
TODO List

Page 4 erights: Consider Bruno’s suggestion on simplifying this.
Page 22 all: Write this section
Page 22 all: Write this section
Page 22 all: Write this section
Page 22 all: Write this section

1

Caja

Safe active content in sanitized JavaScript

Mark S. Miller Mike Samuel Ben Laurie Ihab Awad Mike Stay

June 7, 2008

Abstract

Using Caja, web apps can safely allow scripts in third
party content.

The computer industry has only one significant
success enabling documents to carry active content
safely: scripts in web pages. Normal users regu-
larly browse untrusted sites with JavaScript turned
on. Modulo browser bugs and phishing, they mostly
remain safe. But even though web apps build on
this success, they fail to provide its power. Web apps
generally remove scripts from third party content, re-
ducing content to passive data. Examples include
webmail, groups, blogs, chat, docs and spreadsheets,
wikis, and more; whether from Google, Yahoo, Mi-
crosoft, HP, Wikipedia, or others.

Were scripts in an object-capability language, web
apps could provide active content safely, simply, and
flexibly. Surprisingly, this is possible within existing
web standards. Caja represents our discovery that a
subset of JavaScript is an object-capability language.

1 Introduction

An object-capability language is essentially a memory-
safe object language with encapsulation, with addi-
tional restrictions that protect the outside world from
the objects.1 In a memory-safe object language such
as JavaScript, object A can only invoke object B if
A has a reference to B. If A already has references to

1 Thanks to Mark Lillibridge for this formulation.

B and C, A can invoke B passing C as an argument,
giving B access to C. Memory-safe object languages
with encapsulation, such as Java, protect objects from
the outside world. The clients of an encapsulated ob-
ject can make requests using its public interface, but
how an object reacts to a request is up to the object.
An encapsulated object can ensure that the only way
to invoke its code or change its state is through its
public interface.

In an object-capability language, an object can
only cause effects outside itself by using the refer-
ences it holds to other objects. Objects have no pow-
erful references by default, and are granted new refer-
ences only by normal message passing rules. Object
references thereby become the sole representation of
rights to affect the world, and normal message pass-
ing (method invocation) is the only rights transfer
mechanism. An object can be denied authority sim-
ply by not giving it those references which would pro-
vide that authority.

The browser sandbox already mostly protects the
world outside the browser from scripts running on
web pages. A great virtue of JavaScript is that many
people successfully program in it casually, without
first learning the language in any depth. Caja2 is a
subset of JavaScript we designed to make as little im-
pact as possible on regular JavaScript programming,
while still providing object-capability security. The
subset is enforced by a static verifier and the insertion
of runtime checks into the code. In this section, we
provide a brief inaccurate overview of the differences

2 Caja, pronounced “KA-hah”, is Spanish for “box”. With
Caja, capabilities attenuate JavaScript authority.

2

function F(x) { this.x_ = x; }
F.prototype.getX = function() {
return this.x_;

};
F.make = function(x) {

return new F(x);
};
function test() {
return new F(3).getX() === 3;

}

Figure 1: Caja Functions. F is a constructor. It
can only be initialized and used with new and
instanceof. The function F.prototype.getX
is a method. It can only be called as a method.
F.make and test are simple functions. They are not
restricted.

between Caja and JavaScript suitable for the casual
JavaScript programmer. The rest of this document
then accurately goes into more depth.

Forbidden names. In Firefox, access to the
“ proto ” property of an object would grant
the authority to create more objects like it,
which violates the principle of least authority.
Therefore, Caja rejects all names ending with
“ ” (double underscore). This also gives the
Caja implementation a place to store its book-
keeping information where it is invisible to the
Caja programmer.

Frozen objects. In JavaScript, all objects are mu-
table, so passing the same reference to two ob-
jects automatically grants them the authority to
communicate, which is undesirable. Therefore,
Caja adds the ability to freeze an object. If an
object is frozen, an attempt to set, add, or delete
its properties will throw an exception instead.
Functions and prototypes are implicitly frozen.
In addition, the Caja programmer can explicitly
freeze objects to prevent their direct modifica-
tion. All objects in the default global environ-
ment are immutable, or transitively frozen.

No shared global environment. Caja code is
compiled into units of isolation called modules;
in practice, these are JavaScript functions. A
container loads the modules and grants them
authority by means of references passed as
arguments to the module functions. These
arguments are called imports.

A module that displays the local weather on a
webpage should not be able a priori to commu-
nicate with a module that has access to your
bank account. Therefore, each module has its
own global environment which inherits from the
default global environment, isolating them from
each other. On the other hand, a container can
allow two chosen modules to communicate by
passing a reference to a common mutable object
to each module.

Protected names. The state of an object that is
not part of its public interface should not be read
or changed by the outside world. Javascript sup-
ports private variables via closures, but this pat-
tern incurs a large memory overhead. Also, using
this as the sole encapsulation mechanism for ob-
ject patterns conflicts with existing JavaScript
programming practice. Therefore, Caja enforces
the convention that property names ending in
“ ” (single underscore) are protected instance
variables. Such names can only appear as prop-
erty names of “this”. As with Smalltalk in-
stance variables or protected instance variables
in C++, these protected instance variables are
visible up and down the inheritance chain within
an object, but are not visible outside an object.

No “this” stealing. The single-underscore rule
above only protects an object’s state from its
clients if its clients cannot add methods to it
which alias its “this”. For example, consider
the following constructor:

function Cell(value) {
this.x_ = "secret";
this.value = value;

}

3

At first glance, there seems to be no way for “x ”
to leak. However, the expression

(new Cell(
function (){
return this.x_;

})).value()

evaluates to the secret value. Therefore, Caja
divides functions into three categories: sim-
ple functions are those which do not men-
tion “this”. They are first-class and can be
used without further restriction. Constructors
are named functions which mention “this”.
Methods are anonymous function which mention
“this”.

Caja supports the conventional class-like usage
of constructors and methods (Figure 1), but pro-
hibits certain other dangerous usage patterns. A
constructor can only be called as a constructor
using new, or by a directly derived constructor to
initialize a derived instance. An object’s meth-
ods can only be called as methods of that object,
even when calling the method reflectively using
call, apply, or bind.

Sharp knives removed. The semantics of “with”
are even stranger than those of “this”. For ex-
ample,

var o = { x: 4, f: 2 };
with(o) {
function f() { }
alert(f); // This displays 2 !
var x = 3;

}
// Now o.x === 3 !

Caja contains no “with” or “eval”. Caja
includes a safe JSON library to support the
most common use of eval—deserializing object
literals—and a safe caja.cajitaEval for evalu-
ating code in the Cajita subset of Caja.

Cajita, which means “little box” in Spanish, is
essentially the subset of Caja without “this”. It
is far easier to analyze and rewrite than Caja—so

much so that the client-side rewriter cajitaEval
is feasible—but requires a much different pro-
gramming style than most JavaScript program-
mers are accustomed to.

Just as Caja modules receive their authority
from the container, cajitaEval takes as a pa-
rameter an object imports. Any free variable
appearing in the code passed to cajitaEval
is considered to be the name of a property of
imports.

Hopefully, this is all the casual Caja programmer
needs to know to get started. Section 2 is a partisan
history of access control on the web, in order to mo-
tivate the problems Caja addresses. It may safely be
skipped. Section 3 explains the problems faced when
securing JavaScript, many of which involve the use of
“this”.

We then present Caja in two stages. Section 4
presents Cajita, the subset of Caja without “this”.
For new code, Cajita is a reasonably expressive lan-
guage resembling an object-oriented Scheme. Sec-
tion 5 then presents the remainder of the Caja lan-
guage beyond Cajita. Caja adds back enough of
JavaScript for most old habits and old code to port
pleasantly and painlessly. Caja and Cajita interop-
erate without problems. Section 6 briefly surveys re-
lated work.

2 Identity-centric Epicycles

erights: Consider Bruno’s suggestion on simplifying
this.

When a document contains live interactive pro-
grams, we say it contains active content. The com-
puter industry has spent over a billion dollars in failed
attempts to support active content. But the success
of web apps—themselves a form of active content—
demonstrates that this dream was worth pursuing.
Unfortunately, web developers today face a maze of
complex security mechanisms that have, so far, pre-
vented web apps themselves from supporting active
content. To navigate our way out of this maze, we
must first see how we got here.

4

Figure 2: The Evolving Authority of Active Content.
Identity-centric access controls have led to thrashing
between lost functionality and lost safety. To have
both, we need to provide least authority : adequate
authority for desired functionality without excess
authority which invites abuse.

Today’s desktop operating systems all use some
form of identity-centric access control [4], in which
an installed application runs as its user, and so is en-
trusted with all its user’s authority. Such an applica-
tion can provide its user all the functionality modern
operating systems support, but at the price of being
able to do anything its user may do. We depict this
situation at on Figure 2. When you run Solitaire, it
can delete all your files while playing within the rules
of your system, without exploiting any bugs. (For
the remainder of this document, we will ignore haz-
ards due to implementation bugs, and explain only
hazards due to architectural choices.)

At first, the documents handled by applications
were safe passive data . Applications first sup-
ported active content by running scripts in docu-
ments with all of their user’s authority → . Ex-
cess authority invites abuse. Simply “reading” a ma-
licious document would allow it to delete all your
files. In reaction, installed office applications now

Figure 3: Only Bad Choices. When documents
contain scripts, users can disable themselves from
getting any work done or enable scripts to destroy
all their other work .

encourage users to disable scripts (Figure 3) reduc-
ing content back to passive data → . The failures
of excess authority shown on the upper left thus led
to the failures of inadequate authority shown on the
lower right.

The web browser is itself an installed application
that runs scripts in two contexts. Browser extensions
run with all the user’s authority . Scripts in web
pages run sandboxed, with no authority to the user’s
local files. The browser’s same origin policy, another
layer of identity-centric control [14], provides scripts
with the authority to communicate with their site of
origin → . Regarding both decisions, the user is
helpless. The user has no practical way to grant a
script the authority to edit one of the user’s local
files, nor can the user deny a script the ability to call
home. So long as the user’s valuable assets were local,
this model successfully protected the user.

Web apps leverage this success. To the browser,
the page on which a web app resides is a document,
and the web app itself is simply active content within
that document. But to the user, a web app is an ap-
plication managing yet other documents on the user’s
behalf. For example, when the user interacts with
webmail, the documents of interest are email mes-
sages. Likewise for groups, blogs, chat, docs and
spreadsheets, wikis, and more. Let us refer to the
documents managed by web apps as passages, to dis-
tinguish them from the web pages on which they ap-
pear.

Since the user can neither grant a web app access to
local files nor deny it the ability to call home, the only
place a web app could store these passages is on its
site of origin. The browser security model protected

5

the user’s local files from being harmed or used. As
users shift to using web apps, the assets they value
come to be the passages stored at these various origin
sites.

To protect their user’s remote passages, web apps
employed yet another layer of identity-centric con-
trols, relying on cookies or other forms of authen-
tication to identify their user. But when scripts
within these passages ran, they would run within
the web page containing the web app serving them,
and were thereby authorized to do anything their web
app could do on behalf of its user . For example,
if a webmail application allowed HTML email mes-
sages to carry scripts, simply “reading” an incoming
email message would allow it to delete your inbox.
The → transition is not a technical change, but
a change in where the user’s value resides, and thus
a change in the user’s risks. By this dynamic, fail-
ures of inadequate authority led to failures of excess
authority.

To protect against malicious passages, some web
apps do safely provide active content using iframes—
effectively nested web pages—at the cost of isolating
themselves from this content → [14]. Most web
apps sanitize HTML content by removing all scripts,
reducing content again to passive data → . Exist-
ing HTML sanitizers disinfect the patient but leave
a corpse. This recapitulates the loss of active con-
tent in installed office applications. Some proposals
would address these next incremental problems by
adding yet another identity-centric epicycle. Can we
do better?

If we could start over again, we could use
an authorization-centric model such as object-
capabilities [1]. The object-capability alternative
naturally supports POLA, the principle of least au-
thority, shown in the upper right of Figure 2. An ob-
ject in an object-capability language can only cause
effects by invoking the public interfaces of objects
it can reach. An invocation provides references to
other objects as arguments, providing the invoked
object the least authority needed to carry out these
requests [8]. Within these rules, active content would
run with exactly the authority explicitly provided by
its containing document. Surprisingly, we can gain
these benefits simply by applying a milder, non-lethal

Figure 4: Ptolemy’s epicycles. Ptolemy attempted
to model the motion of the heavenly bodies using
only circles. With each discovery that the model
didn’t fit, yet another layer of circle was added to
adjust. By contrast, Kepler’s ellipses fit the problem
directly, with no need for endless additional layers.

sanitizer.

Experience with Java, Scheme, OCaml, Pict, Perl
and others demonstrates that existing memory safe
languages often already contain an expressive object-
capability subset [7, 9, 11, 5, 6, respectively]. We refer
to the object-capability subset of JavaScript as Caja.
This subset is still a general purpose object program-
ming language which JavaScript programmers should
find familiar, pleasant, expressive, and easy to learn
and use.

6

function Counter() {
var count = 0;
return caja.freeze({
toString: function() {
return "<counter: " + count + ">";

},
incr: function() {

return count += 1;
},
decr: function() {
return count -= 1;

}
});

}

Figure 5: A Cajita Counter. Each call to Counter()
produces a new counter object. Access to a counter
provides the authority to read, invoke, or enumerate
its properties, all of which are simple functions
serving the role of methods. Caja functions are
implicitly frozen; the returned object is explicitly
frozen; and the instance-state of the object—the
count variable—is accessible only as encapsulated
state captured by these pseudo-methods. A counter
object as a whole, as well as each of its pseudo-
methods, are thus proper protected capabilities.
Someone with access only to a counter’s incr
function can increment that counter and observe the
result, but not do anything else.

Some web apps could use the Caja sanitizer to al-
low active content in their passages → . Other
web apps could use Caja to overcome the limits of
iframes → . Browser extensions, which run with
their user’s full authority, could make a powerbox
available to scripts in pages [13, 12, 10, 3]. A web
app, on detecting the presence of a powerbox, could
offer to edit a local file chosen by the user → .

3 Subsetting JavaScript

Our starting point is JavaScript as documented in
the third edition of the EcmaScript 262 standard [2];

hereafter ES3 3. ES3 code is passed to a Java pro-
gram known as the the Caja sanitizer, or “cajoler4”.
The first set of restrictions is enforced by a static
verifier. These restrictions mostly involve the use of
trailing underscores, where the keyword “this” may
appear, and the class definition pattern. The sec-
ond set of restrictions is imposed at runtime. After
statically verifying the code, the cajoler rewrites the
code, inserting dynamic checks throughout. These
involve restricting access to private members, forbid-
ding modification of frozen objects, and so forth. The
actual logic of the runtime checks is contained in a
runtime library, caja.js, that must be loaded by the
JavaScript interpreter before loading a Caja module.

The remainder of this document explains the differ-
ences between Caja—the JavaScript subset accepted
by the Caja sanitizer—and ES3. Other documents
will explain the interface between cajoled and un-
cajoled JavaScript, and Caja’s sanitization of the re-
maining elements of active web content: HTML, CSS,
and the DOM and other APIs provided by browsers
to JavaScript. We refer collectively to the subset of
these accepted by the Caja sanitizer as Caja web con-
tent, and to the sanitizer’s corresponding output as
Cajoled web content.

3.1 The OS analogy

A web app (or any other JavaScript-based embedding
application framework) can be written partially in
JavaScript and partially in Caja. The web app must
load the Caja runtime library, which is written in
JavaScript. All untrusted scripts must be provided as
Caja source code, to be statically verified and cajoled
by the Caja sanitizer. The sanitizer’s output is either
included directly in the containing web page or loaded
by the Caja runtime.

A loose analogy with machine and operating sys-
tem architecture may help explain the relationships.
In the analogy, the full JavaScript language serves the
role of the machine’s full instruction set. JavaScript’s
global environment serves the role of physical mem-
ory addresses. The I/O-capable objects provided to

3 ES3 is approximately a bit more than JavaScript 1.4 and
a bit less than JavaScript 1.5.

4 We thank Pat Patternson for this term.

7

JavaScript by a hosting environment, such as the
DOM objects provided by the browser, serve the role
of devices.

User-mode. By a combination of static and dy-
namic checks, the Caja sanitizer allows only a
safe “user-mode” subset of JavaScript. As with
user-mode instructions, this subset can compute
any computable function, but cannot cause ex-
ternal effects nor sense the outside world.

Address mapping. A package of Caja source code
to be cajoled together defines a Caja module.
All code within the same module shares a global
environment, but distinct modules see disjoint
global environments. The Caja sanitizer imple-
ments this by rewriting free variables as proper-
ties of a container-provided “imports” object.

Context switching. When Caja object A has a ref-
erence to Caja object B, this should enable A to
invoke B’s public interface but not access B’s in-
ternal state. A and B should both be able to
defend their integrity from the other’s possible
misbehavior.

System calls, device drivers. When a Caja ob-
ject A invokes an object B written directly in
JavaScript, the operations provided by B serve
the role of system calls. Caja protects B from
A, but A is fully vulnerable to B. When B is a
safe wrapper around one of the host’s device-like
objects, such as a DOM node, B also serves as a
device driver.

A “system call” corresponds to a Caja object in-
voking a JavaScript object. A web app that is written
entirely in JavaScript and provides many services to
its Caja objects directly would be like a monolithic
kernel. For compatibility with existing JavaScript
apps, we support this usage pattern but we don’t
recommend it. By analogy with kernel code at the
boundary with untrusted code, such JavaScript code
needs to maintain delicate invariants that it is easy
to get wrong.

The other extreme is analogous to a micro-kernel.
The minimal necessary JavaScript code would be the

function Point(x, y) {
return caja.freeze({
toString: function() {
return "<" + x + "," + y + ">";

},
getX: function() { return x; },
getY: function() { return y; },

});
}

var ptA = Point(3, 5);
var ptB = Point(4, 7);

Figure 6: A Cajita Point. As a baseline, we first
express this simple example in Cajita with no
support for inheritance. Other elaborations will
show how to support inheritance and various styles
of definition in both Cajita and full Caja.

app-neutral Caja runtime itself, and a small app-
dependent powerbox providing device drivers and ini-
tialization. All other services should be Caja objects
to be invoked by other Caja objects. Most of the logic
of a web app should be structured as such Caja-based
services.

3.2 JavaScript specific problems

Most of the above remarks would apply equally well
were we starting from various other base languages.
There are additional issues peculiar to JavaScript
that we must deal with. Many of these issues are also
software engineering hazards for which JavaScript
programmers have developed defensive programming
conventions. Where possible, Caja copes with these
issues by adapting and enforcing these existing con-
ventions.

Unconstrained properties. JavaScript objects
contain properties, i.e., named fields holding
references to other objects. JavaScript specifies
that some properties are constrained to be Pro-
tected, ReadOnly, DontEnum, or DontDelete.
Such constraints would help an object protect

8

function PointMixin(self, x, y) {
self.toString = function() {
return "<" + self.getX() + "," +

self.getY() + ">";
};
self.getX = function() { return x; };
self.getY = function() { return y; };
return self;

}
function Point(x, y) {

return caja.freeze(PointMixin({}, x, y));
}

Figure 7: Cajita Inheritance. In the Cajita inher-
itance pattern, the equivalent of a non-final class
is a function ending with “Mixin” with self as
its first parameter. The method-like functions can
use self analogously to the use of this in full
Caja, in order to refer to the overall object being
defined. If the class is non-abstract, it should also
have a pseudo-constructor function such as Point
for making direct instances. This “*Mixin” function
should only be called by these pseudo-constructor
functions, such as WobblyPoint in Figure 8.

itself from its clients, but JavaScript provides no
way to express these constraints in the language.
Instead, any user-defined object in JavaScript is
freely mutated by any other object with access
to it.

Global environment. All JavaScript code execut-
ing within the same JavaScript engine (such as
a web page or iframe) implicitly share access
to the same global environment. Therefore, in
JavaScript, objects cannot be isolated from each
other.

Implicit mutable state. Some base JavaScript ob-
jects, such as Array.prototype, are implicitly
reachable even without naming any global vari-
able names. Even after global environment prob-
lems are fixed, the mutability of these objects
would prevent isolation.

function WobblyPointMixin(self) {
var super = caja.snapshot(self);
self.getX = function() {
return Math.random() + super.getX();

};
return self;

}
function WobblyPoint(x, y) {
var self = PointMixin({}, x, y));
self = WobblyPointMixin(self);
return caja.freeze(self);

}

Figure 8: Cajita WobblyPointMixin. The equivalent
of a non-final subclass is a “*Mixin” function
with self as its first parameter, where the body
calls caja.snapshot to make a frozen copy of the
partially initialized self at that moment, to serve
as the conventional super for the other functions
defined within this scope.

Lack of encapsulation. To support the “context
switching” criterion explained in section 3.1, ob-
jects need to be able to encapsulate their private
state. JavaScript does provide one such mecha-
nism: lexical variables captured by nested func-
tions. For example, in the following code, the
variable secret cannot leak or be changed:

function makePointFunction(secret) {
return function(value) {
return value === secret;

}
}

However, using this as the sole encapsulation
mechanism for object patterns conflicts with ex-
isting JavaScript programming practice.

“this” what? JavaScript’s rules for binding “this”
depend on whether a function is invoked by con-
struction, by method call, by function call, or
by reflection. If a function written to be called
in one way is instead called in another way, its

9

“this” might be rebound to a different object
or even to the global environment.

Foreign for/in loops. Caja has a stated goal of
supporting as much legacy code as possible,
where it is safe to do so. Nearly all Javascript
libraries use JavaScript’s for/in loop to enu-
merate the names of all an object’s properties,
whether inherited or not5. As a result, the prop-
erties used by the internals of the Caja runtime
library, which are hidden to Caja code, need to
be skipped by the loop body. Every JavaScript
coding style invents its own defensive pattern
of additional tests to skip unwanted property
names.

Though not part of Caja itself, the Caja distri-
bution includes an “innocent code” transformer
that parses JavaScript and surrounds the body of
all for/in loops with a check that skips proper-
ties internal to the Caja library—i.e. properties
ending in “ ”, triple underscore.

Weak static analysis. Although Caja is less dy-
namic than JavaScript, we still assume that it
is impractical to perform any interesting analy-
sis, such as type inference, both statically and
safely. As a result, Caja’s static restrictions can
only enforce simple syntactic rules. Remaining
restrictions must be enforced by runtime checks.

Fast path. For the micro-kernel approach to be at-
tractive, Caja’s extra runtime checks must not
cost too much. Frequent operations, such as
property access using “.” must run close to full
speed.

Uncontrolled language growth. The ES3 spec
allows one to add new dangerous properties
to core objects while claiming ES3 compatibil-
ity. JavaScript language implementors, platform
providers, and standards committees make use
of this freedom with unpredictable results. For
example, some JavaScript implementations have
added dangerous properties, like eval, to core
objects, like Object.prototype. A safe subset

5 ... unless the property is DontEnum, but the JavaScript
programmer has no way to express that in his own code.

must deny access to these additional unknown
properties. But since these new properties are
often DontEnum, there isn’t even a reliable way
to detect them.

Browser compatibility. Web content must work
on widely deployed browsers whether on not
these browsers strictly conform to the relevant
standards. At the time of this writing, the
plausible baseline platform is Yahoo!’s list of
A-Grade browsers /citeYahoo:AGrade. Fortu-
nately, these browsers do conform closely to ES3.
Later versions of Caja may specify larger subsets
of ES3.

Multiple worlds. As with many languages, each
instantiation of a JavaScript language world
creates a set of primordial objects (like
Object.prototype) that are global to that
world. Unlike other languages, JavaScript is
built to support multiple interacting worlds. For
example, in the browser environment, a new
JavaScript world is created for each iframe. An
object from one iframe can hold a direct ref-
erence to an object from another iframe of the
same origin. This leads to some surprises. Even
if x holds an array, x instanceof Array may
evaluate to false because x is an instance of the
Array from a different JavaScript world.

Silent errors. In JavaScript, various operations,
such as setting a ReadOnly property, fail silently
rather than throwing an error. Program logic
then proceeds along normal control flow paths
premised on the assumption that these opera-
tions succeeded, leading to inconsistency. To
program defensively in the face of this haz-
ard, every assignment would be followed by a
“did it really happen?” test. This would ren-
der programs unreadable and unmaintainable.
Where practical, Caja deviates from standard
JavaScript by throwing an exception rather than
failing silently.

Object detection. In JavaScript, reading a non-
existent property returns undefined rather than
throwing an exception. The JavaScript object

10

detection6 pattern relies on this behavior. Since,
in this case, the program naturally notices the
problem anyway, Caja does not turn this case
into a thrown exception.

The above point about “Silent errors” is another
reason to avoid the monolithic kernel approach. Web
apps in uncajoled JavaScript are vulnerable to any
malicious active content that finds a way to provoke
a silent error and exploit the resulting inconsistency.

3.3 A fail-stop subset

There are four ways that the semantics of cajoled
code may differ from those of uncajoled code. First,
it may fail to pass the static verifier; second, it may
throw an exception at runtime; third, it may return
undefined when trying to read a protected variable
from outside the encapsulating object; and fourth,
by hitting one of a few rare corner cases where the
semantics have to differ in order to preserve the se-
curity properties. We call the last set of deviations
“gotchas”, and detail them in sections 4.6 and 5.4.
Since (in all cases but the gotchas) the semantics dif-
fer only when there is an error, or “failure”, Caja is
a fail-stop subset7 of ES3.

A Caja-compliant JavaScript program is one which

1. is statically accepted by the Caja sanitizer,

2. does not provoke Caja-induced failures when run
cajoled, and

3. avoids these gotchas.

Such a program should has the same semantics
whether run cajoled or not.

4 Cajita Specification

Before describing Caja and all the Rube-Goldbergian
complexity of the semantics of “this”, we’ll describe
the subset of Caja without “this”—a perfectly rea-
sonable and expressive programming language. Caja
supports “this” in order to ease the porting of old

6 See http://www.quirksmode.org/js/support.html.
7 We thank Dan Rabin for this formulation.

code. For new code, we recommend sticking to Ca-
jita8.

The Caja runtime will provide a safe eval opera-
tion, caja.cajitaEval. For this operation to accept
Caja code, the Caja sanitizer would need to be writ-
ten in JavaScript and included in the Caja download.
To minimize download size, caja.cajitaEval will
instead accept only Cajita code.

To explain the restrictions Cajita imposes, we need
some definitions.

Record. An object whose prototype’s
“constructor” property is Object, i.e.,
under normal conditions, an object inheriting
directly from Object.prototype. Records are
normally created using the {...} syntax.

Array. An object whose prototype’s “constructor”
property is Array, i.e., under normal con-
ditions, an object inheriting directly from
Array.prototype. Arrays are normally created
using the [...] syntax.

JSON Container. A record or array. These are the
non-primitive objects that can be directly ex-
pressed in JSON syntax. Note: whenever the
word “container” appears unqualified, we are re-
ferring to the module container, not a JSON con-
tainer.

Function.prototype.bind. Cajita and Caja add
the bind method to all functions, defined in
equation 5 of figure 9. The popular Prototype
library, ES3.1, and ES4 all define bind in this
way.

Invocation. A function can be invoked

• as a function (foo(a...)),

• as a method (foo.m(a...)),

• as a constructor (new Foo(a...)), or

• reflectively (by calling its call, apply, or
bind methods).

8 The design of Cajita was inspired by Doug Crockford’s
ADsafe.

11

Simple functions. A function whose body does not
mention “this” is a simple function. A sim-
ple function can be either named or anony-
mous. Simple functions are first-class—they can
be stored in variables and passed around freely,
just like any other value.

Frozen. If an object is frozen, any attempt to di-
rectly assign to its properties, add new proper-
ties to it, or delete its properties causes an ex-
ception to be thrown. Frozen is a shallow re-
striction: Frozen objects can retain and provide
non-frozen objects. (Imagine a frozen surface
covering a liquid lake.) In Cajita and Caja, func-
tions are implicitly frozen once they’ve been in-
titialized. The Caja runtime library additionally
provides an explicit operation for freezing JSON
containers: “caja.freeze(obj)”.

Immutable. If an object is immutable, then it is
frozen, and all objects it has access to are them-
selves immutable. Shared access to an im-
mutable object does not provide a communica-
tion channel, and so does not endanger isolation.
With the exception of Math.random and Date,
all objects that are globally or implicitly acces-
sible to all Caja programs are immutable. We
discuss these exceptions in section 4.5.

4.1 Cajita regularities

The regularities in Figure 9 apply when calling sim-
ple functions, whether the calling code is in Cajita or
Caja. When calling other functions, only the weaker
Caja regularities shown in Figure 12 apply. The reg-
ularities in both sections are often stronger than ES3,
but are all within a fail-stop subset of ES3.

• Equation (1) of Figure 9 states that the new key-
word does not change the meaning of calling a
simple function. This holds only for simple func-
tions that explicitly return a value. As in un-
cajoled JavaScript, if a simple function instead
implicitly returns, it will return undefined when
called without new, but will return a useless ob-
ject when called with new.

F(. . .) ≡ new F(. . .) (1)
≡ F.call(v, . . .) (2)
≡ F.apply(v, [. . .]) (3)
≡ F.bind(v)(. . .) (4)

F(. . .1, . . .2) ≡ F.bind(v, . . .1)(. . .2) (5)
x.m ≡ true && x.m (6)

(x.m)(. . .) ≡ (true && x.m)(. . .) (7)
{. . .} ≡ (function(){. . .})() (8)
(. . .) ≡ (function(){return . . .})() (9)

Figure 9: Cajita Regularities. Given that F is
a simple function, x.m holds a simple function,
and v is an expression with no effects and stable
value (such as a variable reference), then most of
these equivalences hold in Caja as well as Cajita.
Equation (8) holds in general only in Cajita. See
section 4.1 for further qualifying conditions.

• Equation (9) holds in Cajita and Caja when
the left-hand side does not mention arguments
freely.

• Equation (8) holds only in Cajita, and only when
the left hand side does not contain a free break,
a free continue, or a return statement.

• When calling the call, apply, or bind method
of a simple function, the first argument is ig-
nored: a simple function cannot contain the key-
word this and thus has no way to refer to that
argument.

• The apply method differs from call only in
packaging all arguments together into a list.

• A single-argument bind of a simple function
returns a function with equivalent invocation
behavior—a function that behaves the same,
whether called as a function, as a constructor,
as a method, or reflectively.

• When bind has additional arguments, it returns

12

a new function representing F curried over these
additional arguments.

• In JavaScript, when the left operand of an && ex-
pression evaluates to a “truthy” value—that is,
any value x such that Boolean(x) === true—
the && expression as a whole evaluates to the
value of its right operand. Therefore, you might
expect Equation (6) to hold in general. The
next item sheds light on why it does not hold in
JavaScript when the value of the right operand
is a non-simple function.

• In JavaScript, when the value of a property x.m
is a function, the expression (x.m)(...) binds
this to x, whereas (true && x.m)(...) binds
this to the global scope. In a web browser, the
global scope is reified as the object window, so
the browser calls m as a method on window in-
stead of on x. Fortunately, when m is a simple
function, these two forms of invocation have the
same meaning.

4.2 Common static restrictions

Any source code statically accepted by the Caja san-
itizer is a legal Caja program. A legal Caja program
satisfying additional static restrictions is also a legal
Cajita program and will be accepted by the Cajita
sanitizer. A Caja-compliant JavaScript program that
is also a legal Cajita program is a Cajita-compliant
JavaScript program—it will have the same semantics
whether uncajoled, cajoled by the Caja sanitizer, or
cajoled by the Cajita sanitizer.

The static restrictions immediately below apply to
both Caja and Cajita. This is followed by the addi-
tional static restrictions specific to Cajita.

Stable language. Virtually any input which should
be statically rejected by ES3 is forbidden, even if
it would be allowed by a target browser or later
JavaScript specifications. This includes any use
of keywords reserved in ES3. But we reserve the
right to include de-facto extensions to ES3 as
explained below.

function Brand() {
var flag = false, payload = null;

return caja.freeze({
seal: function(payloadToSeal) {
function box() {
flag = true;
payload = payloadToSeal;

}
box.toString = function() {
return "(box)";

};
return box;

},
unseal: function(box) {
flag = false;
payload = null;
try {
box();
if (!flag) { throw ...; }
return payload;

} finally {
flag = false;
payload = null;

}
}

});
}

Figure 10: Rights Amplification. Each brand has
a seal and unseal function, acting like a matched
encryption and decryption key. Sealing an object
returns a sealed box that can only be unsealed by the
corresponding unseal function. The implementation
technique shown here is due to Marc Stiegler.

De-facto extensions. As we identify widely sup-
ported extensions of ES3 that we can accept as
input, but still cajole to conforming ES3 on out-
put, we may add these to Caja. For example, we
are currently considering allowing backslash as a
line continuation character, since this is allowed
by virtually all JavaScript implementations and
can be trivially cajoled to correct ES3.

13

Without “with”. The “with” keyword is forbid-
den. Because of the scope confusion it causes,
“with” is a widely hated and avoided feature
that would be a lot of trouble to support safely.

Beware unicode. Cajita and Caja accept unicode
characters only in string literals. Some of these
create parsing problems on some widely deployed
JavaScript platforms. Prohibiting these protects
against some character-encoding attacks. We ex-
pect to relax this restriction once we know how
to do so safely.

Forbidden names. An identifier ending with a
double underscore is forbidden, either as a vari-
able name or a property name. We reserve the
triple underscore for use by the sanitizer’s ca-
joled output and by the Caja runtime. Firefox
reserves the double underscore for itself.

“new” is ok. Since Cajita does not have this,
constructors, nor prototypes, new isn’t needed
purely within Cajita. But since Cajita code must
interoperate smoothly with Caja and uncajoled
JavaScript code, new is considered a valid part
of Cajita.

No assignment to imports or declared functions.
Variables used freely in Caja code refer to prop-
erties of the IMPORTS object, and assignment
to these properties is statically rejected. De-
clared function names may not be reassigned.
For example, the following code is illegal in
Cajita and Caja:

function foo()
foo = 3;

No deleting variables. Allowing variables to be
deleted prevents static scope analysis, so Cajita
and Caja both prohibit it. Properties of objects,
however, may still be deleted.

4.3 Cajita-only static restrictions

The following features are present in Caja in order to
accommodate old code, rather than to enhance ex-
pressiveness. Since Cajita is for new code, in order

function Mint() {
var brand = Brand();
return function Purse(balance) {
caja.enforceNat(balance);
function decr(amount) {
caja.enforceNat(amount);
balance =
caja.enforceNat(balance-amount);

}
return caja.freeze({
getBalance: function() {
return balance; },

makePurse: function() {
return Purse(0); },

getDecr: function() {
return brand.seal(decr); },

deposit: function(amount,src) {
var box = src.getDecr();
var decr = brand.unseal(box);
var newBal =
caja.enforceNat(balance+amount);

decr(amount);
balance = newBal;

}
});

}
}

Figure 11: The MintMaker Example. Calling Mint()
creates a Purse function for making purses holding
new transferable units of a distinct “currency”.
Given two purses of the same currency, one can
transfer money between them, but one can’t violate
conservation of currency.

to minimize the dowload size of the Cajita sanitizer,
as well as to simplify the semantics of Cajita consid-
ered on its own, these features are absent from Cajita.
Code containing these features is not legal Cajita.

“this”. The central difference between Caja and Ca-
jita is that only Caja includes “this”.

Protected names. In Caja, an protected name is
a property name ending in “ ” (a single under-

14

bar). Such names are used for encapsulation in
Caja but are prohibited in Cajita. Cajita’s only
encapsulation mechanism is lexical scoping.

Prototypes. In Caja and Cajita, if “Foo” is a func-
tion name, then static properties of the function
can be initialized until the first time the func-
tion is used. Cajita prohibits access to Foo’s
“prototype” property, and so prevents use of
JavaScript’s prototype inheritance within Ca-
jita.

“instanceof”. Without “this” and prototypes,
Cajita has no need for instanceof. Rather,
JavaScript’s typeof is almost an adequate type
discriminator for Cajita. But Cajita still needs a
way to distinguish records from arrays. We could
allow the conventional x instanceof Array ex-
pression, but it does not work correctly when x is
an array from another cajoled JavaScript world,
such as another iframe with the same origin. In-
stead we provide caja.isArray(x) as a correct
alternative.

Literal RegExp syntax. In JavaScript implemen-
tations, the literal pattern syntax is often opti-
mized into a static object with mutable state, vi-
olating isolation. The Caja sanitizer cajoles the
/pattern/ syntax to new RegExp("pattern").
In Cajita, the second form must be written ex-
plicitly.

for/in loops. Because of the confusing semantics of
JavaScript’s for/in loops, these are absent from
Cajita. Instead, Cajita code should enumerate
the properties of obj by doing

caja.forEach(obj,function(v,k){...});

This code will reliably give the same results
whether run cajoled or not. It will enumer-
ate only the non-inherited publicly Caja-visible
property value / property name associations of
obj. If caja.isArray(obj), then k will enumer-
ate successive indexes into the array.

Semicolon insertion. JavaScript will insert semi-
colons automatically in certain situations involv-
ing newlines. Code which parses correctly but

differently if semicolons are automatically in-
serted is not legal Cajita. For example, due to
the newline at the end of the first line, this code

x = a
+ b;

has two different correct parses: x = a + b;
and x = a; +b;.

Therefore, code which has a newline between x
= a and + b is not legal Cajita. It should be
replaced by x = a + b; which is unambiguous.

Block-breaking scopes. Cajita variable names are
visible only according to the intersection of ES3’s
scoping rules and conventional Java-like block-
level lexical scoping. This is essentially lexical
scoping from the point of introduction with the
restriction that a function cannot contain two
definitions of the same variable name, even in
two separate blocks. If JavaScript scope analysis
and conventional block-level lexical scope analy-
sis would disagree on the variable bindings of a
given piece of code, then that code is not legal
Cajita.

Coercing equality. JavaScript’s coercing rules for
the “==” and “!=” operators are complex, acci-
dent prone, and not even transitive. Cajita only
includes the equality operators “===” and “!==”.

4.4 Cajita dynamic restrictions

The following restrictions apply to both Caja and
Cajita.

Frozen Functions. An anonymous simple function
is implicitly frozen. A named simple function
may be initialized, but is implicitly frozen im-
mediately before its first non-initializing use or
escaping occurrence. For example, the assign-
ment to box.toString in Figure 10 will succeed,
because it occurs before box is implicitly frozen
by the following return statement. Initializing
assignments can thus be considered declarative
initializations rather than mutations.

15

Claim: No Caja program can cause a Caja-
observable mutation of a function or of any ob-
ject Caja considers frozen.

4.5 Modules

The output of the Caja sanitizer consists almost en-
tirely of a JavaScript function called a module. The
bound variables of a module are those that appear
as the names of functions declared in the Caja code
or in a var declaration. The free variables are the
variables that are not bound.

One of the arguments of every module function is
named IMPORTS , and the Caja sanitizer rewrites
all free variables to be properties of IMPORTS . For
example, the cajoling process rewrites

var list = new Foo(6);

to (approximately)

var Foo = ___readPub(IMPORTS , ’Foo’);
var list = new (___.asCtor(Foo))(6);

From the container’s perspective, this effectively rei-
fies the module’s global scope. Note that the module
itself does not necessarily have a means of obtaining
a reference to IMPORTS .

If a container wants to allow communication be-
tween two modules, it can provide a mutable object
as a property of IMPORTS , say,

IMPORTS .channel = {};

Then if one module sets a property of channel in its
code, the other can read the property and vice-versa:

// In module 1:
channel.message = "Hi there!";

// In module 2:
alert(channel.message);
// Displays "Hi there"

Similarly, if the container wishes to grant a module
reified access to its IMPORTS , it can set, for exam-
ple, IMPORTS .global = IMPORTS .

Claim: Two separate module instances, even if they
instantiate the same module, are isolated from each

other unless they have been granted references to the
same mutable object.

Here are some restrictions that the IMPORTS ob-
ject must have in order to preserve Caja’s security
properties.

eval The whole point of the cajoler and runtime
library is to enforce the Caja restrictions on
JavaScript. The eval method would allow ar-
bitrary JavaScript to be executed, so it’s impor-
tant that a Caja module never gets a reference
to the eval method.

Instead, “caja.cajitaEval” will evaluate Ca-
jita source code (text or AST). The cajitaEval
function will take an imports object, and free
variables in the source will be bound to proper-
ties of imports.

Function The JavaScript Function constructor is
absent for the same reason as eval.

Restricted reflection Allowing access to the
constructor property of prototypical objects
and functions would grant the authority to
create more objects like them, which violates
the principle of least authority. Therefore, the
built-in constructor property is absent from
Caja.

The prototype property of functions can only
be used in the limited9 ways shown in Figure 19.

The call, apply, and bind methods of functions
cannot be replaced or overridden.

Claim: The restrictions stated in this document
together make the Function object unreachable
from Caja programs.

new Date() Nearly all of the members of the
global environment are immutable. However,
in JavaScript, “new Date()” gives ambient ac-
cess to the current date and time, in violation
of object-capability rules as well as dependency
injection discipline. Date is therefore a member
of the global environment which is not actually

9 See http://code.google.com/p/google-caja/issues/

detail?id=346 for details of the attack enabled by unrestricted
access.

16

http://http://code.google.com/p/google-caja/issues/
http://detail?id=346

immutable. Further, this ambient access to the
current time provides a timing channel, further
impeding any attempts to stem the leakage of
bits over covert channels. Nevertheless, despite
these concerns, because it provides only a read-
only channel for sensing the world, Caja pro-
vides the JavaScript Date constructor to Caja
programs.

Math.random() The JavaScript Math.random
method is not even read-only. The ES3 stan-
dard places no obligations regarding quality of
the randomness produced. In particular, an
implementation could conform to ES3 and still
leak to a given caller of Math.random() the
ability to infer how many previous times it had
been called. Nevertheless, Caja provides the
JavaScript Math.random method to Caja pro-
grams. We recommend that JavaScript platform
providers provide good enough randomness that
this method doesn’t serve as an information
channel between otherwise-isolated modules.

4.6 Cajita gotchas

Caja seeks to define a fail-stop subset of ES3, as ex-
plained in section 3.3. However, it falls short of this
goal in several minor ways. To write a correct pro-
gram that executes correctly whether run cajoled or
uncajoled, it should avoid these gotchas. In this sec-
tion, we enumerate those gotchas relevant to the Ca-
jita subset of Caja.

Snapshot “arguments”. In ES3, if x is the i’th
parameter of a function, assignments to x are
visible as changes to arguments[i] and vice
versa. In Caja, if “arguments” is mentioned, it
is bound to a proper array snapshot of the argu-
ments list when the function was entered, not an
array-like object. In order for Caja to be a fail-
stop subset of ES3, a future version of the Caja
sanitizer will statically disallow assignments to
any parameter variable within a function that
mentions “arguments”. But in the initial Caja
implementation, this minor gotcha remains.

Absent ReferenceError. In ES3, when a reference

to an undefined variable is evaluated as an ex-
pression, a ReferenceError is thrown. The
Caja sanitizer cajoles a reference to an unde-
fined variable into a reference to a property of
IMPORTS . Given the current cajoling rules,
a reference to an undefined outer variable will
evaluate to undefined rather than throwing a
ReferenceError.

Top-level variable declaration is not an import.
In JavaScript, free variables and declared vari-
ables at the top-level are both properties of
the global object. In Caja, even though free
variables are rewritten to properties of imports,
declaring a variable with var does not add a
property to the IMPORTS object.

5 Caja Specification

Whereas Cajita is a small subset of JavaScript
meant to support new code, Caja is a large sub-
set of JavaScript meant to ease the porting of old
JavaScript code and practices. Cajita is small enough
that its security properties can be understood. Caja
seeks to accept as large a subset of JavaScript as is
practical without losing the security properties pro-
vided by Cajita. In this section, we explain only the
remaining elements of Caja beyond the elements of
Cajita already explained.

To explain the remaining elements of Caja, we need
some additional definitions.

Constructed object. An object defined by Caja
code that’s not a JSON container and not a
function must have been constructed by calling
“new” on a function other than Array or Object.

Prototypical objects. As in ES3, a constructed
object’s implicit prototype—the object it directly
inherits from—is the value of the prototype
property of the function which constructed it
(which must have been called with “new”). In
Caja, these prototypical objects are not first-
class. When a function is implicitly frozen, so
is its prototype. Until then, both it and its
prototype may be initialized.

17

Constructors. A named function whose body men-
tions “this” is a constructor.

Methods. An anonymous function whose body
mentions “this” is a method. A method defi-
nition may appear in one of two constructions.
The first is as a parameter in the member map
in a call to caja.def. For example, getX and
setX are methods in the following code:

function Foo(x) { this.x_ = x; }
caja.def(Foo, Object, {
getX:function () { return this.x_; },
setX:function () { this.x_ = x; }

});

The second is as the right-hand side of an assign-
ment to a property of a constructor’s prototype,
before the constructor’s first use. For example:

function Foo(x) { this.x_ = x; }

// These are allowed
Foo.prototype.getX = function (){
return this.x_;

};
Foo.prototype.setX = function (x){
this.x_ = x;

};

// First reference to Foo
var f = new Foo(0);

// This is no longer allowed
Foo.prototype.add3 = function (x){
return x + 2;

};

In both these cases, the function is marked as
a method and is added as a property of object
bound to the constructor’s prototype property.
Such a function is called an unattached method,
in contrast to an attached method, explained be-
low. Direct references to unattached methods
should never be accessible to Caja code.

x.m(. . .) ≡ (true&&x.m).call(x, . . .) (10)
≡ x.m.call(x, . . .) (11)
≡ x.m.apply(x, [. . .]) (12)
≡ x.m.bind(x)(. . .) (13)

x.m.bind(x) ≡ (true && x.m).bind(x) (14)
x.m(. . .1, . . .2) ≡ x.m.bind(x, . . .1)(. . .2) (15)

(. . .) ≡ (function(){ (16)
return . . .}).call(this)

{. . .} ≡ (function(){ (17)
. . .}).call(this)

Figure 12: Caja Regularities. In Caja, given that
x.m is associated with either a simple function
or a method, then these equivalences hold. See
section 5.1 for qualifying conditions.

When a method like getX is read as a prop-
erty of an object o, it returns instead an at-
tached method, a wrapper around the unattached
method that stores o; when it is invoked as a
method on some object o2, the wrapper first ver-
ifies that o === o2. If the two are not equal,
then the wrapper throws an exception.

An inline method is an anonymous function men-
tioning “this” that is immediately invoked us-
ing call, apply, or bind with “this” as the
first parameter. Inline methods are a means of
achieving true block scoping in Caja. See section
5.1 for more details.

5.1 Caja regularities

The regularities shown in Figure 12 apply when Caja
code calls any Caja function other than a constructor.
These regularities are often stronger than ES3, but
are all within a fail-stop subset of ES3.

• The code on the left of Equation (10) of Fig-
ure 12 calls x.m as a method on x. The code on
the right first extracts the value of x.m. When

18

x.m is a method, the extracted value is an at-
tached method whose attachment is x. When
x is an expression with no effects and a stable
value (such as a variable reference), the code on
the right then calls the attached method’s call
method with its attachment and the original ar-
guments. These two calls are equivalent.

• The apply method differs from call only in
packaging all arguments together into a list.

• Binding an attached method to its attachment
yields a conventional bound method—a simple
function of the remaining arguments which calls
the original method as a method on its attach-
ment.

• When bind has additional arguments, it returns
a new function representing F curried over these
additional arguments.

• Equation (16) holds when the expression does
not mention arguments.

• Equation (17) holds when no break, continue,
or return appears freely in the body and no vari-
able defined in the body has the same name as
a variable in scope outside the body.

5.2 Caja static restrictions

Any source code statically accepted by the Caja san-
itizer is a legal Caja program. The following syntactic
explains why a program may instead be statically re-
jected.

Protected properties. A property name ending in
a single underscore may be used only to name
protected properties. It may appear as a prop-
erty name of “this”.

Constructor names. A Caja constructor can only
be called as a constructor using new, in order
to instantiate a direct instance, or reflectively
using super. Caja adds a super property to
constructors to refer to their superclass. For an
example, see the definition of the WobblyPoint
function in figure 15.

function Point(x, y) {
this.x = x;
this.y = y;

}
Point.prototype.toString = function() {

return "<" + this.getX() + "," +
this.getY() + ">";

};
Point.prototype.getX = function() {
return this.x ;

};
Point.prototype.getY = function() {
return this.y ;

};

var ptC = new Point(3, 5);
var ptD = new Point(4, 7);

Figure 13: A Caja Point. The point example, written
in this common class-like pattern of Javascript pro-
gramming, is valid Caja. Point is frozen by its first
use, after which neither Point nor Point.prototype
can be further initialized.

Like a named simple function, a constructor and
its prototype property may be initialized—that
is, Caja code may add properties to a construc-
tor and its prototype—but are implicitly frozen
on first use.

Methods. To avoid the confusions regarding
“this”, Caja methods may only appear in
the positions marked “member” in the online
documentation. Methods may thus be used to
initialize properties of prototypes.

Although constructors are normally frozen and the
“prototype” property of functions is generally not
accessible, we allow the patterns shown in Figures 13
and 14 for declaring a constructor, initializing it, and
initializing its prototype.

If the first argument to “caja.def” is a function
name, this is considered an initializing use, and so
does not implicitly freeze that function.

19

function Point(x, y) {
this.x = x;
this.y = y;

}
caja.def(Point, Object, {
toString: function() {
return "<" + this.getX() + "," +

this.getY() + ">";
},
getX: function() { return this.x ; },
getY: function() { return this.y ; }

});

Figure 14: A Brief Caja Point. Caja also accepts
this more compact pattern for initializing a top-level
prototype all at once.

5.3 Caja dynamic restrictions

The following additional dynamic restrictions are rel-
evant to Caja code.

Frozen prototypes. In Caja, until a function is
frozen, both it and its prototype property may
be initialized. When a function is frozen, so is
the value of its prototype property. Therefore,
only the instances at the leaves of the JavaScript
inheritance tree may remain unfrozen. Ini-
tializing assignments to a function’s prototype
can thus be considered declarative initializations
rather than mutations.

Claim: No Caja program can cause a Caja-
observable mutation of a prototypical object.

Well formed inheritance. JavaScript provides an
interesting set of primitives for building non-
standard inheritance arrangements. Many
of these arrangements will break assumptions
in other code. In practice, these primi-
tives are used in a particular arrangement
in which, for example, for all functions F,
F.prototype.constructor === F. Caja allows
only this classical inheritance pattern, so that
Caja code and the Caja implementation can rely
on it.

Shape change. When one adds or deletes proper-
ties of an object, we can describe this as chang-
ing the shape of the object. Of course, no one
can change the shape of a frozen object. Anyone
with access to a non-frozen JSON container may
freely change its shape. A constructed object can
directly change its own shape, by assignment or
delete using this. Clients of a constructed ob-
ject cannot directly change its shape. But since
a constructed object can directly change its own
shape, it can provide methods enabling its clients
to ask it to change its shape. In other words, a
constructed object has control of its own shape.

Adding a property that overrides an inherited
property is considered a shape change, so only a
constructed object may do this directly for itself.
If a constructed object does create a public, non-
inherited property, its clients can directly assign
to it.

Non-reflective constructors Any attempt to call
a constructor’s call, apply, or bind methods
must fail, except for the statically exempted use
of call mandated in section 5.2 for derived con-
structors.

Attached methods Any attempt to obtain a
method as a value will instead yield an attached
method. If x.foo(...) would directly call a
method, then x.foo will return that method as
attached to x. An attached method can only
be invoked by calls that bind its this to its at-
tachment, whether called as a method on its at-
tachment, or called reflectively by providing its
attachment as the first argument of call, apply,
or bind. Since calling an attached method either
fails or acts like calling the original method, an
attached method behaves within a fail-stop sub-
set of the behavior associated with the original
method.

5.4 Caja gotchas

Caja seeks to define a fail-stop subset of ES3, as ex-
plained in section 3.3. However, it falls short of this

20

function WobblyPoint(x, y) {
WobblyPoint.super(this, x, y);

}
caja.def(WobblyPoint, Point, {
getX: function() {
return Math.random() +
WobblyPoint.super.prototype.
getX.call(this);

}
});

Figure 15: A Caja Subclass. caja.def supports
classical inheritance. The second argument serves
as a “superclass”. The third argument provides
instance members including methods. A fourth
optional argument (unshown) provides static mem-
bers. The super call within the WobblyPoint
constructor asks the “superclass” constructor to do
its part in initializing the new instance. We have not
yet decided on the form of “super” method calls;
the ...super.prototype... syntax above is one
proposal we are considering.

goal in several minor ways. To write a correct pro-
gram that executes correctly whether run cajoled or
uncajoled, it should avoid these gotchas. In this sec-
tion, we enumerate those remaining gotchas relevant
specifically to Caja.

Bare for/in loops. More properties are visible and
enumerable to uncajoled programs than cajoled
programs. To write a program which will see
the same properties whether run cajoled or not,
write the following instead:

for (var k in obj) {
if (caja.canEnumPub(obj,k)) {
...k...obj[k]...

}
}

This conditional does not affect the behavior
of cajoled programs, so programs that only
need to run cajoled can safely leave it out.

Using canEnumOwn instead will further restrict
the enumeration to non-inherited properties,
as is typically desired. The same effect can
still be obtained more compactly using Cajita’s
caja.forEach construct as explained in sec-
tion 4.3.

Isolated RegExps. ES3 specifies that a literal reg-
ular expression pattern corresponds directly to
a single mutable RegExp object. Caja, as well
as the Internet Explorer version of JavaScript
(JScript), instead create a new RegExp on each
evaluation of a literal pattern, avoiding the im-
plicit sharing of mutable state. For any program
already compatible with JScript, this is not an
issue.

Permissive constructors. In JavaScript, if a con-
structor is stored in an object’s property, and
that property is then invoked as a method of
the object (without using new), the constructor
would run with its this bound to that object,
which in Caja would violate that object’s encap-
sulation. Even worse, in JavaScript, if a con-
structor is called as a function, its this would
be bound to the global object—which would be
a fatal escalation of privilege.
In order for Caja to be both safe and a fail-
stop subset of JavaScript, these cases should fail.
Instead, in the initial Caja implementation, in
these cases the constructor may instead act as
if called with new. This is safe, but it silently
diverges from JavaScript behavior.

Attachment breaks identity. Figure 6 and Fig-
ure 13 each instantiate two points. Both are in
Caja-compliant JavaScript—they work correctly
whether cajoled or not. After Figure 6, which
is also Cajita-compliant, ptA.getX===ptB.getX
will always be false. Whether cajoled or not,
each point instance returns its own unique getX
function.
By contrast, ptC.getX===ptD.getX will be true
if Figure 13 is run uncajoled, but false if ca-
joled. In uncajoled JavaScript, both operands
return the Point.prototype.getX method it-
self. When cajoled, the left operand returns the

21

function Shadow(model) {
this.state_ = model.getState();
var listener = (function(newState) {
this.state_ = newState;

}).bind(this);
model.addStateListener(listener);

}
Shadow.prototype.getState = function() {
return this.state_;

};

Figure 16: A Caja Inline Method. The anonymous
function above mentions “this”, and so is a form of
method, but it is not used to initialize a property
of a shared prototype. Such an inline method may
appear only as the receiver of a call, apply, or
bind call whose first argument is “this”. The above
listener, when invoked, runs in the lexical scope in
which it was created, including the binding of “this”.

method as attached to ptC whereas the right
operand returns the method as attached to ptD.
This difference in object identity is a genuine
Caja gotcha. Caja-compliant programs should
avoid testing the object identity of methods.
Cajita-compliant programs need not worry.

Exceptions break identity. The Error class ex-
poses too much authority, so instances of Error
are caught and replaced with frozen records con-
taining the relevant information.

6 Related Work

6.1 Browser Shield

all: Write this section

6.2 ADsafe

all: Write this section

6.3 Jacaranda

all: Write this section

7 Conclusions

all: Write this section

8 Acknowledgements

We thank Dirk Balfanz, Bruno Bowden, Jon Bright,
Andrea Campi, Doug Crockford, Jed Donnelley,
Brendan Eich, David-Sarah Hopwood, Ken Kahn,
Adam Langley, Marcel Laverdet, Kevin Reid, Gra-
ham Spencer, Marc Stiegler, and David Wagner for
various comments and suggestions.

A Tables

References

[1] J. B. Dennis and E. C. V. Horn. Programming
Semantics for Multiprogrammed Computations.
Technical Report MIT/LCS/TR-23, M.I.T. Lab-
oratory for Computer Science, 1965.

[2] ECMA. ECMA-262: ECMAScript Language
Specification. ECMA (European Association for
Standardizing Information and Communication
Systems), Geneva, Switzerland, third edition,
Dec. 1999.

[3] I. K. S. L. Garfinkel. Bitfrost: the One Laptop
per Child Security Model. Symposium On Usable
Privacy and Security, 2007.

[4] A. H. Karp. Authorization-based access control
for the services oriented architecture. c5, 0:160–
167, 2006.

[5] M. Koš́ık. Backwater Operating System, 2007.
altair.dcs.elf.stuba.sk:60001
/mediawiki/upload/2/2b/Backwater.pdf.

22

http://altair.dcs.elf.stuba.sk:60001/mediawiki/upload/2/2b/Backwater.pdf
http://altair.dcs.elf.stuba.sk:60001/mediawiki/upload/2/2b/Backwater.pdf

Caja expression cajoles to ES3 code equivalent to
with / ∗ rejected in all positions ∗ / (18)

local / ∗ rejected in all positions ∗ / (19)
glob / ∗ rejected in all positions ∗ / (20)
glob .readPub(IMPORTS , ”glob”) (21)

this.p / ∗ rejected in all positions ∗ / (22)
foo.p / ∗ rejected in all positions ∗ / (23)
this.p .readProp(this, ”p”) (24)
foo.p .readPub(foo, ”p”) (25)

this[bar] .readProp(this, bar) (26)
foo[bar] .readPub(foo, bar) (27)

bar in this .canReadProp(this, bar) (28)
bar in foo .canReadPub(foo, bar) (29)

for (key in this) {. . .} for (key in this) {if (.canEnumProp(this, key)) {. . .}} (30)
for (key in foo) {. . .} for (key in foo) {if (.canEnumPub(foo, key)) {. . .}} (31)

this.p = baz .setProp(this, ”p”, baz) (32)
foo.p = baz .setPub(foo, ”p”, baz) (33)

this[bar] = baz .setProp(this, bar, baz) (34)
foo[bar] = baz .setPub(foo, bar, baz) (35)
delete this.p .deleteProp(this, ”p”) (36)
delete foo.p .deletePub(foo, ”p”) (37)

delete this[bar] .deleteProp(this, bar) (38)
delete foo[bar] .deletePub(foo, bar) (39)

(40)

Figure 17: Cajoling Property Access. Under the assumption that the Caja runtime environment is as
specified, the Caja sanitizer generates cajoled Javascript equivalent to that specified above, but inlined and
optimized where possible. The meaning of sanitizing is thereby determined by the specification of these entry
points into the Caja runtime library. Where we show cajoled code apparently duplicating an expression, the
Caja sanitizer instead introduces temporary variables as needed so that each expression evaluates exactly
as many times and in the same order as in the original.

23

Caja expression cajoles to ES3 code equivalent to
.loadModule(function(, IMPORTS) { (41)

/ ∗ caja module body ∗ / / ∗ cajoled module body ∗ /

});
this.m(a . . .) .callProp(this, ”m”, [a . . .]) (42)
foo.m(a . . .) .callPub(foo, ”m”, [a . . .]) (43)

this[bar](a . . .) .callProp(this, bar, [a . . .]) (44)
foo[bar](a . . .) .callPub(foo, bar, [a . . .]) (45)
new foo(a . . .) new (.asCtor(foo))(a . . .) (46)

foo(a . . .) .asSimpleFunc(foo)(a . . .) (47)
Methods

function(a . . .) {. . .this. . .} .method(function(a . . .) {. . .this. . .}) (48)
Simplefunctions

function F(a . . .) {. . .} .primFreeze(.simpleFunc(function F(a . . .) {. . .})) (49)
function(a . . .) {. . .} .primFreeze(.simpleFunc(function(a . . .) {. . .})) (50)

arguments.callee / ∗ rejected ∗ / (51)
. . .argumentsargs . . . (52)

var args = .args(arguments);/ ∗move to function start ∗ /

/pattern/ new RegExp(”pattern”) (53)
/pattern/flags new RegExp(”pattern”, ”flags”)/ ∗ where flags is [igm] ∗ ∗/ (54)

Figure 18: Cajoling Callers and Callees. A cajoled Caja module can be loaded/evaled once, creating an
anonymous plugin-maker function. Each time a plugin-maker is called, it makes a new confined plugin. The
use of a terminal “;” is shorthand for testing whether the matching expression is evaluated for effects only,
not for its value.

24

Caja expression Special cases for function names and methods
Initializes, doesn′t freeze Foo

Foo.prototype.m = member; .setMember(Foo, ”m”, member); (55)
Foo.prototype = {. . . : member, . . .}; .setMemberMap(Foo, {. . . : member, . . .}); (56)

Foo.m =setPub(Foo, ”m”, . . .) (57)
caja.def(Foo, Base) (58)

caja.def(Foo, Base, {. . . : member, . . .}, . . .)
An inner method within a method or constructor

member .attach(this, member) (59)
Freezes Foo to prevent further initialization

new Foo(. . .) (60)
caja.def(Derived, Foo, . . .)

. . .Foo.primFreeze(Foo). . . (61)
. . . instanceof Foo allow, whether Foo is frozen or not (62)

Foo = . . . reject assignment to a function name (63)
var Foo = . . . reject conflicting initialization as well (64)

Can only happen if Foo is already frozen
Foo.call(this, . . .); Only at start of Derived, (65)

and only if the remaining args have no this.

Foo.prototype.m Only within methods of Derived (66)
.attach(this, Foo.prototype.m)

Figure 19: Cajoling Special Cases. When Foo is the name of a named function or a constructor, then these
special cases are checked before the general cajoling rules. At the member positions above, either normal
expressions or methods may appear.

25

Methods of method body
enforce(test,complaint) if (test) { return true; }

throw new CajaRuntimeError(complaint);
canRead(obj,name) return !!obj[name+" canRead "];
canEnum(obj,name) return !!obj[name+" canEnum "];
canCall(obj,name) return !!obj[name+" canCall "];
canSet(obj,name) return !!obj[name+" canSet "];
canDelete(obj,name) return !!obj[name+" canDelete "];
allowRead(obj,name)* obj[name+" canRead "] = true;
allowEnum(obj,name)* allowRead(obj,name);

obj[name+" canEnum "] = true;
allowCall(obj,name)* obj[name+" canCall "] = true;
allowSet(obj,name)* enforce(!isFrozen(obj),...);

allowEnum(obj,name);
obj[name+" canSet "] = true;

allowDelete(obj,name)* enforce(!isFrozen(obj),...);
obj[name+" canDelete "] = true;
/*other bookkeeping yet to be determined*/

hasOwnProp(obj,name) /*like the original: obj.hasOwnProperty(name)*/
isJSONContainer(obj) var constr = directConstructor(obj);

return constr === Object || constr === Array;
isFrozen(obj) return hasOwnProp(obj," FROZEN ");
primFreeze(obj)* for (k in obj) {

if (endsWith(k," canSet ")||endsWith(k," canDelete ")) {
obj[k] = false; }}

obj. FROZEN = true;
if (typeof obj === "function") {
primFreeze(obj.prototype); }

return obj;
method(constr,meth) enforce(typeof constr === "function",...);

enforce(typeof meth === "function",...);
meth. METHOD OF = constr;
return primFreeze(meth);

allowMethod(constr,name)* method(constr,constr.prototype[meth]);
allowCall(constr,name);

Figure 20: Hidden Attributes. These methods handle the concrete representations of object and property
attributes. Only methods marked with a * should be called by JavaScript code during initialization of the
embedding app to express taming decisions. All objects that are reachable from the ES3 shared environment
should be frozen, so that the shared environment is transitively read-only to all Caja code.

26

Methods of method body
canReadProp(self,name) if (endWith(name," ")) { return false; }

return canRead(self,name);
readProp(self,name) return canReadProp(self,name) ? self[name] : undefined;
canReadPub(obj,name) if (endWith(name," ")) { return false; }

if (canRead(obj,name)) { return true; }
if (!isJSONContainer(obj)) { return false; }
if (!hasOwnProp(obj,name)) { return false; }
allowRead(obj,name); /*memoize*/
return true;

readPub(obj,name) return canReadPub(obj,name) ? obj[name] : undefined;
canEnumProp(self,name) if (endWith(name," ")) { return false; }

return canEnum(self,name);
canEnumPub(obj,name) if (endWith(name," ")) { return false; }

if (canEnum(obj,name)) { return true; }
if (!isJSONContainer(obj)) { return false; }
if (!hasOwnProp(obj,name)) { return false; }
allowEnum(obj,name); /*memoize*/
return true;

canSetProp(self,name) if (endWith(name," ")) { return false; }
if (canSet(self,name)) { return true; }
return !isFrozen(self);

setProp(self,name,val) enforce(canSetProp(self,name),...);
allowSet(self,name); /*grant*/
return self[name] = val;

canSetPub(obj,name) if (endWith(name," ")) { return false; }
if (canSet(obj,name)) { return true; }
return !isFrozen(obj) && isJSONContainer(obj);

setPub(obj,name,val) enforce(canSetPub(obj,name),...);
allowSet(obj,name); /*grant*/
return obj[name] = val;

deleteProp(self,name) enforce(canDeleteProp(self,name),...);
/*XXX Bookkeeping yet to be determined*/
return enforce(delete self[name],...);

deletePub(obj,name) enforce(canDeletePub(obj,name),...);
enforce(isJSONContainer(obj),...);
/*XXX Bookkeeping yet to be determined*/
return enforce(delete obj[name],...);

args(original) return primFreeze(Array.prototype.slice.call (original,0));

Figure 21: Property Access. The calls to allowRead and allowEnum merely memoize a query result. The
calls to allowSet track the implications of side effects.

27

Global ES3 non-constructor Property Taming
NaN ok
Infinity ok
undefined ok
eval hidden
parseInt ok
parseFloat ok
isNaN ok
isFinite ok
decodeURI ok
decodeURIComponent ok
encodeURI ok
encodeURIComponent ok
Math ok

random callable*
all others in ES3 ok, callable

Figure 22: Taming ES3 Global Non-Constructors. Except for eval, all non-constructors specified by ES3 are
visible in Caja’s outer environment as immutable objects. Note that Math.random is not actually immutable,
and therefore neither is Math nor Caja’s outer environment itself. We allow it anyway for reasons explained
in the text.

[6] B. Laurie. Safer Scripting Through Pre-
compilation. Security Protocols 13, LNCS 4631,
2004.

[7] A. M. Mettler and D. Wagner. The Joe-E Lan-
guage Specification (draft). Technical Report
UCB/EECS-2006-26, EECS Department, Uni-
versity of California, Berkeley, March 17 2006.

[8] M. S. Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concur-
rency Control. PhD thesis, Johns Hopkins Uni-
versity, Baltimore, Maryland, USA, May 2006.

[9] J. A. Rees. A Security Kernel Based on
the Lambda-Calculus. Technical report, Mas-
sachusetts Institute of Technology, 1996.

[10] M. Seaborn. Plash: The Principle of Least Au-
thority Shell, 2005. plash.beasts.org/.

[11] M. Stiegler. Emily, a High Performance Lan-
guage for Secure Cooperation, 2006.
skyhunter.com/marcs/emily.pdf.

[12] M. Stiegler, A. H. Karp, K.-P. Yee, and M. S.
Miller. Polaris: Virus Safe Computing for Win-
dows XP. Technical Report HPL-2004-221,
Hewlett Packard Laboratories, 2004.

[13] D. Wagner and E. D. Tribble. A Security Anal-
ysis of the Combex DarpaBrowser Architecture,
Mar. 2002.
combex.com/papers/darpa-review/.

[14] H. J. Wang, X. Fan, C. Jackson, and J. Howell.
Protection and communication abstractions for
web browsers in MashupOS. In Proceedings of
the 21st ACM Symposium on Operating Systems
Principles (SOSP’07). ACM, Oct. 2007.

28

http://plash.beasts.org/
http://skyhunter.com/marcs/emily.pdf
http://combex.com/papers/darpa-review/

Global ES3 constructor Property Taming
constructor default ctor
constructor.prototype hidden

constructor hidden
toString default method
toLocaleString default method
valueOf default method

instances length default ok
/*stringified numbers*/ default ok

Object.prototype hasOwnProperty handled
isPrototypeOf method
propertyIsEnumerable handled
freeze added method

Function hidden
Function.prototype hidden

apply handled
call handled
bind added method

instances prototype hidden
length ok

Array.prototype concat method
join method
pop handled
push handled
reverse handled
shift handled
slice method
sort handled
splice handled
unshift handled

String fromCharCode callable
String.prototype match handled

replace handled
search handled
split handled
all others in ES3 ok, method

Figure 23: Taming ES3 Global Constructors, Part 1. The first section above shows the taming decisions that
apply by default to global ES3 constructors, their prototypes, and their instances, unless stated otherwise in a
specific table entry. A stringified number is any x for which x === String(Number(x)). A handled method
acts differently when called by cajoled vs. uncajoled code. Handled mutating methods like Array.pop obey
Caja’s mutability constraints.

29

Global ES3 constructor Property Taming
Boolean ctor
Number MAX VALUE ok

MIN VALUE ok
NaN ok
NEGATIVE INFINITY ok
POSITIVE INFINITY ok

Number.prototype toFixed method
toExponential method
toPrecision method

Date ctor*
parse callable
UTC callable

Date.prototype to*String all in ES3 method
get* all in ES3 method
set* all in ES3 handled

RegExp.prototype exec handled
test handled

instances source ok
global ok
ignoreCase ok
multiline ok
lastIndex ok

Error.prototype name ok
message ok

*Error all in ES3 ok
*Error.prototype all in ES3 ok

Figure 24: Taming ES3 Global Constructors, Part 2. The Date constructor itself gives ambient read-only
access to the current time, and is therefore not immutable. We allow it anyway for reasons explained in the
text.

30

	Introduction
	Identity-centric Epicycles
	Subsetting JavaScript
	The OS analogy
	JavaScript specific problems
	A fail-stop subset

	Cajita Specification
	Cajita regularities
	Common static restrictions
	Cajita-only static restrictions
	Cajita dynamic restrictions
	Modules
	Cajita gotchas

	Caja Specification
	Caja regularities
	Caja static restrictions
	Caja dynamic restrictions
	Caja gotchas

	Related Work
	Browser Shield
	ADsafe
	Jacaranda

	Conclusions
	Acknowledgements
	Tables

