
Catch me if you can
Towards type-safe, hierarchical, lightweight, polymorphic and efficient error

management in OCaml

David Teller
LIFO, Université d’Orléans

David.Teller@univ-orleans.fr

Arnaud Spiwack
LIX, École Polytechnique

Arnaud.Spiwack@lix.polytechnique.fr

Till Varoquaux

till@pps.jussieu.fr

Keywords exceptions, dynamic errors, coverage check, polymor-
phic variants, monads, typing, subtyping, syntactic sugar, code op-
timization, phantom types, code rewriting, code generation, ocaml,
camlp4, tutorial

Abstract
This is the year 2008 and ML-style exceptions are everywhere.
Most modern languages, whether academic or industrial, feature
some variant of this mechanism. Languages such as Java even
have a degree of out-of-the-box static coverage-checking for such
exceptions, which is currently not available for ML languages, at
least not without resorting to external tools.

In this document, we demonstrate a design principle and a tiny
library for managing errors in a functional manner, with static
coverage-checking, automatically-inferred, structurally typed and
hierarchical exceptional cases, all of this for what we believe is a
reasonable run-time cost. Our work is based on OCaml and fea-
tures simple uses of higher-order programming, low-level excep-
tions, phantom types, polymorphic variants and compile-time code
rewriting.

1. Introduction
Despite our best intentions and precautions, even correct programs
may fail. The disk may be full, the password provided by the user
may be wrong or the expression whose result the user wants plotted
may end up in a division by zero. Indeed, management of dynamic
errors and other exceptional circumstances inside programs is a
problem nearly as old as programming. This management should
be powerful enough to cover all possible situations and flexible
enough to let the programmer concentrate on whichever cases are
his responsibility while letting other modules handle other cases,
it should be sufficiently noninvasive so as to let the programmer
concentrate on the main path of execution while providing guaran-
tees that exceptional circumstances will not remain unmanaged, all
without compromising performance or violating the paradigm.

Nowadays, most programming languages feature a mechanism
based on (or similar to) the notion of exceptions, pioneered by
PL/I [14], usually with the semantics later introduced in ML [20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
The 2008 ACM SIGPLAN Workshop on ML 22-24 September 2008, Victoria, BC,
Canada
Copyright c© 2008 ACM [to be supplied]. . . $5.00.

A few languages, such as Haskell, define this as libraries [27],
while most make this a language primitive, either because the
language is not powerful enough, for the sake of performance, to
add sensible debugging information, or as a manner of sharing a
common mechanism for programmer errors and manageable errors.

As a support for our discussion on the management of errors
and exceptional circumstances, let us introduce the following type
for the representation of arithmetic expressions, written in OCaml:

t y p e expr =
Value o f float

| Div o f expr * expr
| Add o f expr * expr

The implementation of an evaluator for this type is a trivial task:

l e t r e c eval = f u n c t i o n
| Value f → f
| Div (x, y) → (eval x) /. (eval y)
| Add (x, y) → (eval x) +. (eval y)

(*val eval: expr → float *)

However, as such, the interpreter fails to take into account the
possibility of division by zero. In order to manage this exceptional
circumstance (or error), we promptly need to rewrite the code into
something more complex:

Listing 1. Ad-hoc error management
t y p e (α, β) result =
| Ok o f α
| Error o f β

l e t r e c eval = f u n c t i o n
| Value f → Ok f
| Div (x, y) → (

match eval x w i t h
| Error e → Error e
| Ok x’ → match eval y w i t h
| Error e → Error e
| Ok y’ when y’ = 0 →

Error ” D i v i s o n by 0”
| Ok y’ → Ok (x’ /. y’)

)
| Add (x, y) → (

match eval x w i t h
| Error e → Error e
| Ok x’ → match eval y w i t h
| Error e → Error e
| Ok y’ → Ok (x’ +. y’)

)

(*val eval: expr →
(float , string) result *)

While this function succeeds in managing exceptional cases, the
code is clumsy and possibly slow. An alternative is to use the built-
in mechanism of exceptions – which we will refer to as “native
exceptions”– as follows:

Listing 2. Error management with native exceptions
e x c e p t i o n Error o f string

l e t r e c eval = f u n c t i o n
| Value f → f
| Div (x, y) →

l e t x’ = eval x i n
l e t y’ = eval y i n

i f y’ = 0. t h e n
raise (Error ” d i v i s i o n by z e r o ”)

e l s e x’ /. y’
| Add (x, y) → eval x +. eval y

(*val eval: expr → float *)

This definition of eval is easier to write and read, closer to the
mathematical definition of arithmetic operations and faster. While
native exceptions appear to be a great win over explicitly return-
ing an error value, they however are also arguably both less flexible
and less safe. The lack of flexibility is due to the fact that the type
associated with an exception constructor must be fully determined
during the declaration of the constructor, i.e. without any polymor-
phic type parameter. As for the lack of safety, it is a consequence of
eval containing no information which may allow us to determine
that the function may fail and what kind of information may ac-
company the failure. Worse than that: the compiler itself does not
have such information and cannot provide guarantees that every
exceptional case will eventually be managed. Arguably, the possi-
bility for a native exception to completely escape is comparable to
the possibility for a pattern-matching to go wrong, which in turn
is comparable to null-pointer exceptions in most modern industrial
languages – while technically not a type error, this remains a source
of unsafety which we will refer to as “incomplete coverage” in the
rest of this document.

Now, determining statically the set of native exceptions which
may be raised by an expression is a possibility, just as it is possible
to use this information to guarantee complete coverage. Indeed, the
Java compiler [1] uses exception-specific type annotations for this
purpose, while OCaml has long benefited from OCamlExc [22],
a variation on types and effects [25], dedicated to inferring and
type-checking exceptions and their coverage. Unfortunately, this
last tool, as many of its counterparts in other languages, is neither
integrated in the toolchain, nor maintained. In addition, even when
complete coverage has been proved, the lack of flexibility remains:
ML languages do not allow any usable form of parametric polymor-
phism in native exceptions1. This is quite unfortunate, as numerous
situations thus require the manual definition of many superfluous
exceptions with identical semantics but different types, or lead to
the overuse of magic constants to specify sub-exceptions, or require
impure or unsafe hacks to implement simple features. While SML
provides a way to regain some polymorphism in exceptions with
generative exceptions, even this feature only manages to provide
local polymorphism.

1 For comparison, the Java type-checker rejects subtypes of Exception
with parametric polymorphism, the C# parser rejects catch clauses with
parametric polymorphism, while Scala accepts defining, throwing and
catching exceptions with parametric polymorphism, but the semantics of
the language ignores these type parameters both during compilation and
during execution.

Another possible approach which may be used to obtain both
the readability of exceptions, guarantee of complete coverage and
parametric polymorphism, is to implement exceptions as mon-
ads [27], a path followed by Haskell. However, this approach often
results in either not-quite-readable and possibly ambiguous type
combinations consisting in large hierarchies of algebraic combi-
nators, in the necessity of writing custom error monads or monad
transformers, which need to be manually rewritten as often as
the list of exceptional cases changes, or in the use of dynamic
types. In addition, these monads are typically perceived as having
a large computational cost, due to constant thunking and dethunk-
ing of continuations and to the lack of compiler-optimized stack
unrolling.

In this document, we attempt to obtain the best of both worlds:
polymorphism, type-safety, coverage-check, with the added ben-
efits of automatic inference of error cases and the definition of
classes and subclasses of exceptional cases, all of this without the
need to modify the programming language. As this is an OCaml-
based work, we also take into account the impact of this program-
ming style in terms of both performances, syntactic sugar and pos-
sible compile-time optimizations. Despite the number of claims ap-
pearing in the previous sentences, our work is actually based on
very simple concepts and does not have the ambition of introduc-
ing brand new programming methodologies, nor to revolutionize
ML programming. Rather, our more limited objective is to present
an interesting design principle and a tiny library for error manage-
ment, in the spirit of Functional Pearls or of a tutorial, and based on
ML-style exceptions, monads, phantom types, polymorphic vari-
ants and code rewriting. Some of our results are positive, some
negative and, somewhere along the way, we revisit results discarded
by previous works on hierarchical exceptions [19] and demonstrate
that, when redefined with proper language support, they may be
used to provide safer (and possibly faster) results.

In a first section we demonstrate briefly an error monad, well-
known in the world of Haskell but perhaps less common in the
ML family. We then proceed to complete this monad with the
use of lightweight types to achieve automatic inference of error
cases, before pushing farther these lightweight types to permit
the representation of classes and subclasses of exceptional cases,
while keeping guarantees of coverage. Once this is done, we study
the performance of this monad, explore possible optimizations,
some real and some only imaginary, and progressively move the
code from the library to the compiler. Finally, we conclude by a
discussion on usability, potential improvements, and comparison
with other related works.

The source code for the library is available as a downloadable
package [26].

2. The error monad
As we discussed already, listing 1 shows a rather clumsy manner of
managing manually whichever errors may happen during the eval-
uation of an arithmetic exception. However, after a cursory exam-
ination of this extract, we may notice that much of the clumsiness
may be factored away by adding an operation to check whether the
result of an expression is Ok x, proceed with x if so and abort the
operation otherwise. Indeed in the world of monads [27], this is
the binding operation. In OCaml, this function is typically hidden
behind syntactic sugar [15] perform and←−, as follows

Listing 3. Towards monadic error management
l e t bind m k = match m w i t h

Ok x → k x
| Error _ → m

(*val bind: (α, β) result →
(α → (γ, β) result) →

(γ, β) result *)

l e t r e c eval = f u n c t i o n
| Value f → Ok f
| Div (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;
i f y’ = 0. t h e n Error ” D i v i s i o n by 0”
e l s e Ok (x’ /. y’)

| Add (x, y) → perform
x’ ←− eval x ;
y’ ←− eval y ;
Ok (x’ /. y’)

(*val eval: expr →
(float , string) result *)

For the sake of abstraction (and future changes of implementa-
tion), we also hide the implementation of type (’a, ’b) result
behind a return function (for successes) and a throw function (for
failures):

Listing 4. Monadic error management
l e t return x = Ok x
(*val return: α → (α, ε) result *)

l e t throw x = Error x
(*val throw : ε → (α, ε) result *)

l e t r e c eval = f u n c t i o n
| Value f → return f
| Div (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;
i f y’ = 0. t h e n throw ” D i v i s i o n by 0”
e l s e return (x’ /. y’)

| Add (x, y) → perform
x’ ←− eval x ;
y’ ←− eval y ;
return (x’ +. y’)

This new definition of eval is arguably as easy to read as the
version of listing 2. As we have decided to abstract away type
result, we need one last function to be able to run a computation
and determine whether it succeeded or failed. As this function will
be used essentially in place of try...with (or try...catch in
many languages), we call it attempt and implement it as:

Listing 5. Entering/leaving the error monad
l e t attempt f arg ~catch =

match f arg w i t h
| Ok x → x
| Error x → catch x

(*val attempt: (α → (β, γ) result) →
α → catch:(γ → β) → β)*)

We may now group all the functions of the error monad as one
module Error monad with the following signature:

Listing 6. A module for the error monad
t y p e (α, β) result
val return: α → (α, β) result
val throw : β → (α, β) result
val bind : (α, β) result →
(α → (γ, β) result) →
(γ, β) result

val attempt: (α → (β, γ) result) →
α → catch:(γ → β) → β

Before moving on to the next section, let us demonstrate the ca-
pability of the error monad to write functions with polymorphic ex-
ceptions, i.e. functions which can throw exceptions which depends
on the type of their arguments. To that purpose we give a toy imple-
mentation of (persistent) association lists whose signature contains
two functions: find to retrieve the value associated to a key, and
add to add an association to the list. find k l fails when nothing
is associated to k in l. add k u l fails when there is already a
value v associated to k in l. In both case the key k is used as the
error report.

We give the implementation of this module in listing 7, together
with its signature in listing 8.

Listing 7. Association list with polymorphic exceptions
t y p e (α,β) assoc = (α*β) list

l e t empty = []

l e t r e c add k u = f u n c t i o n
| [] → return [k,u]
| (x,v as a)::l →

i f k=x t h e n throw k
e l s e perform
l’ ←− add k u l ;
return (a::l’)

l e t r e c find k = f u n c t i o n
| [] → throw k
| (x,v)::l →

i f k=x t h e n return v
e l s e find k l

Listing 8. Association list signature
t y p e (α,β) assoc
val empty: (α,β) assoc
val add : α → β → (α,β) assoc →

((α,β) assoc , α) result
val find : α → (α,β) assoc →

(β,α) result

In the rest of the paper, we will concentrate on the eval exam-
ple, however, this example can be refined similarly.

3. Representing errors
While listing 4 presents a code much more usable than that of
listing 1 and while this listing is type-safe, the awful truth is that
this safety hides a fragility, due to the use of “magic” character
strings to represent the nature of errors – here, "Division by 0",
a constant which the type-checker cannot take into account when
attempting to guarantee coverage. Unfortunately, this fragility is
shared by elements of both OCaml’s, SML’s or Haskell’s standard
libraries.

Now, of course, it may happen that we need to represent several
possible errors cases, along with some context data. For instance,
during the evaluation of simple arithmetic exceptions, in addition
to divisions by zero, arithmetic overflow errors could arise. For de-
bugging purposes, we may even decide that each error should be
accompanied by the detail of the expression which caused the error
and that overflows should be split between overflows during addi-
tion and overflows during division. To represent all this, numerous
type-safe options are available.

3.1 Errors as heavy-weight sums
The first and most obvious choice is to represent errors as sum
types. For our running example, we could write

Listing 9. Simple arithmetic errors
t y p e cause_of_overflow =
| Addition
| Division

t y p e eval_error =
| Division_by_zero o f expr
| Overflow o f expr *

cause_of_overflow

Now, as our error monad lets us transmit polymorphic error
information along with the error itself, we may rewrite eval so
as to take advantage of eval error instead of string, without
having to declare a new exception constructor or to rewrite the
interface or implementation of the error monad:

Listing 10. Monadic error management with sum types
l e t ensure_finite f e message =

i f f = infinity ∨ f = neg_infinity t h e n
throw (Overflow(e, message))

e l s e return f

l e t r e c eval e = match e w i t h
| Value f → return f
| Div (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;
i f y’ = 0. t h e n

throw (Division_by_zero e)
e l s e

ensure_finite (x’ /. y’) e Division
| Add (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;

ensure_finite (x’ +. y’) e Addition
(*val eval: expr →

(float , eval_error) result *)

While this solution improves on the original situation, it is
not fully satisfying. Indeed, it is quite common to have several
functions share some error cases but not all. For instance, let us
assume the development of both a basic visual 10-digits calculator
and a scientific plotter, based on a common arithmetic library. Both
evaluators use division and may suffer from divisions by zero.
However, only the scientific plotter defines logarithm and may thus
suffer from logarithm-related errors.

Should the error-reporting mechanism of the library be defined
as one heavy-weight sum type, the visual calculator will need to
be able to handle all the same error cases as the scientific plot-
ter. OCaml’s built-in pattern-matching coverage test will therefore
require all error cases to be managed, even though the functions
which may trigger these error cases are never invoked by the visual
calculator.

The alternative is to use disjoint possible errors for distinct func-
tions. However, this choice quickly leads to composability night-
mares. Since a division by zero and a logarithm-error are members
of two disjoint types, they need to be injected manually into a type
division by zero or log error, defined as a sum type, for use
by the scientific plotter. While possible, this solution is cumber-
some to generalize and tends to scale very poorly for large projects,
especially during a prototyping phase. This composability night-
mare also appears as soon as two different libraries use disjoint
types to represent errors: arithmetic errors, disk errors or interface
toolkit errors, for instance, must then be injected into an awkward

common type of errors, and projected back towards smaller types
of errors as need arises.

3.2 Errors as lightweight composition of sums
Another approach, commonly seen in the Haskell world, and actu-
ally not very different from the second choice just mentioned, is to
define a more general type along the lines of

Listing 11. Haskell-style either type
t y p e (α, β) either =

Left o f α
| Right o f β

With such a data structure, building lightweight compositions of
error cases becomes a trivial task. However, these lightweight com-
positions are also an easy recipe for obtaining unreadable construc-
tions consisting in trees of either and tuples. That is, attempting
to convert eval to use only such lightweight types quickly results
in the following expression, with its somewhat caricatural type:

Listing 12. Monadic error management with lightweight either
l e t ensure_finite f message =

i f f = infinity ∨ f = neg_infinity t h e n
throw message

e l s e return f

l e t r e c eval e = match e w i t h
| Value f → return f
| Div (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;
i f y’ = 0. t h e n throw (Right e)
e l s e

ensure_finite (x’ /. y’)
(Left (Left e))

| Add (x, y) → perform
x’ ←− eval x ;
y’ ←− eval y ;

ensure_finite (x’ +. y’)
(Left (Right e))

(* val eval : expr →
(float ,

((expr , expr) either ,
expr

) either
) result *)

While it is possible to avoid such chains of either by combin-
ing this approach with the manual definition of new types – perhaps
abstracted away behind modules – the result remains unsatisfactory
in terms of comprehension and falls far from solving the compos-
ability nightmare.

3.3 Errors as extensible types
Another alternative would be the use of extensible types, as featured
in Alice ML [23]. More generally, one such type is available in
languages of the ML family: native exceptions. Instead of our
current type eval error, and with the same code of eval, we
could therefore define two native exceptions

e x c e p t i o n Division_by_zero o f expr
e x c e p t i o n Overflow o f expr *

cause_of_overflow

If, at a later stage, the set of exceptions needs to be extended
to take into account, say, logarithm errors, a one-liner suffices to
extend the definition of errors:

e x c e p t i o n Logarithm_error o f expr

Better even, this solution proves compatible with the existing
native exception system and permits trivial conversion of native
exceptions for use with the error monad:

l e t attempt_legacy f arg ~catch =
t r y f arg
w i t h e → catch e

(*val attempt_legacy: (α → β) →
α → catch:(exn → β) → β *)

At this point, a first weakness appears: while the addition of
brand new error cases such as Logarithm error is a trivial task,
extending cause of overflow is impossible unless we find a way
to define cause of overflow as an extensible type. Assuming
that we have a way to express several distinct extensible types, per-
haps by using an hypothetical encoding with phantom types, we are
still faced with a dilemma: should all errors be represented by items
of the same type exn or should we use several disjoint extendable
types? The question may sound familiar, as we have already been
faced with the same alternative in the case of heavy-weight sum
types. As it turns out, and for the same reasons, neither choice is
acceptable: sharing one type gets into the way of coverage guaran-
tees, while splitting into several types leads, again, to composability
nightmares.

Or does it? After all, OCaml does contain an additional kind of
types, close cousin to extensible sum types, but with much better
flexibility: Polymorphic Variants [10].

3.4 Errors as polymorphic variant
Polymorphic variants represent a kind of lightweight sum types de-
signed to maximize flexibility. Indeed, the main traits of polymor-
phic variants are that

• they do not need to be declared before being used – rather, their
definition is inferred from their usage

• they may be declared a posteriori if necessary, for specification
and documentation purposes

• unless some constructor is used in two contradictory fashions,
two open polymorphic variants may be composed, without any
declaration, into in a larger polymorphic variant containing all
the constructors of each of the smaller variants

• the same constructor may appear in several otherwise unrelated
polymorphic variants.

When used to represent errors, this first trait will let us con-
centrate on the task of building the algorithm, without having to
write down the exact set of errors before the prototyping phase is
over. The second trait will prove useful at the end of the prototyping
phase, to improve error-checking of client code and documentation.
The third trait will let OCaml infer automatically the set of errors
which may be triggered by an expression – and check complete-
ness of the error coverage, just as it would do for heavy-weight sum
types. Finally, the last trait will let us define functions algorithms
which may share some – but not necessarily all – error cases.

Before rewriting the full implementation of eval, let us build
a smaller example. The following extract defines an expression e
with type expr and another expression div by zero which may
throw a division by zero with information e:

l e t e = Value 0. (*For testing *)
l e t div_by_zero =

throw (‘Division_by_zero e)
(* val div_by_zero : (’_a,

_[> ‘Division_by_zero of expr]
) result *)

The type of div by zero mentions that it may have any result
’a, much like raising ML-exceptions produce results of type ’a,

and that it may throw an error consisting in an open variant, marked
by constructor ‘Division by zero, and containing an expr.
Note that neither type ’a nor type [> ‘Division by zero
of expr] is generalisable, which is consistent with the fact that
div by zero is a constant.

Similarly, we may define an expression overflow div, with
the ability to cause an overflow during division, much as we could
with the heavy-weight sum type:

l e t overflow_div =
throw (‘Overflow (‘Division e))

(* val overflow_div : (’_a,
_[> ‘Overflow of

_[> ‘Division of expr]]
) result *)

Finally, the division by zero and the overflow during division
may be composed, resulting in:

i f true t h e n div_by_zero
e l s e overflow_div
(* (’_a ,

_[> ‘Division_by_zero of expr
| ‘Overflow of

_[> ‘Division of expr]]
) result *)

As we see from the inferred type of this expression, the re-
sult of the composition may produce either results of any type or
errors marked either by ‘Division by zero (and accompanied
by an expr) or by ‘Overflow (and accompanied by another tag
‘Division, itself accompanied by an expr). This error signature
remains open, which allows us to add further error cases.

As we may see on the following listing, conversion to polymor-
phic variants is a straightforward task:

Listing 13. Monadic error management with polymorphic variants
l e t r e c eval e = match e w i t h
| Value f → return f
| Div (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;
i f y’ = 0. t h e n

throw (‘Division_by_zero e)
e l s e

ensure_finite (x’ /. y’)
(‘Overflow (‘Division e))

| Add (x, y) → perform
x’ ←− eval x ;
y’ ←− eval y ;

ensure_finite (x’ +. y’)
(‘Overflow (‘Addition e))

(*val eval :
expr →
(float ,

[> ‘Division_by_zero of expr
| ‘Overflow of

[> ‘Addition of expr
| ‘Division of expr]]

) result *)

As we hoped, with polymorphic variants, we do not have to
manually label error cases. Rather, the compiler may infer error
cases from the source code.

Further, as this inferred information appears in the type of our
function, coverage may be proved by the type-checker. Therefore,
we may write:

l e t test1 e = attempt eval e ~catch:(
f u n c t i o n ‘Division_by_zero _ →

print_string ” D i v i s i o n by 0”; 0.
| ‘Overflow _ →

print_string ” O v e r f l o w ”; 0.)
(*val test : expr → float *)

On the other hand, the following extract fails to compile:

l e t test2 e = attempt eval e ~catch:(
f u n c t i o n ‘Overflow _ →

print_string ” O v e r f l o w ”; 0.)

f u n c t i o n ‘Overflow _ →
^^^^^^^^^^^^

This pattern matches values o f t y p e
[< ‘Overflow o f α]

but is here used t o match values o f t y p e
[> ‘Division_by_zero o f expr
| ‘Overflow o f [> ‘Addition o f expr

| ‘Division o f expr]]

In addition, the composability of polymorphic variants, which
we have demonstrated, means that we do not have to decide
whether to put all the error cases defined by a library in one com-
mon type or to split them among several disjoint types: barring
any conflicting name or any specification which we may decide
to add to prevent composition, there is no difference between one
large open polymorphic variant type and the automatically inferred
union of several smaller ones.

As we will see, polymorphic variants, along with a little syntac-
tic sugar, may carry us farther than usual ML-style exceptions.

3.5 From polymorphic variants to exception hierarchies
We have just demonstrated how polymorphic variants solve the
problem of composing error cases. Truth be told, our example
shows a little bit more: we have not only defined two kinds of
errors (divisions by zero and overflows), we have also defined two
sub-cases of errors (overflow due to addition and overflow due to
division).

Passing the right parameters to function attempt, we may
choose to consider all overflows at once, as we have done in our
latest examples, or we may prefer to differentiate subcases of over-
flows:

Listing 14. Matching cases and subcases
l e t test3 e = attempt eval e ~catch:(

f u n c t i o n ‘Division_by_zero _ →
print_string ” D i v i s i o n by 0”; 0.
| ‘Overflow ‘Addition _ →
print_string ” O v e r f l o w i n g a d d i t i o n ”; 0.
| ‘Overflow _ →
print_string ” O t h e r o v e r f l o w ”; 0.

)

In other words, while we have chosen to present sub-cases as
additional information carried by the error, we could just as well
have decided to consider them elements of a small hierarchy:

• division by zero is a class of errors ;
• overflow is a class of errors ;
• overflow through addition is a class of overflows ;
• overflow through division is a class of overflows.

From this observation, let us try and derive a general notion of
classes of errors – all of this without compromising the compos-
ability and coverage checking allowed by polymorphic variants.

Before we proceed, we need to decide exactly what an excep-
tion class should be. If it is to have any use at all, it should be possi-
ble to determine if an exception belongs to a given class by simple
pattern-matching. In order to preserve our results and the features
used up to this point, an exception class should be a data structure,
defined by one or more polymorphic variant constructors and their
associated signature, as well as some error content. In addition, for
exception classes to be useful, it must be possible to specify a sub-
typing relation between classes. We also need to ensure consistency
between the error content of classes related by subtyping. Finally,
we should be able to define new classes and subclasses without
having to modify the definition of existing code.

To achieve all this, we encode classes using a method compa-
rable to tail polymorphism [3] with polymorphic variants2. Where
classical uses of tail polymorphism take advantage of either alge-
braic data-types or records, though, the use of polymorphic variants
preserves extensibility.

We first introduce a chain-link record, whose sole use is to
provide human-readable field names sub and content. Field sub
is used to link a class to its super-class, while field content serves
to record the class-specific additional error information which the
programmer wishes to return along with the error:

t y p e (α, β) ex = {
content: α;
sub: β option;

} constraint β = [>]

Once we have a chain-link container, and assuming for the
course of this example that division by zero is a top-level class of
exceptions, we may produce the following constructor:

l e t division_by_zero_exc ?sub content =
‘Division_by_zero {

content = content;
sub = sub;

}
(*val ?sub:([>] as α) → β →

[> ‘Division_by_zero of (β, α) ex]*)

Argument content is self-documented, while argument sub
will serve for subclasses to register the link. Similarly, we may now
define overflow:

l e t overflow_exc ?sub content =
‘Overflow {

content = content;
sub = sub;

}

Since we decided to describe overflow during addition as a
subclass of overflow, we may define its constructor by chaining a
call to overflow exc, passing the new chain-link as argument.

l e t overflow_addition ?sub content =
overflow_exc ~sub:(‘Addition {

content = ();
sub = sub;

}) content

Or, equivalently, with a small piece of syntactic sugar intro-
duced for this purpose:

2 A similar idea has been suggested in the context of Haskell [19] but
discarded as a “very interesting, but academic” and a “failed alternative”.

l e t e x c e p t i o n overflow_division content =
Overflow content; Division ()

The changes to the library are complete. Indeed, one simple
record type is sufficient to move from polymorphic variants to
polymorphic variants with hierarchies. To confirm our claim that
we preserve composability and coverage guarantees, let us revisit
eval and our test cases.

Adapting eval to our hierarchy is just the matter of replacing
concrete type constructors with abstract constructors:

Listing 15. Eval with hierarchies
l e t r e c eval e = match e w i t h
| Value f → return f
| Div (x, y) → perform

x’ ←− eval x ;
y’ ←− eval y ;
i f y’ = 0. t h e n

throw (division_by_zero e)
e l s e

ensure_finite (x’ /. y’)
(overflow_division e)

| Add (x, y) → perform
x’ ←− eval x ;
y’ ←− eval y ;
ensure_finite (x’ +. y’)

(overflow_addition e)
(*
val eval : expr →

(float ,
[> ‘Division_by_zero of (expr , α) ex
| ‘Overflow of

(expr ,
[> ‘Addition of (unit , β) ex
| ‘Division of (unit , γ) ex])

ex])
result

*)

While the type information is painful to read – and could benefit
from some syntactic sugar – it accurately reflects the possible result
of eval, the nature of exceptions and subexceptions and their
contents.

Adapting the test of listing 14 to our more general framework,
we obtain the following extract, slightly more complex:

l e t test4 e = attempt eval e ~catch:(
f u n c t i o n ‘Division_by_zero _ →
print_string ” D i v i s i o n by 0”; 0.
| ‘Overflow {sub = Some (‘Addition _)} →
print_string ” O v e r f l o w i n g a d d i t i o n ”; 0.
| ‘Overflow _ →
print_string ” O t h e r o v e r f l o w ”; 0.)

As a demonstration of coverage guarantees, let us write the
same example, with the omission of the case of overflow division:

l e t test5 e = attempt eval e ~catch:(
f u n c t i o n ‘Division_by_zero _ →
print_string ” D i v i s i o n by 0”; 0.
| ‘Overflow {sub = Some (‘Addition _)} →
print_string ” O v e r f l o w i n g a d d i t i o n ”; 0.

) (*Oops , forgot division by zero.*)

The following error message demonstrates that the type-checker
has correctly detected the missing case. The solution is suggested
at the end of the message:

Listing 16. Missing subcase (error message)
f u n c t i o n ‘Division_by_zero _ →

^^^^^^^^^^^^^^^^^^^
This pattern matches values o f t y p e

[< ‘Division_by_zero o f α
| ‘Overflow o f (expr ,

[< ‘Addition o f β]) ex]
but is here used t o match values o f t y p e
[> ‘Division_by_zero o f (expr , _) ex
| ‘Overflow o f

(expr ,
[> ‘Addition o f (unit , γ) ex
| ‘Division o f (unit , δ) ex])

ex]
The first variant t y p e does no t allow

tag(s) ‘Division

Similarly, this encoding lets the type-checker spot type or tag
errors in exception-matching, as well as provide warnings in case
of some useless catch clauses. We do not detail the error messages,
which are not any more readable than the one figuring in listing 16,
and which could just as well benefit from some customized pretty-
printing.

As a last step, for convenience, we introduce another layer of
syntactic sugar, marked by a new keyword attempt, and which
provides a simpler notation for exception patterns, adds an op-
tional post-treatment for successes, introduced by val, and an op-
tional post-treatment for both successes and failures, introduced by
finally:

l e t test6 e = a t t e m p t eval e w i t h
| Division_by_zero _ →

print_string ” D i v i s i o n by z e r o ”
| Overflow _ ; Addition _ →

print_string ” O v e r f l o w w h i l e a d d i n g ”
| Overflow _ →

print_string ” O t h e r o v e r f l o w ”
| v a l f →

print_float f
| f i n a l l y _ → ()

3.6 Bottom line
In this section, we have examined a number of possible designs for
error reports within the error monad. Some were totally unapplica-
ble, some others were impractical. As it turns out, by using poly-
morphic variants, we may achieve both inference of error cases,
composability of error cases and simple definition of hierarchies
of error classes, while retaining the ability of the type-checker to
guarantee coverage of all possible cases. All of this is implemented
in a meager 27 lines of code, including the module signature.

At this point, we have obtained all the features we intended to
implement. Our next step is to study the performance cost – and to
minimize it, if possible.

4. The hunt for performance
According to our experience, when hearing about monads, typical
users of OCaml tend to shrug and mutter something about breaking
performances too much to be as useful as built-in exceptions. Is that
true?

Figure 1 presents the result of a benchmark on the performance
of error-management schemes in OCaml. To obtain this bench-
mark, we measure the execution time of three different implemen-
tations of

Ad-hoc error management (demonstrated in listing 1)
Evaluator Queens Union

Very good 56% 40 % 18%
Good 26% 60 % 43%
Acceptable 12% 0 % 35%
Slow 3% 0 % 4%
Bad 3% 0 % 0%
Average 1.06 1.05 1.13
Deviation 0.12 0.04 0.10

Native exceptions (demonstrated in listing 2)
Evaluator Queens Union

Very good 70% 100% 100%
Good 16% 0 % 0%
Acceptable 12% 0 % 0%
Slow 2% 0 % 0%
Bad 0% 0 % 0%
Average 1.06 1.00 1.00
Deviation 0.13 0.00 0.00

Error monad (demonstrated in listing 4)
Evaluator Queens Union

Very good 37% 0 % 0%
Good 35% 20 % 0%
Acceptable 18% 60 % 14%
Slow 7% 20 % 71%
Bad 3% 0 % 15%
Average 1.12 1.24 1.48
Deviation 0.14 0.02 0.14

Figure 1. Testing the performance of the error monad

• an arithmetic evaluator – errors are rather uncommon, being
raised only in case of division by zero (300 samples)

• the n queens problem – only one pseudo-error is raised, when
a solution has been found (5 samples)

• union of applicative sets of integers – pseudo-errors are raised
very often, as an optimization, to mark the fact that no change
is necessary to a given set (300 samples).

Every test has been performed with OCaml 3.10.1, under Linux,
on native code compiled for the 32bit x86 platform, with maxi-
mal inlining, executed 15 times, after a major cycle of garbage-
collection, with the best and the worst result discarded. The results
are presented as a percentage of the number of samples in which
the execution time falls within given bounds:

Very good Execution time of the sample is within 5% of the execu-
tion time of the fastest implementation for this test (the “shortest
execution time”)

Good Within 5-15% of the shortest execution time.

Acceptable Within 15-30% of the shortest execution time.

Slow Within 30-50% of the shortest execution time.

Bad At least 50% longer than the shortest execution time.

For information, we also provide

Average Average of ratio duration of test
shortest execution time .

Deviation Standard deviation of duration of test
shortest execution time .

From these results, we may already draw the conclusion that,
while using the error monad causes slowdowns in the program,
these slowdowns remain reasonable whenever errors are used only
exceptionally. On the other hand, with the error monad, using error
cases as optimizations doesn’t work.

While this last point is hardly a surprise, it may come as a disap-
pointment for OCaml programmers, many of which have come to
use exceptions as an elaborate and mostly-safe goto. Perhaps we
can try and improve performance. The source provides two hints
regarding slowdown:

1. the permanent thunkification and de-thunkification at each
monadic binding, hidden behind each occurrence of the syn-
tactic sugar ←− – indeed, listing 4 contains four such local
function definitions;

2. the manual unrolling of the stack hidden inside the definition of
function bind – indeed, a call to throw from a depth of n inside
the evaluation of an expression may require O(n) returns from
interleaved calls of functions bind and eval.

Let us try and tackle down the second issue first.

4.1 Take 1: Going against the flow
Manual stack unrolling is slow? Perhaps we might achieve some
faster result by adopting OCaml’s built-in mechanism for fast stack
unrolling: native exceptions. Let’s see how we may re-implement
the error monad with native exceptions:

Listing 17. Towards a monad with native exceptions?
e x c e p t i o n Raised o f string

t y p e (α, β) result = α
l e t throw (x:β) : (α, β) result =

raise (Raised x)
l e t return (x:α) : (α, β) result = x
l e t bind m k = k m
l e t attempt f arg ~catch =

t r y f arg
w i t h Raised s → catch s

Of course, such an implementation has the major drawback of
restricting the kind of exceptions raised to character strings. This
is not only ugly, it’s in complete contradiction with our objective.
Unfortunately, OCaml’s type system disallows the definition of ex-
ceptions with polymorphic type variables. While we might be able
to obtain similar features by using functors (much as Haskell’s er-
ror monads use typeclasses for the same purposes), this would be
quite awkward, plus this would require defining exception modules
– manually, in OCaml – for each and every possible type of infor-
mation carried by the exception.

Fortunately, we can do better.
Indeed, rather than using the exception as a channel for trans-

mitting information, we may decide to use the exception as a sim-
ple mean of unrolling the stack – and propagate the value through
a different channel. For this purpose, we revert the visible flow of
information. Rather than transporting the error information through
layers of stack, we first decide of a convenient recipient for this er-
ror information, then start the evaluation, propagate the recipient
towards the leaves of the evaluation, and check at the end of com-
putation whether this recipient has been filled. For this purpose, we
will use a reference, in a manner reminiscent of the implementation
of SML-style local globally-quantified exceptions [17] in OCaml.
This reference is created and collected by attempt:

Listing 18. Implementing the error monad with native exceptions
e x c e p t i o n Raised

t y p e (α, β) result = β option ref → α

l e t attempt f arg ~catch =
l e t result = ref None i n

Reference and native exceptions
Evaluator Queens Union

Very good 0% 0 % 0%
Good 7% 0 % 0%
Acceptable 33% 0 % 0%
Slow 41% 0 % 0%
Bad 19% 100% 100%
Average 1.35 1.75 2.26
Deviation 0.20 0.06 0.23

Figure 2. Testing the performance of a monad based on native
exceptions and references

t r y f arg result
w i t h Raised →

match !result w i t h
None → assert false (* Unused *)

| Some e → catch e

The reference is then propagated by bind, to make sure that
uses of throw within the same domain will share the same refer-
ence:

l e t bind m k r = k (m r) r

Finally, throwing an error consists in constructing the error
information, placing it in the reference and then unrolling the stack:

l e t throw x b =
b := Some x;
raise Raised

l e t return x _ = x

With this rewriting of the error monad, we have introduced na-
tive exceptions inside a monad with a purely functional interface.
From the point of view of optimization, we have altered the imple-
mentation of the monad to have it take advantage of the built-in fea-
ture of stack unrolling. From the point of view of functional vs. im-
perative programming, we have domesticated the extra-functional
effect of native exception-raising into a functional monad.

Now, how good is that optimization? Not good, as we may see
on figure 2. Indeed, the performances of the resulting algorithms
are uniformly worse than those of the basic error monad, whether
error cases are common or rare. So perhaps the biggest problem is
not with the unrolling of the stack but with the constant repetition of
thunking and dethunking, actually made worse in this implementa-
tion. To put this to the test, let us try a variant strategy – one which
still requires thunking and dethunking, but in a fashion which may
be easier to optimize by the compiler.

4.2 Take 2: Meaningful units
In our latest implementation of bind, we wrote

l e t bind m k r = k (m r) r

Equivalently, we could have written

l e t bind m k = fun r → k (m r) r

As we may see, this implementation dethunkifies monad m and
rethunkifies the result. From this implementation, the ideal opti-
mization would be removing the need for r. In the absence of
dynamic scoping in OCaml3, however, this is not directly possi-
ble. At this point, it may be tempting to abandon monads and turn

3 Truth be told, an extension of OCaml exists, which provides dynamic
scoping [18], either as a library or as a compiler patch. However, the

to arrows. Without entering the details – such a discussion would
go largely beyond the scope of this paper – our experiments hint
that arrow-based error-management libraries fall in two categories:
those which share the same bottlenecks as the error monad, if not
worse, and those which can’t provide coverage check with ML-
style type systems.

Now, if we can’t completely remove r, perhaps we can make
r so simple that the compiler will be able to optimize it away. For
the sake of an experiment, let us replace occurrences of r with the
simplest possible form of data: the unit.

Listing 19. Towards a monad with exceptions and unit ?
e x c e p t i o n Raised

t y p e (α, β) result = unit → α
constraint β = [>]

l e t throw x () = assert false
l e t return x () = x
l e t bind m k () = k (m ()) ()

l e t attempt f arg ~catch =
t r y f arg ()
w i t h Raised → assert false

While this implementation of the error monad is clearly incom-
plete, it is sufficient to demonstrate that the type of error cases is
actually totally independent from the reference argument we just
removed. Rather, the signature of throw and bind, as defined in
the interface of our module, are sufficient for the type system to
infer the type of error cases, regardless of whether the error in-
formation is actually transmitted – indeed, in this implementation,
type parameter β of result behaves as a phantom type [6].

In other words, the implementation defined in listing 19 actu-
ally demonstrates two channels for information propagation. The
first one is dynamic but is limited by the type system: exception
Raised, in addition to unrolling the stack, may be used to carry
information at run-time but can’t accept polymorphic type argu-
ments. The second one is static, has all the power of OCaml’s type
system but cannot convey run-time information: the type of throw,
return and bind. Additionally, the unit argument of throw pre-
vents any premature control flow and enforces an order of evalu-
ation. Last but not least, at this stage, we are certain that the type
of the error case is actually a polymorphic variant – here, material-
ized by constraint β = [>]. All the ingredients are gathered
for the safe projection of the error type onto some generic variant
type and back onto the phantom type obtained through the static
channel.

To obtain this, we do not need to change the definition of
return, bind or result. As generic variant type, we may use
the universal existential type Obj.t, along with the safe projection
Obj.repr : α -> Obj.t and the unsafe projection Obj.obj :
Obj.t -> α. We may now use exception Raised to convey the
content of the error, minus its type:

e x c e p t i o n Raised o f Obj.t

l e t throw x () =
raise (Raised (Obj.repr x))

Finally, attempt receives both the type-less information from
raised and the type information from the type of its arguments.
We only have to put these informations together, as follows:

implementation of the library introduces the exact same bottleneck we
attempt to avoid, while the compiler patch applies only to bytecode OCaml,
which makes either implementation unusable for this work.

Phantom types and native exceptions
Evaluator Queens Union

Very good 1% 0 % 0%
Good 8% 0 % 0%
Acceptable 39% 0 % 0%
Slow 35% 0 % 0%
Bad 17% 100% 100%
Average 1.35 1.73 2.22
Deviation 0.22 0.06 0.22

Figure 3. Testing the performance of a monad based on exceptions
and phantom types

l e t attempt (f:_ → (_, β) result) arg
~catch =

t r y f arg result ()
w i t h Raised r → catch (Obj.obj r : β)

With the exact same signature as the other implementations
of the error monad and the certainty that a variant type is only
projected onto a variant type, this implementation actually achieves
a small type-safe extension of OCaml’s type system.

Does this optimization fare better than our first attempt? The
answer lies on figure 3: yes, but the difference is so minimal that
it is in fact meaningless. Fortunately for us, our work is not lost.
Indeed, moving a little of the code to the compiler works wonders.

4.3 Take 3: Playing with the compiler
Up to this point, all the work we have demonstrated – with the
exception of the thin syntactic sugar used for simplifying the work
with exception hierarchies – aimed at developing a type-safe library
with an exception control flow for managing errors. Now that we
seem to have hit a performance dead-end, it is time to take a step
back and try and determine which parts of the code are actually
meaningful and which parts are just type annotations under the
guise of expressions.

Let us start with the simple functions. Can we get rid of the code
of throw? No, we can’t. In addition to its type information, throw
performs the essential task of unrolling the stack. We may also not
remove the (), as it is necessary to force the order of evaluation –
without this unit argument, stack unrolling could take place at an
inconvenient time4. Can we get rid of the code of return, then?
It seems unlikely that we could get rid of the return value. The
situation of bind, however, is different. Every occurrence of bind
is meant to be used as

p ←−m; e

or equivalently

bind m (fun p →e)

where m and e are some expressions and p is a pattern. In either
case, in addition to type information, this code serves to implement

l e t p = m () i n e

In other words, the semantics of this section’s bind is the
same as the semantics of let. However, at the moment, for typing
reasons, while let is a primitive of the language, monadic binding
is more costly, requiring two thunkifications, one dethunkification
and two function calls. As it turns out, assuming that we have
a projection function proj : (’a, ’b) result -> (unit ->
’a), we may rewrite

4 According to our experiments, replacing this abstraction by a lazy expres-
sion actually incurs an additional slowdown

p ←−m; e

as

Listing 20. Inlined bind
l e t (p:α) = proj

(m: (α, β) result) () i n
(e: (γ, β) result)

For this example, we have assumed that names ’a, ’b and ’c are
free in p, m and e.

Writing a function proj is hardly a difficult task, as the identity
would fit nicely for that job:

external proj: (α, β) result →
(unit → α) = ”%i d e n t i t y ”

However, defining this new function proj is probably a bad
idea: in our case, the very act of breaking this abstraction is type-
unsafe, because as this also violates the constraints on the phantom
type. As the very act of making a function proj available for use at
compile-time also makes that function available for invocation by
the user, we prefer avoiding the issue and making use of the equally
unsafe Obj.magic.

The only remaining question is how we may transform the ←
notation into the code of listing 20. For this purpose, we first extend
our module with a compile-time function

val rewrite_bind:
m:Ast.expr → p:Ast.patt →
e:Ast.expr → Ast.loc →
Ast.expr

This function uses the standard library/tool Camlp4 – given a
different setting, we could just as well have used MetaOCaml. The
role of this function is to generate the rewritten code, as follows:

l e t fresh_type _loc =
<:ctyp < ’$fresh_name ()$>>

l e t result _loc res err =
<:ctyp < (res , err) result >>

l e t rewrite_bind ~m ~p ~e _loc =
l e t _α = fresh_type _loc
and _β = fresh_type _loc
and _β = fresh_type _loc i n
l e t type_of_m = result _loc _α _β
and type_of_e = result _loc _γ _β
and abst = <:ctyp <unit → $_α$ >> i n
<:expr < l e t p = (Obj.magic

(m:$type_of_m$) :
$abst$) () i n

(e:$type_of_e$) >>

Once this is done, remains the task of adapting syntactic sugar
perform/← to take advantage of rewrite bind when appropriate
– that is, in our current implementation, whenever a compile-time
rewriter has been registered. This is the matter of a few dozen lines
of code which we will not detail in this document.

Once the transformation is complete, we obtain the results
shown in figure 4. As we may see, these results are much better
than those of our two previous attempts – in particular, this imple-
mentation slightly outscores our first implementation of the error
monad in the first benchmark and beats it hands down in the two
other benchmarks. Again, results seem to indicate that the slow-
down induced by our monad is reasonable when the library is used
for actual error reporting but that our work is ill-adapted to replace
exceptions when these are used as optimizations.

Before calling our latest optimization a moderate victory, let us
pursue our hunt for performances one step further.

Phantom types, exceptions and rewriting
Evaluator Queens Union

Very good 40% 0 % 0%
Good 34% 20 % 3%
Acceptable 17% 80 % 36%
Slow 7% 0 % 52%
Bad 3% 0 % 9%
Average 1.13 1.18 1.34
Deviation 0.17 0.03 0.14

Figure 4. Testing the performance of the phantom type monad
lifted to the pre-processor

Original error monad and rewriting
Evaluator Queens Union

Very good 54% 0 % 0%
Good 28% 100% 0%
Acceptable 12% % 5%
Slow 5% 0 % 56%
Bad 1% 0 % 38%
Average 1.07 1.07 1.48
Deviation 0.15 0.01 0.14

Figure 5. Testing the performance of the pure implementation
lifted to the pre-processor

4.4 Take 4: Back to basics
After three attempts to improve performances using increasingly
complex techniques, we have achieved a moderate speed-up with
respect to our first implementation. As it turns out, our latest tech-
nique may apply just as well to the first implementation.

Indeed, once again, despite its implementation as composition
of function, this version of monadic binding only represents a
simple pattern-matching. In other words,

p ←−m; e

actually stands for the following expression

match proj m w i t h
| Ok p → e
| Error err → Error err

Again, we may define proj as the identity – or prefer to take
advantage of a private sum type. Once this is done, we may imple-
ment bind rewriting as

l e t rewrite_bind m p e _loc =
<:expr < match ErrorMonad.proj m w i t h
| Ok p → e
| Error err → Error err >>

Finally, we achieve the results presented on figure 5. Perhaps
disappointingly, after all this effort, in two out of three benchmarks,
our new purely functional implementation of the error monad is
much faster than the impure implementation based on phantom
types and exceptions – and actually reveals itself reasonably fast for
the n queens. On the third benchmark, unsurprisingly, the monad
confirms itself as unsuited for an optimization.

4.5 Bottom line
This section started by a claim that monads are a slow technique
for managing errors. As it turns out, while our pure error monad
proves unsurprisingly inappropriate as a mechanism for optimis-
ing returns, according to our experiments, the speed of the pure

monad is actually quite reasonable when it is used to deal with
errors – even without taking into account compile-time optimiza-
tions. By opposition, our attempts to domesticate native exceptions
into a construction which could be checked for complete coverage
incurred an impressive slowdown which made them useless.

Interestingly, it turns out that a little compiler support – or, in
our case, simple compile-time support provided by the library –
goes a long way towards improving the speed of our monads. Fur-
ther experiments with improvements, which go beyond the scope
of this document, hint that slightly more complex rewriting rules
can go even further – and not just for error monads.

At this point, our library consists in the pure implementation of
the error monad (29 lines), compile-time optimizations (49 lines),
in addition to some (larger) syntactic sugar.

5. Conclusion
We have demonstrated how to design an error-reporting mechanism
for OCaml extending the exception semantics of ML, without alter-
ing the language. With respect to OCaml’s built-in exception mech-
anisms, our work adds static checks, polymorphic error reports, hi-
erarchies, support for locally-defined exceptions, and relaxes the
need of declaring error cases, while retaining a readable syntax and
acceptable performances.

To obtain this richer mechanism, we make use of monads, poly-
morphic variants and code rewriting and demonstrate the folk the-
orem of the OCaml community that polymorphic variants are a
more generic kind of exceptions. We have also attempted to op-
timize code through type-unsafe conversions, applied in type-safe
manners thanks to the use of type constraints and phantom types,
and succeeded in optimizing results through the use of compile-
time domain-specific code generators. While we demonstrated five
complete implementations of our work, we actually built several
dozens, based on either monads, arrows or families of arrows in-
dexed by their effect. We chose not to present these implemen-
tations either because they were type-unsafe, too similar to pre-
sented implementations or sometimes because their performance
was much too poor to make them worthy candidates.

Related works Other works have been undertaken with the ob-
jective of making exceptions safer or more flexible. Some of these
approaches take the form of compile-time checkers like OCam-
lExc [22] or similar works for SML [30]. These tools perform pro-
gram analysis and thus need to evolve whenever the language’s se-
mantic does; their maintenance can be quite involved. Similarly, the
Catch tool for Haskell [21] uses abstract interpretation to provide
guarantees that pattern matches of a program (including pattern-
matching upon errors) suffice to cover all possible cases, even when
individual pattern-matches are not exhaustive. All these tools retain
the exception mechanism of the underlying language and therefore
add no new feature, in particular no hierarchies of error classes.

Other efforts are closer to our approach. In addition to the very
notion of monads [27], the Haskell community has seen numerous
implementations of extendable sets of exceptions, either through
monad transformers or dynamic type reflection. Hierarchical ex-
ceptions [19] through typeclass hierarchies and dynamic type re-
flection have also been implemented for Haskell. These choices
could have been transposed and sometimes improved into OCaml.
We decided to avoid monad transformers in the simple case of er-
ror reporting, as these too often require manual definition and man-
ual composition of program-specific or library-specific error cases.
Similarly, several variants on run-time type information are possi-
ble in OCaml: Deriving’s Typeable [28] or DynaML [8] provide
dynamic type reflection comparable to Haskell’s Data.Typeable,
a combination of Patterns [29] and Coca-ml [5] may be used to pro-
vide F#-style class-based pattern-matching downcast [24], while a

combination of Patterns and Polymap [11] might be used for the
same purpose, with lightweight extendable records. However, we
preferred avoiding these dynamic typing solutions which, as their
Haskell counterpart, forbid any automatic coverage-check. Yet an-
other encoding of hierarchies has been demonstrated for ML lan-
guages, through the use of phantom types [9]. While this work is
very interesting, our experiments seem to show that the use of this
encoding for exceptions leads to a much less flexible and compos-
able library, in which new sub-kinds of errors cannot be added post-
facto to an existing design.

Numerous other works focus on performances in ML languages
and their kin. In particular, the Glasgow Haskell Compiler is usu-
ally able to efficiently inline simple functions [16] – something
which, to our surprise, the OCaml compiler didn’t manage in our
case. This automatic inlining is, in practice, what we implement
manually to optimize away needless abstractions. As for the tech-
nique we employ for performing this inlining, it is essentially a
specialized form of multi-stage compilation, as available in MetaO-
Caml [7] or outside the ML community [12]. In particular, our use
of specialized code rewriters to avoid the cost of abstraction is an
idea also found in MetaOCaml-based works [4].

Future works From this point, our next step will be an official re-
lease, consisting in a tiny run-time library, a slightly larger compile-
time library defining syntactic sugar and code transformations and
a small patch for the pa monad syntactic sugar to drive the code-
rewriting functions.

While we have no further plan pertaining to exceptions in the
close future, we intend to pursue our work on efficient implemen-
tation of monads and arrows in OCaml and perhaps in MetaOCaml,
by studying how to best generate run-time and compile-time code
from common source code and how to lift monad/arrow transform-
ers from functors to compile-time code transformations. Ideally,
this may lead to efficient and readable monadic code, which may
find its applications in exceptions, but also for lightweight thread-
ing [2].

Finally, some of our work has yielded ideas which may have ap-
plications for ongoing efforts toward the design of features similar
to Haskell’s typeclasses [13] for OCaml [28].

Acknowledgements
We wish to thank Gabriel Scherer for his help with the elaboration
and implementation of the syntactic sugar.

References
[1] Ken Arnold and James Gosling. The Java Programming Language.

Addison-Wesley, 1998.

[2] Vincent Balat. Ocsigen: typing web interaction with objective caml.
In ML ’06: Proceedings of the 2006 workshop on ML, pages 84–94,
New York, NY, USA, 2006. ACM.

[3] F. Warren Burton. Type extension through polymorphism. ACM
Trans. Program. Lang. Syst., 12(1):135–138, 1990.

[4] Jacques Carette and Oleg Kiselyov. Multi-stage programming with
functors and monads: Eliminating abstraction overhead from generic
code. In GPCE, pages 256–274, 2005.

[5] Emmanuel Chailloux. Dynamic object typing in objective caml. In
International LISP Conference 2002, Oct 2002.

[6] James Cheney and Ralf Hinze. Phantom types, 2003.

[7] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid
Taha. Dsl implementation in metaocaml, template haskell, and c++.
In Domain-Specific Program Generation, pages 51–72, 2003.

[8] Jim Farrand. Dynaml: O’caml dynamic types extensions, 2005.
Software package available at http://farrand.net/dynaml.
shtml.

[9] Matthew Fluet and Riccardo Pucella. Phantom types and subtyping.
In TCS ’02: Proceedings of the IFIP 17th World Computer Congress
- TC1 Stream / 2nd IFIP International Conference on Theoretical
Computer Science, pages 448–460, Deventer, The Netherlands, The
Netherlands, 2002. Kluwer, B.V.

[10] Jacques Garrigue. Programming with polymorphic variants. In ML
Workshop, 1998.

[11] Jacques Garrigue. Polymorphic mappings for ocaml, 2007. Soft-
ware package available at http://www.math.nagoya-u.ac.jp/
~garrigue/code/ocaml.html.

[12] Samuel Z. Guyer and Calvin Lin. An annotation language for
optimizing software libraries. In DSL, pages 39–52, 1999.

[13] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip
Wadler. Type classes in haskell. ACM Trans. Program. Lang. Syst.,
18(2):109–138, 1996.

[14] Richard C. Holt and David B. Wortman. A sequence of structured
subsets of pl/i. SIGCSE Bull., 6(1):129–132, 1974.

[15] Lydia E. van Dijk Jacques Carette and Oleg Kiselyov. Syntax
extension for monads in ocaml. Software package available at
http://www.cas.mcmaster.ca/~carette/pa_monad/.

[16] Simon Peyton Jones and Simon Marlow. Secrets of the glasgow
haskell compiler inliner. J. Funct. Program., 12(5):393–434, 2002.

[17] Oleg Kiselyov. Local globally-quantified exceptions. Software
package available at http://okmij.org/ftp/ML/#poly-exn.

[18] Oleg Kiselyov, Chung chieh Shan, and Amr Sabry. Delimited
dynamic binding. SIGPLAN Not., 41(9):26–37, 2006.

[19] Simon Marlow. An extensible dynamically-typed hierarchy of
exceptions. In Haskell ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Haskell. ACM Press, September 2006.

[20] Robin Milner, Mads Tofte, and David Macqueen. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1990.

[21] Neil Mitchell and Colin Runciman. A static checker for safe
pattern matching in Haskell. In Trends in Functional Programming,
volume 6. Intellect, February 2007.

[22] François Pessaux. Détection statique d’exceptions non rattrapées en
Objective Caml. PhD thesis, Université Pierre & Marie Curie - Paris
6, 2000.

[23] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunk-
laus, and Gert Smolka. Alice through the looking glass. Trends in
Functional Programming, 5:77–96, 2006.

[24] Don Syme. Leveraging .net meta-programming components from f#:
integrated queries and interoperable heterogeneous execution. In ML
’06: Proceedings of the 2006 workshop on ML, pages 43–54, New
York, NY, USA, 2006. ACM.

[25] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Inf. Comput., 111(2):245–296, 1994.

[26] David Teller, Arnaud Spiwack, and Till Varoquaux. Catch me if you
can. Software package available at http://www.univ-orleans.
fr/lifo/Members/David.Teller/software/catch_0_2.tgz.

[27] Philip Wadler. The essence of functional programming. In POPL
’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 1–14, New York, NY,
USA, 1992. ACM.

[28] Jeremy Yallop. Practical generic programming in ocaml. In ML ’07:
Proceedings of the 2007 workshop on Workshop on ML, pages 83–94,
New York, NY, USA, 2007. ACM.

[29] Jeremy Yallop. Ocaml patterns: General-purpose extension to ocaml
pattern-matching facilities, 2008. Software package available at
http://code.google.com/p/ocaml-patterns/.

[30] Kwangkeun Yi and Sukyoung Ryu. A cost-effective estimation of
uncaught exceptions in standard ml programs. Theor. Comput. Sci.,
277(1-2):185–217, 2002.

