
Volume 16, Number 1 February 1987

IJPPE5 16(1) 1-86 (1987)

ISSN 0885-7458

International Journal of

PARALLEL
PROGRAMMING

PLENUM PRESS • NEW YORK AND LONDON

International Journal of
PARALLEL PROGRAMMING

Volume 16, Number 1

CONTENTS

February 1987

On Mapping Processes to Processors in Distributed Systems
Shlomit S. Pinter and Yaron Wolfstahl

Inheritance on Processes, Exemplified on Distributed Termination
Detection 17

Kristine Stougaard Thomsen

A Multiprocessor Using Protocol-Based Programming Primitives 53
Erik P. DeBenedictis

SANS PAREIL

Amdahl's Law 85

International Journal of Parallel Programming, Vol. /6, No. I, /987

A Multiprocessor Using Protocol
Based Programming Primitives

Erik P. DeBenedictis t

A general strategy is presented for multiprocessing that combines programming
technique, machine architecture, and performance estimation. The programmer
decomposes an application into manipulations of protocol-based programming
primitives (protocols) using Plans and scenarios from software engineering. The
programmer may select from generic protocols, which include shared-memory
locations and messages, or may build his own. A system architecture that
supports efficient emulation of protocols is presented along with a method of
estimating program performance based on network characteristics. Results are
given from a protocol-based operating system on the 64 processor BTL Hyper
cube multiprocessor.

KEY WORDS: Multiprocessing; computer architecture; programming
technique; circuit simulation; sorting.

1. INTRODUCTION

Multiprocessor research is more in need of a comprehensive strategy than
specific instances of systems that" run a few applications. That there are
successful systems is unquestionable. There is a well established "super
minicomputer" industry that sells shared-memory computers with dis
tributed operating systems. Similarly, there is a "hypercube" industry
selling message-passing computers that solve individually large problems,
such as PDEs. These examples notwithstanding, the literature has referen
ces to the "sorry state" of parallel programming.(ll Users of parallel
processing from the "shared-memory" and "message-passing" "camps" will
often justify their views in terms akin to "religion." This paper tries to
reduce this chaos by suggesting a multiprocessor strategy. The goal is to

-
I AT & T Bell Laboratories, Holmdel, New Jersey 07733.

53

0885-7458/87/0200-0053505.00/0 © 1987 Plenum Publishing Corporation

54 DeBenedictis

consider a range of issues in enough depth to show that they are com.
patible while not necessarily exploring every nuance.

One approach to developing a strategy is to adapt existing ideas to
multiprocessors. For example, software engineering tells us how to
minimize the time for a programmer to write a program. I show later that
the uniprocessor bias in software engineering can be distilled from the
programmer productivity aspects and the result can be applied to multi.
processors. Deriving a multiprocessor strategy only from first principles
seems too difficult. However, considering the compatibility between a
candidate multiprocessor strategy and first principles can give a quality
measure of the strategy and perhaps give insight into improvements.

An alternate approach is to identify the features used in successful
multiprocessor demonstrations and then create a system with all the
features. We could then assert that all existing multiprocessors are special
cases of the new system. This approach is used in places. With the
appropriate protocol, the programming primitives presented here work like
memory locations; with a different protocol, they are messages. Both
approaches together should produce a good system without excessive
featurism.

1.1. The Problem Domain

The problem domain addressed in this paper is parallelism for high
performance. Distributed computing and high reliability systems are not
considered directly. Furthermore, I address moderately general purpose
problems. Canonical examples of general purpose problems are a
compiler(2) and a text editor. The target of this strategy is commonly
described by the cliche massive parallelism, which suggests up to 10K-lOOK
processing elements (PEs). Most of the important primitives degrade in
performance as log - I n or log - 2n for n PEs, which is about all the
justification that can be given for suggesting such a machine will
work-until somebody builds such a machine and sees.

1.2. Technical Strategy

I expand on a common but underappreciated dichotomy betw~en

synchronous-deterministic and asynchronous-nondeterministic computtng
methods. For example, Pascal program text is clearly synchronous and
deterministic. The hardware of a machine that executes a Pascal program
often employs caches and virtual memory, however. There is nondeter
min ism in which medium (cache, main memory, or disk) has a particular
Pascal variable during an access. Furthermore, the machine architect

Protocol-Based Programming Primitives 55

worked hard to assure the consistency of the memory abstraction in the
face of any combination of asynchronous interrupts and faults. My multi
processing approach encourages the programmer to use synchronous
deterministic methods to decompose his program, and to use
asynchronous-nondeterministic methods to select the programming
primitives.

1.3. Programming Technique

Let us start by considering the way that people think about computer
programming from a psychological rather than the usual mathematical
viewpoint. (3.4)

count := 0;
read(x);
while x <>SENTINEL do begin

count := count + 1;
read(x);

end

The code shown here, obtained from Ref. 3, represents programming
knowledge, or a Plan, called the Sentinel-Controlled Counter-Loop Plan.
The Plan reads a series of values until it encounters a particular sentinel
value indicating the end. The Plan tallies the number of values encountered
before the sentinel.

The Sentinel-Controlled Counter-Loop Plan is an example of
something that an experienced programmer has used many times, but
usually through variants and in combination with other activities. Here, the
counted values are obtained by reading input, whereas in a variant they
might come from an array or a linked-list. A similar Plan that adds a series
of values can be imagined by adding the input to a running total, instead of
incrementing the count variable, each time through the loop. If the
counting and totaling Plans are merged, by retaining the same reading and
looping structure, and followed by a division of the total by the count, a
composite Plan is obtained that computes the average of a series of values.

Figure I is a Plan that is relevant to multiprocessor programming. The
Plan is called the Master-and-Slaves Plan (MS) and the action in it starts
with the master, who picks a task and makes the slaves work on the task.
When the slaves are all done, the master is notified and can do whatever
action follows this Plan. Note that the activities performed by the slaves
are generally asynchronous and different, thereby distinguishing this Plan
from the way a SIMD computer operates.

56 DeBenedictis

master master

Fig. I. Master-and-Slaves Plan.

An e am Ie of this Ian is a person running a multiprocessor program
interactively. The person is the master and uses the program by repeatedly
typing a com land to the program and observing the output. The slaves
are the PEs of the multiprocessor, and they repeatedly input commands
from the master, compute something with the other PEs, and collectively
report completion to the master. Of course, a multiprocessor is not restric
ted to having one master; some parts of the quicksort program described
later are m ster for other parts of the program.

MS could be implemented by the master broadcasting commands to
the slaves, and the slaves participating in some sort of collective
acknowl dgment protocol with other slaves and the master to indicate
completion. MS primitive is discussed later.

1.4. The Take-a-Number Plan

Here is a simple Plan that applies to a multiprocessor. The Fortran
code shown here represents an activity of frequent occurrence in real
problems; namely doing something (evaluating function f(i)) for all i
between 1 ... k. Consider the case where the evaluations of f(i) are indepen
dent and each done on a single PE of a multiprocessor. Let us further
allow the time to compute an f(i) to vary unpredictably and strive for an
implementation that achieves a good load balance. The result will be called
the Take-A-Number Plan.

do IOi= I, k
tOf(i)

To develop a good algorithm, consider something often found in a
bakery. Bakeries often have a lake-a-number mechanism which is a dispen
ser with a roll of paper tags numbered sequentially. Customers tear off a
number when they enter the store and wait until their number is called. For
the algorithm, the computing is done by people, and people represent the

Protocol-Based Programming Primitives 57

PEs. When a person has nothing to do he gets the next number (call it i)
from the dispenser, if i> k the person quits, otherwise he evaluates f(i).
The multiprocessor code is shown here in terms of magie-geLnexLnumber,
which represents the operation of the take-a-number mechanism.

PEl: while (i = magie-geLnexLnumber ~ k)
f(i)

PEn: while (i = magie-geLnexLnumber ~ k)
f(i)

The fetch-and-add (f & a) primitive proposed as part of the Ultracomputer
project at NYU(5) provides the functionality of magie-geLnexLnumber
easily. The f & a primitive is applied to locations in memory shared
between PEs and containing integers. In an indivisible operation, f & a
adds a value to the integer and returns the original value. Let us say
f & a(x, v) adds value v to memory location x and returns the original
value of x.

A moment of thought reveals that f & a(x, I) is suitable for
magie-geLnexLnumber, where x is a variable, initially I, belonging to the
Plan.

Plans like Take-a-Number are fundamental to human visualization of
problems and should be exploited. Indeed, the take-a-number analogy
appears independently in the synchronization literature. (6) I use Plans as
the basis for a multiprocessor strategy, and not merely a way of describing
algorithms in english. For example, the system architecture is contorted to
make Plans execute rapidly. Likewise, the primitives underlying the
execution of Plans are independent to assure that Plans can be composed
reliably.

1.5. Programming Primitives and Protocols

I propose to represent distributed programming Plans, or techniques,
as manipulations of programming primitives. This is already done to some
extent. Multiprocessor algorithms are typically represented as sequences of
message passing operations or accesses to shared memory. Currently,
however, two implementations of one Plan on machines with different dis
tributed programming primitives are considered to be independent pieces
of knowledge. I suggest that if a Plan is most understandably represented
as, say, f & a's, that representation should prevail even if the target multi
processor does not have f & a hardware.

When viewed as a sequence of data transfers over wires, programming
primitives are nothing more than protocols. Again, this is done now to

828/16/1-5

58 DeBenedictis

some extent. Protocol diagrams can be seen explicitly in the descriptions of
shared memory(7) and RPC. (8) The combining elements in the f & a-based
Ultracomputer(9) use a protocol to remember which f & a locations have
outstanding requests.

Not only can protocols be a tool to aid understanding of parallel
programming, but the architecture of a multiprocessor that supports
protocols directly is discussed later. Such a multiprocessor would have
more uniform performance characteristics when executing programs writ
ten with a variety of distributed programming primitives, although a
modest increase in complexity would be required.

1.6. Elapsed Time Estimation

Elapsed time estimates can be attached to programming Plans. Con
sider the Take-a-Number Plan as applied to a uniprocessor by the Fortran
code shown earlier. Clearly there are two components to the elapsed time:
the loop overhead, and the cumulative elapsed time used by the embedded
Plan (evaluating function f). The elapsed time of an entire program can be
estimated from the composition of all its Plans.

A different elapsed time estimate can similarly be associated with the
multiprocessor Take-a-Number Plan. A possible way to formulate the elap
sed time is kln(0 + P) + corrections, where 0 is the overhead associated
with the f & a primitive, and P is the time for the embedded Plan. This
assumes constant overhead 0 for the f & a primitive and linear speedup
otherwise. A correction term would have to be added to account for
uneven finishing times of the PEs unless k» n. By composing Plans, the
elapsed time of a program would become an expression in the elapsed
times of primitives.

Being able to associate an elapsed time estimate with distributed
primitives is a feature of the protocol-based system architecture that is not
universally present in other multiprocessors. Protocol-based primitives are
qualitatively independent by design; this means that a primitive will
operate according to its rules regardless of the activity of any other
primitives. This is different from a hypercube, where deadlocks can result
from sending messages between improperly selected combinations of PEs.
Given qualitative independence of primitives, we should be able to model
the elapsed time of primitives. Given a good architecture, the model will be
simple and accurate.

The elapsed time for an operation on a protocol is composed of
message transmission, message latency, and queuing delays. The bandwidth
and latency of a communication network can be analyzed and values deter
mined for the elapsed time to send or receive a one message (I call this

Protocol-Based Programming Primitives 59

value M for message) and for a message to pass through the network (L
for latency). I model the behavior of a protocol to an interaction by a PE
by a data flow graph where the arcs are labeled with M's and L's. The
elapsed time is then total weight between the stimulus and a measurement
point.

Figure 2 illustrates the two tests that define the M and L parameters.
Time flows from top to bottom, and the "time line" for each PE is a
vertical column. Vertical lines are tagged with weight M and represent
receiving or sending a messages; diagonal lines represent network latency
and have weight L. Elapsed time is the sum of weights on arcs. On the left,
PE 1 is sending a series of messages to PE 2, without waiting for PE 2 to
get one message before transmitting another. The time to send each
message is designated M. On the right, two PEs are sending a message
back and forth; each complete cycle is designated as 4M + 2L.

The choice of the proper protocol for a given application may be
neither obvious nor trivial, but may be important. There are often several
approaches to implementing a protocol for a given primitive; f & a is such
an example, as will be discussed later. Different approaches may result in
dataflow graphs for elapsed time that differ by factors of O(n) (where n is
the number of PEs in the multiprocessor) when used in different
applications. For n between 10K-lOOK, it would be too big a factor to
ignore. I provide a path for considering this: the elapsed time values for
primitives appear in the programming Plans, and the programmers are
known to reason effectively at the programming Plan level.

1.7. A Review of Experimental Results

This paper is a report on the testing of these ideas on a hypercube
style multiprocessor at Bell Labs (BTL hypercube). This multiprocessor,

PEl PE2 PEl PE2

~time M M <-----l-
1vf

one test M M one test

:= blocked M M 4M + 2L
M

~ ____ J_M M
M

Fig. 2. Network parameters.

60 DeBenedictis

similar in its hardware and network architecture to other hypercube multi
processors, has an experimental operating system designed for protocol
support. In spite of the added functionality, the system appears to be a
viable hypercube operating system. But the system can also be viewed as an
emulator and software development tool for a yet undesigned system which
would have sophisticated hardware protocol support.

The distributed programming primitives tested as of this writing are
queues,(IO) zero-length queues,(ll) shared memory with both a combining
network (9) and a cache, (7) distributed sets, (12) Linda tuples, (5) distributed
addition, and broadcast.

A variety of programming Plans have been explored with this environ
ment: dynamic programming algorithms using message broadcast,
quicksorting with

l
distributed sets, circuit simulation with queues and

message broadcast, and circuit simulator variants using distributed
addition and Linda tuples.

2. SYSTEM DESIGN

2.1. Network Operation

A prototypical network is illustrated in Fig. 3.(13) The PEs are
represented by horizontal slices and have output and input buffers (A-H,
B-1, C-J). Communication paths are represented by diagonal boxes and
can store at least one data unit. Data units move only between buffers con
nected by a line, and only in a left-to-right direction (including diagonally).
Data movements are indivisible and reliable, specifically, data cannot move
into a full buffer. To be a network, there must be a path using only
left-to-right motion from each input to every output. This type of network
is not the same as a trivially connected set of nodes. Note in Fig. 3 that
there are two logical buffers (D and G) between nodes 0 and 1. The BTL
Hypercube uses hypercube connections to make a Banyan network, which
has the required properties.

NODE 0

NODE 1

NODE 2
flow_

Fig. 3. BufTer graph for a simple network.

Protocol-Based Programming Primitives 61

This type of network has some important properties. The network is
completely reliable, simplifying protocol design and hopefully reducing
life-cycle costs. The network is inherently self-throttling, meaning a PE is
not constrained to process input at any particular rate-because the
network will make outputting PEs slow down if necessary. This type of
network was proposed by Sullivan and Brashkow tl4

) before its properties
were appreciated [see Ref. 13] although the properties have been known
for some time(15) for a different application.

2.2. Protocol Emulation

The protocol-based multiprocessor executes protocols from a represen
tation similar to the finite state representation. (16) The system, therefore,
includes a scheduler that executes the input function when a message
arrives, and executes the output function when the network can accom
modate a message and action is specified by a state vector. [The term state
vector is used in the sense of a state machine, and can be thought of as a
vector of bits (a binary number) or a data structure.] The input function
operates on an input message and a state vector, altering the state vector.
The output function operates on a state vector, altering the vector, and
perhaps sending a message. Whenever a state vector is changed the
scheduler is informed if the new state vector specifies action.

Although protocol emulation in this way is compatible with the
network properties of reliability and deadlock resistance, direct access to
the network through conventional blocking I/O statements is not, and the
latter is therefore excluded.

2.3. Protocol Multiplexing

Every communication in the protocol-based multiprocessor is part of a
protocol that is interpreted by the system. Furthermore, the multiprocessor

PEA PEB PEe

state vector # 1···

virtual state
vector # 2·········
(in 0 state)

81 I I 1 II ~ I

>8 I 2 I J 2 II ~ I

protocol # 1 protocol # 2

Fig. 4. Illustration of protocol multiplexing.

62 DeBenedictis

supports many independently operating protocols. This facility requires
two things: every message must be tagged with a protocol number to
identify with which protocol the message is associated, and there must be a
state vector to record data and state information about a protocol, for each
protocol interacting with a particular PE.

A matter of practical concern arises here. Experience, and analogy to
virtual memory on a conventional computer, suggest a virtual space of
protocols that is larger than the number used at anyone time. Also, most
protocols interact with only a few PEs, leaving their state vectors on other
PEs in the 0 state (initialization state). The circuit simulator example,
presented later, uses a protocol for each wire in the input circuit. Net-num
bers of wires become protocol numbers. Only the two processors that have
the ends of a wire use a protocol, although all must have the protocol num
ber in their protocol space. Protocol numbers of 32 bits seem appropriate
and so are programs where only a half dozen protocols ever leave the 0
state-implying that 6 out of 232 state vectors are in a nonzero state. This
suggests that the system should allocate state vectors on demand and
deallocate them when no longer necessary. A system managed heap, or
some similar structure, is used.

Figure 4 illustrates protocol multiplexing. The PEs labeled A and B
are interacting via protocol number 1, and Band C via number 2. These
two instances of the protocol are functionally independent. While PE B
must have a state vector allocated for each of the two instances of the
protocol operating on that PE, A and C require only one each. Here, the
virtual protocol state facility avoids allocating memory for these state
vectors until they are accessed, either by message receipt or user program
access, and when accessed it appears in the 0 state. A protocol may interact
with more than two PEs, although this is not illustrated.

When allocating instances of protocols, it is also necessary to associate
input and output functions with the state vector. This suggests that a
protocol type should be included with each protocol number. Protocols of
the same type would have state vectors of the same size and the same input
and output functions, whereas protocols of different types would not. A
new protocol could therefore be added to a running system by having the
operating system bind a new type to information about state vector size
and input and output functions.

Figure 5 illustrates facilities for the dynamic allocation of protocols.
Figure 5 illustrates a PE with two different types of protocols declared,
identified by squares and triangles. For each protocol with a different
behavior the PE maintains a heap for state vectors that have left the
initialization state, and a freelist for state vectors awaiting demand
allocation. In addition, an input and output function is maintained for

Protocol-Based Programming Primitives

PE

63

heap

m~.,. Lk~:J
I data I numbe16 f-

o,~~

freelist

~
~

~
~

I/0 functIOns

~
~

~
~

Fig. 5. Dynamic protocol allocation.

each protocol type. When a message arrives, the PE looks for the state
vector corresponding to the number field in the message in the heap
corresponding to the type specified in the message. If such a state vector is
not found, a state vector is moved from the freelist to the heap and set to
the 0 state. The input function is then executed with the message and selec
ted state vector as arguments. An application program can access a state
vector, possibly invoking demand-allocation, by specifying a type and
number in a system call. Finally, a program can define a new protocol
behavior by specifying input and output functions and a pool of state
vectors to become the freelist.

2.4. Interactions with the User

One method whereby the user interacts with protocols is by directly
examining and changing state vectors in an indivisible operation. In a
typical case the user would enter a critical region, change the state vector,
notify the system that the state is active, and then leave the critical region.
The user could then poll the state part in a busy-wait until the protocol
enters an idle state. Additionally, a task queue could be added to each PE
and protocol definitions could be extended to allow protocols to enter and
leave the queue. The task queue would be able to interrupt the CPU. These
features have been tested in software on the BTL Hypercube.

3. AN EXAMPLE PROTOCOL

This section illustrates protocol design with a detailed example. The
example chosen is a simple message-passing implementation of shared
memory. The example was chosen because the semantics of shared memory
are well known and this implementation is simple if not efficient.

Figure 6 illustrates the chosen approach to shared memory. A
protocol and a home PE are associated with each memory word. Within

64 De Bened ictis

Fig. 6. Simple implementation of shared memory.

the home PE is a memory word (shown as a rectangle) which has the real
value of the shared memory location. Accesses to this word from within the
home PE are made by conventional accesses to this word. Accesses from
other PEs are done by sending a message of type Read or Write to the
home node and waiting for an Ack message. The protocol is consistent
with memory semantics where the read or write occurs at an unspecified
time during the period between the Read or Write and the Ack.

A state transition diagram for the protocol executed by nonhome PEs
is illustrated in Fig. 7. The protocol is normally in the IDLE state. To start
a read or write operation the application program changes the state from
IDLE to READ or WRITE, moving the argument to the data portion of
the state vector on writes. If necessary, these operations are done in a
critical region to assure they are atomic. The system is informed that the
state vector is in an active state, indicating that the output function will
generate a message.

When the network is ready to accept an output message, which may
be immediately or after a finite delay, the protocol scheduler will invoke
the output function. The output function will send a Read or Write
message and change the state to WAIT. The data word is sent in the data
portion of a Write message.

Fig. 7. Non home node protocol.

Protocol-Based Programming Primitives 65

When an Ack message is eventually received, the input function
changes the state to IDLE and moves the data portion from the Ack
message to the state vector. The return values for reads is taken from the
data portion of the state vector.

The input and output functions and the code to do a write (on the
nonhome PE) are illustrated by Fig. 8 in C. Both the input and output
functions accept a pointer to the state vector as an argument; the state vec
tor is a structure with attributes state and data. The input function takes a
pointer to a message as an argument; the message is a structure containing
type, origin, and data fields. Both the input and output functions return a
nonzero value when the state vector returned is active, meaning it will
generate an output message. The write function instead uses the statement
activate(s) to inform the system that the state vector is in a condition
where it will generate an output message. The identifiers IDLE, READ,
WRITE, and WAIT are enumerated constants representing the different

struct state vector {
enum { IDLE, READ, WRITE, WAlT} state;
int data; /* data-to-write or read data */
enum { NOT, WAlTING } bits[n]; } ; /* only used on home node */

struct message {
enum { Read, Write, Ack } type;
int origin;
int data; } ;

/* originating PE */

input_function{s, m) state_vector os; message om; {
s- > state = IDLE; /* state part of state vector */
s- > data = m- > data; /* data part of state vector */
return{O); } /* indicates no output message */

output_function{s) state_vector os; {
if (s->state == READ) /* CPU requested read */

/* send Read message */
else if (s- >state == WRITE) /* CPU requested write */

/* send Write message with s->data */
else return{O); /* indicates no output message */
s- >state = WAlT; /* change state */
return{O); } /* indicates no output message */

write{x, s) state vector os; {
/* enter criti~al region */
s->data = x;
s->state = WRITE;
activate{s);
/* leave critical region */
while (s->state 1= IDLE) ; }

/* data part of state vector */
/* request write */
/* put on activity queue */

/* busy wait until done */

Fig. 8. Non home node protocol functions.

66 DeBenedictis

input_function{s, m) state_vector os; message om; {
if (m->type == Write) s->data = m->data;/* do the real write */
s->bits[m->origin] = WAITING; /* note originating PE */
return{l); } /* will send A msg */

output_function{s) state_vector os; {
int pid = find{s- > bits); /* bit position of a 1 bit */
if (pid < 0) return{O); /* no output message this time */
s- > bits[pid) = NOT; /* turn off bit */
/* send Ack message to pid with m- > data */
if (find{s- > bits) < 0) return{O); /* no output message next time */
return(1); } /* output message next time */

Fig. 9. Home PE protocol functions.

states of the protocol, and Read, Write, and Ack similarly represent
message types.

Figure 9 illustrates the input and output functions for the home PE.
These are somewhat less elegant because the unbounded fanout at the root
node in Fig. 6. The home PE must record in its state vector whether or not
each other n - I PEs is awaiting an acknowledgement-using n bits (one
unused). The size of the state vector limits the utility of this protocol; a
lOOK PE multiprocessor would require a state vector of 12.5K bytes, which
would be clumsy. In practice, I use a tree with fanout f and O(logr n)
height.

The input function copies the data from the message to the state
vector, for write messages only. It then sets the k th bit, where k represents
the number of the originating PE (the origin field of the message). The
output function simply sends Ack messages to any PE whose bit is set. This
is shown by use of the function find which returns the index of the any set
bit, or a negative value if there are none.

4. TOPOLOGY AND TREES

Trees are important in a variety of contexts. Adding more levels to the
one level tree with illustrated in Fig. 6 saves memory and improves perfor
mance under most conditions. A later section uses trees for broadcasting
and synchronization. Indeed, the concept of tree-like topologies appears to
be of sufficient generality to warrant direct support by the operating system
or hardware.

4.1. Tree-Based Protocols

Figure 10 illustrates a binary tree generated by the parent function
p(x) = (x - 1)/2. The resultant tree has some desirable properties: the num-

Protocol-Based Programming Primitives

l'E---root

p(x) = (x-l)/2

Fig. 10. A tree generated by a parent function.

67

ber of relatives (parent plus children) at each node is three or less, it is of
logarithmic depth, and it is defined by a simple function.

When tree topologies are defined by functions, topology independence
of protocols is obtained. As a first step, assume the root of a tree is
designated node O. For each tree node, its parent is designated as relative 0,
and its children are numbered sequentially starting at I. The following two
functions define a tree:

R(p, n) is the tree node that is the nth relative of tree node p.

N(p, c) is the relative number of tree node c when viewed from tree
node p.

Protocols can be described entirely in terms of the Rand N functions.
Input messages are considered only in terms of which relative they came
from and output messages are sent to specific relatives rather than PE
numbers.

4.2. Hashing of Tree Roots

If tree node n were to go on PE n, a bottleneck would develop because
PE 0 has all the roots. A solution is to not apply the tree functions directly
to PE numbers, but to apply them to an isomorphic mapping of the PE
numbers. Let the function designated M r : P -+ P be a one-to-one mapping
of PE numbers to PE numbers, with the additional property that Mr' 0 = r.
Further define

R'(p, n, r) = Mr' R(M; I. p, n) and N'(p, c, r) = N(M; 1. p, M; 1. c)

R' and N' thereby form definitions of a tree which is rooted at r. The
protocol number can be hashed to generate r.

68 DeBenedictis

4.3. Topology Quality

A protocol correctly parameterized in terms of the functions Rand N
operates correctly regardless of the definitions of these functions. The
performance may vary considerably, however.

The number of children at each node must be large to minimize the
number of sequential messages necessary for one signal to span a tree. A
large fanout increases speed. On the other hand, the number of bits in the
state vector in a node is frequently dependent on the fanout of that node.
Recall that the home node in the shared memory protocol required a n bit
state vector, where the fanout of the node was n - 1 (one bit was unused).
Therefore, a small fanout decreases memory use. Topologies trade off
memory in the state vector versus speed.

A second consideration is the match between the network topology
and the communications paths used by the tree topologies. Consider, for
example, a hypercube viewed as a Banyan network. The set of paths from
any node to all other nodes forms an easily computed tree where every
parent-child connection corresponds to a single physical communication
path. The resulting "hypercube tree" on an n PE hypercube has a
maximum fanout of log2 n. By contrast, the tree generated by the parent
function p(x) = (x - 1)/2 has a maximum fanout of only 2, but parent-child
connections may require costly message store-and-forwarding. Trees which
both can be embedded into hypercubes, and are binary, are known [see
Ref. 17J, but the functions defining the trees are complex. Here, topology
trades off complexity for speed.

With my multiprocessor strategy, topology can be the last thing to
worry about. Furthermore, if topology is an issue, it can be dealt with
without rewiring the machine. Topological considerations are irrelevant
when the programmer is trying to write a functionally correct program,
because the qualitative behavior of protocols is independent of topology.
Furthermore, if protocols are specified by generalized tree functions, most
of the effort in specifying a protocol can be reused with a different
topology. Topology is reduced to rough performance measures for
primitives when a programmer is formulating an approach to an
application. A library of important primitives coded with different
topologies and costs so that all a programmer would have to do is pick the
right primitive.

5. PERFORMANCE ANALYSIS

The performance of a primitive can be abstracted into simple
expressions even though it may depend on both topology and functional

Protocol-Based Programming Primitives 69

aspects of the protocol. The diagram in Fig. 11 compares the elapsed times
of two f & a protocols. The "time line" for each PE, combining unit (C)
and memory (Mem) is illustrated as a vertical column. Figure 11 shows the
activity if all PEs were to attempt a f & a simultaneously.

The left part of Fig. 11 illustrates a protocol with one adder colocated
with the memory cells (column Mem). Figure 11 illustrates PEs doing
f & a(x, 1), where x is zero initially. The PEs send f & a messages directly
to Mem and block awaiting a reply. Mem, the root of a one-level tree like
Fig. 6, receives values, adds them to memory, and sends the answer back. If
there are many simultaneous requests, Mem must process them sequen
tially. If there is only one f & a request, the elapsed time will be 4M + 2£; if
there are n simultaneous requests, the maximum elapsed time will be
(2n + 4)M + 2L. This is a lousy protocol for large n.

The right part of Fig. II illustrates a protocol with a combining
network(9) (column C) to condense data before the memory cells (column
Mem). The single combining unit represents a logarithmic depth tree struc
tured network that might appear in a larger machine. The PEs send f & a
messages to their parents in the combining tree. C combines simultaneous
requests f & a(x, a) and f & a(x, b) into the request t = f & a(x, a + b), t
representing the returned value. C then replies with values t and t + a,
respectively. The values 0 and I are returned to PEl and PE2, which is
consistent with the properties of f & a (although different from values 1
and 0 as illustrated on the left-which are also consistent). If there are

1

PEl C PE2Mem
f&a(x,l) . f&a(x,l)

~ time

=blocked;

PEl PE2 Mem
f&a(x,l) f&a(x,l)

o
maximum elapsed time 1

2nM + 2L (8 log n + 2)M + (2 log n + 2)L

Fig. 11. Two F & a protocols.

70 DeBenedictis

many simultaneous requests, the combining network can reduce them to
one request and disperse the proper answers in logarithmic time. Each
combining stage introduces a worst-case elapsed time of 8M + 2L, and the
Mem unit introduces 2M + 2L. The worst-case time for simultaneous
accesses on a n node multiprocessor is (8 log2 n + 2)M + (210g2n + 2)L. A
programmer would probably abstract this elapsed time information into
"O(log n) cost for everything."

The difference between n and log n costs should be large in absolute
terms, and might make the difference between a multiprocessor system
being effective or not. It is therefore crucially important that coarse timing
measures (say to within a factor of two) be considered even when the
primary objective is improving programmer productivity.

6. THE MASTER-AND-SLAVES PRIMITIVE

It seems axiomatic that programming primitives should be simple
enough to be fast, but sophisticated enough to do what a programmer
really wants. Programmers can use shared memory protocols(7·9) freely
since their access rate is nearly as high as the instruction rate of the CPU.
In a prototypical use of shared memory, however, multiple accesses are
used to set a semaphore, do something, and then release the semaphore.
The need for multiple uses counters the speed advantage. By contrast, this
section presents a protocol for the MS primitive that is complex and has
nonconstant time (O(log n)) operations. In a single usage, however, the
MS primitive directly implements a major portion of the Master-and
Slaves Plan. A well designed MS primitive might be more effective than
simpler and faster primitives, such as shared memory.

The MS primitive can be viewed in terms of how it works (a multicast
pipe) or in terms of how it is used by the programmer (an abstraction of
sets). As a multicast pipe, it consists of objects in a globally accessible space
with several defined operations. The objects have connect and disconnect
operations which add and subtract slave connections. A write_to_all
operation can be done by any PE and the associated data satisfies read
operations by all connected PEs. Reads are optionally acknowledged by a
read acknowledge operation which a writer can wait for by a wait for
acknowledge operation. Data can be sent to one reader with a write to one
operation.

To view the primitive as a set representation instead of multicast
channels, the names enter set, leave set, send command, get command,
acknowledge command, operation done, and send to one are more
mnemonic.

The goal of the protocol design for the MS primitives is to be fast even

Protocol-Based Programming Primitives 71

when the number of connected PEs in a set can vary between zero and n,
the size of the multiprocessor. The approach is to base all the operations
on trees, including all the PEs that are in the set, but as few others as
possible. The structure and algorithm for setting up the tree are interesting.
Algorithms to send data and collect acknowledgments are obvious once a
tree exists.

Figure 12 illustrates the tree connection protocol. Assume PEs 2, 4,
and 5 enter the tree in that order. PE 2 enters the tree by sending a Connect
message to its parent and receiving an Ack in reply, indicating that it is a
member of a tree rooted at PE O. At this point, the tree has only the
double-line edge shown in Fig. 12. PE 4 enters the tree by sending a Con
nect message to PE I, which relays the message to PE 0; the root replies
with an Ack message to PE I, which is relayed to PE 4. PE I becomes a
member of the tree even though it is otherwise uninvolved. PE 5 enters the
tree by sending a Connect message to PE 2, which is already a member of
the tree. PE 2 notes that its left child is a member of the tree and replies
immediately with an Ack message. The Ack signifies membership in a tree
rooted at PE 0, even though no message went to PE O. The resulting tree is
the part of Fig. 12 with solid and double-lines. Since Connect messages
propogate only until they reach an already connected PE, no PE will
receive more than two Connect messages. 0 connection involves more
than 2 log2 n messages, which makes this a good algorithm.

struct state {
enum {NO, YES} local-connect;
enum {NO, WAITING, YES} i_am_connected;
enum { 0, UNACKNOWLEDGED, YES} gOLconnecLfrom_child[f];}

This data structure shows the parts of the state vector required for the
connection protocol. The occurrence of a local connection operation is
recorded by the locaLconnect attribute. The three states of a PEs interac
tion with its parent are represented by the Lam_connected attribute.
Initially there is no interest in a connection-value NO. This state is

tree including
PEs 2,4,5

7

3

o
/~1 2 ~

'" /4 5

p(x} = (x-l}/2

Fig. 12. Operation of the tree connect protocol.

72 DeBenedictis

changed to WAITING when a Connect message is sent to the parent, and
later changed to YES when the Ack message is received. Since a Connect
message is only sent on the transition of the Lam_connected attribute from
NO to WAITING, no more than one Connect message can be sent. The
subprotocol with each child has three states, which are stored in the
got_connecLfronLchild attribute. There is initially NO interest in connec
tion. The receipt of a Connect message is noted by changing the attribute to
UNACKNOWLEDGED-which also indicates that an Ack message is
expected by the child. When an Ack is sent, the attribute is changed to
YES. Designing protocols is like specifying things with petri nets or
programming in APL-you get the hang of it after awhile.

6.1. Observed Results

Table I compares various elapsed times for the MS pnmltlve. The
program, that runs on the BTL Hypercube, has one master (at a time) and
63 slaves. The master sends commands to the slaves via a tree structured
MS primitive. A program run averages 1800 command-acknowledge cycles
originating from nine different master PEs. The tree is generated by the
parent function p(x) = (x - I)/f, f is the fanout. Table I gives the total
elapsed time for both dispersion and collective acknowledgment of a com
mand to 63 PEs. Note a broad minimum. The time increases for small
fanouts because the tree height is greater, causing many message relays and
associated L delays. For larger fanouts, the time increases because a node
communicates with its children sequentially, incurring many 111 delays. The
BTL Hypercube has performance values M = .45mS and L = .3mS for
random communication. The measured ligures are slightly better than
might be predicted, possibly because the parent function generates many
short hypercube paths.

7. PROGRAMMING EXAMPLE-A CIRCUIT SIMULATOR

Integrated circuit simulation is an important computationally inten
sive application. Circuit simulations that use exact transistor models and
accurately model the analog functional and timing behavior of integrated

Table I. Timings for MS Primitive with Different Fanouts

fanout

filS/cycle
1

170
2

22
3
19

4
18

5
21

6
21

8
21

12
29

15
36

30
62

Protocol-Based Programming Primitives 73

circuits are currently applied to portions of integrated circuits with around
100 transistors. It is important to industry, however, that whole integrated
circuits, containing perhaps 1,000,000 transistors, be simulated. Whole
integrated circuits can currently be simulated only by abstracting the
analog and timing behavior of many small portions of the circuit and then
functionally simulating the entire circuit with these abstractions. Functional
simulation is inaccurate at modeling timing and analog properties. This
section discusses a distributed algorithm for a simulator midway between
circuit and functional simulators. By bringing more computational power
to bear on a simulation task, this simulator(l8l permits more extensive
simulation of chips during the design cycle, and might therefore speed
progress in the Ie industry.

7.1. Uniprocessor Circuit Simulation

The type of simulator discussed here divides the simulation into inter
vals (LIt) and repeatedly computes the voltage on each wire at time t + LIt
based on voltages at time t.

for each timestep
for each element

read V(t) from inputs, simulate, and write V(t + LIt) to outputs

The Plan shown here must be merged with (what I call here) the
Simultaneous Update Plan. This Plan assures that the value computed for
a wire at time t + LI t is really based on voltages at the input of the circuit
element at time t. Simply associating a variable with each wire to hold its
voltage does not work. When a wire goes from the output of one element
to the input of another, and the first element happens to be updated first,
then the second element is updated using the new voltage value. A common
uniprocessor version of the Simultaneous Update Plan, shown below,
associates two variables with each wire, one for an old value and one for a
new value. When each circuit element is updated values from the old
variables are used to compute values for the new variables. A second phase
iterates over each circuit element a second time moving the new variable to
the old variable.

for each element
new voltage = update(old voltage)

for each element
old voltage = new voltage

828/16/1·6

74

queue

queue

queue

DeBenedictis

Fig. 13. Multiprocessor simulator with queues.

7.2. Multiprocessor Circuit Simulation

Figure 13 illustrates a multiprocessor Plan for circuit simulation. The
Simultaneous Update Plan is managed by queues that are written by
circuit elements with outputs and read by circuit elements with inputs.
During initialization, one voltage sample is put into each queue. In a one
step simulation, the number of voltages in some queues would follow the
sequence 1-2-1, and some 1-0-1. In an asynchronous simulation, a quickly
simulating region might encounter an empty input queue and have to wait.

Figure 14 illustrates the MS Plan in the context of the circuit
simulator. The definition of the circuit simulation problem requires that
there be a person running the program issuing commands such as simulate

distributed
set of slaves

Fig. 14. Simulator control plan.

Protocol-Based Programming Primitives 75

for lOa ns. Such a command must be delivered to every slave with circuit
elements, which simulate until done, and then participate in a collective
acknowledgment directed toward the master. The master then decides if
more simulation is in order or if the answer is to be printed.

7.3. Variants of the Simulator

Several different versions of this circuit simulator have been studied at
Bell Labs and are summarized in Table II. The algorithm described earlier
suggests that each PE synchronize after each simulation time step to avoid
unbounded filling of the queues. The synchronization necessary to separate
timesteps is less general that provided by MS; specifically, no data needs to
flow for this synchronization. A special synchronization protocol was
developed that has higher performance than MS, and this version is called
synchronous. A version of the simulator was tried where each region
asynchronously updates voltages when a new set of input voltages are
ready at the input queues and all the output queues have at least one
empty location for a new voltage. The asynchrony inherent in this version
improves load balancing by allowing temporarily compute-bound elements
to fall behind the rest of the simulation without incurring idle time on some
PEs. This version is called asynchronous. A kernel for the Linda language
was developed by Lucco(19) and a simulator version, called linda was
tested. The speedup factors are summarized in Refs. 18 and 19 for an 6K
transistor fuzzy logic chip.

A timing analysis based on the program decomposition and charac
teristics of the fuzzy logic chip is instructive. Let Tinne , be the time to read
input, simulate one region, and write output. We have Tinne, =
Tsim + 2rxFg M, where Tsim :::::; 1.0mS represents the time for a simulation step
and Fg :::::; 7.6 is the average number of wires per region. The previously
stated value M = .,45mS is valid for the synchronous simulator, but our
asynchronous queue protocol is poorly coded, resulting in M = .85mS for

Table II. Distributed Objects in Various Simulation Versions

synchronous asynchronous linda

MS's 1 I none
queues 3700 w/flow control 3700 datagram none

synchronizers 1 none none
tuple spaces none none I

error mes.sage paths 1 1 1
speedup on 64 PEs 18 6 II/a (17)

76 DeBenedictis

the asynchronous version. Factor IY. represents the number of messages
generated for each voltage sample. For the asynchronous version, IY. ~ 1.2
because each voltage sample generates a message, and 20 % of the time an
acknowledge message travels in the reverse direction. If the voltage on a
wire is stable, there is no need to resend the voltage; and the synchronous
version does not need to send a synchronization message either. An
evaluation with the synchronous version sends messages only when signals
are changing, corresponding to IY. = .06. Each simulation time step is
modeled by Ttimestep = Lb(mTinner + L + TsynJ, m is the average number of
regions per PE. All the messages in the inner loop are sent concurrently
(see left part of Fig. 2), so only one L delay applies per time step. The syn
chronous version explicitly synchronizes at this point, adding a cost of
Tsync = log2 n(2M + L). Furthermore, a load balance factor L b should be
applied that multiplies the elapsed time accumulated so far. The fuzzy logic
chip has L b = 2.0 for synchronous and L b = 1.25 for asynchronous. Time in
the MS primitive is insignificant. Evaluating these expressions, we get a
speedup of 17 for synchronous and 3 for asynchronous, which is as close as
we expect to 18 and 6.

A speedup factor of 20 is respectable in absolute terms, but some
explanation is in order. Table III illustrates measured and projected
speedup figures for the BTL Hypercube, a nominally faster (ficticious)
machine, and the machine proposed in a later section. The asynchronous
simulator has high communication overhead. With better hardware, it
would be very good; currently it is not viable. The synchronous simulator
incurs about a 50% overhead because of imperfect load balance. Analysis
and experience indicate that this figure is smaller for larger chips. Overhead
increases as the number of PEs increases, unless the size of the simulated
chip increases proportionately. Fortunately, the interest in circuit
simulation centers on being able to simulate large chips on large machines.
Existing hardware (1024 PE Ncube) would give an unprecedented speedup
of 280 if the 26 % efficiency could be maintained. Testing this prediction is
future work.

Table III. Projected Simulator Performance

machine M L synchronous efficiency asynchronous efficiency

BTL Hypercube
slightly faster
proposed later

.45/.85 mS
100 uS
lOOnS

.3mS
100 uS
I uS

26%
41 %
50%

5%
30%
80%

Protocol-Based Programming Primitives

8. PROGRAMMING EXAMPLE-QUICKSORT

77

While the previous example illustrated the use of protocols, the exam
ple was not complicated enough to require them. A quicksort algorithm is
presented here that uses the MS abstraction in an easy-to-understand
way, (20) but in a way that would be difficult to implement directly. For the
sake of brevity, only the inner loop of the algorithm is presented. The
algorithm sorts an unordered set of data presuming the data is initially in
memory and leaves the list in memory as a tree in nondescending order.

The conventional quicksort algorithm (21) is first presented with
emphasis on those aspects important to the set based algorithm. Figures
15-17 illustrate quicksort. At the start of the algorithm there is a bag of
elements (1-5), with no particular ordering. The first phase of the
algorithm arbitrarily selects one element and designates it as the decision
element. The second phase, Fig. 16, partitions the remaining elements into
two new bags with the property that all elements smaller than the decision
element go into one bag, those larger in the other. The result at this stage is
three bags of elements: the original bag, with the decision element and all
other elements with the same key value, the smaller bag, with elements
smaller than the decision element, and the larger bag, with the rest. The
smaller and larger bags, Fig. 17, have the same form as the original bag,
and recursion can be applied.

8.1. Quicksort with the Master-and-Slaves Primitive

The MS-based algorithm is also introduced with Fig. 15. The objects
to be sorted are processes in the multiprocessor and the original bag is an
MS primitive. The elements manifest their presence in the bag by trying to
read from the MS primitive representing the bag.

The first phase, selecting a decision element, is illustrated in Fig. 15.
Selecting a decisi'on element starts with the master element (initially the

select one
Old Master-----il-f

dotted is sorting universe

o

..........................~.."'---_.:-:- .

Fig. 15. Quicksort.

78 DeBenedictis

command(3, smaller, larger)
_----L-...,...,....-.-............. ..'

Fig. 16. Decision element selection.

main program), outside the bag. The master element does a write to one
MS operation of a dummy value into the MS primitive representing the
bag. According to the semantics of write to one each value written is read
only once, hence the read succeeds in exactly one object. The decision
element selection phase ends with one object knowing that it is the decision
element (illustrated by the flag on object 3 in Fig. 15).

The second phase, bag partitioning, is illustrated in Fig. 16. Bag par
titioning starts with the decision element just selected. The decision element
creates two new bags by creating two initially empty MS primitives. The
decision element then formats a message consisting of its key value and
pointers to the two new bags, and does a write to the MS primitive
representing the original bag. All the objects read this message.

When the other objects get this message, they simply compare the key
in the message with their key value and change their membership to one of
the two new bags. They then acknowledge reading the message from the
original MS primitive.

The bag partitioning phase ends at the original decision element when
the IVait for acknowledge succeeds. At this point, there are two bags of

:two sorting universes

Fig. 17. Bag partitioning.

Protocol-Based Programming Primitives 79

/* start being member of new_MS, sort key value */
for (;;) { /* exit loop with break */

old_MS = new_MS; /* read from a new bag */
Iold_MS ? eommand(key, large, small) -- > U* compare-and-switch command */

if (key> my_value) new_MS = large;
else new MS = small;
add_toj~lS(new_MS); /* declare membership in a new bag */
acknowledge_command(old_MS); }

old_MS ? send_to_ oneU* no args */) -- > U* become-a-decision-element command */
large = create_empty_MSO; /* empty bag for larger elements */
small = create_empty_MSO; /* empty bag for smaller elements */
old_MS ! eommand(value, large, small);/* send a compare-and-switch command */
wait_for_command_done(old_MS);
large! send_to_ oneU* no args *I); /* sort larger bag */
small! send_to_oneU* no args *I); /* sort smaller bag */
break; /* sort done for this element */ }]

Fig. 18. Quicksort program in CSP/C.

exactly the same form as at the beginning of the algorithm, but with the
decision elements taking the place of the old controlling element. Recursion
begins by the decision elements doing a send to one of a dummy value to
the MS primitives of the new bags.

Sorting ends when every element is a decision element. I suggest that
the elements to be sorted be initially included in a distributed set and that
the sorting be started by the master program doing a write to all operation.
If each element then acknowledges its read when it becomes a decision
element, a wait for acknowledge in the main program will complete only
when sorting is done.

Figure 18 shows the inner loop of quicksort in C augmented with
eSP-style communication statements. In the code, communication
operations interact with distributed MS objects. Messages of type command
are implicitly broadcasted from the master and collectively acknowledged,
whereas send-to_one messages are transmitted from the master to an
arbitrary slave.

8.2. Asymptotic Execution Time of Set-Based Quicksort

Since there is no universally accepted way of timing multiprocessors,
the asymptotic execution time of the algorithm depends on the
gamesmanship of the analyzer. To analyze quicksort, there are algorithmic
and architectural issues. The choice or design of the timing model (an
architectural issue) is a determining factor in the execution time per level.

The execution time of the complete algorithm is assumed to be the
product of the number of recursion levels and the execution time per level.

80 DeBenedictis

The key to estimating the number of recursion levels is that the output of
the algorithm is a random binary tree. [Assuming no duplicates in the
input data; the result is the same or better if duplicates are allowed.] The
number of recursion levels to sort n elements is simply the height, H n , of a
n node binary search tree. With a very nontrivial proof, Ref. 22 shows that
asymptotically H n = 4.31107". log n as n -+ 00. The order of this quicksort
depends on the height being O(log n).

By analogy to the PRAM model of multiprocessors, quicksort will
have an execution time of O(log n). A PRAM machine is a multiprocessor
with n PEs addressing a common shared memory. Timing analysis assumes
that every PE can access memory in unit time. Set-based quicksort does
not use shared memory, so the model has to be modified. If we look at the
architecture of a scalable shared memory machine such as the
Ultracomputer, (9) we find that each memory access goes through a
logarithmic-depth network. To implement its combining functions, the
network processes addresses and data at each stage. I outlined earlier how
the set operations used in quicksort can be implemented on a logarithmic
depth network with simple protocol processing at each stage. In a cavelier
analogy to the PRAM model, I assign unit cost to the log n information
transmission and processing operations of a tree operation. Execution time
is therefore O(log n) for set-based quicksort, which is the same as quicksort
on a PRAM machine.

Unit cost is assessed to each message transmission, reception, and
handling operation in execution time analysis of other distributed
machines. The cost associated with the logarithmic-depth network
protocols would be O(log n) according to this model. Execution time is
therefore O(log2 n) for set-based quicksort, which the same as common
sorting networks (although the best result for a sorting network is
O(log n)).

If this execution time analysis seems inconclusive, it is partly because
multiprocessor timing models are inadequate. It seems that unit cost is
assigned to whatever primitive the hardware implements---even if that
primitive is costly. If you try enhancing the hardware by making it
programmable, you lose because the cost basis changes. Timing estimates
for algorithms go up even though programs run faster. Hence, I did the
quicksort analysis twice, once with programmable hardware, and once
moving the cost basis. For similar reasons, I avoided the I/O issue
completely. These are topics for further research.

Protocol-Based Programming Primitives 81

Access to
Connect

8.3. The Hardware-Operating System-User Division

Figure 19 illustrates a proposed design where a CPU can interact
efficiently with distributed objects. Distributed objects are accessible in the
address space of the CPU. Each distributed object would respond to
several adjacent memory addresses-like a data structure-with different
addresses corresponding to different functions. For instance, accessing one
address might invoke a connection protocol to a queue, and reading
another address might get data.

Access to a distributed object can complete in several ways. A read
from a nonempty queue could complete immediately, putting the data
values on the bus. An access that invokes a connection protocol could
return immediately, but the function might be executed later. A read from
an empty queue can complete only after the data arrives; the hardware
could delay completion of the access through the facility that accom
modates slow memory, or alternatively the hardware could signal a
memory fault to turn control over to software. If the access path for dis
tributed objects goes through memory management hardware, the
operating system can exert considerable control while retaining fast access.

Figure 20 illustrates a state machine for emulating protocols. The com
binational emulator uptlates state vectors, sometimes using additional input
information, and sometimes generating an output message. The com
binational emulator is generally divided into formal state and data path
parts, like a microcoded CPU. The formal state part in analogous to
microcode-there is a lookup table that describes the progression from one
state to another. The data path part moves data between the input, output,
and a small amount of storage. The formal state part directly controls the
data path part, and the data path part generates a few signals that the
formal state part monitors.

Table IV summarizes the three cycle types of the protocol emulation
hardware. On a CPU access the protocol number comes from the address
bus and is rouied to the state vector memory. This applies the proper state

1
2 Attributes 1-------1

Data Read
3 Write

Fig. 19. CPU memory addressing.

82 DeBenedictis

(sometimes)

message out
data bus

state
out

[diti]
~

tate
In

cycle type

contro

t
combinational

~_,••.rX ra I t messag
in emu a or out

memory

Din

input message
(sometimes)

data bus
(sometimes)

protocol #

A ress
state

vector

Fig. 20. Protocol emulation hardware.

vector to the combinational emulator. The data bus is connected to the
input of the combinational emulator on write cycles, and to the output on
read cycles. When messages are received, the protocol number is derived
from the message header, causing the appropriate state vector to be
updated. For output cycles, the protocol number is supplied by an activity
queue. The activity queue records the current protocol number when a
cycle indicates to the hardware the next cycle will generate output. When
the output bufTer is empty and the activity queue is nonempty, the
hardware runs an output cycle using a protocol number extracted from the
activity queue.

This design is a current research project at Bell Labs, and should be
considered untested. The design should be capable of single cycle execution
of CPU, input, or output functions for any of the protocols discussed in
this paper. This would correspond to M = lOOnS for a 10 MHz clock,
which is a speed improvement of 3000 over the BTL Hypercube. The
current PE design approach is to use a microprocessor for a CPU and
bit-slice components for the protocol hardware. We expect a PE to have
the complexity of two microprocessors and fit on one pc board.

The mere proposal of this design lends some credibility to the idea of a
cost efTective multiprocessor with n between 10K-lOOK. There is now a

Table IV. Protocol Engine Cycle Types

cycle type protocol # from action

CPU
input

output

address bus
input butTer

activity queue

data bus = access(data bus, selected state)
inpuLfcn.(input butTer, selected state)
output = outputJcn.(selected state)

Protocol-Based Programming Primitives 83

commercially available hypercube with n = 1024 using a one-chip CPU. To
achieve my goal, the complexity on the CPU chip would have to double
and n would have to increase by 10-100. Such advances are optimistic but
not unreasonable.

CONCLUSION

A multiprocessor strategy has been proposed. With the strategy,
programmers use programming Plans and scenarios adapted from software
engineering to write functionally correct distributed programs. Rough
execution time estimates can be obtained directly from the programming
Plans and network parameters. Furthermore, a CPU architecture was out
lined to show that protocols are amenable to speed improvements through
hardware assistance. The successful coding of quicksort and circuit
simulation proved the strategy can be effective for writing functionally
correct programs. The fact that analytical execution time estimates for
quicksort yielded linear speedup, and that both analytical and measured
results for circuit simulation revealed good performance for 64 processors
showed the strategy can produce efficient code. Of course, the generality of
the strategy can only be shown with extensive use.

The key concept has been to divide the programming task into two
parts. The lower-level part is the construction of distributed programming
primitives through use of protocols. The higher-level part is the application
of program decomposition techniques, of the psychological variety, to
multiprocessors. Compatibility between these parts requires that the dis
tributed programming primitives be independent of each other. This in turn
required new hardware or operating system structures, including virtually
allocated state vectors, input and output functions, and an activity queue
for state vectors.

REFERENCES

1. A. Karp, Programming for Parallelism, IEEE Computer, pp. 43-57 (May 1987).
2. H. KatseIT, Using Data Partitioning to Implement a Parallel Assembler, in preparation.
3. E. Soloway, Learning to Program = Learning to Construct Mechanisms and

Explanations, Communications of the ACM, pp. 850-858 (September 1986).
4. R. Waters, The Programmer's Apprentice: A Session with KBEmacs, IEEE Transactions

on Software Engineering, pp. 1296-1320 (November 1985).
5. D. Gelernter, Generative Communication in Linda, ACM Transactions on Programming

Languages, pp. 80-112 (January 1985).
6. L. Lamport, A New Solution of Dijkstra's Concurrent Programming Problem, Com

munications of the ACM, pp. 453-455 (August 1974).

84 DeBenedictis

7. L. Rudolph and Z. Segall, Dynamic Decentralized Cache Schemes for MIMD Parallel
Processors, Proceedings of the 11th Annual International Symposium on Computer
Architecture, pp. 340-347 (June 1984).

8. A. Birrell and B. Nelson, Implementing Remote Procedure Calls, ACM Transactions on
Computer Systems, pp. 39-59 (February 1984).

9. A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and M. Snir, The NYU
Ultracomputer-Designing an MIMD Shared Memory Parallel Computer, IEEE Trans
actions on Computers, pp. 175-189 (February 1983).

10. C. Seitz, The Cosmic Cube, Communications of the ACM, pp. 22-33 (January 1985).
II. C. A. R. Hoare, Communicating Sequential Processes, Communications of the ACM,

pp. 666-677 (August 1978).
12. D. Cheriton and W. Zwaenepol, Distributed Process Groups in the V Kernel, ACM

Transactions on Computer Systems, pp. 77-107 (May 1985).
13. E. DeBenedictis, A Communications Operating System for the Homogeneous Machine.

Caltech Computer Science Department Technical Report 4707, (1982).
14. H. Sullivan and T. Brashkow, A Large Scale Homogeneous, Fully Distributed Parallel

Machine 1, Proceedings of the 4th Symposium on Computer Architecture, pp. 105-117
(March 1977).

15. K. Gunther, Prevention of Deadlocks in Packet-Switched Data Transport Systems, IEEE
TransactiollS on Communications, pp. 512-524 (April 1981).

16. A. Danthine, Protocol Representation with Finite-State Models, IEEE Transactions on
Communications, pp. 632-643 (April 1980).

17. A. Wu, Embedding of Tree Networks into Hypercubes, Journal of Parallel and Distributed
Computing, pp. 238-245 (August 1985).

18. B. Ackland, S. Ahuja, E. DeBenedictis, T. London, S. Lucco, and D. Romero, MOS
Timing Simulation on a Message Based Multiprocessor, Proceedings of the IEEE Inter
national Conference on Computer Design, pp. 446-450 (October 1986).

19. S. Lucco, A Heuristic Linda Kernel for Hypercube Multiprocessors, Hypercube Multi
processors 1987, (ed.), M. Heath, SIAM, pp. 32-37 (1987).

20. E. DeBenedictis, Multiprocessor Programming with Distributed Variables, Hypercube
Multiprocessors 1986, (ed.), M. Heath, SIAM, pp. 70-86 (1986).

21. C. A. R. Hoare, Quicksort, Computer Journal, pp. 10-15 (April 1962).
22. L. Devroye, A Note on the Height of Binary Search Trees, Journal of the ACM,

pp. 489--498 (July 1986).

	IJPP 053
	IJPP 054
	IJPP 055
	IJPP 056
	IJPP 057
	IJPP 058
	IJPP 059
	IJPP 060
	IJPP 061
	IJPP 062
	IJPP 063
	IJPP 064
	IJPP 065
	IJPP 066
	IJPP 067
	IJPP 068
	IJPP 069
	IJPP 070
	IJPP 071
	IJPP 072
	IJPP 073
	IJPP 074
	IJPP 075
	IJPP 076
	IJPP 077
	IJPP 078
	IJPP 079
	IJPP 080
	IJPP 081
	IJPP 082
	IJPP 083
	IJPP 084
	IJPP 085
	IJPP 086

