
Protocol-Based Multiprocessors
ERIK P. DEBENEDICfIS·

This short paper describes a programming environment on a hypercube-style
multiprocessor that utilizes protocol-based programming primitives and which has been
used to make an effective circuit simulator. The paper first describes the programming
technique for this environment in terms of programming plan•. Programming plans are
easily understood in terms of protocol. or didributcd programming primitive., the emulation
of which is the primary function of the runtime environment of the multiprocessor. A
description is then given of the programming of the circuit simulator, which is unusually
concise given the irregularity of the problem and the high degree of parallelism achieved.

1. Introduction. Let us start by considering the way that people think about computer
programming from a psychological rather than the usual mathematical viewpoint.

count := 0;
read(x);
while x < > SENTINEL do begin

count := count+1;
read(x);

end

The code shown above represents programming knowledge, or a plan, called the
SENTINEL-CONTROLLED COUNTER-LOOP PLAN [1]. The plan reads a series of values
until it encounters a particular sentinel value indicating the end. The plan tallies the
number of values encountered before the sentinel.

The SENTINEL-CONTROLLED COUNTER-LOOP PLAN is an example of something
that an experienced programmer has used many times, but usually through variants and in
combination with other activities. Here, the counted values are obtained by reading input,
whereas in a variant they might come from an array or a linked-list. A similar plan that
adds a series of values can be imagined by adding the input to a running total, instead of
incrementing the count variable, each time through the loop.

Figure 1 is a picture of a multiprocessor plan called the MASTER-AND-SLAYES, or
SIMD PLAN (so called because the hardware of a SIMD multiprocessor operates this way).

• AT&T Bell La.boratories, Holmdel, New Jersey 07733.

10

PROTOCOL-BASED MULTIPROCESSORS II

The action in this plan starts with the master, who picks a task and makes the slaves work
on the task. When the slaves are all done, the master is notified and it can then perform its
next activity.

An example of this plan is when a person runs a multiprocessor program interactively.
The person is the master and uses the program by repeatedly typing a command to the
program and observing the output. The slaves are the processing elements (PE's) of the
multiprocessor, and they repeatedly input commands from the master, compute something

"-----"'---
multicast primitive

encapsulates processes

FIG. 1. MASTER-AND-SLAYES Plan

in conjunction with the other PE's, and collectively report completion to the master.
Unlike a SIMD computer, however, the MASTER-AND-SLAYES plan is not restricted to
having one master; [2] includes an example where many parts of a program are master for
many other parts.

FIG. 2. Implementation of MASTER-AND-SLAYES

Figure 2 illustrates the information flow inherent in MASTER-AND-SLAYES. The
master broadcasts commands to the slaves, and the slaves participate in some sort of
collective acknowledgement protocol with other slaves, and the master, to indicate
completion.

2. Programming Primitivea and Proto cola. I propose to represent distributed programming
plans, or techniques, as manipulations of programming primitives. To some extent, this is
already done. Multiprocessor algorithms are typically represented as sequences of message
passing operations or accesses to shared memory. Currently, however, two implementations
of one plan on machines with different distributed programming primitives are considered
to be independent pieces of knowledge. I suggest that if an plan is most concisely
represented as, say, broadcasting and collective acknowledgement, then this representation
should prevail even if the target multiprocessor does not have that exact hardware.

When viewed as information flow on wires, programming primitives are nothing more
than protocols. Again, this is done now to some extent. Protocols diagrams can be seen
explicitly in the descriptions of shared memory [3J and RPC [4]. The combining elements in
the fetch-and-add-based (/8a-based) Ultracomputer [5] use a protocol to remember which
18a locations have outstanding requests.

The reader may, for tutorial purposes, consider shared-memory locations and pipes (or
queues) as typical instances of protocols. A protocol is associated with each memory
location in a shared-memory computer, and the programmer interacts with these protocols

12 DEBENEDlCfIS

by issuing read or write requests from any PE. It should be easy to imagine a variant of the
pipe structures found in many conventional operating systems applied to a multiprocessor.
A protocol would be associated with each pipe (or queue) and it could be read from one PE
and written from another.

t.1. Protocol Emulation. The protocol-based multiprocessor executes protocols from a
representation similar to the finite state representation [61. The system, therefore, includes a
scheduler that executes the input function when a message arrives, and executes the output
function when the network can accommodate a message and action is specified by a oIate
vector. I The input function operates on an input message and a state vector, altering the
state vector. The output function operates on a state vector, altering the vector, and
perhaps sending a message. The output function sometimes generates a message when
applied to a state vector and at other times generates ~, indicating no message. As a
pragmatic extension to the finite state concept, the input and output functions help the
scheduler by specifying whether or not the state they return produces requires action.

t.t. Protocol Multiplexing. Every communication in a protocol-based multiprocessor is part
of a protocol that is interpreted by the system. Furthermore, the multiprocessor supports
an essentially unlimited number of independently operating protocols. This facility requires
two things: every message must be tagged with a protocol number to identify with which
protocol the message is associated, and there must be a state vector to record data and state
information about a protocol, for each protocol interacting with a particular PE.

A matter of practical concern arises here. Ease of programming suggests a large virtual
space of protocols of which only a small fraction is used. Also, most protocols interact with
only a few PEs, leaving their state vectors on other PEs in the 0 8tate (initialization state).
For example, protocol numbers of 32 bits are appropriate and so areJ>rograms where only a
half dozen protocols ever leave the 0 state - implying that 6 out of 2 state vectors are in a
non-zero state. This suggests that the system should allocate state vectors on demand and
deallocate them when no longer necessary. A system managed heap, or some similar
structure, is necessary.

PEA PEB PEC

state vector # 1· ..

virtual state
vector #'},.
(in 0 state)

tJ'1 1 I I 1 II ~ I

>W I 2 I I 2 II a I

protocol # 1 protocol #2

FIG. 3. lllustration of Protocol Multiplexing

Figure 3 illustrates protocol multiplexing. The PEs labeled A and B are interacting via
protocol number 1, and B and C via number 2. These two instances of the protocol are
functionally independent. While PE B must have a state vector allocated for each of the
two instances of the protocol operating on that PE, A and C require only one each. In this
case, the virtual protocol state facility avoids allocating memory for these state vectors until
they are accessed, either by message receipt or user program access, and when accessed it
appears in the 0 state. A protocol may interact with more than two PEs, although this is
not illustrated.

9. An Example Protocol. This section illustrates protocol design with a detailed example.

The term ,tote vector is used in the sense of 8. state ma.chine, and ca.n be thought of as a. vector of bits (a. bina.ry
number) or a da.ta structure.

PROTOCOL-BASED MULTIPROCESSORS 13

The example chosen is a simple message-passing implementation oC shared memory. The
example has been chosen because the semantics oC shared memory are well known, and this
implementation is simple iC not eCficient.

real data word
Cor shared location

FIG. 4. Simple Implementation oC Shared Memory

Figure 4 illustrates the chosen approach to shared memory. A protocol and a home PE
(shown as the upper circle) are associated with each memory word. Within the home PE is
a memory word (shown as a rectangle) which represents the actual value oC the shared
memory location. Accesses to this word Crom within the home PE are made by conventional
accesses to this location. Accesses Crom other PEs are done by sending a R (read) or W
(write) message to the home node and waiting Cor an A (acknowledge) message. The
protocol is consistent with memory semantics where the actual read or write occurs at an
unspecified time during the period between the R or W message and the A message.

FIG. 5. Slave Node Protocol

A state transition diagram Cor the protocol executed by non-home PEs is illustrated in
figure 5. The protocol is normally in the idle state. To start a read or write operation the
application program changes the state Crom idle to read or write, writing a data word into
the data part oC the state vector iC appropriate. If necessary, these operations are done in a
critical region to assure they are atomic. The system is inCormed that the state vector is in
an aetive state, indicating that the output Cunction will generate a message, as opposed to a
4>.

When network is ready to accept an output message, which may be immediately or aCter
an unbounded delay, the protocol scheduler will invoke the output Cunction. The output
Cunction will send a R or W message and change the state to wait. The data word is sent in
the data portion oC a W message.

When an A message is eventually received, the input Cunction changes the state to idle
and stores the data portion oC the A message in the data portion oC the state.

/* R, W, or A */
/* originating PE */

/* idle, read, write, or wait */
/* data-to-write or read data */

14 DEBENEDICfIS

The input and output functions and the application program code to do a write for this
protocol (on the non-home PEl are illustrated below in C. Both the input and output
functions accept a pointer to the state vector as an argument; the state vector is a structure
with attributes .tate and data. The input function takes a pointer to a message as an
argument, and the message is a structure containing a data field. When the state vector
returned by either the input or output function is not active, meaning it will not generate
an output message, the function returns a 0, otherwise it does not. The write function uses
the statement activater.) to inform the system, that the state vector is in a condition where
it will generate an output message. Finally, the identifiers idle, read, write, and wait are
manifest constants representing the different states of the protocol.

struct state_vector {
int state;
int data; } ;

struct message {
char type;
int origin;
int data; }

input_function(s, m) state_vector *s; message *m; {
s- >state = idle; /* state part of state vector */
s- > data = m- > data; /* data part of state vector */
return(O); /* indicates no output message */

}

output_function(s) state vector *s; {
if (s- >state == read)

/* send R message */
else if (s->state == write)

/* send W message with s- >data */
else return(O);
s- > state = wait;
return(l);

}

write(x, s) state_vector *s; {
/* enter critical region */
s->data = x;
s- > state = write;
activate(s);
/* leave critical region */
while (s- > state != idle) ;

}

/* CPU requested read */

/* CPU requested write */

/* indicates no output message */
/* change state */
/* indicates output message */

/* data part of state vector */
/* request write */
/* put on activity queue */

/* busy wait until done */

4. A Circuit Simulator. Integrated circuit simulation is an important task in industry, and
may be the most computing intensive computer-aided design task. Circuit simulations
which use exact transistor models and accurately model the analog functional and timing
behavior of integrated circuits are currently applied to portions of integrated circits with
around 100 transistors. It is important to industry, however, that whole integrated circuits,
containing perhaps 100,000 transistors be simulated. Whole integrated circuits can only be
simulated by abstracting the analog and timing behavior of many small portions of the
circuit and then functionally simulating the entire circuit on the basis of these abstractions.
Functional simulation is relatively inaccurate at modeling timing and analog properties.
This section discusses a distributed algorithm for a simulator midway between circuit and
functional simulators. The simulator discussed here [71 allows larger circuits to be
simulated as part of the integrated circuit design cycle that has been previously possible.

4.1. Uniproce..or Circuit Simulation. The type of simulator discussed here divides the
simulation into into intervals (~t) and repeatedly computes the voltage on each wire at

PROTOCOL-BASED MULTIPROCESSORS 15

time t+ ~t based on voltages at time t.

Cor each timestep
Cor each element

update voltages on output wires

The straightCorward plan shown above must be merged with (what I call here) the
SIMULTANEOUS UPDATE PLAN. This plan assures that the value computed Cor a wire at
time t+~t is actually based on voltages at the input oC the circuit element at time t.
Simply associating a variable with each wire to hold its voltage does not work. When a wire
goes Crom the output oC one element to the input oC another, and the first element happens
to be updated first, then the second element is updated using the new voltage value. A
common uniprocessor version oC the SIMULTANEOUS UPDATE PLAN associates two
variables with each wire, one Cor an old value and one for a new value. When each circuit
element is updated values Crom the old variables are used to compute values Cor the new
variables. A second phase iterates over each circuit element a second time moving the new
variable to the old variable.

Cor each element
new voltage = update(old voltage}

Cor each element
old voltage = new voltage

FIG. 6. Multiprocessor Simulator with Queues

4.2. Multiprocessor Circuit Simulation. Figure 6 illustrates a multiprocessor plan Cor circuit
simulation. The SIMULTANEOUS UPDATE PLAN is managed by the use oC queues which
are written by circuit elements with outputs, and read by circuit elements with inputs.
DiCCerent circuit elements may be on diCCerent PEs with only the requirement that the PEs
reCer to the wire by a single protocol number. If there is synchronization to assure that all
PEs are computing Cor the same value oC t, then there are a maximum oC two voltage values
in a queue.

Figure 7 illustrates the MASTER-AND-SLAVES plan in the context oC the circuit
simulator. The deCinition oC the circuit simulation problem requires that there be a person
running the program issuing commands such as simulate for 100 ns. Such a command must
be delivered to every SLAVE with circuit elements, which simulate until done, and then
participate in a collective acknowledgement directed toward the MASTER. The MASTER
might then decides iC more simulation is in order or iC the answer is to be printed.

5. Conclu.ions. The approach presented in this paper addresses the spectrum oC Issues

16 DEBENEDICfIS

distributed _
set of SLAVES

FIG. 7. Multiprocessor Simulator with Queues

between technology and programming technique consistently and with thought to future
developments. It should be possible to write programs and build machines with up to
100,000 PEs and retain adequate efficiency. Research not reported here has explored
computer architectures where protocol emulation is an intrinsic function of the hardware.
The communication to computation cost ratio of a machine with such an architecture would
be substantially lower, and would therefore support a broader class of applications (such as,
for example logic simulation instead of just circuit simulation). An evolution in
programming primitives is occurring in my laboratory as more programs are written; certain
programming primitives (protocols) see increasing usage (and are enhanced) whereas others
see decreasing usage (and are abandoned). There is a possibility that a standard set of
distributed programming primitives will eventually emerge, in the same way as conventional
computer hardware has standardized on 2's complement integers, pointers, and floating
point as data types.

6. References.

[1] E. SOLOWAY, Learning to Program = Learning to Construd Mechanisms and
Explanations. In Communications of the ACM, September 1986. Pages 850-858.

[2] E. DeBENEDICTIS, Multiprocessor Programming with Distributed Variables. In M.
HEATH (ed.), Hypercube Multiprocessors 1986 ,August, 1985, pages 70-86.

[3] L. RUDOLPH, Z. SEGALL, Dynamic Decentralized Cache Schemes for MIMD Paral/el
Processors. In Proceedings of the 11th Annual International Symposium on Computer
Architecture, June 1984. Pages 340-347.

[4] A. BIRRELL and B. NELSON, Implementing Remote Procedure Cal/s. In ACM
Transadions on Computer Systems, February 1984. Pages 39-59.

[5] A. GOTTLIEB, R. GRISHMAN, C. KRUSKAL, K. McAULIFFE, L. RUDOLPH, M.
SNIR, The NYU Ultracomputer - Designing an MIMD Shared Memory Paral/el Computer. In
IEEE Transadions on Computers, February 1983. Pages 175-189.

[6] A. DANTHINE, Protocol Representation with Finite-State Models. In IEEE Transadions
on Communications, April 1980. Pages 632-643.

[7] B. ACKLAND, S. AHUJA, E. DeBENEDICTIS, T. LONDON, S. LUCCO, D. ROMERO,
MOS Timing Simulation on a Message Based Multiprocessor. In Proceedings of the IEEE
International Conference on Computer Design, October, 1986, pages 446-450.

	HM1987010
	HM1987011
	HM1987012
	HM1987013
	HM1987014
	HM1987015
	HM1987016

