

Full Text Search Functions

Version 5.9

Full Text Search Functions Linter DBSM

Page 2

Table of Contents
Introduction ...4

Basic Concepts...5

Purpose and Requirements ..6

Purpose.. 6
Requirements .. 6

Filters..7

Filter Management... 8
Creating an Internal Filter... 8
Creating an External Filter ... 8
Delete a Filter ... 9
Alter an External Filter.. 9

Table Filters ... 10
Using a Filter on a Table.. 10
Modifying a Column Filter .. 10
Deleting a Column Filter... 10

File Filters .. 11
Setting a File Extension Filter .. 11
Cancel a File Extension Filter .. 12

Indexing..13

Create a Full Text Index.. 13
Alter a Full Text Index.. 14
Update a Full Text Index ... 15
Delete a Full Text Index .. 15

Search ...16

Full Text Index Template... 17
Retrieve Text Selection ... 17

The EXTFILE Data Type...19

Embedded Full Text Index Function...20

External File Name (FILENAME).. 20
Full text index creation time(INDEXTIME).. 20
Filter Number (FILTER)... 21
Extern File Data Updating(FILETIME).. 21

Linter DBSM Full Text Search Functions

Page 3

Extern File Size (FILESIZE) ..21
Extern File Name by Default (DEFAULT) ...22

Full Text Search Functions Linter DBSM

Page 4

Introduction
This document explains the syntax and semantics of the Linter Search Engine (SE) module that is
used to search very large blocks of text.

Linter DBSM Full Text Search Functions

Page 5

Basic Concepts
The concept of a full text index implies retrieval of text, based on a word or phrase from the
complete text; all the text in one or more documents or all of the text fields in a database.

As a rule, every text document has its on internal structure: paragraphs, headings, signature
indents, tables etc. With the help of a text editor, this inner structure can be made fairly complex -
we can use various fonts, make lists, do formatting etc. Also different text editors store data in
different formats; e.g., .doc, .html, .rtf, .txt. Some documents, such as those in html format, apart
from using means of visual presentation of information, have their inner structure marked out, e.g.,
headings, body text, key, words.

Thus, a requirement for a full text search is recognition of a text's structure and the ability to
decode various document formats using converters or filters.

Full Text Search Functions Linter DBSM

Page 6

Purpose and Requirements
Purpose

Linter's full text index tools are designed for use in projects requiring high performance and full
text indexes through large data warehouses, e.g., Web servers. Full text index tools make it possible
to simplify the data storage scheme in an application and minimize the number of required
tables.

The full text index system provides:

• a wide variety of word search options including search by beginning, by end by sub-string,
by whole words, using wild cards etc.);

• search by misspelled words, a fuzzy search. The system recognizes three main types of
mistakes: transposition, omission, substitution of a letter.

Requirements
To perform full text indexes, the following requirements must be met:

• Use Linter version 5.8 or later;

• The $$$FILTER and $$$EXTENSION system tables must exist in the database. To create
and upload these tables, the files search.sql and default.sql are executed. These files are
delivered as part of the Linter distribution kit and can be found in the DICT sub-directory;

• External filters, see below, are required for processing documents with formats other than
those handled by the internal filters.

Linter DBSM Full Text Search Functions

Page 7

Filters
Fast document retrieval in a full text index system is possible only hen the words in the document
are indexed. Before indexing, texts should be adjusted to a certain standard. E.g., the following
text fragments must be identical from the point of view of the search query:

DBMS Linter

DBMS Linter
Since documents in various formats (TXT, DOC, RTF, PDF, HTML, and less widely used formats)
may be used, it would not be efficient to process all formats using a single full text index system. A
logical solution to this problem is to create a system of filters to extract text from data stored in
each specific format. The input of the filter is a stream of data. The output is pure ASCI I text.
E.g., using an HTML converter, we can extract only the text from an HTML document.

A filter in Linter is a dynamic library extracting the content (as a text stream) and the properties
(author, size date created etc.) from a document. The required filters are installed during DBMS
customization or by using special SQL operators.

Linter has a set of embedded filters for the most common file formats.

The filters are attachable modules (libraries). Therefore, any database user can create his own filter
for a specific file format, and embed it in the DBMS. See Internal Filters below.

The filters, called internal filters, are embedded in the Linter kernel (Table 1).

 Table 1 – Linter’s SE Internal Filters

Filter Name Input File Type

ASCTEXT2TEXT ASCII

ASCXML2TEXT HTML, XML, ASCII

UNITEXT2TEXT UNICODE

UNIXML2TEXT HTML, XML, UNICODE

DOCRTF2TEXT RTF, PDF, DOC

The information about all filters available (internal, as well as attached by the user) is stored in
the $$$FILTER system table that has the following structure:

CREATE TABLE $$$FILTER
(

$$$ID INTEGER, /* filter number */
$$$NAME CHAR(18), /* filter name */
$$$KEY INTEGER, /* external filter control sum */
$$$MODULE CHAR(128), /* lib. name, for external filters */
$$$DESC CHAR(256) /* comment */
);

As previously mentioned, this table is created by executing the search.sql file.

Full Text Search Functions Linter DBSM

Page 8

Filter Management
Creating an Internal Filter
Function

Attaching an internal filter.

Although Linter has a set of embedded internal filters, not all of them need be used. This set only
represents the potential of the system. To make a filter available for use, the information about it
must be placed into the $$$FILTER system table.

Specification
<in terna l f i l te r c reat ion>: :=
 CREATE INTERNAL FILTER<f i l te r name>
 DESCRIPTION<descr ip t ion tex t> ;
< f i l te r name>: := ident i f ie r
<descr ip t ion>: :=s t r ing l i te ra l

Semantic Rules

1) <f i l te r name> must match the name of an internal filter; see Table 1.

2) The $$$FILTER table does not allow filter duplication i.e., repeatedly adding the same internal
filter is ignored.

3) The <descr ip t ion> string literal is limited to 256 characters. The value of the string goes in
the comment field of the $$$FILTER table.

The filter is available for use immediately upon creation.

Examples
CREATE INTERNAL FILTER “ASCTEXT2TEXT”;
CREATE INTERNAL FILTER “ASCXML2TEXT” DESCRIPTION ‘version 1.0’;

Creating an External Filter
Version 5.8 of Linter does not support this function.

Function
Attach a user-developed filter to Linter.

 Specification
<external filter creation>::=
 CREATE [EXTERNAL] FILTER<filter name>=<number>
 MODULE <file specification> DESCRIPTION<description text>;
< f i l te r name>: := ident i f ie r
<number>: := in teger
<file specification>::= string literal
<descr ip t ion>: :=s t r ing l i te ra l

Semantic Rules

1) If <f i l te r name> duplicates the name of any existing external or internal filter (see Table
1, it will not be recognized.

2) <number> must be unique among all filter numbers in the $$$FILTER table.

3) <f i le spec i f ica t ion> names the filter file (library).

Linter DBSM Full Text Search Functions

Page 9

4) The <descr ip t ion> string literal is limited to 256 characters. The value of the string goes in
the comment field of the $$$FILTER table.

The filter is available for use immediately upon creation.

Example
CREATE FILTER “Annotation”=17
MODULE ‘f:\phrase\filter\annotation.dll’
DESCRIPTION ‘for book annotations’;

Delete a Filter
Function

Delete a previously installed internal or external filter.

Specification
<filter deletion>::= DROP FILTER<filter name>
<f i l te r name>: := ident i f ie r

Semantic Rules

<f i l te r name> must exist in the $$$FILTER table.

Basic Rules
1) The named filter is deleted from the $$$FILTER system table and is no longer available.

2) Information about an internal filter remains in the database.

3) An external filter file is not deleted physically and can be made available again with the
CREATE INTERNAL | [EXTERNAL] FILTER command.

Example
DROP FILTER “ASCTEXT2TEXT”;

Alter an External Filter
Version 5.8 of Linter does not support this function.

Function
Replaces the file (library) of a previously installed external filter.

Specification
<filter modification>::= ALTER FILTER<filter name> MODULE<file specif ication>
<f i l te r name>: := ident i f ie r
<file specification>::=string literal

Semantic Rules

<f i l te r name> must exist in the $$$FILTER table.

Basic Rules
1) For the named filter, the old file name is replaced with the new <filter specification> in the

$$$FILTER table.

2) The old file is not deleted physically and can be made available again with the CREATE
INTERNAL | [EXTERNAL] FILTER command.

Full Text Search Functions Linter DBSM

Page 10

Example
ALTER FILTER “Annotation”
MODULE ‘f:\phrase\filter\annotation01.dll’;

Table Filters

Using a Filter on a Table
Function

Designate a filter for a column in a table.

Specification
The following element has been added to the column properties specification in the CREATE
TABLE function of the SQL language used I n Linter:

CREATE TABLE <table name>
 (…<column name> <type> DEFAULT FILTER <filter name> …);

Semantic Rules
<f i l te r name> must exist in the $$$FILTER table.

Basic Rules
The installed filter is used if not blocked by other commands concerning the use of filters.

Example
CREATE FILTER TABLE TESTBLOB
(
Id INTEGER,
Name CHAR(18),
Document BLOB DEFAULT FILTER ASCXML2TEXT
);

Modifying a Column Filter
Function

Setting a missing filter for a column or replacing a previously set column filter.

Specification
<filter modification>::=
 ALTER TABLE <table name> ALTER COLUMN <column name>
 SET DEFAULT FILTER <filter name>;

Semantic Rules

<f i l te r name> must exist in the $$$FILTER table.

Basic Rules
The new filter is assigned to the named column. If a filter was previously assigned it is
replaced.

Deleting a Column Filter
Function

Cancel a filter assigned to a column.

Linter DBSM Full Text Search Functions

Page 11

Specification
<filter cancellation>::=
 ALTER TABLE<table name> ALTER COLUMN<column name>
 DROP DEFAULT FILTER;

Semantic Rules
<co lumn name> must refer to the column for which the filter is to be set.

File Filters
For EXTFILE (external files, see section “The EXTFILE Data Type”) columns, the choice of filter
can be performed by Linter automatically based on the file extension. For this purpose the
$$$EXTENSION table is used. It has the following structure:

CREATE TABLE $$$EXTENSION
(
$$$EXT CHAR(18), /*extension, case sensitive */
$$$FILTER INTEGER /*filter ID by default */
);

The table is created using the search.sql file.

Setting a File Extension Filter
 Function

Set a filter for a specific file extension.

Specification
<filter setting>::= SET DEFAULT FILTER<filter name> FOR<extension>;
<extension>::= string literal

Semantic Rules
1) <f i l te r name> must refer to one of the filters present in the $$$FILTER table.

2) The <extens ion> string is the name of the file extension; e.g., .html.

Basic Rules
SET FILTER is used for EXTFILE columns if the use of another filter is not expressly
required.

When default.sql is run the following filters are set for the indicated file extensions:

 Table 2 – Filters for Specific File Extensions

Filter Name File Extension
asctext2text TXT

asctext2text Txt

Docrtf2text DOC

Docrtf2text Doc

Docrtf2text RTF

Docrtf2text Rtf

Docrtf2text PDF

Full Text Search Functions Linter DBSM

Page 12

Filter Name File Extension
Docrtf2text Pdf

Ascxml2text XML

Ascxml2text Xml

Ascxml2text HTM

Ascxml2text Htm

Ascxml2text HTML

Ascxml2text Html

Ascxml2text PHTML

Ascxml2text Phtml

Ascxml2text SHTML

Ascxml2text Shtml

 In all internal filters, words may be separated by a space or any character having an ASCII code value
lower than that of the space.

Cancel a File Extension Filter
 Function

Cancel a filter previously set for a specific file extension.

Specification
<cancel filter setting>::= CANCEL DEFAULT FILTER FOR <extension>;
<extens ion>: := s t r ing l i te ra l

Semantic Rules

The indicated extension must exist in the $$$EXTENSION table.

Basic Rules
The previously set default filter is no longer available.

Linter DBSM Full Text Search Functions

Page 13

Indexing
All search engines use indices for data retrieval. Thus, all documents must be indexed prior to
searching. Systems that do not use indexing (i.e., that perform searches by scanning the entire text)
cannot be utilized for real-time data retrieval involving dozens or hundreds of megabytes of text.
The following methods can be used for indexing:

Key word indexing: index entries on each word in a phrase excluding stop-words (prepositions,
conjunctions and other frequently occurring syntactic words). E.g., in the phrase "War and
Peace", two words ("war" and "peace") will be included in the index. Word order is irrelevant in the
process of searching, as every word is retrieved separately and then the search results intersect.

Full text indexing: the content of a field or sub-field is entered into the index as a single whole. Thus,
the phrase "war and peace" will constitute one index entry. In the process of retrieval, words
must be entered in the correct order.

Key indexing: each word is truncated to equal a specific number of letters.

Permutation indexing: the word order in a phrase is changed, so that any word in the phrase can
stand at the beginning.

Linter uses a combination of the first two indexing methods.

Create a Full Text Index
Function

Create a full text index.

Specification
<create full text index>::=
 CREATE PHRASE [IMMEDIATE | DEFERRED] [< f lag> …]
 INDEX <column name> ON <table name>;
< f lag>: := XML | UNICODE

Semantic Rules

1) The flag list is <space>, not comma, separated.

2) Possible column data types and their default values are:

Table 3 – Default Flag Values for Various Data Types Basic Rules

Column Type XML Flag UNICODE Flag

CHAR cleared permanently cleared (cannot be set)

VARCHAR cleared permanently cleared (cannot be set)

NCHAR cleared invariably set (cannot be reset)

NVARCHAR cleared invariably set (cannot be reset)

BLOB cleared cleared

EXTFILE cleared cleared

Basic Rules
1) IMMEDIATE denotes instant index updating in case a field is rebuilt. DEFERRED

denotes index updating only on the command REBUILD PHRASE INDEX.

Full Text Search Functions Linter DBSM

Page 14

2) IMMEDIATE is the default modifier for CHAR, VARCHAR, NCHAR and NVARCHAR
columns.

3) For EXTFILE columns, DEFERRED is the default modifier.

4) For BLOB columns, only the DEFERRED modifier is permitted.

5) When creating an index the following filter selection rules will apply:

a. For BLOB columns:

 the filter whose number in the $$$FI LTER table equals the BLOB data type number (i.e.
the filter specially set for this BLOB value) is selected;

 if such a filter does not exist, the default filter set for this column is selected;

 if there is no default filter, the filter is determined by the flags selected;

 if the flag has not been set, the asctext2text filter is used.

b. For EXTFILE columns:

 the filter set for the column in the following construction is selected:
INSERT INTO table name (… column name …)
VALUES (… EXTFILE(file name [,filter name]) | NULL …);

or
UPDATE INTO table name SET column name= VALUES (… EXTFILE(file
name [,filter name]) | NULL …);

 if this filter does not exist, the default filter set for this column is selected;

 if there is no such filter, then the default filter set for the file extension is selected;

 if this filter has not been set, the filter is determined by the flags;

 if the flag has not been set, the asctext2text filter is used.

с. For CHAR and VARCHAR columns:

 the default filter set for the column;

 if there is no default filter, the filter is determined by the flag;

 if the flag has not been set, the asctext2text filter is used.

d. For NCHAR and NVARCHAR columns:

 the default filter set for the column;

 the default filter determined by the flag (i.e. unitext2text).

Alter a Full Text Index
Specification
<alter full text index>::=
 ALTER PHRASE INDEX <column name> ON <table name>
 [IMMEDIATE | DEFERRED] ;

Basic Rules

1) IMMEDIATE denotes instant index updating in case a field is rebuilt. DEFERRED denotes
index updating only at the command REBUILD PHRASE INDEX.

Linter DBSM Full Text Search Functions

Page 15

2) IMMEDIATE is the default modifier for CHAR, VARCHAR, NCHAR and NVARCHAR
columns.

3) DEFERRED is the default modifier for EXTFILE columns.

4) For BLOB columns, DEFERRED is the only modifier permitted.

5) If DEFERRED has been the previous working mode, switching to the IMMEDIATE mode
will cause immediate index updating.

Update a Full Text Index

Function
Update full text indices for BLOB and EXTFILE columns.

Specification
<updater full text index >::=
 REBUILD PHRASE INDEX <column name> ON <tab le name>;

Semantic Rules
<co lumn name> must be of the BLOB or EXTFILE type.

Basic Rules
All types of indices (simple, compound, phrase) for CHAR, VARCHAR NCHAR and
NVARCHAR columns are updated by Linter automatically on adding, deleting or altering a value.
Conversely, indices for BLOB and EXTFILE columns can be updated only by execution of this
function (if IMMEDIATE full text index updating mode is not indicated - see sections “Create a Full
Text Index” and “Alter a Full Text Index”). This rule is implemented because index updating is a
time-consuming process that should be performed when the DBMS kernel workload is minimal.

Delete a Full Text Index

Function
Delete an existing column full text index.

Specification
<dele te fu l l tex t index>: :=
 DROP PHRASE INDEX <column name> ON <table name>

Semantic Rules
<co lumn name> must belong to a column having a full text index.

Full Text Search Functions Linter DBSM

Page 16

Search
Function

In most cases, it is necessary to retrieve text containing not only several predetermined words
and phrases, but also words similar to each other, morphologically related or having the same
beginning or ending.

For this purpose, a full text index predicate has been included in Linter's SQL:

Specification
<fu l l tex t index pred icate>: :=
 <column name> [NOT] CONTAINS [<modifier> …]
 < fu l l tex t index template>;
<modi f ie r> : :=
 SENSITIVE | PARTIALLY | AT_BEGIN | AT_END | FUZZY
<fu l l tex t index template>: := s t r ing l i te ra l

Semantic Rules

1) <co lumn name> must belong to the column on which the full text index is based.

2) The modifiers, absent by default, are enumerated in any order, separated by spaces, and
applied to all words in a template.

Basic Rules
The modifiers have the following characteristics:

Table 4 – full text index Modifiers

Modifier Function Symbol Use in Template Example
SENSITIVE sets a case sensitive search;

by default the search is
case-insensitive

before the word #Relex

PARTIALLY

ets a search of documents
in which the search
template may occur in any
place

*

before and after the
word

RELEX

AT_BEGIN sets the search of
documents in which the
search template occurs
only at the beginning of
words

*

at the beginning

RELEX*

AT_END sets a search of documents
in which the search
template occurs only at the
end of words

*

at the end

*RELEX

FUZZY sets fuzzy search % before the word

%RELEX

When setting a modifier, all the words are accompanied by the corresponding symbol (see Symbol
in Table 4) when the search function is called.

Linter DBSM Full Text Search Functions

Page 17

If the modifier is to be applied to only some of the words in a text, it should not be set. Instead, a
special symbol should be used for these specific words in the search template.

Full Text Index Template
Function

Create a full text index template.

Specification
<fu l l tex t index templa te>: := <search expression>
<search express ion>: :=
 <word>
 | <not equal> <search express ion>
 | <search express ion> or <search express ion>
 | <search express ion> [and] <search express ion>
 | (<search express ion>)
 | <word> =<word>
<not equal> : := !
<or>: := |
<and>: := &

Semantic Rules
1) *: a single asterisk displays all documents represented in the full text index or search

expression.

2) < word >: a string literal can contain only the following characters:

 A-Z, a-z,o-9,and_

 In the middle of words only: @,-,/,and\

 The special characters: #, 96, and * (see Table 4).

Basic Rules
1) ! <search express ion> construction initiates a search for documents not containing the

given search expression.

2) <search express ion> | <search express ion> searches for documents containing
either or both expressions.

3) <search express ion> [&] <search express ion> searches for documents containing
both expressions. The & sign may not be an indicator.

4) (<search express ion>) controls the logical order of analyzing the search expression.

5) <word>=<word> sets attributes for searching XML and HTML documents. The first
<word> sets the attribute name (e.g., date user); the second <word> determines the search
value of the attribute.

Retrieve Text Selection
Function

Get text from a document using the embedded SQL function GETTEXT.

Specification
GETTEXT(<co lumn name>,<of fset>,< length>)

Full Text Search Functions Linter DBSM

Page 18

Semantic Rules
1) <co lumn name> must belong to a column whose data type allows creation of a full text

index. The index itself does not necessarily exist.

2) <offset> is an integer determining the initial position of the required portion of the text. The
count starts from l.

3) <length> is the size of the required text portion measured in symbols. It must be a positive
integer in the range of l through 4000).

Returned Value
The returned value is the required text portion processed by the phrase text filter and defined by
the indicated indent and length. If the text for the given value is blank, or does not fit into the
required indent range the results buffer is filled with spaces. The same happens to the remainder of
the response if its length is excessive.

 As the system returns the text processed by a filter, the punctuation marks may be missing.

Linter DBSM Full Text Search Functions

Page 19

The EXTFILE Data Type
This section describes the syntax and internal structure of the EXTFILE data type implemented by
Linter. The EXTFILE column specifies the PATH to a text file that is outside of, external to, the
database.

To create an EXTFILE column:
CREATE TABLE<table name>
 (… <column name> EXTFILE [ROOT’<root d i rec tory> ’] …) ;

The internal storage structure (from which the last field may be deleted) is:
#define LMAXPATHSIZE 512
typedef struct
{
LONGINT filterid;
LDATETIME index_time;
char file_name[L_MAXPATHSIZE];
} FILEDESC;

For storage, the file names in DOS/WIN32 systems are transformed by replacing forward slashes, /,
with back slashes, /.

If the initial directory in the ROOT clause has been set, all files with relative names (i.e. having no
initial'/' symbol in UNIX and no initial device name in DOS/WIN32) are retrieved in relation to
this directory. Otherwise they are retrieved in relation to the database directory.

The file name set in the ROOT clause for the EXTFILE type is stored as a default value containing a
text line.

When using the EXTFILE function, the following SQL clauses are used in Linter:

Set Filter
EXTFILE (‘< f i le name>’ [,< f i l te r name]) ;

Insert Data
NSERT INTO <tab le name> (… <co lumn name> …)
 VALUES (… EXTFILE (‘<file name>’ [, < f i l te r name>]) | NULL …) ;

Alter Data
UPDATE INTO <tab le name>
 SET <co lumn name> = EXTFILE (‘< f i le name>’ [, < f i l te r name>])
 | NULL … ;

Set New Root Directory for an EXTFILE Column
ALTER TABLE <tab le name>
 ALTER COLUMN <column name> SET ROOT ‘<d i rec tory name>’ ;

Cancel Root Directory for an EXTFILE Column
ALTER TABLE <tab le name>
 ALTER COLUMN <column name> DROP ROOT;

Full Text Search Functions Linter DBSM

Page 20

Embedded Full Text Index Function
External File Name (FILENAME)
Function

Gen the name of the file complaint with the EXTFILE data type.

Specification
FILENAME(co lumn name) ;
Basic Rules

<co lumn name> should belong to a column with the EXTFILE data type.

Return Value
1) Character line with a fixed length of 512 bytes;

2) Char(512) containing a file name. The directory name is not included in the file name if
set as ROOT. If the directory name is expressly indicated in the record it is included in the
return value;

3) The separator (colon) in the directory specification is replaced with the standard symbol' |';

4) If the argument is NULL the result is NULL.

Example
DROP TABLE EXT;
CREATE TABLE EXT(ID INT, EXT1 EXTFILE);
INSERT INTO EXT VALUES(1, EXTFILE(‘C:\AUTOEXEC.BAT));
INSERT INTO EXT VALUES (2, EXTFILE(’C:\CONFIG.SYS’));
INSERT INTO EXT VALUES (3, EXTFILE(‘D:\TEST1TXT));
INSERT INTO EXT VALUES (4, EXTFILE(‘C:\TESTTEST2TXT));
UPDATE EXT
SET EXT1 = EXTFILE(‘C:\AUTOEXEC.BAT,ASCTEXT2TEXT)
WHERE ID =>2;
SELECT ID, CAST FILENAME(EXT1) AS CHAR 20 FROM EXT;
|1 |C|/AUTOEXEC.BAT
|2|C|/AUTOEXEC.BAT
|3|D|/TEST1TXT
|4|D|/TESTTEST2TXT

Full text index creation time(INDEXTIME)
Function

Get the date and time of the last updating of the full text index.

Specification
INDEXTIME(<column name>) ;
Basic rules

<co lumn name> should be of CHAR, VARCHAR, NCHAR, NVARCHAR, BLOB OR
EXTFILE data type.

Returned Value
1) Value of DATE data type contained the date and time (Greenwich Time) of the last

updating of the full text index of the <column name> column;

2) NULL value in case of:

Linter DBSM Full Text Search Functions

Page 21

 Full text index for <co lumn name> is not created;

 Value of the <co lumn name> is NULL.

Filter Number (FILTER)
Function

Get the filter number.

Specification
FILTER(<co lumn name>) ;

Basic Rules

<co lumn name> should be of CHAR, VARCHAR, NCHAR, NVARCHAR, BLOB OR
EXTFILE data type.

Returned Value
1) Integer value – filter number for <co lumn name> column.

2) 0 - in case of:

 if filter is not specified;

 if filter is identified automatically by external file name extension;

 if default filter is used.

3) NULL value if value of column is NULL.

Extern File Data Updating(FILETIME)
Function

Get the date and time of the last updating of the external file.

Specification
FILETIME(<co lumn name>) ;

Basic Rules

<co lumn name> should be of EXTFILE data type.

Return Value
1) DATE data type value contained date and time (Greenwich Time) of the last updating of the

external file;

2) NULL – if value of the column is NULL.

Extern File Size (FILESIZE)
Function

Get the size of the external file.

Specification
FILESIZE(<co lumn name>) ;

Full Text Search Functions Linter DBSM

Page 22

Basic Rules
<co lumn name> should be of EXTFILE data type.

Returned Value
1) BIGINT value which contains size of the file in bytes;

2) NULL value if:

 External file doesn't exist;

 Value of the column is NULL.

Extern File Name by Default (DEFAULT)
Function

Get external file default name.

Specification
DEFAULT(<co lumn name>) ;

Basic Rules

<co lumn name> should be of EXTFILE data type.

Returned Value
The return value is the file specification.

	Table of Contents
	Introduction
	Basic Concepts
	Purpose and Requirements
	Purpose
	Requirements

	Filters
	Filter Management
	Creating an External Filter
	Delete a Filter
	Alter an External Filter

	Table Filters
	Using a Filter on a Table

	File Filters
	Setting a File Extension Filter
	Cancel a File Extension Filter

	Indexing
	Create a Full Text Index
	Alter a Full Text Index

	Search
	Full Text Index Template
	Retrieve Text Selection

	The EXTFILE Data Type
	Embedded Full Text Index Function
	External File Name (FILENAME)
	Full text index creation time(INDEXTIME)
	Filter Number (FILTER)
	Extern File Data Updating(FILETIME)
	Extern File Size (FILESIZE)
	Extern File Name by Default (DEFAULT)

