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The International HapMap Project was proposed in order to quantify linkage disequilibrium (LD)
relationships among human DNA polymorphisms in an assortment of populations, in order to facilitate the
process of selecting a minimal set of markers that could capture most of the signal from the untyped
markers in a genome-wide association study. The central dogma can be summarized by the argument that
if a marker is in tight LD with a polymorphism that directly impacts disease risk, as measured by the metric
r2, then one would be able to detect an association between the marker and disease with sample size that
was increased by a factor of 1/r2 over that needed to detect the effect of the functional variant directly.
This ‘fundamental theorem’ holds, however, only if one assumes that the LD between loci and the
etiological effect of the functional variant are independent of each other, that they are statistically
independent of all other etiological factors (in exposure and action), that sampling is prospective, and that
the estimates of r2 are accurate. None of these are standard operating assumptions, however. We describe
the ramifications of these implicit assumptions, and provide simple examples in which the effects of a
functional variant could be unequivocally detected if it were directly genotyped, even as markers in high
LD with the functional variant would never show association with disease, even in infinite sample sizes.
Both theoretical and empirical refutation of the central dogma of genome-wide association studies is thus
presented.
European Journal of Human Genetics (2006) 14, 426–437. doi:10.1038/sj.ejhg.5201583; published online 15 February 2006

Keywords: linkage disequilibrium; correlation coefficients; HapMap; association studies

Introduction
Genome-wide association studies have been very successful

at identifying loci involved in rare Mendelian traits in

population isolates, and as such have been suggested in

recent years to be potentially useful for dissection of the

etiology of complex traits as well. With this aim in mind,

the International HapMap project has been developing a

dense genome-wide map of single-nucleotide polymorph-

isms (SNPs) and characterizing the linkage disequilibrium

(LD) among them. The goal is ultimately to allow scientists

to select subsets of the SNPs, which are in strong enough

LD with the untyped SNPs to allow them to serve as useful

surrogates (ie to reduce dimensionality of a genome scan

by selecting a maximal set of markers showing a minimal

amount of LD among themselves). This is the essence of

linkage analysis as well – in which a relatively sparse

marker map is used to infer the inheritance vectors in

families at every genomic position with reasonable and

predictable certainty. There are, however, many ways in

which application of the correlations owing to LD differ
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quantitatively and qualitatively from those due to linkage.

LD and linkage are different ways of assessing essentially

the same phenomenon, as LD exists only when copies of a

given molecular variant shared by two individuals are

clonal copies of the same ancestral alleles (identical-

by-descent (IBD) in the population), and markers nearby

are shared as well because of a paucity of recombination

between the loci historically – that is linkage (see

Terwillger1,2 for a review of this relationship).

In genome-wide mapping studies, one does not presume

to know what the etiological architecture of the trait under

study is in truth. However, study design and analysis

methods are predicated on sets of assumptions, because

power under different approaches can only be compared

under some mathematically tractable models of ‘truth’.

Association studies are often argued to be more powerful

than linkage studies for various reasons. It is rather obvious

that if you measure a functional polymorphism directly, it

will never be less correlated to the trait than a marker that

is both linked to and in LD with the functional site.

Furthermore, it is similarly obvious that such a marker can

never be less correlated to the trait than a marker that is

linked to, but not in LD with the functional site. But this

does not mean that linkage analysis is less powerful than

association analysis, and says nothing about whether one

would have more power studying families or unrelated

individuals, although it is clear that having access to a well-

characterized dense map of markers across the genome and

understanding their LD relationships could be potentially

useful. But the question of how valuable such an approach

will be is a function of many parameters describing the

assumed etiological models, not to mention the study

design employed. In order for association studies to work,

one needs the phenotype being studied to predict the

genotypes of the locus to be identified to a reasonable

degree – that is, to have high ‘detectance’.3,4 Furthermore,

it is necessary for there to be LD between the functional

variant(s) and at least one allele of one of the markers being

studied. And finally, one often further assumes that the

marker genotypes are statistically independent of the trait,

conditional on the genotypes of the functional site in

question.

The substantial debate in the literature about the

prognosis of genome-wide association studies for mapping

genes involved in multifactorial traits to date has focused

on the first of those issues – whether or not significantly

high detectance is expected for such traits, and whether or

not the subset of SNPs selected for analysis will be in

sufficient LD with the functional genotypes predicted by

the phenotype of interest. These arguments focus on issues

related to the common-variant/common-disease (CVCD)

hypothesis,1,3 – 15 the quality and quantity of LD2,16 – 40 and

the effects of different population and study design/

ascertainment options.3,8,19,38,41 – 50 However, the ramifica-

tions of assumptions about the independence of marker

genotypes and trait phenotypes conditional on genotypes

of the functional variant of primary interest have not been

described in much detail, despite the centrality of this

assumption. In this paper, we address the critical impor-

tance of this issue, and demonstrate numerous reasons why

such conditional independence of exposures rarely exists

in practice, using a combination of theoretical and

empirical arguments. We thus present a further criticism

of the rationale for genome-wide association studies based

on structural theoretical arguments, independent of the

widely known counterarguments outlined above. In fact,

for purposes of this manuscript, we assume that there are

common risk alleles that are detectable if they were

themselves genotyped, and show that markers in high LD

with the functional variants may never show evidence of

association in infinite sample sizes.

Measures of LD between two SNPs

The coefficient of LD between alleles of two SNPs with

alleles (A/a) and (B/b), respectively, is defined as

d¼DAB¼ pAB�pApB,51,52 where pAB denotes the frequency

of the haplotype bearing alleles A and B at the two loci, and

pA and pB denote the allele frequencies of alleles A and B.

Since DAB varies enormously as a function of the allele

frequencies, it is common to quantify LD rather in terms of

measures which attempt to normalize for the effects of

allele frequencies. One such measure is defined as

D0
AB ¼

DAB

min ðpA 1�pB½ �; 1�pA½ �pBÞ 8 DAB40
DAB

max ðpApB ; 1�pA½ � 1�pB½ �Þ 8 DABo0

(

This measure has been generally preferred by population

geneticists, as it has predictable behavior as a function of the

recombination fraction between the SNPs, the demographic

history of the two polymorphisms in the population. An

alternative standardized measure, the correlation coefficient,

is often used by statisticians, because it has predictable

behavior concerning not the evolutionary relationships

among markers, but rather concerning the power to detect

the correlation in a sample. This measure is defined as

rAB ¼ DABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA 1 � pA½ �pB 1 � pB½ �

p
¼ PðAjBÞ � PðAjbÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pB 1 � pB½ �
pA 1 � pA½ �

s

The sample estimate of rAB is conventionally denoted as

rAB. It can be shown that the test statistic for the

conventional w2 test of independence on a 2�2 table of

haplotype frequencies of the alleles of these two loci is

numerically equivalent to X2¼NrAB
2 , where N denotes the

sample size. Leaving aside the philosophical and scientific

rationales for preferring one metric over the other, in this

paper we focus on the properties of the r2 estimates as
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predictors of the power of an association study, owing to

the following factual relationship: If SNP B has a functional

relationship to phenotype C, then under simple random

sampling, the w2 statistic relating B and C would be

X2¼NBCrBC
2 , and in order to obtain the same numerical

value for a w2 statistic relating marker A to phenotype C

instead of typing marker B would require sample size

NAC ¼ NBC r2
BC=r2

AC

Underestimation of sample size requirements due to
upward bias in LD estimates from small samples

The so-called haplotype map (or HapMap) of SNPs span-

ning the genome was designed to facilitate genome-wide

association analysis, based on extensions of the relation-

ship described above relating test statistics and correlation

coefficients. In a recent paper, Gabriel et al53 claimed that

‘y the average maximal r2 value between each additional

SNP and the haplotype framework was high, ranging from

0.67 to 0.87 in the four population samples. That is, for the

average untested marker, only a small increase in sample

size (15–50%) would be needed for the use of a haplotype-

based (as compared to direct) association study.’53

It is well known that these measures of LD are strongly

biased in an upward direction in small samples (with the D0

metric being more strongly biased than r2), because the

measures are both defined to be nonnegative.37 While the

bias in the measure r2 is often not large in magnitude, the

effects of the bias on estimates of 1/r2, which is claimed to

be linearly related to the required sample size and thus to

the power of association studies can be enormous even

with samples much larger than those being used in the

International HapMap project to characterize LD across

the genome.53 Figure 1 shows graphically the magnitude of

the bias for a variety of sample sizes, based on simulation of

1 000 000 data sets, in which the allele frequency for the

rare allele at each locus was 0.1. In this figure, the x-axis

shows the true value of 1/r2 with the y-axis showing the

expected value of 1/r2, which is theorized by Gabriel et al53

and others to be a measure of the increased sample size

needed when replacing a functional variant in an analysis

by a tag SNP in LD with it.54 In each graph, if the estimates

were unbiased, Figure 1 would contain only the straight

line x¼ y. It is apparent that 1/r2 is estimated to be much

lower than 1/r2, and thus provides a gross underestimate of

the needed sample size. But this is just the tip of the iceberg

when it comes to problems in the theory, which we now

examine in detail.

Sample size for genome-wide linkage analysis

The reason why genome-wide linkage analysis has been

successful in reducing the dimensionality of a genome scan

is that the correlations in inheritance due to linkage are

strictly a function of meiotic recombination frequencies,

which have highly regular behavior, as reflected by the

existence of mapping functions. That is to say that in a

linkage analysis, one measures cosegregation of loci in

families, which is solely a function of the genetic distance

between the loci. If there are three loci, X, Y, and Z, and a

recombination event occurs between X and Y, and no

recombination occurs between Y and Z, then the alleles of

loci X and Z must be likewise recombinant in that meiosis,

whether or not they are syntenic. Such simple deterministic

relationships make linkage mapping mathematically tract-

able. It can be shown that, in general, for an ordered set of

marker loci, XFYFZ, yXZ¼ yXYþ yYZ�2cyXYyYZ, where yXY

is the probability of recombination between loci X and Y,

and where c is the ‘coefficient of coincidence’, a measure of

the strength of crossover ‘interference’, or nonindepen-

dence of recombination in adjacent intervals. For the most

part, while there is evidence of weak interference in real

data, most statistical analyses assume that c¼1 (no inter-

ference). This is a close approximation to the truth over

large distances, and on small distances, where these

measures are most relevant in linkage analysis, interference

has little or no effect on the analysis outcomes, because c is

strongly bounded with the following equation:51

max
yXY þ yYZ � 0:5

2yXYyYZ
;0

� �
� c � 1

Figure 1 A total of 1 000 000 replicates were simulated of data sets
of varying size, from 10 to 100 samples to demonstrate the small
sample bias in estimates of the squared correlation coefficient, and its
reciprocal. This figure shows the bias in 1/r2 as an estimator of 1/r2 for
sample sizes 10, 20, 50, and 100 in order from the lowermost to
uppermost curves in the figure. The straight line x¼ y would represent
an absence of bias in the estimators. Note that 1/r2 is used as an
estimator of the multiplier for the sample size needed for equivalent
power using marker A instead of functional variant B in an association
study according to the ‘Fundamental Theorem of the HapMap’. In this
graph, the line x¼ y would represent the theoretical predictions, and
the other curves show the effects of underestimation of this term
owing to small sample bias. For purposes of figure, both loci have
minor allele frequency of 0.1, the best-case scenario expected for LD
mapping with SNPs.
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Let us assume that we have two markers, X and Y, as

above, whose positions are known, and we want to

compute the value of some statistic relating each of those

to some disease locus, Z. Now, let us make the further

assumption that the loci are actually in the order X–Y–Z,

and that we know yXY and yYZ. Looking at meioses from a

parent with phased genotype (1X_1Y_1Z/2X_2Y_2Z), we can

express the correlation coefficient between the inheritance

of the alleles at loci X and Y as

rXY ¼ Pð1Xj1YÞ � Pð1Xj2YÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1XÞPð2XÞ
Pð1YÞPð2YÞ

s

¼1 � 2yXY

such that

rXZ ¼1 � 2 yXY þ yYZ � 2cyXYyYZð Þ
¼rXYrYZ þ 4ðc � 1ÞyXYyYZ

Note that when we assume the absence of interference

(c¼1), this implies that rXZ¼ rXYrYZ. Thus, if one wanted

to use marker X as a surrogate for marker Y in a linkage

analysis, the sample size increase needed would be,

following the theory above,

NXZ ¼NYZ
r2

YZ

r2
XZ

¼NYZ
rYZ

rXYrYZ þ 4 c � 1ð ÞyXYyYZ

� �2

� NYZ

1 � 2yXYð Þ2

Thus, the correlations among loci owing to linkage are

sufficiently strong to allow for significant reduction in the

number of positions across the genome at which one needs

to examine chromosomal segregation in families, and thus

reduction in dimensionality in genome scans.

In contrast, in the case of LD, the correlation coefficients

are not multiplicative. To illustrate the lack of multi-

plicativity of r2 estimates for SNP markers, we used all the

pairwise r2 estimates from the International HapMap

Project,5 release date 16 June 2005. In this analysis, we

considered all triples of markers X–Y–Z, and in Figure 2,

on the horizontal axis we give the reported estimate for r2
XZ,

and on the vertical axis we give the product r2
XYr2

YZ for all

triples of markers. If the correlation coefficients were

multiplicative, as they are for linked marker loci in linkage

analysis, the graph would be basically a straight diagonal

line through the origin (x¼ y). As you can clearly see,

however, this is not the case at all. Rather, there is precious

little information about the correlation coefficient between

X and Z, which can be gleaned from knowing the values of

the correlation coefficients between markers X and Y, and

that between markers Y and Z. Thus, the theory described

below, which drives the HapMap project clearly does not

hold in general for correlation coefficients, and in fact can

be grossly misleading, most strikingly so when there is

substantial LD – the very situation HapMap is designed to

model.

Fundamental theorem of the HapMap

Statements about the relationships between LD and power

of association studies like those made in the Gabriel et al53

paper are based on theory, which assumes a multiplicative

relationship among estimated correlation coefficients for

different factors32, although it is well known that correla-

tion coefficients are not generally multiplicative. For

example, Czechs have higher alcohol consumption than

Finns, and men have higher alcohol consumption then

women.55 If the correlation coefficients describing these

relationships were multiplicative, then one would arrive at

the false conclusion that this implies that being male was

correlated with being Czech. Justification for moving

forward with HapMap as a tool for genome-wide associa-

tion studies has been based on extrapolations from the

aforementioned theory relating w2 statistics to correlation

coefficients. Let us define this hypothesized relationship

formally as follows:

Theorem (‘Fundamental Theorem of The HapMap’): If

rAB is the correlation coefficient between alleles of two

SNPs, A (with alternate allele a) and B (with alternate allele

b), and if sample size NBC would be sufficiently large to

detect a correlation between phenotype C (with alternate

phenotype c) and functional allele B, then the sample size,

NAC, needed to detect a correlation between nonfunctional

allele A and the same phenotype would be NAC¼NBC/rAB
2 .

Figure 2 Non-multiplicativity of r2 estimates: r2 estimates reported
in the 16 June 2005 release from the International HapMap
Consortium, based on CEPH (CEU), CHB, JPT and YRI data sets are
demonstrated to be nonmultiplicative. All triples of SNPs were
considered: X–Y–Z, from all autosomal chromosomes and on the x-
axis is the estimate of r2XZ, and on the y-axis is the product of the
estimators of r2XY and r2YZ. If correlation coefficients were multiplicative,
the graph should be the straight line x¼ y, but as can be clearly seen,
this is not the case, and the values of r2XY and r2YZ can be seen to provide
very little information about the correlation coefficient between the
flanking markers X and Z, which would not be the case if the
assumptions of the Fundamental Theorem of the HapMap held in
general.
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However, remember that earlier we demonstrated that in

general, NAC ¼ NBC r2
BC=r2

AC; such that the implicit

assumption is that r2
BC=r2

AC ¼ 1=r2
AB; or in other words, that

rAB
2 rBC

2 ¼ rAC
2 . This is analogous to the highly deterministic

relationship among linked marker loci in the case of

linkage analysis, rXZ¼ rXYrYZ, which holds in the absence

of crossover interference, as shown above. Note that this

multiplicative relationship only holds because of the great

regularity of the correlations generated by the recombina-

tion process in meiosis. The generalization of this relation-

ship to LD studies (and the theory of correlation

coefficients in general) is far from straightforward and

requires strong additional assumptions for it to hold, not to

mention large samples, as r2 is an upwardly biased

estimator of the squared correlation coefficient, as shown

above.

It can be shown in general (see Appendix A) that

the relationship rAC¼ rABrBC implies the independence

of A and C conditional on B, that is to say

P(A|BC)¼P(A|Bc)¼P(A|B), and so forth. In the context of

association studies, the Fundamental Theorem of the

HapMap implies that the frequency of SNP allele A

conditional on allele B at the functional site is invariant

between cases and controls, implying that the only reason

allele A might differ in frequency between cases and

controls would be because of differences in the frequency

of allele B. For purposes of the following discussion, we

ignore the effects of ploidy, to simplify the algebra and

need to specify specific dominance relationships. In the

context of this discussion, we refer to A and B as alleles on a

haplotype drawn at random from an individual, such that

P(C|B) refers to the probability that the person from whom

a B allele is selected at random is affected. Note that in

terms of a penetrance model, P(C|B)¼ {P(C|BB)P(BB)

þ0.5P(C|Bb)P(Bb)}/P(B), which is exactly what would be

compared in a cohort study comparing allele frequencies

with a dichotomous phenotypic outcome.

Bounds on unconditional and conditional qAC given
B or b

Because all pairwise haplotype frequencies are probabilities

constrained to be between 0 and 1, there are algebraic

restrictions on the range of rAC as a function of P(A) and

P(C), as follows:

max �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðCÞ
PðaÞPðcÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðaÞPðcÞ
PðAÞPðCÞ

s !

� rAC �

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðaÞPðCÞ
PðAÞPðcÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðcÞ
PðaÞPðCÞ

s !

Furthermore, if we know rAB and rBC, P(A), P(B), and P(C),

then we also know uniquely P(A|B), P(A|b), P(C|B), and

P(C|b) as

PðAjBÞ ¼ PðAÞ þ rAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðaÞPðbÞ

PðBÞ

s
;

and

PðCjBÞ ¼ PðCÞ þ rBC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðbÞPðCÞPðcÞ

PðBÞ

s
;

and

PðAjbÞ ¼ PðAÞ � rAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðaÞPðBÞ

PðbÞ

s
;

and

PðCjbÞ ¼ PðCÞ � rBC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðBÞPðCÞPðcÞ

PðbÞ

s

These restrictions imply that the restrictions on the

conditional values of rAC given B and b are different, since

max �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAjBÞPðCjBÞ
PðajBÞPðcjBÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajBÞPðcjBÞ
PðAjBÞPðCjBÞ

s !

� rACjB � min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajBÞPðCjBÞ
PðAjBÞPðcjBÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAjBÞPðcjBÞ
PðajBÞPðCjBÞ

s !

This implies that there are additional restrictions on the

unconditional values of rAC, and thus rAB and rBC contain

information about rAC, even though they do not deter-

mine it uniquely.

By definition,

rAC ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAÞPðaÞPðCÞPðcÞ

p PðAjBÞPðCjBÞPðBÞ 1 þ rACjB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajBÞPðcjBÞ
PðAjBÞPðCjBÞ

s" #
þ

(

PðAjbÞPðCjbÞPðbÞ 1 þ rACjb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajbÞPðcjbÞ
PðAjbÞPðCjbÞ

s" #
� PðAÞPðCÞ

)

and this quantity has its lower bound when

rACjB ¼ max �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAjBÞPðCjBÞ
PðajBÞPðcjBÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajBÞPðcjBÞ
PðAjBÞPðCjBÞ

s !
;

and

rACjb ¼ max �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAjbÞPðCjbÞ
PðajbÞPðcjbÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajbÞPðcjbÞ
PðAjbÞPðCjbÞ

s !

and its upper bound when

rACjB ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAjBÞPðcjBÞ
PðajBÞPðCjBÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajBÞPðCjBÞ
PðAjBÞPðcjBÞ

s !
;

and

rACjb ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAjbÞPðcjbÞ
PðajbÞPðCjbÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðajbÞPðCjbÞ
PðAjbÞPðcjbÞ

s !

To see what these constraints mean about the informa-

tion about tertiary correlations contained within sets of

pairwise correlation coefficients, consider the following set
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of assumptions about marker and disease loci, which are

best-case scenarios for association studies: P(A)¼0.1 (tag

SNP with rare allele frequency of 10%), P(B)¼0.1 (func-

tional variant with rare allele frequency of 10%),

P(C)¼0.025 (disease prevalence of 2.5%), rAB¼0.9

(r2¼0.81 between the rare alleles of the functional variant

and the tag SNP). Translating the constraints described

above into parameters that are more comprehensible

to the genetic epidemiologist concerned about practical

ramifications, we graph the bounds on r2
AC in Figure 3a,

as a function of the relative risk of allele B, which is

defined as

RRB ¼ PðCjBÞ
PðCjbÞ ¼

PðCÞ þ rBC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�PðBÞPðCÞð1�PðCÞÞ

PðBÞ

q
PðCÞ � rBC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðBÞPðCÞð1�PðCÞÞ

1�PðBÞ

q
The horizontal bar on top is the upper bound on r2

AC

imposed by P(A) and P(C) alone, the upper curve is the

upper bound as a function of RRB ranging from 0.1 to 10,

and the lower curve is the predicted value of r2
AC from

Gabriel et al.53 Note that throughout this range, the lower

bound on r2
AC is 0, that is, it is possible to have no

correlation whatsoever between the phenotype and the tag

SNP, even with correlation coefficient of 0.9 between the

SNP and the functional polymorphism!

Since it is r2
AC that is directly related to power, and since it

was indicated above that NAC r2
AC¼ w2 for a given data set,

then if we wanted to obtain the same significance from an

association study using SNP A instead of functional variant

B, to satisfy the relationship NACrAC
2 ¼NBCrBC

2 , the relative

sample size needed using the surrogate tag SNP would be

N¼NAC/NBC¼ rBC
2 /rAC

2 . Figure 3b graphs the upper bound

on this relative sample size over the range of RRB extending

from 1 to 100. The upper value is well beyond the plausible

range for variants being sought in complex trait association

studies, with RRB between 1.5 and 3 being the range most

people claim to be interested in. Note that for these fairly

reasonable assumptions about the frequencies of the

variants, and the high correlation coefficient of 0.9

between the SNP and the functional variant, the sample

size has an upper bound of infinity over much of the range

considered. Note that the thin horizontal line at N¼1.23 is

the predicted increase in sample size needed claimed by

Gabriel et al53 in their naı̈ve application of the theory of

correlation coefficients.

For the reader interested in exploring the effects

of altered values of the various parameters, this can

be done using the Excel spreadsheet found at http://

linkage.cpmc.columbia.edu/excel/rsquaredAC.xls.

Ascertainment bias

Of course, in real-world epidemiological studies, one does

not use simple random sampling of the sort for which

these mathematical models were derived to fit. In practice,

one would ascertain individuals from the population

conditional on the trait (outcome C in our nomenclature)

because this systematically increases the power by enrich-

ing for the rare outcome variable. Mathematically this has

the effect of increasing the magnitude of rBC as follows:

since under simple random sampling (r.s.),

rBCðr:s:Þ ¼ PðBjCÞ � PðBjcÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðCÞPðcÞ
PðBÞPðbÞ

s

then if one were to sample from the population conditional

on outcome such that the sample had proportion pC of

cases and (1–pC) of controls, the value of rBC under case

Figure 3 Bounds on r2AC are shown graphically for simple random
sampling. In this case, the allele frequencies for minor alleles of both
functional locus B and tag SNP A are set to 0.1 and the correlation
coefficient between them, rAB¼0.9. (a) Upper and lower bounds on
r2AC as a function of the relative risk of the functional variant B on
phenotype C, with the curve in the middle representing the theoretical
prediction under multiplicativity of correlation coefficients. (b) The
same bounds but with the y-axis representing rBC

2 /rAC
2 , which is the

increase in sample size actually needed when typing SNP A instead of
functional site B. Note that in (b), the theoretical prediction is that this
ratio should be 1.2 for all values of the relative risk.
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control sampling (c.c.) would be

rBCðc:c:Þ ¼ PðBjCÞ � PðBjcÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCð1 � pCÞ
pBð1 � pBÞ

s

where pB¼ P(B|C)pcþP(B|c)(1�pc) such that the correlation

coefficient is increased by a factor of

rBCðc:c:Þ
rBCðr:s:Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC 1 � pC½ �PðBÞ 1 � PðBÞ½ �
PðCÞ 1 � PðCÞ½ �pB 1 � pB½ �

s

Thus, the sample size needed for an equivalent expected w2

statistic under case–control sampling with proportion of

cases sample set at pC would be

NBCðc:c:Þ ¼ NBCðr:s:Þ
PðCÞ 1 � PðCÞ½ �pB 1 � pB½ �
pC 1 � pC½ �PðBÞ 1 � PðBÞ½ �

A definition of invariant LD among SNPs under case–

control sampling in the spirit of the underlying assump-

tions of the ‘Fundamental Theorem of the HapMap’ would

be that P(A|B) and P(A|b) remain invariant with phenotype.

Even if this were true, rAB must be different, since

rAB ¼ PðAjBÞ � PðAjbÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pB 1 � pB½ �
pA 1 � pA½ �

s

While the first part of this equation might be invariant in

random sampling or case-control sampling, the second

term cannot, since both pB and pA would vary due to

ascertainment bias if B were functional.

Ascertainment bias influences the value of NAC, the

sample size requirement under case control sampling as

follows:

NACðc:c:Þ ¼NBCðc:c:Þ
r2

BCðc:c:Þ
r2

ACðc:c:Þ

¼NBCðr:s:Þ
r2

BCðc:c:Þ
r2

ACðc:c:Þ
PðCÞ 1 � PðCÞ½ �pB 1 � pB½ �
pC 1 � pC½ �PðBÞ 1 � PðBÞ½ �

where NAC(c.c.) refers to sample size needed under case

control sampling, while NAC(r.s.) refers to the analogous

quantity under simple random sampling. While we

demonstrated above that the sample size requirement

under case–control sampling is reduced whenever

P(C)o0.5 in the population, it is not necessarily true that

the sample size requirement is decreased when typing SNP

A as a surrogate for the functional variant, even when rAB is

high in the population. Figure 4a shows the upper and

lower bounds on r2
AC over the same range given for random

sampling in Figure 3a, while Figure 4b shows the same

bounds for 1/r2
AC as a function of the relative risk, as in

Figure 3b. Note that while r2
AC may obtain much higher

values under case-control sampling than simple random

sampling, the range includes 0 for even high relative risks

for B. This means that the sample size requirement

(equivalent to that in Figure 3b for random sampling)

must include infinity as an upper bound over the entire

range. Thus, case–control sampling, theoretically, can lead

to even less power than simple random sampling under

some models, even when rAB in the population is as high as

0.9, as it was in the example. It is important to note as well

that rAB in a case–control design cannot be uniquely

determined as a function of the population rAB, the relative

risk of disease given functional variant B, and the

frequencies of A, B, and C, further complicating predictions

about power in that context. Nevertheless, the fact remains

that case–control sampling can potentially reduce power

over random sampling, when using a tag SNP, A, as a

surrogate for some functional variant, B, in an association

study with disease C!

Effects of allelic heterogeneity

Let us now examine a very simple situation in which the

implications of the ‘Fundamental Theorem of the HapMap’

Figure 4 Bounds on r2AC are shown graphically for case-control
sampling. (a) is the equivalent graph to Figure 3a for case-control
sampling, and (b) is the analog of Figure 3b for case-control sampling.
The assumed models are the same as in Figure 3.
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would be totally misleading. Let us consider three SNPs in a

haplotype block, such that two of the three, A and B are

functional (with risk alleles DA and DB respectively and

normal (wild type) alleles þ A and þ B respectively),

and have equivalent effect on the trait, in a dominant

manner, such that P(Affected|DA/x)¼ P(Affected|DB/x)¼ f,

P(Affected|þ A/þ A, þ B/þ B)¼0, and C (a SNP with 2 alleles

1C and 2C) has no phenotypic effect (that is to say that

presence of a disease allele at either locus A or locus B on

one or both chromosomes gives an individual probability f

of being affected, and if neither disease allele is present, the

individual is healthy with probability 1). If we assume that

all the pairwise D0 values are 1, meaning that there has

been no recurrent mutation or recombination historically

within this block, there would be four haplotypes with

nonzero frequency, for example, H1¼P(þ Aþ B 1C);

H2¼P(þ Aþ B 2C); H3¼P(DAþ B 1C); H4¼P(þ A DB 2C). If

we were to set all four haplotype frequencies to be equal

H1¼H2¼H3¼H4¼0.25, for example, then rAC
2 ¼0.333;

rBC
2 ¼0.333, such that the ‘Fundamental theorem of the

HapMap’ would predict that if marker C were used as a

surrogate for A in a case-control association test, the

sample size needed NC ¼ NA=0:333 ¼ 3NA .

However, the true detectance distribution for this model

is shown in Table 1. There would be power to detect the

relationship between either functional variant and the

disease, with an odds ratio of 1.55 for the risk allele at each

of the disease loci, but the odds ratio is 1 with the SNP that

had r2 of 0.333 with each of the disease loci. The

‘Fundamental Theorem of the HapMap’ would have

predicted that a sample size three times larger than needed

to detect either functional variant would be sufficient to

detect the association with the SNP C, but this is clearly

untrue. This simple example is admittedly extreme, since

both alleles are assumed to be very common, in accordance

with the ‘common disease/common variants’ hypothesis,

widely touted by the same scientists that are promoting

HapMap8,21,56 – 60 Nonetheless, this example clearly shows

that even with tight haplotype blocks, and common

disease alleles, it is possible that functional variants can

be detected if they are genotyped in a sample, and yet there

might be absolutely no difference between cases and

controls whatsoever for other common markers within

the same haplotype block.

If one allows for more substantial allelic heterogeneity, as

is typically seen in most loci that have been studied in

sufficient detail, this effect will be exacerbated, because the

less frequent the individual variants are, the greater the

likelihood that they originated on a variety of haplotypes

(according to their population frequencies), so if they fall

within the same ‘haplotype block’ they will likely be in

opposite phase with any given SNP which is being

genotyped. The greater the number of variants, the greater

the similarity in the detectance distributions for the

haplotypes in cases and controls, if one fails to genotype

the functional variants themselves! Furthermore, since it

appears likely that in general there is an inverse relation-

ship between effect size and allele frequency, this would

further homogenize the distributions of haplotype fre-

quencies for common tag SNPs between cases and controls,

making it trivial to construct examples for which there is

substantial power to detect the functional variants them-

selves, if genotyped, in a case-control study, while there

would be no power in an infinite sample for tag SNPs, even

with very high r2 LD of 0.8. In populations with LD

extending over longer distances, the problem becomes

more acute, as there are many more loci in LD with any

putative marker, any of which might themselves be

functional, so while fewer markers would be needed to

do a genome-wide association if one chose markers based

on the ‘Fundamental Theorem’, there would be many more

sites with correlated exposure frequencies that might be

potentially functional, increasing the potential magnitude

of this problem. To this end, one might think twice before

Table 1 Effects of allelic heterogeneity in a simple case on the multiplicativity assumption

Detectance Locus B Detectance Locus C Detectance

Locus A Case Control Genotype Case Control Genotype Case Control

Genotype
+A/+A 0.417 0.574 +B/+B 0.417 0.574 1C/1C 0.25 0.25
+A/DA 0.5 0.365 +B/DB 0.5 0.365 1C/2C 0.5 0.5
DA/DA 0.083 0.061 DB/DB 0.083 0.061 2C/2C 0.25 0.25

Allele
+A 0.667 0.757 +B 0.667 0.757 1C 0.5 0.5
DA 0.333 0.243 DB 0.333 0.243 2C 0.5 0.5

Odds ratio 1.55 Odds ratio 1.55 Odds ratio 1.00

For the model outlined in the text, the detectance distributions for functional variants A and B are shown, along with that for tag SNP C. Note that
both A and B would be detectable with sufficient sample size, were they genotyped, but in an infinite sample, SNP C would never show any evidence
of association, as it has an odds ratio of 1, despite being in LD with both loci B and C.
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deciding to use fewer markers in association studies

in isolates than elsewhere. An Excel spreadsheet is

available from the authors in which 3 locus haplotypes

can be input under general penetrance and haplotype

frequency models to examine these detectance distribu-

tions and compare them to the predictions of the

Fundamental Theorem of the HapMap, can be found at

http://linkage.cpmc.columbia.edu/excel/r-squared.xls.

Software, SIMQTL, for analysis of more complex models

under more sophisticated ascertainment schemes is also

available from the authors. It should be kept in mind that

while such a multiplicity of risk alleles substantially

decreases the power of association tests, it generally tends

to increase the power in linkage studies. The identities of

specific alleles are not examined in linkage analysis, only

the sharing of any alleles (whatever their molecular

configuration) IBD among relatives in a pedigree, so that

whenever functional variants are linked to one another,

the power of a linkage study will increase substantially,

even when those loci are as far apart as several Mb!

Discussion
The proponents of association-based mapping strategies

argue that since A has no functional effect on C, any

correlation between A and C must be because A is

correlated with B and B is correlated with C, justifying

the assumption that P(A|BC)¼P(A|Bc)¼P(A|B). Simple

algebraic manipulations show that this condition is

equivalent to saying that P(C|AB)¼P(C|aB). At first glance,

this seems to be a reasonable assumption, namely that if A

is nonfunctional, then the probability of any given

phenotypic outcome in general is independent of A.53,54

However, there are other ways in which having haplotype

AB can influence the risk of a phenotypic outcome

differently from haplotype aB. We argue that it is the

exception, not the rule, for such conditional independence

to hold in genetic studies of complex traits, and that the

assumptions of Gabriel et al53 rarely hold in practice.

Certainly, blanket statements about the relationships

between r2 and sample size requirements for association

studies are not factual, since typically NAC4NBC=r2
AB . In

fact, equality of these terms only holds in the best-case

scenarios, analogous to linkage analysis. Conditional

independence in genetics is rarely an appropriate assump-

tion (as people have been learning the hard way in

attempts to look at linkage analysis with massively dense

sets of SNP markers4,37,48,61 – 66), and this is the primary

reason why geneticists avoid using classical statistical

techniques in favor of complex likelihood-based models

when making inferences. It is imperative to remember that

statistical independence is a very different thing from

causal independence, and is a very strong assumption,

which can have enormous consequences.

Above, we have provided a simple example where

conditional independence does not hold owing to allelic

heterogeneity. While allelic heterogeneity is one potential

reason for deviation from the theory, it is certainly not the

only way. Ethnic heterogeneity, in which the frequencies

of both phenotype and SNP marker alleles vary can create

not only false positives, as is by now well-appreciated, but

can just as easily create ‘false negatives’ – that is to say tag

SNPs may show no correlation at all with the phenotype,

even when an easily detectable functional variant has r2 of

0.8 with the tag SNP, for similar mathematical reasons.

Likewise, environmental risk factors can have similar sorts

of confounding that can easily cancel out the effects of a

functional variant, when typing a tag SNP instead. And

here we are only considering cases in which the functional

variant does have power to be detected if it were genotyped

and measured. The fact is that correlation coefficients are

almost never multiplicative in practice, and in studies

involving genetic risk factors for disease, we have known

for decades that conditional independence of exposures

never holds. In fact, this is the entire basis for the

development of the complex likelihood methods we have

relied upon for the past decades in understanding the

genetic basis of simple diseases.

Sequencing samples consisting of cases and controls in

candidate regions in the genome to estimate the amount of

LD measured by r2 among the SNPs they identify, in order

to select ‘tag’ SNPs for further study, is a strange approach,

because, as we showed above, r2 must vary between cases

and controls whenever one of the markers has a functional

effect. Often people look at the r2 in cases and controls, and

if it is not different, they pool the data and use that to

select a marker, but as shown above, this will always bias

the estimates. For that matter, if the r2 really is invariant in

cases and controls, this is evidence against alleles of either

SNP being functional, which is reason to potentially not

type either of them. Again, it is important to be careful

about the assumptions, the theory, and their ramifications,

rather than proceeding naively based on arguments like

‘but that is what everyone else is doing, so it must be right’,

which we have all been subjected to.

We hope to make readers think twice before engaging in

high risk studies without fully evaluating the potentials for

confounding factors such as those described here to

complicate the theoretical predictions. Human geneticists

routinely rely on mathematical theory and predictions

without fully understanding the assumptions driving the

theory, or contemplating their implications. If nothing

else, it is hoped that statistical geneticists would be more

forthcoming and explicit about the theoretical ramifica-

tions of the model assumptions, as this is but one example

where they fall apart. Similar difficulties and inconsisten-

cies between theory and practice can be widely seen in

such areas as studies of gene–gene and gene–environment

interaction, where independence of exposures is assumed,
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and deviations from independence of exposures condi-

tional on phenotype are inferred to imply etiological

interactions, when nonindependence of exposures and

ascertainment bias are equally capable of explaining such

phenomena without the need to invoke complex etiologi-

cal interactions. Another obvious example of inconsistent

theory and practice would be when linkage analyses of

extremely concordant and discordant sibling pairs are

performed, assuming some component of variance due to

polygenic factors, and yet the null hypothesis in the

linkage analysis predicts that at random genomic loca-

tions, 50% of the genome of such sibs should be IBD (when

of course the polygenic factors that are individually too

weak to detect, must alter this average genome-wide

sharing if the analysis shows they existy).

We hope that as gene hunting approaches increase in

cost and size, that rather than becoming more cavalier

about theoretical assumptions, that we be much more

careful about what we believe. Technological advances are

wonderful, and make it possible to do science that we

could not imagine a few decades ago, but excellent

technology applied to poorly designed studies (driven by

assumptions the investigators themselves probably would

not really believe if consciously aware of them) are not

particularly wise ways to do science – it would be far better

to spend more time thinking and planning before jumping

in to genotyping every sample we can get our hands on,

lest no one listen to us when we cry fire and there actually

is one, at some point in the future.
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Appendix
Demonstration that multiplicativity of correlation coeffi-

cients implies conditional independence.

rABrBC ¼ PðAjBÞ � PðAjbÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðBÞPðbÞ
PðAÞPðaÞ

s

� PðBjCÞ � PðBjcÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðCÞPðcÞ
PðBÞPðbÞ

s

¼ PðAjBÞ � PðAjbÞ½ �

� PðBjCÞ � PðBjcÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðCÞPðcÞ
PðAÞPðaÞ

s

Since

rAC ¼ PðAjCÞ � PðAjcÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðCÞPðcÞ
PðAÞPðaÞ

s

then rAC¼ rAB rBC if and only if

PðAjCÞ � PðAjcÞ½ � ¼?

PðAjBÞ � PðAjbÞ½ � PðBjCÞ � PðBjcÞ½ �

Expanding the right side of this equation leads to the

following:

PðAjCÞ � PðAjcÞ½ � ¼?

PðAjBÞPðBjCÞ þ PðAjbÞPðbjCÞ½ �
� PðAjBÞPðBjcÞ þ PðAjbÞPðbjcÞ½ � ð1Þ

However, if we expand the left side of the equation,

PðAjCÞ � PðAjcÞ½ � ¼
½PðABjCÞ þ PðAbjCÞ�
� ½PðABjcÞ þ PðAbjcÞ�
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and according to the Chain rule from elementary prob-

ability, this implies that

PðAjCÞ � PðAjcÞ½ � ¼
½PðAjBCÞPðBjCÞ þ PðAjbCÞPðbjCÞ�
� ½PðAjBcÞPðBjcÞ þ PðAjbcÞPðbjcÞ�

but this only equals the right side of Eq. (1) above, if we

assume that we have conditional independence of

A and C when B is true, such that, for example,

P(A|BC)¼P(A|B).
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