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Modern  Wiener  -Hopf  Design 
of Optimal  Controllers 

Part I: The Single-  Input -Output Case 

DANTE C. YOULA, FELLOW, IEEE, JOSEPH J. BONGIORNO, JR., MEMBER, IEEE, 
AND HAMID A. JABR, STUDENT MEMBER, IEEE 

Abstmct-An analytical feedback  design  technique is presented  here  for 
singleinput-output  processes m ~ c h  are  characterized  by  their  rational 
transfer functions. The  design  procedure accounts for  the  topological 
structure  of  the  feedback  system  ensuring  asymptotic  stability  for tbe 
closed-loop c o n f i i o n .  The  plant or process b e i i  controlled can be 
unstable  and/or nonminimum phase.  The  treatment  of  feedback sensor 
noise, disturbance inputs, and process saturation is another major contribn- 
tion of this work. 

The  cornerstone in the  development is the selection of a performance 
index based on sound engineering  considerations.  It is these  considera- 
tions, in  fact, which ensure  the existence of  an  optimal  compensator for the 
system and  make  the performance index a nataral one  for  the  problem  at 
hand. 

I.  INTRODUCTION 

A N  ANALYTICAL  feedback design technique is  pre- 
sented for single-input-output processes  which are 

characterized by their rational transfer functions. The 
design procedure  accounts for the topological structure of 
the feedback system and ensures the asymptotic stability of 
the closed-loop configuration. The plant or process  being 
controlled can be unstable and/or nonminimum phase. 
The treatment of feedback sensor noise, disturbance in- 
puts, and process saturation is another  major contribution 
of this  work. The cornerstone of the development is the 
selection of a  performance index based  on  sound en- 
gineering considerations. It is  these considerations in fact 
which ensure the existence of an optimal compensator for 
the system and make the performance  index  a  natural  one 
for the problem at hand. 

The classical treatment of the analytical feedback de- 
sign problen by Newton is described in [l]. With his 
approach, which  is inherently open loop, it is first neces- 
sary to find the transfer function Wc(s) analytic in Res 
2 0  of the optimal equivalent cascade  compensator.  The 
transfer function C(s) of the corresponding controller for 
the feedback loop is then calculated by means of the 
formula 

C(s)= w,(S)/[1--F(s)P(s)Wc(s)l. 
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F(s )  and P ( s )  denote the transfer functions of the feed- 
back sensor and plant, respectively. Unfortunately, this 
procedure is  flawed  because it can, and often does, yield a 
computed C (s) which  possesses a zero in Res 2 0 coincid- 
ing with either a pole of the plant or feedback sensor. 
Clearly, if C(s) possesses such  a zero, the closed-loop 
system  is unstable and the design  is  worthless. To exclude 
such  a possibility Newton restricts the plant and feedback 
sensor to be asymptotically stable from the outset. In fact, 
several extensions of this idea to the multivariable case 
have already been  made  by  Bongiorno and Weston [2], 

The earliest researchers to recognize the difficulty with 
right-half plane pole-zero cancellations within a feedback 
loop  worked with sampled  data  systems [4]. The 
analogous treatment for continuous-time systems  was pre- 
sented by Bigelow [5] . ’  His  argument for ruling out pole- 
zero cancellations in  Res > 0 is based on the fallacious 
reasoning  that exact cancellation cannot  be achieved in 
practice. Although the observation concerning what can 
be  achieved in practice is of course true, it  is also true that 
even if perfect cancellation were possible the system 
would  nevertheless  s%ill  possess unstable “hidden” modes. 
Despite the error  in physical reasoning these  two papers 
succeeded in focusing attention on several meaningful 
engineering problems. 

The  frequency-domain  optimization  procedure de- 
scribed herein is the first one to correctly account for the 
asymptotic stability of the closed-loop system and to 
correctly treat plants which are not asymptotically stable. 
It also supplies significant insight into the essential  role 
played  by the classical  sensitivity function in feedback 
system  design. Although  confined to single-input-output 
systems,  these ideas can be extended to the multivariable 
situation. This extension  is nontrivial and is the subject of 
Part 11. Just  as in [6] ,  the scalar solution provided the 
necessary insight and impetus required to effect the 
breakthrough in the multivariable case. It is, therefore 
appropriate that  both cases be presented in the literature. 
Moreover, it  is  only in the single-input-output case that 
the unique role of the sensitivity function manifests  itself 
so clearly. 

The limitations imposed by feedback sensor noise  have 
been  known for some  time. Horowitz [7] has proposed  a 
design philosophy for single-input-output minimum-phase 

‘The paper by  Bigelow  was kindly brought to the attention of the 

~31. 

authors by  P. Sarachik. 
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stable  plants which  is quite imaginative but  appears 
limited since it  is  modeled around  a Bode two-terminal 
interstage equalization scheme. On the other hand, our 
approach takes the lumped character of the controller as 
an explicit constraint from the outset and nonminimum- 
phase and/or unstable plants offer no  special obstacles. 

A discussion of the relationship of our frequency- 
domain design procedure and some of the more popular 
state-variable techniques [ 141 is certainly in order and will 
be given in Part 11. For now, we merely  observe that the 
methods of this paper obviate the need to find state- 
variable representations and can  handle stochastic inputs 
which are  non-Gaussian and colored, as well as step and 
ramp-type disturbances. In addition, it permits the mod- 
eling and incorporation of feedback transducers such as 
tachometers, rate gyros, and accelerometers with nondy- 
namical transfer functions. 

r- 

Fig. 1. Basic  single-loop  feedback  configuration. 

and 

where P(s) ,  Po(s), F(s) ,  and Fo(s) are four real rational 
functions in the complex variable s = u i - j w .  Moreover,  by 

11. PROBLEM STATEMENT AND changing P,(s) into 
PRELIMINARY RESULTS 

In this paper  attention is restricted exclusively  to  the 
design of controllers  for  single-input-output  finite- 
dimensional linear time-invariant plants embedded in an 
equivalent single-loop configuration shown  in  Fig. 1.2 

it is also  possible to envisage any desirable feedforward 
compensation Pf(s). 

Straightforward analysis yields 

Suppose yd(s), the desired closed-loop output is related to 
u,(s), the actual input set-point signal in the linear fashion y=-(u- l-s 

F Fom) + SPod, 

r =  - l -S (u -Fom-FPod)  
PF 

via the ideal transfer function T,(s). The prefilter H (s) 
can  be selected  in advance  once  and for all, but irrespec- 

and 

tive of the particular choice of criterion that is empl~yed .~  e = (  F - l + S  ),-SPod+(--i;--)Fom l - s  (7) 

u= H ( u , + n )  where 

is the best available linear version of yd(s) .  Any reason- 
able performance measure  must be  based  on the dif- 
ference 

between the actual plant output y(s)  and the actual 
smoothed input u(s )  driving the loop. For  a given plant 
and overall  sensor F ( s )  the design of the controller C(s) 
should evolve from  an appropriate minimization proce- 
dure subject to a power-like constraint on r (s )  to avoid 
plant saturation. 

Plant disturbance d(s) and  measurement noise m(s)  are 
modeled in a perfectly  general  way by assuming  that 

'To avoid  proliferating  symbols,  all  quantities  are  Laplace  transforms, 
deterministic  or  otherwise, all stochastic  processes  are  zero-mean  second- 
order  stationary with rational  spectral densities  and (,) denotes  ensem- 
ble  average. 

3Function arguments  are  omitted  wherever  convenient. 

S ( s ) =  1 
1 + F(s)P  (s)C(s) 

is the closed-loop  sensitivity function. In process control, 
the actual choice of a reliable feedback transducer F,(s) is 
more  or  less dictated by the problem at  hand. However,  as 
explained in greater detail later, some  low-power-level 
preequalization F,(s) is almost always  necessary to model 
delay  in the feedback path, to improve stability margin 
and to  assure  zero steady-state error. In other words 

F (s) = Fe (s)F, (SI. (9) 
We therefore assume that Po(s), Fo(s), F(s),  and P ( s )  

are prescribed in advance.  Equations (5H7) reveal the 
possibilities for tradeoff in the various frequency bands. 
Observe, that with unity feedback (F=  l), e(s) is the sum 
of the two errors 

e , ( s ) =  S ( u -  Pod)  (10) 

and 

e2(s) = (1 - S )Fom (11) 
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whose different origins are  betrayed  by the prefactors 
S(s) and 1-S(s) .  The impossibility of making  both S ( s )  (16) 
and 1 - S(s) arbitrarily “small” over any  frequency  band 
is partly intrinsic and partly conditioned by the plant is the usual quadratic  measure of steady-state response. 
restrictions [8],  [9]. This fundamental conflict is inevitable Similarly: if P,(s) represents the column-vector transfer 
and largely responsible for  a great deal of the difficulty matrix coupling the plant input r(s)  to those “sensitive” 
surrounding practical feedback design. plant modes which  must  be  especially protected against 

excessive dynamic excursions, Let 

and 

is a  proven useful penalty functional for  saturation [l]. 
(13) More explicitly, 

( 14) where 

e (- s2) = Ps*(s)P, (s). (19) 
where each  numerator  polynomial is  relatively prime to its 
respective denominator mate. It is  well known [ 10)-[12] 
that if the plant, controller and feedback sensor are free of 
unstable hidden  modes, the closed loop of Fig. 1 is 

E= E,+ kE,. (20) 

asymptotically stable iff the “reduced” characteristic poly- k ,  a positive constant, serves as  a weighted  cost combining 
nomial  both factors. Using (6) and (7) and assuming all  processes 

is strict Hurwitz; i.e.,  iff ~ ( s )  has no zeros in Res > 0. 
Hence, the pair df(s), np(s) as well as the pair dp(s), n s 
must  be devoid of common zeros in Res > 0 in  which  case 
P ( s )  and F ( s )  are said to be admis~ible .~ Observe that 

j w  ( F -   l ) S ,  
f( ) 2 r j ~ = a + 2  s,, FF* 

G, ds 

once H (s), P ( s ) ,  F( s ) ,  Po(s), Fo(s) and the statistics of 
u,(s), n(s), d(s), and m(s)  are specified,y(s), r(s), and e(s )  
are uniquely determined by the choice of sensitivity func- 
tion S(s). Consequently, the following definition and its 
accompanying lemma have an obvious  importance and 
are fundamental  to  our entire approach. 

Definition I :  S(s)  is  said to be realizable for an  admis- 
sible pair P ( s ) ,  F ( s )  if the closed-loop structure of Fig. 1 
is asymptotically stable for some choice of controller C ( s )  
and possesses the sensitivity function S(s). 

Lemma I (Appendix): The function S (s)&O is  realiz- 
able  for the admissible pair P(s) ,  F ( s )  iff 

1) S (s )  is analytic in Res > 0; 
2)  Every zero of the polynomial df(s)d,(s) in Res > 0 is 

a zero of S(s) of at least the same multiplicity; 
3) Every zero of the polynomial n,(s)n,(s) in Res > 0 is 

a zero of 1 - S(s) of at least the same multiplicity. 
Let Gi( - s2), G,,( - s2), G,( - s2), Gd( - s2), and Gm( - s2) 

denote the rational spectral densities of ui(s), n(s),  u(s), 
d(s ) ,  and m(s) ,  respectively. Setting aside for the moment 
all questions of c~nvergence,~ 

4When Fo(s), H(s) ,  Pf(s). and.Po(s) represent  distinct  physical  blocks, 
these  blocks  must be stable:  thelr  transfer  functions  must  be  analytic in 

part of  the  paper  modeling it is often  possib  e  to  relax  the  analyticity 
Res > 0. On the  other  hand if Fo(s), H (s), P s), and Po(s) are  merely 

requirements. 

(- s), the  transpose  of A (- s). 
51f A (s) is a real rational  (or  meromorphic)  matrix in s, A*(s)=A‘ 

c 

where 

J - jw  

G,= - Gu + POP,,, Gd, G, = HH,(  Gi + G, ) (23) 
FF* 

Our entire physical discussion  revolves around the im- 
plications of (21), and our  assumptions are as follows. 

Assumption I :  Rate gyros and tachometers are exam- 
ples of practical sensing  devices  which are  not  modeled  as 
dynamical systems?  Yet almost invariably, sensors are 
stable and their associated transfer functions Ft(s)  are 
analytic in Res > 0. For our purposes it suffices to restrict 

‘Column-vectors  are  written a, b, etc., and  det A ,   A ’ ,  z, A* (=x) 
denote the  determinant,  transpose,  complex  conjugate,  and  adjoint of the 
matrix A ,  respectively. Note that  for A ( s )  real and  meromorphic, A , ( j w )  
= A*Gw), w real. 

i.e., if A(m)  is finite. 
’A system with  transfer function A ( s )  is  dynamical if A ( s )  is proper; 
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F ( s )  to be analytic on the finite jw -ax i s  and to insist that 
the component of the cost a be finite. In particular, the 
integrand in (22)  must  be analytic on the jw-axis and 
0 ( l / w 2 )  for w2+co. 

Suppose  that  parameter variations induce  a  change 
Arp(s) in the characteristic polynomial q ( s ) .  Clearly, if the 
nominal design  is stable and structural changes are pre- 
cluded 

AT (s) 
17(s) = 

is proper  and analytic in Res > 0. Invoking the standard 
Nyquist  argument it  is immediately  concluded  that q ( s )  + 
A q ( s ) ,  the  reduced  characteristic  polynomial of the 
perturbed closed loop, is strict Hurwitz iff the normal plot 
of ~ ( j w )  does not encircle the point - 1 + j O  in a clockwise 
direction. It is imperative therefore that  at the nominal 
setting l q ( jw) l  be  comparably large over  those frequency 
ranges  where lAq(jw)l is  expected to be large. Unfor- 
tunately, it  does not appear possible to translate any 
nontrivial stability-margin criteria directly into manage- 
able integral restrictions reconcilable with E.  However, 
once the formula for the optimal S (s) is available, the  role 
played  by F ( s )  in securing adequate stability margin will 
be  clarified and further discussion along these  lines  is 
postponed until the next section. 

Assumption 2: A pole of P (s) in Res > 0 reveals true 
plant instability but  a pole on the jo-axis is  usually 
present because of intentional preconditioning and is not 
accidental. For example,  with unity feedback ( F =  1) and 
d (s)= m(s)  = 0, a stable loop enclosing a plant whose 
transfer function possesses a pole of order Y at the origin 
will track any causal linear combination of the inputs 1, 
t ;  . . , t ” - l  with zero steady-state error. Similarly, if s 
= jwo ,  w, real, is a pole of order v of P(s ) ,  a unity- 
feedback stable loop will track any linear combination of 
eJ*o I, t e h  *, , r ‘- ‘eJwof with zero steady-state error. 
These generalized ramp-modulated sinusoids constitute an 
important class of shape-deterministic  information- 
bearing signals and play a key  role  in industrial applica- 
tions. In a  nonunity-feedback  loop this  perfect accuracy 
capability is lost unless F,(s) is also preconditioned com- 
patibly. From (7) with d (s) = m(s)  = 0, 

Now according to Lemma 1, a finite pole s =io, of P ( s )  
of  multiplicity Y must be  a zero of S(s) of order at least Y. 
Thus, if s = j w o  is aZso a zero of F ( s )  - 1 of order v or 
greater, (25)  shows that the loop is again capable of 
acquiring any linear combination of the inputs &”or. 
t e i w O t , .  . . , t p - l  e‘ o I with zero steady-state error. By setting 
u(s)= m(s)=O in (7) we obtain 

such as process control, the recovery of steady state under 
load  changes is a  requirement of paramount  importance. 
As  is  seen from (26), if the shape deterministic component 
of P,(s)d(s)  is  envisaged to be the transform of a  sum of 
ramp-modulated sinusoids, bounded  zero steady-state 
error is  possible i f f  e(s )  vanishes at infinity and is analytic 
in Res >O. Assuming SP, proper and SPod analytic in 
Res > 0 is  evidently  sufficient. In particular, reasoning as 
above, the jo-axis poles of Po(s)d(s),  multiplicities in- 
cluded, must be contained in those of P ( s ) .  Summing  up, 
( F -  1)P, 

dpdp*(uu,)=dpGudp* (27) 

and 

dpdp*(Po~,Po*)=dpPoG~Po*dp* (28) 

must be jw-analytic. Equivalently, in view  of Assumption 
1 and (23), 

dp Gad, * (29) 

is analytic on the finitejw-axis. 
Assumption 3: In general, the  effects of parameter  un- 

certainty on P ( s )  and F ( s )  are more pronounced as w 
increases and closed-loop sensitivity  is an  important con- 
sideration. This sensitivity  is  usually  expressed in terms of 
the percentage change in the loop transfer function 

A straightforward calculation yields 

6T 6F 
T PC F 
_ -  --. s---.(l-S) 

and once  again S( jw)  and 1 - S ( j w )  emerge as the 
pertinent gain functions for the forward and return links, 
respectively.  Clearly then, to combat the adverse effects of 
high-frequency uncertainty in the modeling of F(jw)  and 
P ( j w )  it is sound engineering practice to design S ( j w )  
proper and equal to 1 at a= co. This  requirement is  easily 
introduced  into the analytic framework  by imposing the 
restrictions Gb( - s 2 ) Z  0 and 

c, ( - 2 )  = O(w2[) ,  I > 0 (32) 

for large w2. 
Our final assumptions are fashioned for the express 

purpose of excluding from consideration certain mathe- 
matically  possible but physically  meaningless degener- 
acies. They  are also motivated by  Lemma 1, the structure 
of (21), and the requirement of finite cost. 

Assumption 4: For large w2, 

e = - SP,d (26) G, (a’) = O( 1 /a2’), Y 2 1. (33) 

the loop error  under load disturbance d ( s ) .  In many areas, Assumption 5: Q is analytic on the finite jw-axis, has no 
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purely imaginary zeros in  common with n,, and the con- 
stant k is  positive. 

Assumption 6: Let 

then 

is analytic and nonzero on the finite s = jo-axis. 
For later reference we record the useful formula 

which drops out of (23),  (24), and (34). 

111. THE WIENER-HOPF  SOLUTION 

(34) 

(35) 

Recall that  any rational function A ( s )  possesses a 
Laurent  expansion constructed from all  its  poles, finite or 
infinite and as is customary, { A  (s)} + denotes that part of 
the  expansion associated with  all the finite poles of A (s) in 
Res < 0. Thus, { A ( s ) }  + is analytic  in  Res > 0 and 
vanishes for s = co. The  remainder of the expansion is 
written { A ( s ) } -  and of course, 

where Q(s) is free of zeros and poles in Res > 0. 
1) Under  Assumptions Id, the optimal closed-loop 

sensitivity function So(s) associated with any admissible 
pair P ( s ) ,  F ( s )  is  given  by 

f(s) a real polynomial. The  requirements E < co (finite 
cost) and So(s) realizable for P ( s ) ,  F ( s )  determine f(s) 
uniquely. 

2) The  optimal controller Co(s) which  realizes So(s) for 

the pair P (s ) ,F(s )  is obtained  from the formula 

and can  be improper, unstable or both.’ Nevertheless, the 
closed-loop structure is  always asymptotically stable and 
So(s) is proper and analytic in Re s > 0. (Assumptions 1-6 
actually force Q(s) to be free of zeros in Res > 0.) 

With exact arithmetic the finite zeros and poles of 
P ( s ) F ( s )  in Res > 0 are cancelled exactly by  the zeros of 
So(s) and 1 - So(s), respectively. Thus, in any  computer 
implementation of (41) and (42) it  is  necessary that all 
these exact arithmetic cancellations in Res > 0 be effected 
automatically by suitable preparation. Failure to  do so 
will result in a nonstrict-Hurwitz stability polynomial ~ ( s )  
and  a corresponding unstable closed-loop design. 

An examination of (41) reveals that the zeros of Q(s)  
and the poles of 

(43) 

constitute the poles of S,(s). Since the poles of So(s) are 
all  zeros of ~ ( s ) ,  the stability margin of the optimal design 
is ascertainable in adcance. This important feature cannot 
be  overemphasized.  From the formula 

it is  seen that the zeros of x,x,*G and 1 + k Q / P P ,  in 
Res < O  emerge as poles of So(s). The locations of these 
zeros depend on the choice of F(s ) ,  the spectral density 
G (- s2) and the value of k. Changing k means  comprom- 
ising saturation (and accuracy). A more detailed analysis 
shows  generally that the negatice  images of the right-half 
plane poles of P ( s )  and F ( s )  are zeros of X J , *  and 
therefore poles of So(s) unless G (- s2) is properly precon- 
ditioned. If some of these  poles  lie  close to the s = jo-axis, 
it may  be  impossible to attain  adequate stability margin. 
This difficulty can  be  circumvented by  simply incorpo- 
rating the offending poles into G (- s2). Hence, the rule, 
any pole of P (s )F (s) in Res > 0 which  lies “too close” to 
the imaginary axis must  be made  a pole of G (  - s2 )  of 
exactly  twice the multiplicity. Last, we mention  that delay 
T in the feedback  path  can be simulated by introducing 
right-half plane zeros into F,(s) through  one of the many 
available rational function approximations to e-=.  

IV. EXAMPLE 

The theory developed in the preceding sections is  now 
used  to  design the controller C(s) for the  system  shown  in 
Fig. 2. Since the theory is based on rational transfer 

zero of F(s )P(s )  at  infinity. This is  often  the case. 
8C(s) is proper if the  integer I in Assumption 3 equals  the  order of the 
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dl: I Substitution of the given data  into (23),  (24),  (34), and (35) 

m i d  

Fig. 2. Example. k k ( 4 - s 2 ) p d 4  Gb=Gm+-(Gm+Gu+Gd)=l+ 
pp* (l-s2)(100-s2) 

functions, the first step is the selection of a suitable 
approximation for the ideal delay represented by F ( s )  
= Highly satisfactory results are  obtained with the and 
second-order Pade approximation 

(45) where 

- kPl(S)P,(S) 
s2(10O-s2)(l-s2) 

Go+ Gb= 

P l ( s ) =  loo- 1 0 2 ~ ~ + ~ ~  

(53) 

(54) 

Note  that F(s )  and P ( s )  are an admissible pair and (45) and 
satisfies the condition F -  1 = O  at s =0, the only pole of 
P (s) on the imaginary axis. p 2 ( s ) =  + -(; +4)s2+s4. (55) 

Because of the plant pole at the origin and the choice of 
rational approximation for F(s ) ,  the closed loop is capa- It  now follows from (40) that 
ble of following step inputs u with zero steady-state error 
when m = d= 0. The simplest example calls for 

1 G =- - .  (46) 
S2 

where 

For the remaining spectral densities we choose p : = 1 o + m s + s 2  (57) 

and 

1 Gd= - 
100- s2 

Gm= 1. 

(47) and 

+ - - + ~ ~ + x  1 + 4  s+s2 (58) 
P2 - fi 

We also assume that the plant input is the signal most are the factors containing all the  zeros of p l ( s )  andp,(s) in 
likely to cause saturation  and  put Q = 1. The only remain- Res < 0, respectively. 
ing quantities needed for the calculation of the optimal In  addition, 
controller are k,  F,, and P,. Comparing Figs. 1 and 2, it is 
seen that Fo= Po= 1. With regard to k .  we note that the ( F -  11% 120 
performance index E is actually an auxilary cost function. 
The design objective is to minimize E, subject to the 
constraint E, < N,, N, a specified bound.  Thus, k is a where 
Lagrangian multiplier chosen to meet the design ob- 
jectives. 

The first step in the design of the optimal controller 
C(s) is the determination of So given  by  (41). For the 
determination of the optimal sensitivity function we need ~;s2(2+s)(4-s2)pf(s)p:(s)  
the quantities x,, Q, G,, and Gb. From (45) and Fig. 2 it 
follows that 

=- 
FF* SPj(4 

(59) 

{ F ( G b -  ,.)} = 1o+s 
F -  1 k0 

(60) 
+ 

ko= - 
P i + ( - S )  

5 =  - 10 

and 
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in which the sixth-degree polynomial f(s) is  uniquely 
determined by the interpolatory conditions 

S,(O) = S0(2) = 0 (63) 

So( 1) = So( zo) = So( To) = 1 (64) 

In (64), zo and Z0 are the zeros of pr( - s). 
Due to roundoff error, the computed  polynomial f(s) 

will, in general, not satisfy conditions (63H65) exactly. 
However, we know from the theory that the poles of F(s )  
and P ( s )  in Re s > 0 must  be  zeros of So(s) and the zeros 
of F ( s )  and P(s )  in Res > O  must  be zeros of 1 - So(s). 
The  computations  are therefore conditioned so that 

h(s)=s(s-2)h1(s) (66) 

and 

This is accomplished  by dividing the computed h(s)  by 
s(s-2), setting h,(s) equal to the quotient and ignoring 
the remai~~der .~  The  same  procedure is  followed in obtain- 
ing (67), and (42) then yields 

for the optimal controller. 
The design described above  depends parametrically on 

k .  The values of E, and E, have been computed for 
various values of k and the results are shown in Fig. 3. It 
is clear from the curves that the choice k  =4 leads to a 
suitable compromise between the desire to minimize E, 
while  limiting E,. (Note  that all transfer functions in the 
frequency  domain and all signals in the time domain  are 
taken to be dimensionless quantities but time  is measured 
in seconds. It follows that E, and E, have the dimensions 
of seconds.) The transient response of the optimally de- 
signed  system to a unit step input has also been  investi- 
gated. The error and plant input responses for several 
values of k are shown in Fig. 4 and Fig. 5.  Since  these 
responses are obtained with d =  m = 0 they do not, and 
should not, reflect the optimality of the design. They do 
show,  however, that reasonable transient performance is 
obtained with the choice k = 4. 

It  has  been  pointed  out in Assumption 1 that I@(jw)l 
should  be large or, equivalently, its reciprocal should be 
small for  good stability margin. We  have in fact computed 
and piotted Q - ' ( j w )  for several  values of w in the range 
zero to infinity. The results are shown  in  Fig. 6 and are 
highly satisfactory. With k = 4 ,  I+- ' ( jw) l  Q and the 
system remains stable no matter what the phase of A+(jw) 

VALUE OF DESIGN PARAMETER k 

Fig. 3. Variation of performance  integrals. 

v) 

0 
TIME IN SECONDS 

u -12 u 
W 

- I6  

Fig. 4. Error responses. 

2 -16L 

Fig. 5. Plant  input  responses. 

provided  only  that lAc#~(jo)l< 10 000. For completeness, 
plots are also shown in Fig. 7 of ISo(jw)l versus w for 
several  choices of k. 

Evidently, in the light of these observations, the choice 
k  =4 makes  engineering  sense and the final step in the 
design  is to compute the optimal controller transfer func- 
tion with k=4.  Using (68) we get 

K(s-u,)(s-u2)(s-~O)(s-~o) 
%e accuracy of the  computations on a  digital  computer is such  that 

this  remainder  is  quite  small  (coefficients less than in this  example). co(s)= (s-p*) (s-p2)(s-p3)(s-sp)(s- -p)  9 (69) 
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r w . 0  

I I I I I I I I I )  

0 2 4 6 8 IO 12 14 16 18 20 
Y IN RADIANS PER SECOND 

Fig. 6. Nyquist plot of + - ' ( j w ) .  Fig. 7. Sensitivity  function  amplitude  response. 

where 

K = 67.228808647 
u1 = 0.014874634 
02= - 9.9999638 
p1 =2.413271030575 
p2 = - 9.9806403944 
p3= -33.65463165144 
so= -3O+J17.320508076 
sp = - 18.05732390209+j14.991623794. 

The  reader  has  probably noticed that u2 and p2 are very 
nearly equal. Although we have in fact verified  theoreti- 
cally that these  two quantities cannot  be  equal, it is 
nevertheless natural to inquire whether any significant 
deterioration in performance results by putting a2=p2 and 
using the  suboptimal controller 

67 .2 (~ -0 .015) (~~+60~+  1200) 

(s-2.4)(s+33.7)(s2+36s+549) 
C(s)= . (71) 

Another aspect of the  design  which should be clarified is 
the use of the Pade  approximation (45) for the delay e-"'' 
in the feedback loop. These points have been taken  up 
and the results are presented in Table I. A comparison of 
the first  two columns in the table reveals that  the use  of 
the  Pade  approximation is certainly satisfactory while a 
comparison of the last two  shows that the  use of the 
suboptimal controller is justified. This is gratifying since 
no analog controller can be designed to the accuracy 
demanded by the values in (70). 

We have also studied  the stability margin with  respect 
to variations in the delay 7 = 0.1 s. With  the suboptimal 
controller the feedback loop remains stable  for 0 < T < 
0.155 s. This stability margin is clearly satisfactory and the 
example indicates that the design procedure is a practical 
one. 

One  final point. It is quite obvious that  the design 
equations  are substantially simpler if F (s) = 1 is  used 

TABLE 1 
COMPARISON OF RESULTS 

I optimal C(s) 
Pad& 

Suboptimal C(s) I 
I Approximation F(s)= e-O.IS 

for F(s) I I F(s)=e-O.'s 1 
1 E, 

I I 

646.9 676.8  646.1 
I E* 986.7 952.2 957.6 

instead of the  Pade  approximation and the delay is 
ignored. However,  when the corresponding controller is 
employed  it  is found  that the system remains stable only 
for 0 < T < 0.08 s. Thus, with an actual delay T = 0.1 s the 
system  designed optimally with F= 1 would be unstable. 
This facility to incorporate delay is of significant practical 
value. 

V. DISCUSSION 

It appears  from Fig. 4 that the transient performance of 
the optimally compensated loop  in  our example is poor. 
In  fact, for k = 4  a peak error response of 10.7  is obtained. 
Is this poor transient performance a consequence of the 
design procedure, inherent limitations imposed by the 
plant, or  both? To answer this question the example 
described in the previous  section  is considered once again 
but with G, = Gd= k =O. (Note  that although the condi- 
tions k > 0 and Gb( - s2) $0 are violated. it is  still  possible 
to  obtain an optimal solution. Optimal solutions can exist 
for cases  which do not satisfy our  assumptions  on the 
data. Assumptions 1 4  are sufficient to guarantee the 
existence of an optimal controller and they hold in  most 
cases of interest.) 

The optimal solution obtained  for G, = Gd = k = 0 is the 
one which  minimizes the integral square  error with a unit 
step  input.  The optimal controller in  this case is 
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where so is  given in (70) and 

I?= 1.136452161649 
a,=0.240139 
p4= 56.64885134963 
p,=9.55199217963. 

The error response to a unit step input with  this controller 
in the system  is  shown in Fig. 8. The initial value of the 
error is e(O)= -7.33 and differs from unity because  with 
G, = Gd = k = O  the performance index is finite and S (00) 
# 1. In  fact, the optimal sensitivity function is 

where 

I?= - 7.328575728765.  (75) 

It is  clear from Fig. 8 that even in the best of circum- 
stances, no disturbance inputs, no measurement noise, 
and no plant saturation constraints, the best possible 
transient performance is poor. The  reason is that this 
particular nonminimum-phase unstable plant is one of the 
most difficult to control irrespective of whether the policy 
is optimal or suboptimal. Indeed, since  it  is  impossible to 
stabilize this plant P (s) = (s - l)/s(s - 2) by means of any 
dynamical stable compensation whatsoever  [6], lead-lag 
methods are futile. In  our opinion, a design  methodology 
which can  accomodate  disturbance  inputs, feedback 
sensor noise, rms restrictions on plant inputs, and also 
yield results as encouraging as those  shown in Figs. 4 and 
5,  is a valuable engineering tool. 

APPENDIX 

Proof of Lemma I :  The controller C(s)=n,(s)/d,(s) 
is determined  from the formula 

d s )  = d, (44 (s) + n,(s)n,(s)nc(s>* (77) 

What  must be shown  is that q(s )  is strict Hunvitz. 
According to Assumption 1, S (s) is analytic in Re s > 0 
and  any zero so of q(s )  in Re s > 0 must be a zero of 
df(s)d,(s)d,(s) and therefore of nf(s)n,(s)n,(s). If it is a 
zero of df(s)d,(s), it cannot  be a zero of n,(s)n,(s) because 
P ( s )  and  F(s) are assumed to be  admissible. Thus, so 
must be a zero of n,(s) and consequently  not  one of d,(s) 
which  is  relatively prime to n,(s). But  this means that the 
multiplicity of s = so as a zero of S ( s )  is  less than .its 
multiplicity as a zero of df(s)d,(s) which contradicts 
Assumption 2.  If instead so is assumed to be a zero of 
dc(s), it then follows that it  is a zero of n,(s)n,(s), but not 
a zero of nc(s). However, the expression 

nf(s)n,(s)nc(s) 
1 - S ( s ) =  

9, 
(78) 

B LT - 1 6 1  

W I  
Fig. 8. Optimal error response. 

then reveals that the multiplicity of S=so as a zero of 
1 - S ( s )  is  less than its  multiplicity as a zero of nf(s)n,(s;6 
a contradiction with Assumption 3. Q.E.D. 

Proof of Theorem 1: In (21), the candidate functions 
S ( s )  must all be realizable for the prescribed admissible 
pair P (s), F(s), Hence, if So(s) is  minimizing and E is any 
real number, 

s ($1 = SO(4 + E X  (s) 

is a legitimate competitor  provided 8 (s) is analytic in 
Res > 0 and  the resulting cost  is finite. The prclof of this 
assertion is  simple.  Both So(s) and S ( s )  must include all 
the zeros of df(s)d,(s) in Re s 2 0 and so must the dif- 
ference S -  So. Again,  all the zeros of n,(s)n,(s) in  Res 2 0 
must be zeros of 1 - So(s) and 1 - S(s)   and therefore of 
(1 - So)-(1 - S ) =   S -  S,. But d,(s)d!(s) and nf(s)n,(s) are 
relatively prime in Res > 0 and it  follows that S (s) - So(s) 
is  divisible by 

(d)$);(nfnp),'X,. 

This quotient €8 (s) is analytic in  Res > 0 and  the order of 
its zero at s = 00 must  be  sufficiently  high to guarantee the 
finiteness of E. To exploit the optimality of So(s), we set 

(79) 

and use the standard Wiener-Hopf variational argument 
[3] to  obtain 

X ( s )  analytic in  Res > 0. Performing the spectral factor- 
ization 

XrX,*(Ga+Gb)=QQ* (81) 

where O(s) is free of zeros and poles in Res>O  and 
dividing both sides of (80) by & / x ,  gives, after re- 

'"The  proof  of necessity follows immediately from (76) + (78) and is 
trivial. 
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arrangement, 

and invoking Assumptions 1, 5 ,  and 6 we conclude that 
Q(s) is actually free of zeros and poles  in Res > 0. Thus? 
S,(s)Q(s) must be analytic in Res > 0. But then the left- 
hand side of (82)  is also analytic in Res > 0 and equals the 
right-hand side which  is analytic in Res<O. Being analy- 
tic in the entire finite s-plane, 

f ( s )  a real polynomial; or 

{ y ( G b - ' F - G u ) ) )  F -  1 + f  
so = 

+ 
Q ' (84) 

which  is  (41). 

= O(w2'), I > 0, the convergence of (21) forces 
Clearly, Sots) is analytic in Res > 0. Since Gb(w2) 

1 - S 0 ( j w ) = O ( l / w ~ + ' ) .  ( 8 5 )  

Write 

and 

h(s), g(s),   a(s),  and b(s)  are  four real polynomials. Then, 
as is easily checked, 

degree g > degree h (88) 

degree a = degree b + degree x + I (89) 

and 

TO insure a proper S,(s), we must impose the degree 
restriction" 

'%(.)=degree (.). 
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s ( f ) < s ( a ) - s ( b )  (91) 

or, using (89), 

' ( f ) G s ( ~ r ) + ' .  (92) 

To guarantee that Sots) be realizable for P(s) ,  F ( s )  every 
zero of (dfd,), must be a zero of S,(s) and every  zero of 
(n,n,), must be  a zero of 1 - S,(s). Coupling this with (85) 
we get a total of 6 ( x , )  + I +  1 interpolatory constraints on 
f ( s )  which  is one more than its permitted maximum 
degree, 6 ( x r ) +  1. Thus, f ( s )  is the unique Lagrange inter- 
polation polynomial [13] satisfying these conditions and if 
a minimizing So(s) exists,  it  must be the one given  by (84) 
because the cost functional is quadratic in S(s) .  

Now part 2 is obviously correct and  to complete the 
proof of Theorem 1 it  suffices to show that X,(s), as given 
by (84), is actually analytic in Res < 0. Rearranging (80) 
with the aid of (81) and (84) leads to 

---\E= -(f- { Q } - )  (93) 
X r  

where 
.I.=-(++. X r X r *  F -  1 

Q* FF* (94) 

It is apparent that (93) is analytic in Res <O and it only 
remains to show that the same is true on the s=jw-axis. 
We observe first that the analyticity of {Q} - for s = j w  is 
implied by Assumption 2, (82a), and Assumption 6. Thus, 
(93) is analytic on  thejo-axis if the purely imaginary zeros 
of x r  are also zeros of f- {\k} - of at least the same 
multiplicities.  But  this is automatic whenever f is chosen 
to make S,(s) realizable for the pair F(s) ,  P(s ) .  For 
suppose that s= jw ,  is a zero of x r  of order v. Then, 
invoking Assumption 1, it  is either a pole of P or a zero of 
FP of order v.12 Suppose it is a pole of P. Since the only 
jw-poles of Gb are either zeros of F or zeros of P, (94) 
shows that s = j w ,  is a zero of \k of order at least v. It now 
follows from the identity 

{*}++f='k+((f-{-\E}-) (95) 

that s = j w o  is a zero off- { 'k} - of multiplicity u or higher 
[see (84)]. 

Suppose instead that s = j w o  is a zero of x ,  which  is a 
zero of FP of order v. A direct calculation yields 

and from (81) and (94) we obtain 

With the aid of (82a) and Assumption 

"According to Assumption 1, F is jeanalytic. 

(97) 

6 it  is  seen that 
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s = jo, is a zero of the right-hand side of (97) of order v or 
more. Since f has been constructed to make So realizable 
for F and P, s=jco, is a zero of 1 - So of order at least v 
and therefore, in view of (96), a zero of f- {q} - of 
multiplicity v or greater. Q.E.D. 
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