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ABSTRACT 

Hypercubes are one of seveal architectures trying 
to eliminate the Von Neumann Bottleneck without 
drastically changing the appearance of computers. 
Examining these projects reveals that certain common 
approaches have been successful for all the projects 
even though they were independently motivated. 
This paper examines these approaches, which are 
named modular and protocol programming. To show 
the completeness .of these methods, the paper shows 
how to build a system that could be used like a 
conventional computer but runs faster due to its 
transparent use of parallelism. 

INTRODUCTION 

It will be shown that parallel systems have their 
algorithms expressed in two different ways. The bulk 
of the code for a parallel program is written using 
methods optimized for human efficiency in coding. 
In the code created by these methods, asynchronous 
events have no bearing on control flow and the result 
is deterministic. I call these methods modular 
parallel programming, and this code often looks like 
Pascal programs. Parallel programs also have a 
portion that exploits asynchrony and is generally non- 
deterministic. I call this portion protocol-based 
parallel programming, and it is most often found in 
the programming primitives. Examination of many 
computing systems reveals algorithms of both types, 
but perhaps more significantly, that they are isolated 
from each other. 

Conventional computers -- VAX’s, for example -- 
are programmed in Pascal, C, Fortran, Unix (TM), 

etc. When writing programs, the programmer thinks 
deterministically; he assumes that the computer will 
execute exactly the same sequence of statements 
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when run multiple times. The hardware is different, 
however. The underlying hardware and operating 
system typically employ a cache, paging hardware, and 
interrupts which are asynchronous and non- 
deterministic. While the Pascal statement I:=I+l 
will produce the same result run after run, the 
hardware may access cache, main memory, or disk -- 
the choice being non-deterministic. When a 
microcode designer writes the cache management 
routines, he programs using non-deterministic 
protocol programming, but a major part of his job is to 
provide a consistant memory abstraction so that Pascal 
programmers can write deterministic modular 
programs. The concept is to look at an algorithm and 
ask whether the programmer had to worry about non- 
determinism, not whether the actual execution, 
viewed in minute detail, is deterministic. 

It is said that the exception proves the rule, so 
consider the following exception. Operating systems 
often have ‘hooks’ that allow a user program to trap 
certain operating system interrupts. Asynchronous 
operating system events can thereby invoke a 
subroutine in the user program -- introducing 
asynchrony and non-determinism. In using this the 
user will typically make locks from memory locations 
to assure that the asynchrony is contained within a 
small fraction of the code, however. These apparent 
exceptions are consistent with a loose interpretation 
of the rule. The fact that a name like ‘hooks’ is given 
to the facilities shows that they are a recognized 
exception to usual practice. Furthermore, the use of 
locks is a good faith attempt to keep asynchrony out 
of the conventional code. 

Other Examples 

Figure 1 gives other examples of modular and 
protocol programming in existing systems. 

Shared memory multiprocessors are generally 
programmed in Pascal-like languages with a fork-join 
primitive added. Forked processes may finish 
asynchronously and thereby make termination order 
non-deterministic. The behavior of the join primitive 
to the main program is independent of the 
termination order, however. Therefore, while the 
fork-join primitive is exposed to non-determinism, 
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Figure 1. Examples of Structured and Unstructured 

Programming. 

it has the effect of insulating higher-level code from 
non-determinism.. 

Modern shared-memory hardware presents the 
user with a simple deterministic abstraction of 
memory (1) -- often with a gimmick, such as fetch- 
and-add (2) -- while operating with a non- 
deterministic protocol internally. 

Distributed computers -- a network of SUNS, for 
example -- are programmed by conventional C 
programs on-each processing element (PE). The 
operating system uses elaborate protocols such as 
NFS (Network File System) and rlogin (remote 
command execution and login) to create filesystem 
and pipe abstractions. 

Hypercubes are commonly programmed with the 
loosely synchronous paradigm by the user, but the 
message passing kernel is quite asynchronous. A topic 
of this paper is the development of a more 
sophisticated set of programming primitives for 
hypercubes. 

The final example is a parallel programming 
language (3) apparently developed to allow most 
convenient coding of message-based parallel 
programs. This language has two kinds of processes, 
ordinary and liason, with different syntax for each. 
Ordinary processes are independent and described as 

“sequential programs,” whereas liason processes have 
an unusual structure for creating customized 
communication primitives. It is apparent that the 
division of algorithms into modular and protocol 
parts transcends the software-hardware boundary. 

Protocol Programming 

A protocol for the purposes of this paper is a 
collection of state machines coupled with messages 
(4). State machine and protocol design are ad hoc in 
comparison to computer programming, although there 
is some use of advanced methods. Specifically, 
simple state machines and protocols can be 
automatically designed and verified (5). There are 
high level programming languages, however -- such as 
Esterel(6). Esterel is much less popular than 
Pascal -- a popular modular programming langugage. 

The top part of figure 2 shows a protocol which has 
three states on each of the sender and receiver. The 
two state transition diagrams interact: the 
transmission of an R message in the left causes the 
state transition associated with receiving an R message 
on the right. Also illustrated is a single state 
diagram representing the combined behavior of the 
two protocols. When protocols with P and Q states 
are combined, the resulting protocol may have as 
many as PQ states. 

Any distributed algorithm can be represented as a 
protocol, making it a complete representation. 
Describing distributed algorithms as protocols has the 
advantage that the representation method will not 
prevent the specification of the optimal algorithm. 
The disadvantage to protocol representations is that 
there is a complexity explosion as protocols are 
combined. 

Modular Programming 

There are methods that avoid the complexity 
explosion and thereby assist humans in constructing 
large, functionally correct, programs in reasonable 
time. T’he application of these methods to 
distributed systems is referred to here as modular 
programming. For conventional computers, these 
methods are sometimes called modular programming 

as many as PQ states 

Figure 2. Protocol Programming. 
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(7), which is closely related to the well known object- 
oriented programming (8). Some people define the 
phrase structured programming as a style of 
programming devoid of goto statements, while others 
define it as that which makes coding efficient in human 
terms; the latter definition of structured 
programming is the same as my definition of modular 
programming, in this paper. 

The upper left part of figure 3 shows a programmer 
coding subroutine X. X is considered to be of the 
largest size that a programmer can reason with. The 
programmer can similarly code subroutine Y. 
Significantly, however, the programmer can also 
conceptualize a main program that uses calls to both 
these subroutines along with other code. Even though 
the entire program is three times as large as the 
programmer is comfortable reasoning with, the coding 
is successful because it can be divided into chunks. 
This compares favorably to protocol programming 
where the complexity of three programs of 

complexity x is x3. 

Figure 3. Modular Programming. 

The language must have a particular property for 
this type of abstraction to work. It must be possible 
to write and debug subroutines in isolation and yet be 
assured that they will work properly when combined 
with others. Chunks of code should be axiomatically 
independent except for certain carefully designed 
interfaces. The most common such interfaces are 
subroutine arguments, and local and global variables. 

The point of all this is that we are using divide- 
and-conquer to simplify the design of a 
multiprocessor system. The protocol-like, 
asynchronous, and non-deterministic parts will be 
relegated to being programming primitives. The bulk 
of the code constituting an application will be 
structured conventionally. Since humans cannot write 
large unstructured programs, there is no need for a 
machine that can execute them. 

Programming With Both Methods 

Investigators who have studied how people program 
conventional computers from a psychological 
standpoint suggest that mini programming scenarios, 
or Plans, are important. Figure 4 illustrates the 
Sentinel-Controlled Counter-Loop Plan (9). This 

Plan reads a series of values until it encounters a 
particular value (SENTINEL) indicating the end. 
The Plan tallies the number of values read. The 
code illustrated is claimed to be an instance of an 
item of abstract knowledge known by Pascal 
programmers; a skilled programmer might know a 
hundred Plans of this type and composition rules for 
them. The statement “count := count + 1;” is 
understood by the programmer to be a place where 
any statement -- indeed another Plan -- can be 
inserted. The Plan shown in figure 4 is sequential 
and therefore probably inefficient on a 
multiprocessor. However, the concept of using Plans 
to conceptualize programming is effective for 
multiprocessors, if the right toolbox of parallel 
Plans could be devised. 

count := 0; 
read(x); 
while x <> SENTINEL do begin 

count := count+l; 
read(x); 

end 

Figure 4. The Sentinel-Controlled Counter-Loop 
Plan. 

Now consider a multiprocessor Plan. Figure 5 
illustrates the Integer Dispatch Plan, which is a 
multiprocessor Plan inspired by Ultracomputer 
programming (2). The action is the evaluation of 
another Plan, coded as f(x) for the integers 1.. k. The 
operation involves a distributed programming 
primitive that models the take a number mechanism 
often found in a bakery. The customers in a bakery 
represent the PEs of the multiprocessor which do 
work. When a customer enters the store he takes a 
number i from the take a number mechanism. When a 
number exceeds k, the Plan is complete and the 
customer leaves never to return. Otherwise, the 
customer computes f(x) and takes another number. 
Figure 5 illustrates this algorithm in terms of rake a 
number -- a programming primitive -- the behavior 
of which is discussed next. 

PEl: while (i = take-a-number <= n) 

f(i) 
PE2: while (i = take-a-number <= n) 

f(i) 
. . . 

Figure 5. Integer Dispatch Plan. 

Take a number is easily implemented with the 
Ultracomputer fetch-and-add (f&a) primitive. 
F&a(L, V) on memory location L causes its value to 
be incremented by value V, and the original value of 
V to be returned as the value of the f&a. The 
Ultracomputer has sophisticated hardware to assure 
fast operation of this primitive even when many PEs 
are operating on the same location simultaneously. A 
moment of thought reveals that f&a(T, 1) is 
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appropriate for take a number, where T is a temporary 
memory location, initially 1, belonging to the Plan. 

The Integer Dispatch Plan is straightforward to 
understand when coded with f&a, but would be 
impenetrable if coded with messages. The code on 
each PE is a simple &ile loop with an interaction 
with a distributed primitive: it is not asynchronous. 
The protocol for the f&a primitive -- with a 
combining network -- includes the receipt and 
retransmission of messages from nodes which are 
computing f. To code this behavior with messages 
would require periodic polling or asynchronous 
interrupts. Therefore, this example illustrates a 
programming task easily coded by separating the 
modular and protocol portions, but which would be 
difficult to code otherwise. 

PROGRAMMING PRIMITIVES 

Let us consider distributed programming 
primitives by first considering the ideas of others. 
Recent shared memory multiprocessors employ 
snooping caches and multiple distributed primitives. 
The snooping cache projects a memory abstraction to 
the programmer when in fact, the underlying hardware 
works differently. 

Many recent shared memory machines have both a 
regular memory and a second, special memory. The 
second memory in superminicomputers support 
software locking directly, and is fetch-and-add for 
IBM’s RP3. Because the behavior of fetch-and-add 
memory is so complicated, its design could be 
considered ‘programming’ rather than ‘logic design.’ 

Distributed computing systems have an elaborate 
message-based protocol -- NFS, for example -- 
that makes a disk equally accessible on all the 
machines on the network. This is equivalent to saying 
that a user can run a program on an arbitrarily 
selected CPU with no change in behavior. 

Three precedents are established by this 
examination of distributed primitives. First, global 
naming conventions seem popular -- shared memory 
machines have global addresses for accessing 
primitives, and distributed computing systems have 
global file names. Second, there is precedent for 
presenting the user with an abstraction different from 
what the electronics provides directly -- memory, 
fetch-and-add, and disk files are implemented with 
messages. FinalIy, distributed primitives are 
developed with attention to programmers’ needs. 
Shared memory systems with different kinds of 
primitives give the programmer a choice. 

BTL Hypercube Software System 

The BTL Hypercube has software that provides the 
programmer with an enhanced set of primitives. The 
BTL Hypercube is a experimental hypercube 
constructed at Bell Labs in 1984 with a similar design 
to commercial hypercubes. Experimental system 
software and applications were developed for this 
machine, which are reported in the literature (lo- 

15). There is another project at Bell Labs to develop 
hardware with similar functionality -- which is 
described later. 

The operating system for the BTL Hypercube 
supports the distributed primitives illustrated in 
figure 6 as first-class objects. In addition, a 
programmer can develop primitives for inclusion in a 
single application, or as an addition to the operating 
system. The programmer can therefore choose the 
most appropriate primitives for a given application. 

Tvues of Distributed Primitives 
Queues 
Master-Slave Objects 

(control distribution+collective acknowledge) 
Synchronizers 
Distributed Additron Objects 

(fetch and add) 
+ single application primitives 

Figure 6. Primitives on BTL Hypercube. 

BTL Hypercube software supports an tremendous 
number of instances of these primitives, as 
illustrated in figure 7. The PE has access via 
subroutine calls to primitives of up to 256 different 
types, and up to 4 billion independent instances of 
each type. The operating system has a table with an 
input function, output function, and state vectors for up 
to 256 different protocol behaviors. Protocols are 
installed at program initialization time by presenting 
to the operating system functions for input and 
output state transitions (protocol behavior) and a 
chunk of memory for demand allocation of state 
vectors (protocol instances). The software has a 
virtual distributed primitive facility where memory is 
allocated for each of the 4 billion protocol instances 
on its first use. Each protocol instance is uniquely 
identified in the entire multiprocessors by a global 
names consisting of its tvne and instance numbers. 

subroutine I sync” I 
access 

rp;1 r+Jf!F- 

232 instances 

I- 

type 3 

type 2 

i I type 1 
256 types 
maximum 

Figure 7. Arbitrary Number of Primitives. 

All primitives are independent, which prevents 
spurious system crashes when modules are combined - 
- as may happen with some commercial hypercubes. 
When two subroutines are combined on some 
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Figure 8. BTL Hypercube System Operation. 

commercial hypercubes, there is a possibility that the 
buffer memory in some PE might overflow, causing 
deadlock and a system crash. 

The operation of the BTL Hypercube’s software 
system is illustrated in figure 8. Each primitive is an 
arbitrary finite state protocol between all the PEs in 
the multiprocessor, addressed by a global name, and 
defined by input-output functions and a state vector. 
When a message arrives, the operating system decodes 
the protocol type and instance to identify the 
primitive’s input function and state vector. If the 
particular primitive has not been previously accessed 
on that PE, a state vector is allocated from a freelist 
of state vectors. The operating system then invokes 
the input function, which modifies the state vector. 
Sometimes this is the end of the story, at other 
times the appropriate response to the input message 
is for another message to be sent in reply or to 
another PE. If a message is to be sent, the operating 
system invokes the output function on the state 
vector -- when the network is ready to accept input. 

Joe Koszarek has a project which generally 
incorporates some of these features into hardware, 
and this project is described in detail in the paper 
Hardware Support for Distributed Objects in a 
Hypercube, elsewhere in this volume. In summary, 
Joe’s machine uses special purpose hardware to 
execute the protocols associated with primitives. 
State vectors are in special memory, and the input 
and output functions are in microcode. Finally, the 
interface between the structured portion of an 
application and the primitives are by memory 
accesses, rather than subroutine calls. Each primitive 
is assigned several memory addresses in the address 
map of the main CPU. To access a primitive, the CPU 
does a memory read or write from the appropriate 
address. The special purpose hardware may delay the 
memory access by at most a few cycles while 
processing the access. The hardware version is much 
faster than the software version. 

CODING-EFFICIENT PARALLEL PROGRAMMING 

The way people think determines computer 
programming and not vice-versa. To illustrate this 
point, consider the following tongue-in-cheek 
example: 

potential hypercube user: I want to solve a 
problem on a hypercube which I describe in such- 
and-such a way. 

hypercube guru: Your conceptualization of the 
problem is wrong. Come back when you can 
formulate it in terms of bees flying near a 
beehive under the influence of artificial forces. 

The potential user seldom comes back. This is a 
clear example of hyperbole because hypercubes are 
not programmed with bees, beehives, and artificial 
forces. However, the methods of hypercube 
programming -- multiple computers, loosely 
synchronous programming, and messages -- may be 
equally ridiculous to a user accustomed to 
programming with mathematical operations, 
statements, and subroutines. 

To avoid scenarios like the one above, there must 
be compatibility between the abilities of the user and 
the machine. There is some consensus that 
multiprocessors will fail to be compatible in some 
ways -- dusty decks of code will not run, and new 
languages will have to be developed. I will show here 
that the thought processes that programmers use to 
translate problems into programs can be similar, 
however. I will also show that operating systems can 
be exactly the same -- which is important since most 
people access computers only through operating 
system commands. 

Conventional computers have different 
programming languages with different features. Every 
computer language is based on a small set of language 
features upon which a tremendous amount of 
programming experience can be developed. 
Sometimes a small change in the features will result 
in a tremendous change in programming experience -- 
a person can be a good LISP programmer but a poor C 
programmer. There is a major class of languages that 
are similar -- Fortran, Basic, Algol, Pascal, and PLL 

(FBAF’P’) -- to name a few. These languages have 
many of the same features -- and perhaps not 
surprisingly, programming skill in one language often 
can be applied to another. My suggestion is to apply 
features from this class of languages to parallel 

‘1 got this term from Alan Perlis -- before the popularity of 
C -- which is now one of FBAPP’s most popular members. 
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machines. 
There are four additional language features which, 

in my judgement, would make multiprocessors 
FBAPP-like. There many other features that already 
apply to hypercubes -- because hypercubes use 
Fortran and C as base languages, a good set of 
primitive data types are available, for example. It 
can only be conjectured that there are only four more 
features needed and that these are the correct ones: 
to prove the conjecture requires building a hypercube 
based on these features, waiting a decade, and seeing 
what people think about it. The four features are 
listed in figure 9, along with feature “etc.” to 
illustrate tentative nature of the list. 

Subroutines + Hierarchical Composition 

The Work of Others 

The common programming paradigm for 
hypercubes -- named loosely synchronous by Caltech - 
- provides a particular kind of program structuring. 
In this paradigm, the hypercube PEs all enter a 
computational phase at the same time. When done 
computing, the PEs communicate and synchronize by 
sending and receiving a fixed number of messages. 
There is some master code which is invoked during 
the synchronization phase: this code may be on one 
PE or may be redundantly executed with the same 
input data on every PE, or both. The cycle repeats 
until the master code decides the program is done, at 
which point all PEs exit together. 

This paradigm has one level hierarchical 
composition. PE programs (the subprograms), one 
per PE, can be combined into a master program (the 

Output and input 
connected at 

Sends to eriecution time. 

variable output. 

Receives from 
variable input. 

el 

Figure 10. Parallel Communication Channel. 

calling program). The method is limited because 
master programs cannot be combined into other 
master programs, except by running them sequentially. 

Distributed computer systems offer a form of 
control parallelism through the piping facility of the 
Unix rlogin command. If a network has machines 
named ml, m2, and m3, then the Unix pipeline 
command mt eqn 1 m2 tbl 1 m3 troff will run programs 
eqn, tbl, and troff on the three machines in parallel. 
The rlogin facility will route the output of each 
program to be the input of the next program in the 
sequence. 

This paradigm also has a one level structure, but 
also has scoped variables and separate compilation. C 
programs can be combined into pipeline programs 
which are executed in parallel. The method is 
restricted however, by the fact that the pipeline 
language is much weaker than C. While it is possible 
to combine pipeline programs into larger pipeline 
programs, the pipeline language cannot be considered 
general purpose in any sense of the word. Pipes are a 
communication facility represented by variables (file 
descriptors) local to a program and its subprograms. 
Fir&y, the method is completely dynamic: no 
compilation or linking is required to put programs 
together. 

The Ncube Axis hypercube operating system has an 
interesting combination of these two methods, but it 
is also limited. A Ncube hypercube can run several 
programs simultaneously through space sharing. It is 
possible for a parallel main program to run two 
parallel subroutines. This would appear to be the 
desired behavior, but on the Ncube system, programs 
can send messages only to other PEs in their subcube, 
and to the host. Interactions between a parallel 
program and a parallel subroutine would therefore 
have to go through the host. Of the four language 
features discussed, Axis has general hierarchical 
composition on the host, subroutine arguments, and 
local scoping for message destinations. 

In summary, the various multiprocessor projects 
have addressed all four of the language features 
listed, but never all at once. Since programmers use 
each of these features many times in each application, 
absence of a single feature will cripple a programming 
system. For this reason, T’suggest putting all the 
features into a single system. 

Parallel Communication Channels 

My suggestions on parallel program structuring are 
summarized in the next few paragraphs, and are 
described in more detail in the paper Distributed 
Programs and Subroutines for Multiprocessors, 
elsewhere in this volume, Extending the Axis 
model, figure 10 illustrates two parallel programs 
which are separately compiled yet able to 
communicate in parallel. In the illustration, one 
program does output to a distributed variable named 
output (distributed variables are written in 
boldface). A distributed variable is a symbolic 
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Conventional Computer Multiprocessor 1 
memory for comm. parallel comm. channel 
memory for storage 
variable 

memory 
distributed variable 

local variable 
global variable 
subroutine argument 

Figure 11. Analogies. 
representation of a parallel communication channel. 
At run time the operating system binds the output 
variable of one program to the input variable of 
another program. Messages directed to output are 
sent directly to the appropriate PE of the other 
program. 

It seems apparent that parallel communications 
channels are analogous to memory locations in 
conventional computer languages. Figure 11 
illustrates some derived analogies. Memory in a 
conventional computer is sometimes used for 
communication between parts of the hierarchical 
control structure. Since different parts of the 
hierarchy may appear on different PEs, the analogy of 
memory for this purpose must involve distributed 
programming primitives. This is not meant to imply 
that all memory on a conventional computer is to be 
replaced by distributed programming primitives: 
memory on a conventional computer is sometimes 
used for storage of intermediate results, and 
multiprocessors have memory for the same purpose. 
A variable is a symbolic abstraction of a memory 
location in a conventional computer, and I use the 
term disfributed variable to name the symbolic 
abstraction of a parallel communication channel on a 
multiprocessor. Conventional computer languages 
have scoping rules for variables -- distinguishing 
between local and global variables and subroutine 
arguments. Proper variable scoping is known to be 
important in language abstractions. The next two 
sections illustrate distributed variables in local and 
global contexts. 

Local Variables 

Figure 12 shows a use of a parallel communication 

channel represented by a distributed variable. The 
left part shows a shell program (a sequence of 
commands for the Unix user interface) which is 
running a pipeline subprogram. The pipeline runs 
programs sl and s2, connecting output to input. The 
shell program creates a variable called pipe and 
passes a reference to it to the two subprograms. The 
symbolic representation of pipe is interpreted at run 
time to allow messages to be sent from sl to s2. A 
second shell program, illustrated on the right, runs a 
second pipeline program. This shell creates a 
different pipe. The result is that the two pipelines 
operate independently, as desired. 

Global Variables 

Figure 13 shows a global distributed variable acting 
as an access point to a disk subsystem. At boot time, 
the operating system creates a distributed variable 
for disk accesses and passes reference to this to the 
parallel disk subsystem. The shell on the left and 
the 1s command (Unix directory listing) are given 
access to the variable disk. The shell on the right and 
its 1s command likewise inherit the same variable. 
The two 1s programs therefore access the same disk 
system, which is the desired behavior for a 
timesharing system. 

In this example, the distributed variables have 
three functions: they represent the multiple 
communication channels that result from connecting 
parallel programs; they channel the data directly 
from source to destination, avoiding a bottleneck by 
following the inheritance path to the operating 
system; and they must convey enough information to 
the disk subsystem in order to indntify where the 
reply should be sent. 

The previous example made it easy for distributed 
programs to send messages to parallel disks. 
However, messages may not be the most convenient 
interface. Standards for user interfaces to operating 
systems require specific semantics for input and 
output -- such as a common read/write pointer. It 
would be possible to implement these semantics in 
the parallel communication channel if protocol-based 
distributed programming primitives were used 
instead of messages. 

‘-ligyll+ 
Figure 12. Parallel Local Variable. 
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parallel 
disk system 

Figure 13. Parallel Global Variable. 

CONCLUSIONS 

With the methods outlined, we can construct a 
parallel system that has the same behavior as Unix 
pipelines. Pipelines consist of programs and 
communications channels, and we have parallelized 
both. Methods have been presented for parallel 
access to disks which also share disks appropriately 
for a timesharing environment. The execution time 
of such pipelines could be fundamentally faster than 
current uniprocessor Unix systems. Specifically, the 
runtime of a pipeline on a conventional Unix system 
is proportional to the number of i/o bytes and 
instruction executions. In a parallel system as 
outlined here, both i/o and instructions can be done 
concurrently. This demonstrates my view of how 
hypercubes will be used like conventional computers, 
but will run faster due to their transparent use of 
parallelism. 

Unix pipelines, even when the connections are 
parallel, are less general than subroutines in 
conventional languages. This paper outlined how 
distributed variables could be used to implement 
variable scoping in a hierarchical distributed program 
in a way similar to several popular languages. 

Three immediate suggestions for improvements to 
hypercubes were given. Enhanced primitives can be 
coded in software. These are compatible with the 
current ‘loosely synchronous’ programming paradigm, 
but may make some programs easier to code because 
the programmer has a richer set of communication 
primitives available. This is not a trivial addition 
because the behavior of enhanced primitives cannot 
generally be added to ‘loosely synchronous’ programs 
by subroutines. Second, hypercube hardware can be 
enhanced to assure independence of communication 
operations, and to improve the speed of programming 
primitives. Finally, program structuring methods can 

be used to allow composition of parallel programs. 
As a first step, ‘loosely synchronous’ programs can be 
combined with others and with system software -- 
disk subsystems for example. As a second step, 
multiple user programs can be combined. 
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