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Summary 
 
Cubic spline interpolation is a useful technique to interpolate between known data points due to its stable 
and smooth characteristics. Unfortunately it does not prevent overshoot at intermediate points, which is 
essential for many chemical engineering applications. This article presents a new interpolation method that 
combines the smooth curve characteristics of spline interpolation, with the non-overshooting behaviour of 
linear interpolation.   
 
Introduction 
 
Interpolation is used to estimate the value of a function between known data points without knowing the 
actual function. Interpolation methods can be divided into two main categories [1,2]: 
 
• Global interpolation. These methods rely on a constructing single equation that fits all the data points. 

This equation is usually a high degree polynomial equation. Although these methods result in smooth 
curves, they are usually not well suited for engineering applications, as they are prone to severe 
oscillation and overshoot at intermediate points. 

 
• Piecewise interpolation. These methods rely on constructing a polynomial of low degree between each 

pair of known data points. If a first degree polynomial is used, it is called linear interpolation. For 
second and third degree polynomials, it is called quadratic and cubic splines respectively. The higher the 
degree of the spline, the smoother the curve. Splines of degree m, will have continuous derivatives up to 
degree m-1 at the data points.  
 
Linear interpolation result in straight line between each pair of points and all derivatives are 
discontinuous at the data points. As it never overshoots or oscillates, it is frequently used in chemical 
engineering despite the fact that the curves are not smooth. 
 
To obtain a smoother curve, cubic splines are frequently recommended. They are generally well behaved 
and continuous up to the second order derivative at the data points. Even though cubic splines are less 
prone to oscillation or overshoot than global polynomial equations, they do not prevent it. Thus, the use 
of cubic splines in chemical engineering is limited to applications where oscillation and overshoot are 
acceptable or desirable. 

  
Traditional Cubic Splines 
 
Consider a collection of known points (x0, y0), (x1, y1), ... (xi-1, yi-1), (xi, yi), (xi+1, yi+1), ... (xn, yn). To 
interpolate between these data points using traditional cubic splines, a third degree polynomial is constructed 
between each point. The equation to the left of point (xi, yi) is indicated as fi with a y value of fi(xi) at point 
xi. Similarly, the equation to the right of point (xi, yi) is indicated as fi+1 with a y value of fi+1(xi) at point xi.  
 
Traditionally the cubic spline function, fi, is constructed based on the following criteria: 
 
• Curves are third order polynomials, 

  32)( xdxcxbaxf iiiii +++=        - (1) 
  
• Curves pass through all the known points, 
  iiiii yxfxf == + )()( 1         - (2) 



 
• The slope, or first order derivative, is the same for both functions on either side of a point, 
  )()( 1 iiii xfxf +′=′         - (3)  
 
• The second order derivative is the same for both functions on either side of a point, 
  )()( 1 iiii xfxf +′′=′′         - (4)  
 
This results in a matrix of n-1 equations and n+1 unknowns. The two remaining equations are based on the 
border conditions for the starting point, f1(x0), and end point, fn(xn). Historically one of the following border 
conditions have been used [1,2,3]: 
 
• Natural splines. The second order derivative of the splines at the end points are zero. 
  0)()( 01 =′′=′′ nn xfxf         - (5a) 
 
• Parabolic runout splines. The second order derivative of the splines at the end points are the same as at 

the adjacent points. The result is that the curve becomes a parabolic curve at the end points. 
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• Cubic runout splines. The curve degrades to a single cubic curve over the last two intervals by setting 

the second order derivative of the splines at the end points to: 
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• Clamped spline. The first order derivative of the splines at the end points are set to known values. 
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In traditional cubic splines equations 2 to 5 are combined and the n+1 by n+1 tridiagonal matrix is solved to 
yield the cubic spline equations for each segment [1,3]. As both the first and second order derivative for 
connecting functions are the same at every point, the result is a very smooth curve.  
 
Even though traditional cubic splines are well behaved for many applications, it does not prevent overshoot 
at intermediate points. This is illustrated in Figures 1 and 2, where a natural cubic spline is fitted to 
hypothetical and somewhat unusual distillation and pump curves. Clearly this behaviour is unacceptable for 
chemical engineering applications, and the engineer has little choice but to revert back to linear 
interpolation. 
 
Proposed Constrained Cubic Splines 
 
The principle behind the proposed constrained cubic spline is to prevent overshooting by sacrificing 
smoothness. This is achieved by eliminating the requirement for equal second order derivatives at every 
point (equation 4) and replacing it with specified first order derivatives. 
 
Thus, similar to traditional cubic splines, the proposed constrained cubic splines are constructed according to 
equations (2), (3) and (5a). Equation (4) is replaced by, 
 
• A specified first order derivative, or slope, at every point, 
  )()()( 1 iiiii xfxfxf ′=′=′ +        - (6)  
 
 



Figure 1
Distillation curve
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Figure 2
Pump Curve
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The key step becomes the calculation of the slope at each point. Intuitively we know the slope will be 
between the slopes of the adjacent straight lines, and should approach zero if the slope of either line 
approaches zero.  
 
A relatively simple equation that works well and satisfies these requirements, is: 
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Equation (7a) is only valid for intermediate points. The slope at the end points is based on rewriting equation 
(5a) to yield, 
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As the slope at each point is known, it is no longer necessary to solve a system of equations. Each spline 
function, as given by equation (1), can be calculated based on the two adjacent points on each side. This is 
summarized in equations (8) to (13) below. 
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The behaviour of the proposed constrained cubic spline is shown in Figures 1 and 2. In general it fits 
chemical engineering needs well in cases where oscillation or overshoot cannot be tolerated.  
 
An Excel Visual Basic for Applications (VBA) example of this technique can be obtained from 
www.korf.co.uk. This interpolation method will also be used in the next release of Korf Hydraulics, which is 
a flexible and user-friendly piping network solver available from the same website. 
 
Conclusions 
 
A modified cubic spline interpolation method has been developed for chemical engineering application. The 
main benefits of the proposed constrained cubic spline are: 
• It is a relatively smooth curve; 
• It never overshoots intermediate values; 
• Interpolated values can be calculated directly without solving a system of equations; 
• The actual parameters (ai, bi, ci and di) for each of the cubic spline equations can still be calculated. This 

permits analytical integration of the data. 
 
Example 
 
The hypothetical distillation curve in Figure 1 is represented by the following data points:  
 

Point 0 1 2 3 4 5 6 
(x,y) (0,30) (10,130) (30,150) (50,150) (70,170) (90,220) (100,320) 

 
Calculate the cubic equations for the first two segments. 
 
First segment, i=1, for 0 � [ � �� � 
    f'1(x1) = 2/((x2 – x1)/(y2 – y1) + (x1 – x0)/(y1 – y0))     - (7a)  
    = 2/((30 – 10)/(150 – 130) + (10 – 0)/(130 – 30)) 
   = 1.8181 
  f'1(x0) = 3/2*(y1 – y0)/(x1 – x0) - f'1(x1)/2      - (7b) 
   = 3/2*(130 – 30)/(10 – 0) – 1.818/2 
   = 14.0909 
  f"1(x0) = -2*(f'1(x1) + 2* f'1(x0))/(x1 – x0) + 6*(y1 – y0)/ (x1 – x0)

2   - (8)  
   = -2*(1.8181 + 2*14.0909)/(10 – 0) + 6*(130 – 30)/(10 – 0)2 
   = 0 
  f"1(x1) = 2*(2*f'1(x1) + f'1(x0))/(x1 – x0) - 6*(y1 – y0)/ (x1 – x0)

2   - (9)  
   = 2*(2*1.818 + 14.0909)/(10 – 0) – 6*(130 – 30)/(10 – 0)2 
   = -2.4545 
  d1 = 1/6 * (f"1(x1) - f"1(x0))/(x1 – x0)      - (10) 
   = 1/6 * (-2.4545 – 0)/(10 – 0) 
   = -0.0409 
  c1 = 1/2 * (x1*f"1(x0) – x0*f"1(x1))/(x1 – x0)     - (11) 
   = 1/2 * (10*0 – 0*1.8181)/(10 – 0) 
   = 0 
  b1 = ((y1 – y0) – c1*(x2

1 – x2
0) – d1*( x3

1 – x3
0))/(x1 – x0)    - (12) 

   = ((130 – 30) – 0*(102 – 02) + 0.0409*(103 – 03))/(10 – 0) 
   = 14.09 
  a1 = y0 – b1*x0 – c1*x2

0 – d1*x3
0      - (13) 

   = 30 
  y1 = 30 + 14.09x - 0.0409x3  for 0 � x � �� 
 
Second segment, i=2, for 10 � [ � ��� 
    f'2(x2) = 2/((x3 – x2)/(y3 – y2) + (x2 – x1)/(y2 – y1))     - (7a)  
    = 2/((50 – 30)/(150 – 150) + (30 – 10)/(150 – 130)) 



   = 0 
    f'2(x1) = 2/((x2 – x1)/(y2 – y1) + (x1 – x0)/(y1 – y0))     - (7a)  
   = 1.8181 
  f"2(x1) = -2*(f'2(x2) + 2* f'2(x1))/(x2 – x1) + 6*(y2 – y1)/ (x2 – x1)

2   - (8)  
   = -2*(0 + 2*1.8181)/(30 – 10) + 6*(150 – 130)/(30 – 10)2 
   = -0.063636 
  f"2(x2) = 2*(2*f'2(x2) + f'2(x1))/(x2 – x1) - 6*(y2 – y1)/ (x2 – x1)

2   - (9)  
   = 2*(2*0 + 1.8181)/(30 – 10) – 6*(150 – 130)/(30 – 10)2 
   = -0.11818 
  d2 = 1/6 * (f"2(x2) - f"2(x1))/(x2 – x1)      - (10) 
   = 1/6 * (-0.11818 + 0.063636)/(30 – 10) 
   = -0.0004545 
  c2 = 1/2 * (x2*f"2(x1) – x1*f"2(x2))/(x2 – x1)     - (11) 
   = 1/2 * (-30*0.063636 + 10*0.11818)/(30 – 10) 
   = -0.01818 
  b2 = ((y2 – y1) – c2*(x2

2 – x2
1) – d2*( x3

2 – x3
1))/(x2 – x1)    - (12) 

   = ((150 – 130) + 0.01818*(302 – 102) + 0.0004545*(303 – 103))/(30 – 10) 
   = 2.31818 
  a2 = y1 – b2*x1 – c2*x2

1 – d2*x3
1      - (13) 

   = 130 – 2.31818*10 + 0.01818*102 + 0.0004545*103 
   = 109.09 
  y2 = 109.09 + 2.31818x - 0.01818x2 - 0.0004545x3 for 10 � [ � �� 
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