=

b—altoar)

This operation can be used to give a principal types
to two general functions for decomposing variants and
records:

case  =Vra.(r) —{toar} —a
recElim ::Vra. {r} — (toar) — a

The to operator nicely captures that for a case on a vari-
ant over row 7, we need to provide a function for each
field in r that transforms the corresponding value into
a common type a, i.e. a record over the row (to a r)!
Using the dual type operator from, with the obvious
definition, we can specify the dual operations for con-
structing records and variants:

varlntro :¥ra. a — (from a r) — (r)
recIntro :Vra. a — {from a r} — {r}

We are are also investigating the use of other type oper-
ators, like zip and join, but a full discussion is beyond
the scope of this article.

Even though Gaster and Jones describe the to and
from type operators, they also mention severe technical
difficulties with unification. When unifying two rows
to7 r and from 7’ 7/, the types 7 and 7’ are not related
when r (and ') are empty. To obtain most general
unifiers, Gaster must restrict the entire record system
to deal with non-empty rows only [4]. This complicates
the system greatly. For example, special has constraints
are added to give a principal type to record selection.
Furthermore, they lose some of the mathematical ele-
gance as they are no longer able to express the empty
record and variant.

Serendipitously, we found that row equality con-
straints that were introduced to support principal types
for first-class labels could also express the necessary
type constraints for row polymorphic operations. As
we will see during the formal development in Section 6,
the language of rows is restricted to predicates only,
and the above unification problem simply becomes a
deferred predicate: to1 r ~ from ' r’.

6 Typing rules

This section starts the formal development of our cal-
culus. First the kinds, types and syntax are explained,
followed by the type rules and inference. We also dis-
cuss issues as improvement, satisfiability, simplification,
and subsumption in more detail.

Our formal development is based fundamentally on
the theory of qualified types [8, 9] and higher-order
polymorphism [11]. The theory of qualified types gives
us a general framework for constrained type inference,
while higher-order polymorphism allows us to introduce
rows and labels as orthogonal language features.



6.1 Kinds

A kind system distinguishes between different kinds of
type constructors and ensures well-formedness of types.
The set of kinds is defined by the following grammar:

K u= % the kind of value types
| row the kind of row types
| lab the kind of label types
| k— K the kind of type constructors

All terms have types of kind star. The row and lab kinds
are used for row and label types and only occur at the
type level. The arrow kind is used for type constructors
like polymorphic lists.

6.2 Types

We assume an initial set of type variables o € A and
type constants ¢ € C, and we assume that the initial set
of type constants C includes at least:

Int 0 % integers

— * — % — *x  function space

{_} =1 row— x record constructor
(=) = row — % variant constructor
Lab ::: lab — x label constructor

For each kind k we have a collection of constructors C*
of kind k. The set of all constructors is given by the
following grammar:

cr = " type constants

| af type variables

| Cr' =% CF type application
R O (mono) types

The set of value types 7 is simply the set of construc-
tors of kind star. Although we explicitly annotated all
constructors with kinds, this not necessary in practice,
as they can be inferred from type expressions [11].

6.3 Rows

Notably absent from the constructors and type con-
stants are row expressions such as row extension; only
row variables are part of the constructors. We will see
later that row expressions are limited to the set of pred-
icates in order to ensure a sound translation to qualified
types. The set of row expressions r is defined as:

row

p u= row variables
[ u= (kb label constants
| b label variables

row variable

()] the empty row
row extension

By definition, the kind of rows r is always row. Fur-
thermore, labels become first-class entities since type
variables a®® are included in the set of labels. As a
notational convenience, we write /. for constant labels
and [, for label variables.

When we define relations over rows, we denote syn-
tactic label equality by using the same label name. Du-
ally, the relation (I # ') holds when two labels are
syntactically unequal. We also define a relation [ #. I’
that only holds when two constant labels are distinct.

140 lec lecC
140

In constrast to the work of Gaster and Jones [5], we
need to define this new notion of inequality, as it is
closed under substitution while syntactic inequality is
not. This becomes important when proving that our
entailment relation is closed under substitution; a nec-
essary requirement in the theory of qualified types [8].

We consider rows equal up to permutation of their
fields:

(erl =t |r) = (Va7 leT|r)

The membership relation (I :: 7) € r defines whether a
particular field (I :: 7) is an element of row r. Gaster
[4] defines this relation as:

(lur)er  1#£

(tzr)e(laTr) (lur)ye (U =7|r)

Although the relation corresponds to our intuitive no-
tion of membership, it is no longer well-defined with
respect to row equality. For example, we can derive:

(cuT)€(curant)
but not:
(cuT)€(ant cuT)

since label unequality is not defined on label variables,
ie. (¢ #. «). A solution is to strengthen the mem-
bership relation such that the first property no longer
holds. First, we define the lacks relation as:

lé¢r 1#£ 0
g (' =7]|r)
The membership relation is now strengthened by requir-
ing that a label no longer occurs in the tail:
legr (lur)yer  1#£
(lar)e(l=Tr) (ler)ye (7' |r)

L)

A straightforward proof by induction on the rows shows
that this relation is well-defined with respect to equality
on rows. Furthermore, it closed under substitution.



The restriction relation (r—1) removes a label [ from
a row 7. Just like membership, we strengthen the rela-
tion with respect to Gaster and Jones’ original defini-
tion to make it well-defined over row equality:

{ler|r)-1 = r iflegr
(arir)—1 = (Uar|r=1) ifl#£T

Gaster proves various properties of these relations [4],
including a nice law that relates membership and re-
striction:

(leom)yer = r={u7|r=1)

6.4 Predicates

Based on the theory of qualified types [9], we will use
predicates to express necessary type constraints over
row operations. A predicate 7 is either a lacks or a row
equality predicate:

™ 7\l lacks predicate

| 7~7" row equality predicate

A lacks predicate (r\l) restricts a row r to rows that
do not contain a label I. An equality predicate (r ~ s)
restricts the rows r and s to be equal (up to permuta-
tion).

Entailment relates two finite set of predicates P and
Q. A derivation of P I @ is a proof that when all pred-
icates in the finite set P hold, the predicates ) hold
too. We can formalize lacks and row equality predi-
cates using the entailment relation defined in Figure 1.
We write P + 7 as a shorthand for P # {r}. The
first three entailment rules are standard. Note how the
rules on lacks predicates nicely correspond to our lacks
relation defined in the previous section. The last three
rules handle equality predicates. Rule (eqHead) is in-
teresting: two non-empty rows are equal if the first field
of the first row is an element of the second, and when
the remaining rows without this field are also equal.

To make our calculus an instance of the theory of
qualified types, we need to prove that the entailment
relation is monotone, transitive, and closed under sub-
stitution.

Theorem 1 The instance relation in Figure 1 satisfies:
e Monotonicity: Q C P = Pt Q.
o Transitivity: P QANQWF R= P R.
e Closure: P Q = SP - 5SQ, for any substitution

S mapping type variables to type expressions.

The first two properties are trivial as we use sets for
predicates. The closure property is proved by laborious

(taut) ;ii
(lackEmpty) P = (P\!

_ PNl 10
(lackTail) P07 [r)\
(eqEmpty) P ()~ (D
(eqVar) Plp~p
(cqHead) (l:1)es PHr~(s—1)

PH(l:7|r)~s

Figure 1: Entailment

induction. Furthermore, we can prove that entailment
is well-defined with respect to row equality.

In our calculus, row expressions are only part of the
predicate language. This means that a practical system
should view row expressions in types as syntactic sugar;
indeed, we can view any row expression in a type as
a row variable that is restricted to be equal to that
expression:

cAlual...

=r~(lza)=...{r}... (freshr)

6.5 Qualified types

We use the same structure as in the theory of qualified
types [8] where we distinguish between qualified types ¢
and type schemes o:

qualified type
quantified type or type scheme

o = T|T=0

o = ¢ |Yao

The free type variables of a type scheme o are written
as ftv(o). We overload this function on other objects in
the obvious way. Since the order of the predicates and
quantified type variables does not matter, we sometimes
use the following abbreviations:

Va.p
T=T7=P=rT1

Vai ... Vay,.@
M= .. =Ty =T

The term language of our calculus is an implicitly typed
A-calculus, extended with constants and let bindings:

ex=z|klee | Are|letx=cine

The constants k should include at least the basic record,
variant, and label functions. Each constant k is also
assigned an appropiate (closed) type scheme oy. An



(const) P|AFE: oy
(var) (x:0)€ A
var PlAtzx:0o
(—F) Pl|Are: T -1 Pl|AFe 7
N
P|Atee :T
(1) PlAz: T Fe:T
N
P|AFdze:7T'— 71
Pl|AFe:m= Pt
(= F) | e:m=p ™
Pl|Ake:p
PU AFe:
. r}Are:g
Pl|Ake:m=¢p
P|AFe:Vao
(VE)
Pl|AFe:[arTlo
D) Pl|Ate:o a & fto(A) U fiu(P)
P|AFe:Vao
(let) Pl|Ate:0 Q|Az,x:0ke 7T

PUQ|AFletz=ecine : 7

Figure 2: Typing rules

assumption A is a finite set of type assignments x : o
in which no term variable z occurs more than once.
Aux={z1:01,...,2, : 0} Typothesis

We write A, to denote an assumption A where the
type assignment for x is removed. We also abbrevi-
ate AU{x : 0} as A,z : 0. Figure 2 shows the standard
typing rules for the theory of qualified types extended
with the typing rule for constants. A typing judgement
P|AF e: o asserts that expression e has type o when
the predicates P are satisfied and the types of the free
variables are given by the assumption A.

7 Type inference

This section discusses the standard inference algorithm
by Jones [8] that calculates principal types with respect
to the typing rules of the previous section. Before show-
ing the algorithm, we first look at substitution and uni-
fication.

10

i a ¢ ftu(C a ¢ ftu(C
crc [chg ) [ch(] )
a ~ C C ~ «
cp volup
ccoUpp

Figure 3: Kind preserving unification

7.1 Substitution and unification

A substitution is an idempotent map from type vari-
ables a to constructors C, and which is the identity
function on all but a finite set of type variables. We
write the empty substitution as id. A substitution that
maps a type variable « to a constructor C' is written as
[ — C]. Finally, we write T'S for the composition of
substitution T with S. For the purposes of this article,
we restrict ourselves to kind preserving substitutions
where a type variable always maps to a constructor of
the same kind.

A substitution S is a unifier of two constructors C
and C’ when SC = SC’. We call a substitution S of
two constructors C' and C' most general when every
unifier of these constructors can be written as TS for
some substitution T'. As types are represented by simple
Herbrand terms, we can use standard kind-preserving
unification [11, 4] as shown in Figure 3. The expression

7 X 7 calculates a most general unifier U for types 7
and 7'

Theorem 2 The unification algorithm in Figure 3 re-
turns a most general unifier when it exists. It fails pre-
cisely when no such unifier exists.

A proof of this result is given by Robinson [23]. With
the given unification algorithm, we can directly use the
type inference algoritm for qualified types [9] as a type
inference algorithm for our calculus. For completeness,
we include the inference algorithm in Figure 4. The type
inference rules are interpreted as an attribute grammar
where each judgement of the form P|S|AFe: Tisa
semantic rule where the assumption A and expression
e are inherited, while the predicates P, substitution .S,
and the type 7 are synthesized.

The (let™) rule uses a generalization function to
quantify a qualified type. The generalization function
quantifies over all free variables that are not present in
the assumption:

gen(A, o) =Va.p where @ = ftu(p) — ftv(A)

Jones proves that the given algorithm is both sound and
complete with respect to the typing rules in Figure 2 [8].

Theorem 3 The algorithm in Figure 4 calculates a



(x:VaP=1)cA

fresh(B)  S=[ar P
SP|le|AF x: ST

(var™)

P|S|AFe:T

U
Tr~71 — «

QIT|SAF e : 7
fresh(a)
UTPUQ)|UTS|AFee : Ua

(—E")

P|IS|(Ap,z:a)Fe:m  fresh(a)
P|S|AF Az.e: Sa— T

(—=1")

P|S|AFe:7  o=gen(SAP=r1)
Q|IT|SA;,x:0F e 7
Q|TS|AFletz=cine : 7'

(let™)

Figure 4: Type inference algorithm W

principal type for a given expression e and assumption
A. It fails precisely when no type exists for e under the
assumption A.

7.2 Rows as predicates

We made rows part of the predicate language and use
standard Robinson unification to unify types. This
means that we have deviated quite a bit from the ex-
tensible records of Gaster and Jones. In their system,
row operations are part of the type language and the
unification algorithm is extended to deal with row uni-
fication. There are two important technical problems
with this approach in the presence of first-class labels.

First of all, we would lose completeness of type in-
ference when row extension is structural (i.e. part of
the type language). Take for example the following def-
inition:

foVrsab. (s\z,s\y, 7~ (z:a,y::b]s))

= {r} — (a,b)
f r=1let select | = r.l in (select Qz, select Qy)

If row extension was part of the type language, the type
of f could not be inferred. When inferring the type of
r.l, the record r would unify with {{:: a | s}. When
generalizing the type of the body of select, namely
Lab | — a, the type variables [ and a are free in the type
assignment for 7 in the assumption A. This would pre-
vent generalization of [ and a, making select monomor-
phic in the label argument, which eventually leads to
rejection of this example.

In our calculus, the row extension is part of the lan-
guage of predicates. The expression r.l would not unify
r with a row, but add a predicate r ~ (I : a | s)) in-
stead. The type of select can now generalize properly

11

to Vsla. (s\l,r ~ (I::a]s)) = Lab | — a, where r is
a monomorphic (scoped) type variable.

The second technical problem arises during unifica-
tion. With constant labels, we can always find a single
most general unifier between two rows (if it exists). This
makes it possible to extend Robinson unification with
row unification. However, with first-class labels there
can be many general unifiers. For example:

(o Int|B) ~ (x: Int,y:: Int)

For this expression, there are two unifiers that can not
be written in terms of each other, namely:

[a—z, B (y::Int)] and [a— y,0— (x:: Int))
The lack of unique most general unifiers has profound
implications with respect to efficient algorithms for sim-
plifying predicates, and we discuss the unification of

rows in more detail in the next section.

8 Simplification and improvement

By restricting row expressions to predicates, we have
nicely sidestepped the problem of row unification in
our calculus. Furthermore, we can use the standard
inference algorithm for qualified types to infer princi-
pal types. Unfortunately, while technically correct, the
principal types do not take account of satisfiability of
predicates. As a result, the inferred types are not al-
ways as accurate or simple as we may expect. Jones
describes a refined inference algorithm that takes satis-
fiability into account [10]. The new algorithm adds two
new rules: one for simplification and one for improve-
ment of predicates.

8.1 Simplification

Simplification allows us to replace a set of predicates in
a type by another set of equivalent predicates. This can
be used for example to discharge constant predicates.
For example, the predicate (z :: Int | r)\y, can be sim-
plified to the equivalent predicate r\y, when x #. y.
We write P < @ when P and @ entail each other, i.e.
PH @ and Q &= P. The simplification rule is:

P|S|AFe:T PsqQ
QIS|AFe:T

The addition of this rule makes the algorithm non-
deterministic, but the algorithm is sound as the inferred
types are equivalent [10]. In practice, we apply this rule
at generalisation. The rule is also used to detect type
errors: during simplification, we can detect unsatisfiable
constraints and emit an appropriate error message.



The algorithm for simplication in Morrow simplifies
constraints according to the entailment rules in Fig-
ure 1. Full simplification of lacks constraints leads to
constant evidence, while partial simplification of lacks
constraints introduces a coercion term that possibly in-
creases the passed evidence.

8.2 Improvement

The improvement rule allows us to apply a substitution
to the predicates, as long as the substitution does not
change the satisfiable instances of a type. For example,
the expression {x = 2}.z has the following principal
type:

Vrsa. (S\z, r ~ (x = Int), r ~ (z :al|s)) =a

Although correct, in a practical system we would rather
infer the principal satisfiable type. If we would unify
the rows, we find an improving substitution, namely
[@ — Int,s — (),r — (z :: Int)]. When we apply
this substitution and use simplification, we get the (ex-
pected) principal satisfiable type: Int.

We write | P]p, for the set of satisfiable instances of
a predicate set P with respect to an initial predicate set
Py. It is defined as:

|P|p, = {SP|S € Subst, Py - SP}

For the purposes of this article, the initial predicate
set Py is empty, and we will not write the subscript
explicitly. We say that a substitution S improves P if
|P| = | SP], and when the free variables in S that do
not appear in P are ‘fresh’. The inference algorithm is
extended with the following improvement rule:

P|S|AFe:T T improves P
TP|TS|TAF e: Tt

Jones proves that the inference algorithm is still sound
and complete when the simplification and improvement
rules are added [10]. However, the completeness of the
algorithm with respect to the typing rules is now defined
in terms of principal satisfiable types. The inference
algorithm will not always find the most general type of
an expression, but it will find a most general type that
has satisfiable instances (if it exists).

Note that it is not a requirement to find optimal im-
provements, even though it is desirable in practice. This
provides us with a flexible design space for exploring ef-
ficient algorithms for improving row equality predicates.
We parameterize our inference algorithm with an im-
proving function impr such that impr(P) improves P
for any predicate set P. A trivial instance always re-
turns the identity substitution, impr(P) = id. In the
next subsection, we discuss a more sophisticated algo-
rithm that is used by Morrow and that finds nearly
optimal improvements.

12

m {id} ) p & ftu(r) p & ftu(r)
P CNCUNN 7T
l:r)es

0" =1{00]0€0, or 2 05— 01, 0'cO'}

(:7|r) s

Figure 5: Row unifiers

fresh(B) o ¢ fto(T)
(insVar) 0=a—(l:7|6)]
(l:7) {é} a
(insHead) (: 7—)9 (=7 (I:7) %/ r
(l:7) eé@/ 7 |r)

Figure 6: Inserters

8.3 Row unification

Improvement in Morrow depends essentially on row uni-
fication. As shown before, rows with label variables do
not possess a most general unifier. We define a unifica-
tion algorithm between rows that derives a set of most
general unifiers. Of course, these unifiers are not ‘most
general’ in the usual sense, but only most general for a
fixed permutation of row fields.

Figure 5 shows the unification algorithm for rows.

The expression r 2 1 finds the set © of most general
unifiers between two rows r and 7. Single substitutions
are written as 6. Instead of failing when no rule applies,
we assume that row unification returns the empty set
& when no unification can be found. The first three
unification rules are standard. The last rule finds all
inserters of a field in a row, and returns the cartesian
product of the unifiers of the inserters with the unifiers
of the row tails.

The algorithm for finding inserters is defined in Fig-
ure 6 and uses the field unification algorithm shown in
Figure 7. The rule (insVar) is standard. The rule (in-
sHead) takes the union between the unifiers of the head
field and the inserters of the tail. Note that field unifi-
cation returns either a singleton set or an empty set of
unifiers.

Using the unification of rows, we can now define an
improving function. Figure 8 defines an improving
function émpr(P) that returns an improving substitu-
tion # for the predicates P. We write P~ for the predi-
cates P restricted to equality predicates, and P\ for the
restriction to lacks predicates. The function unis re-



0

oz — T
(1)~ (:7)

R 0=lar1I or L or'
(fieldR) g
(l:7) ~" (a:7)

. 0=la—I or L o7/
(fieldL) —n
(a:7) ~" (1:7)

Figure 7: Field unification

unis(P~) = ©
single({0]0 € ©, Py - 6P\}) = ¢’
impr(P) = ¢’

(impr)

(unisl) unis(@) = {id}
r !
0" ={0'010€0, unis(P) = 0', 'O’}
unis({r ~ '} U P) = 0"

Figure 8: Improvement

turns the cartesian product of row equality unifications.
In the rule (impr), the set of all row equality unifiers
O is further restricted to those unifiers that satisfy the
lacks constraints.

The function single reduces the resulting set of uni-
fiers to a single improving substitution. When the
unifier set is empty, the predicates are not satisfiable
and an error message is emitted. When the unifier set
consists of a single unifier, we can unambigiously im-
prove the predicate set. A possible definition of single
therefore only succeeds when the choice is unambigious;
single({6}) = 0.

If more than one unifier is returned, there may still
be improving substitutions. In Morrow, we calculate
the greatest common unifier of all the substitutions:
single(©®) = gcu(©). In order to calculate the great-
est common unifier efficiently, we need to be careful to
construct only normalized substitutions during unifica-
tion. For example, we take the order on type variables
into account to only produce variable substitutions of
the form [a — (] instead of [3 — «f; However, a full
discussion is beyond the scope of this paper.

8.4 Complexity of improvement

The previous section developed an algorithm to cal-
culate improving substitutions in the presence of row

13

equality predicates. Unfortunately, the algorithm is also
exponential in the number of polymorphic labels! This
should not come as a surprise: Sulzmann shows that
even for an weaker system of first-class labels, satis-
fiability is NP-complete [29]. The worst case of our
algorithm is formed by a row of n polymorphic labels
with polymorphic types that is unified with a row of
constant labels. Each of the n polymorphic labels can
unify with any of the n constant labels, and we find n!
total unifiers.

However, we feel that there are some mitigating fac-
tors. First of all, even though it is desirable to find
‘optimal’ improvements, this is not a requirement of
the calculus. A practical implementation could resort
to a more naive improvement algorithm if the optimal
one takes too long. Secondly, in practice, the algorithm
can be made more efficient by doing unambigious in-
sertions first. Morrow first transforms all the equality
predicates to inserters and performs substitutions until
there are no more unambigious choices, before resorting
to a brute-force enumeration of unifiers. Finally, just
like in normal Hindley-Milner type inference, practical
experience shows that the worst case does not seem to
appear in normal programs. Even when it occurs, the
number of labels tends to be low enough to be able to
solve the improvement fast. However, experience with
larger programs is necessary to validate this claim.

9 Related work

Subtyping is one of the earliest approaches to record
type systems [1, 20]. Predicates include a subtype re-
lation on rows, such that a row r is a subrow of 7’ if r
includes all fields of row 7. The type of selection is:

Vra. (r<{l:a})=r—a

Unfortunately, with this approach information about
the other fields of a row is lost, which makes it hard
to describe operations like row extension. Cardelli and
Mitchell [1] especially introduce an overriding operator
on types to overcome this problem. Wand [31, 32] was
the first to introduce row variables to capture row sub-
typing explicitly through parametric polymorphism. In
his system, the type of selection is:

Vra. {l:a|r} —a

The calculus does not impose constraints on record ex-
tension though, and as a result, not all programs have
a principal type [31]. Remy [21] extended the work of
Wand with constrained record operations. His calculus
contains flags that denote the presence or absence of
certain fields. The type of selection becomes:

Vra. {l:pre(a) | r} — a



The system of Remy does not lead directly to an effi-
cient or simple compilation method though. Ohori [18]
was the first to present a polymorphic record system
that had a simple and efficient compilation scheme, but
it can not handle extensible row operations.

Gaster and Jones [5, 4] presented a polymorphic
type system for extensible records and variants that was
based on the theory of qualified types [8, 9]. This sys-
tem has a simple and efficient compilation method and
is implemented as the TREX extension to Hugs.

Type rules for record concatenation have been pro-
posed too [7, 32], where Sulzmann presents an effective
type inference method [27]. However, no efficient com-
pilation method for concatenation has been published.

First-class labels

Gaster describes first-class labels in his thesis [4] but
does not introduce predicates beyond lacks predicates.
As a result, not all programs can be assigned a (prin-
cipal) type. Sulzmann [29, 28] introduces first-class la-
bels as an instance of HM(X) [17] and his system enjoys
principal types as it uses has constraints (instead of just
lacks constraints). Unfortunately, it is not obvious how
to extend this system with polymorphic row extension,
as it would prevent resolution of equality predicates [29].
This is one of the main reasons to base our work on
the more general theory of qualified types [9] instead,
which gives us a flexible design space with respect to
improvement of equality predicates. Another reason is
that a system based on HM(X) has no general compi-
lation method, whereas we can use standard evidence
translation.

Shields and Meijer introduce an extremely expres-
sive row calculus, called A", where types themselves are
used as indices in the rows [25, 24]. The A" calculus
is strictly more general than our system; our calculus
can be encoded in AU using opague newtypes to ex-
press first-class labels. However, to avoid the exponen-
tial behaviour of our improvement algorithm, At uses a
restricted polynomial improvement algorithm. Due to
the lack of labels, this is more or less essential for At" as
there are much more ambigious unifications in practical
programs. As a result of restricted improvement, At
can not always infer that a given type signature entails
an inferred type.

Our work is strongly motivated by A", where we
wanted to develop a simpler calculus based on the the-
ory of qualified types. By using explicit labels that are
not part of the type language, we explored a useful al-
ternative point in the design space, where we can ex-
press many of the motivating examples of At while us-
ing standard theory.

14

10 Conclusion

We have described a sound and complete system of
polymorphic extensible records and variants with first-
class labels. We have shown how first-class labels in-
crease expressiveness significantly, and are able to ex-
press intersection types, closed-world overloading, and
type selective functions. The type inference algorithm
is fully implemented in Morrow [12], including discussed
extensions such as row polymorphic operations.

In the future, we expect to try the inferencer on
larger programs. In particular, we would like to inves-
tigate the use of higher-rank types to express first-class
modulesand we would like to experiment with first-class
patterns to encode views [30].

Acknowledgements

I would like to thank Bastiaan Heeren, Mark Shields,
and Frank Atanassow for their valuable comments on
the draft paper. Furthermore, I thank Andres Léh, Erik
Meijer, Martijn Schrage, and Arjan van IJzendoorn for
their remarks and interesting discussions about the de-
sign of Morrow.

References

[1] L. Cardelli and J. Mitchell. Operations on records.
Journal of Mathematical Structures in Computer

Science, 1(1):3-48, Mar. 1991.

[2] J. Garrigue. Typing deep pattern-matching in pres-
ence of polymorphic variants. In Proceedings of the
JSSST Workshop on Programming and Program-

ming Languages, Mar. 2004.

J. Garrigue and H. Ait-Kaci. The typed poly-
morphic label selective calculus. In 21th ACM
Symp. on Principles of Programming Languages
(POPL’94), pages 35-47, Portland, OR, Jan. 1994.

B. R. Gaster. Records, Variants, and Qualified
Types. PhD thesis, Dept. of Computer Science,
University of Nottingham, July 1998.

B. R. Gaster and M. P. Jones. A polymorphic type
system for extensible records and variants. Techni-
cal Report NOTTCS-TR-96-3, Dept. of Computer
Science, University of Nottingham, 1996.

T. Gilliam and T. Jones. Monty Python and the
Holy Grail. By G. Chapman and J. Cleese, 1975.

R. Harper and B. C. Pierce. A record calculus
based on symmetric concatenation. In 18th ACM
Symp. on Principles of Programming Languages
(POPL’91), pages 131-142, Jan. 1991.



8]

[12]

[13]

[14]

[15]

[19]

[20]

M. P. Jones. A theory of qualified types. In 4th. Eu-
ropean Symposium on Programming (ESOP’92),
volume 582 of Lecture Notes in Computer Science,
pages 287-306. Springer-Verlag, Feb. 1992.

M. P. Jones. Qualified types in Theory and Prac-
tice. Distinguished Dissertations in Computer Sci-
ence. Cambridge University Press, 1994.

M. P. Jones. Simplifying and improving qualified
types. Technical Report YALEU/DCS/RR-1040,
Dept. of Computer Science, Yale University, 1994.

M. P. Jones. A system of constructor classes: over-
loading and implicit higher-order polymorphism.
Journal of Functional Programming, 5(1):1-35,
Jan. 1995.

D. Leijen. Morrow: a row-oriented programming
language. http://www.cs.uu.nl/~daan/morrow.
html, July 2004.

D. Leijen and E. Meijer. Domain specific embed-
ded compilers. In 2nd USENIX Conference on Do-
main Specific Languages (DSL’99), pages 109-122,
Austin, Texas, Oct. 1999. Also appeared in ACM
SIGPLAN Notices 35, 1, (Jan. 2000).

J. Lewis, M. Shields, E. Meijer, and J. Launchbury.
Implicit parameters: dynamic scoping with static
types. In 27th ACM Symp. on Principles of Pro-
gramming Languages (POPL’00), pages 108-118,
Boston, Massachussets, Jan. 2000.

M. Miiller and S. Nishimura. Type inference for
first-class messages with feature constraints. In-
ternational Journal of Foundations of Computer
Science, 11(1):29- 63, 2000.

S. Nishimura. Static typing for dynamic messages.
In 25th ACM Symp. on Principles of Programming
Languages (POPL’98), pages 266-278, 1998.

M. Odersky, M. Sulzmann, and M. Wehr. Type in-
ference with constrained types. Theory and Prac-
tice of Object Systems, 5(1):35-55, 1999.

A. Ohori. A polymorphic record calculus and its
compilation. ACM Transactions on Programming
Languages and Systems, 17(6):844-895, 1995.

B. C. Pierce. Intersection types and bounded poly-
morphism. Mathematical Structures in Computer
Science, 7(2):129-193, Apr. 1997.

B. C. Pierce and D. N. Turner. Simple type theo-
retic foundations for object-oriented programming.
Journal of Functional Programming, 4(2):207-247,
Apr. 1994.

15

[21]

[30]

[32]

D. Rémy. Type inference for records in a nat-
ural extension of ML. In C. A. Gunter and
J. C. Mitchell, editors, Theoretical Aspects Of
Object-Oriented Programming. Types, Semantics
and Language Design. MIT Press, 1993.

J. C. Reynolds. Design of the programming lan-
guage Forsythe. In P. O’Hearn and R. Tennent,
editors, ALGOL-like languages, pages 173-233.
Birkhauser, 1997.

J. A. Robinson. A machine-oriented logic based
on the resolution principle. Journal of the ACM,
12(1):23-41, Jan. 1965.

M. Shields. Static Types for Dynamic Documents.
PhD thesis, Oregon Graduate Institute, Feb. 2001.

M. Shields and E. Meijer. Type indexed rows.
In 28th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 261-275, London, England, Jan. 2001.

P. Shroff and S. F. Smith. Type inference for first-
class messages with match-functions. In Founda-
tions of Object-Oriented Languages, Jan. 2004.

M. Sulzmann. Designing record systems. Techni-
cal Report YALEU/DCS/RR-1128, Dept. of Com-
puter Science, Yale University, Apr. 1997.

M. Sulzmann. Type systems for records revisited.
Unpublished report, June 1998.

M. Sulzmann. A General Framework for Hind-
ley/Milner Type Systems with Constraints. PhD
thesis, Dept. of Computer Science, Yale University,
May 2000.

P. Wadler. Views: a way for pattern matching
to cohabit with data abstraction. In 14th ACM
Symp. on Principles of Programming Languages
(POPL’87), pages 307-313. ACM Press, 1987.

M. Wand. Complete type inference for simple ob-
jects. In Proceedings of the 2nd. IEEE Symposium
on Logic in Computer Science, pages 37—44, 1987.
Corrigendum in LICS’88, page 132.

M. Wand. Type inference for record concatenation
and multiple inheritance. Information and Com-
putation, 93:1-15, 1991.



