
Multiprocessor Architectures are Converging
Erik P. DeBenedictis

AT&T Bell Laboratories
Holmdel, NJ 07733

ABSTRACT

Hypercubes are one of seveal architectures trying
to eliminate the Von Neumann Bottleneck without
drastically changing the appearance of computers.
Examining these projects reveals that certain common
approaches have been successful for all the projects
even though they were independently motivated.
This paper examines these approaches, which are
named modular and protocol programming. To show
the completeness .of these methods, the paper shows
how to build a system that could be used like a
conventional computer but runs faster due to its
transparent use of parallelism.

INTRODUCTION

It will be shown that parallel systems have their
algorithms expressed in two different ways. The bulk
of the code for a parallel program is written using
methods optimized for human efficiency in coding.
In the code created by these methods, asynchronous
events have no bearing on control flow and the result
is deterministic. I call these methods modular
parallel programming, and this code often looks like
Pascal programs. Parallel programs also have a
portion that exploits asynchrony and is generally non-
deterministic. I call this portion protocol-based
parallel programming, and it is most often found in
the programming primitives. Examination of many
computing systems reveals algorithms of both types,
but perhaps more significantly, that they are isolated
from each other.

Conventional computers -- VAX’s, for example --
are programmed in Pascal, C, Fortran, Unix (TM),

etc. When writing programs, the programmer thinks
deterministically; he assumes that the computer will
execute exactly the same sequence of statements

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

when run multiple times. The hardware is different,
however. The underlying hardware and operating
system typically employ a cache, paging hardware, and
interrupts which are asynchronous and non-
deterministic. While the Pascal statement I:=I+l
will produce the same result run after run, the
hardware may access cache, main memory, or disk --
the choice being non-deterministic. When a
microcode designer writes the cache management
routines, he programs using non-deterministic
protocol programming, but a major part of his job is to
provide a consistant memory abstraction so that Pascal
programmers can write deterministic modular
programs. The concept is to look at an algorithm and
ask whether the programmer had to worry about non-
determinism, not whether the actual execution,
viewed in minute detail, is deterministic.

It is said that the exception proves the rule, so
consider the following exception. Operating systems
often have ‘hooks’ that allow a user program to trap
certain operating system interrupts. Asynchronous
operating system events can thereby invoke a
subroutine in the user program -- introducing
asynchrony and non-determinism. In using this the
user will typically make locks from memory locations
to assure that the asynchrony is contained within a
small fraction of the code, however. These apparent
exceptions are consistent with a loose interpretation
of the rule. The fact that a name like ‘hooks’ is given
to the facilities shows that they are a recognized
exception to usual practice. Furthermore, the use of
locks is a good faith attempt to keep asynchrony out
of the conventional code.

Other Examples

Figure 1 gives other examples of modular and
protocol programming in existing systems.

Shared memory multiprocessors are generally
programmed in Pascal-like languages with a fork-join
primitive added. Forked processes may finish
asynchronously and thereby make termination order
non-deterministic. The behavior of the join primitive
to the main program is independent of the
termination order, however. Therefore, while the
fork-join primitive is exposed to non-determinism,

0 ACM 1988 0-89791-278-0/88/0007/0013 $1.50

13

Modular Protocol
I

Conventional
Computer

Shared Memory

Distributed Computer C, Pascal

Hypercube “loosely
synchronous”

Parallel Language process
COrdered Ports)

C, Pascal, Unix Cache
Paging
Memory

C, Pascal+ Interrupts
fork-join Kinds of

Shared Mem.
NFS
rlogin
message
kernel
liason
process

I
Figure 1. Examples of Structured and Unstructured

Programming.

it has the effect of insulating higher-level code from
non-determinism..

Modern shared-memory hardware presents the
user with a simple deterministic abstraction of
memory (1) -- often with a gimmick, such as fetch-
and-add (2) -- while operating with a non-
deterministic protocol internally.

Distributed computers -- a network of SUNS, for
example -- are programmed by conventional C
programs on-each processing element (PE). The
operating system uses elaborate protocols such as
NFS (Network File System) and rlogin (remote
command execution and login) to create filesystem
and pipe abstractions.

Hypercubes are commonly programmed with the
loosely synchronous paradigm by the user, but the
message passing kernel is quite asynchronous. A topic
of this paper is the development of a more
sophisticated set of programming primitives for
hypercubes.

The final example is a parallel programming
language (3) apparently developed to allow most
convenient coding of message-based parallel
programs. This language has two kinds of processes,
ordinary and liason, with different syntax for each.
Ordinary processes are independent and described as

“sequential programs,” whereas liason processes have
an unusual structure for creating customized
communication primitives. It is apparent that the
division of algorithms into modular and protocol
parts transcends the software-hardware boundary.

Protocol Programming

A protocol for the purposes of this paper is a
collection of state machines coupled with messages
(4). State machine and protocol design are ad hoc in
comparison to computer programming, although there
is some use of advanced methods. Specifically,
simple state machines and protocols can be
automatically designed and verified (5). There are
high level programming languages, however -- such as
Esterel(6). Esterel is much less popular than
Pascal -- a popular modular programming langugage.

The top part of figure 2 shows a protocol which has
three states on each of the sender and receiver. The
two state transition diagrams interact: the
transmission of an R message in the left causes the
state transition associated with receiving an R message
on the right. Also illustrated is a single state
diagram representing the combined behavior of the
two protocols. When protocols with P and Q states
are combined, the resulting protocol may have as
many as PQ states.

Any distributed algorithm can be represented as a
protocol, making it a complete representation.
Describing distributed algorithms as protocols has the
advantage that the representation method will not
prevent the specification of the optimal algorithm.
The disadvantage to protocol representations is that
there is a complexity explosion as protocols are
combined.

Modular Programming

There are methods that avoid the complexity
explosion and thereby assist humans in constructing
large, functionally correct, programs in reasonable
time. T’he application of these methods to
distributed systems is referred to here as modular
programming. For conventional computers, these
methods are sometimes called modular programming

as many as PQ states

Figure 2. Protocol Programming.

14

(7), which is closely related to the well known object-
oriented programming (8). Some people define the
phrase structured programming as a style of
programming devoid of goto statements, while others
define it as that which makes coding efficient in human
terms; the latter definition of structured
programming is the same as my definition of modular
programming, in this paper.

The upper left part of figure 3 shows a programmer
coding subroutine X. X is considered to be of the
largest size that a programmer can reason with. The
programmer can similarly code subroutine Y.
Significantly, however, the programmer can also
conceptualize a main program that uses calls to both
these subroutines along with other code. Even though
the entire program is three times as large as the
programmer is comfortable reasoning with, the coding
is successful because it can be divided into chunks.
This compares favorably to protocol programming
where the complexity of three programs of

complexity x is x3.

Figure 3. Modular Programming.

The language must have a particular property for
this type of abstraction to work. It must be possible
to write and debug subroutines in isolation and yet be
assured that they will work properly when combined
with others. Chunks of code should be axiomatically
independent except for certain carefully designed
interfaces. The most common such interfaces are
subroutine arguments, and local and global variables.

The point of all this is that we are using divide-
and-conquer to simplify the design of a
multiprocessor system. The protocol-like,
asynchronous, and non-deterministic parts will be
relegated to being programming primitives. The bulk
of the code constituting an application will be
structured conventionally. Since humans cannot write
large unstructured programs, there is no need for a
machine that can execute them.

Programming With Both Methods

Investigators who have studied how people program
conventional computers from a psychological
standpoint suggest that mini programming scenarios,
or Plans, are important. Figure 4 illustrates the
Sentinel-Controlled Counter-Loop Plan (9). This

Plan reads a series of values until it encounters a
particular value (SENTINEL) indicating the end.
The Plan tallies the number of values read. The
code illustrated is claimed to be an instance of an
item of abstract knowledge known by Pascal
programmers; a skilled programmer might know a
hundred Plans of this type and composition rules for
them. The statement “count := count + 1;” is
understood by the programmer to be a place where
any statement -- indeed another Plan -- can be
inserted. The Plan shown in figure 4 is sequential
and therefore probably inefficient on a
multiprocessor. However, the concept of using Plans
to conceptualize programming is effective for
multiprocessors, if the right toolbox of parallel
Plans could be devised.

count := 0;
read(x);
while x <> SENTINEL do begin

count := count+l;
read(x);

end

Figure 4. The Sentinel-Controlled Counter-Loop
Plan.

Now consider a multiprocessor Plan. Figure 5
illustrates the Integer Dispatch Plan, which is a
multiprocessor Plan inspired by Ultracomputer
programming (2). The action is the evaluation of
another Plan, coded as f(x) for the integers 1.. k. The
operation involves a distributed programming
primitive that models the take a number mechanism
often found in a bakery. The customers in a bakery
represent the PEs of the multiprocessor which do
work. When a customer enters the store he takes a
number i from the take a number mechanism. When a
number exceeds k, the Plan is complete and the
customer leaves never to return. Otherwise, the
customer computes f(x) and takes another number.
Figure 5 illustrates this algorithm in terms of rake a
number -- a programming primitive -- the behavior
of which is discussed next.

PEl: while (i = take-a-number <= n)

f(i)
PE2: while (i = take-a-number <= n)

f(i)
. . .

Figure 5. Integer Dispatch Plan.

Take a number is easily implemented with the
Ultracomputer fetch-and-add (f&a) primitive.
F&a(L, V) on memory location L causes its value to
be incremented by value V, and the original value of
V to be returned as the value of the f&a. The
Ultracomputer has sophisticated hardware to assure
fast operation of this primitive even when many PEs
are operating on the same location simultaneously. A
moment of thought reveals that f&a(T, 1) is

15

appropriate for take a number, where T is a temporary
memory location, initially 1, belonging to the Plan.

The Integer Dispatch Plan is straightforward to
understand when coded with f&a, but would be
impenetrable if coded with messages. The code on
each PE is a simple &ile loop with an interaction
with a distributed primitive: it is not asynchronous.
The protocol for the f&a primitive -- with a
combining network -- includes the receipt and
retransmission of messages from nodes which are
computing f. To code this behavior with messages
would require periodic polling or asynchronous
interrupts. Therefore, this example illustrates a
programming task easily coded by separating the
modular and protocol portions, but which would be
difficult to code otherwise.

PROGRAMMING PRIMITIVES

Let us consider distributed programming
primitives by first considering the ideas of others.
Recent shared memory multiprocessors employ
snooping caches and multiple distributed primitives.
The snooping cache projects a memory abstraction to
the programmer when in fact, the underlying hardware
works differently.

Many recent shared memory machines have both a
regular memory and a second, special memory. The
second memory in superminicomputers support
software locking directly, and is fetch-and-add for
IBM’s RP3. Because the behavior of fetch-and-add
memory is so complicated, its design could be
considered ‘programming’ rather than ‘logic design.’

Distributed computing systems have an elaborate
message-based protocol -- NFS, for example --
that makes a disk equally accessible on all the
machines on the network. This is equivalent to saying
that a user can run a program on an arbitrarily
selected CPU with no change in behavior.

Three precedents are established by this
examination of distributed primitives. First, global
naming conventions seem popular -- shared memory
machines have global addresses for accessing
primitives, and distributed computing systems have
global file names. Second, there is precedent for
presenting the user with an abstraction different from
what the electronics provides directly -- memory,
fetch-and-add, and disk files are implemented with
messages. FinalIy, distributed primitives are
developed with attention to programmers’ needs.
Shared memory systems with different kinds of
primitives give the programmer a choice.

BTL Hypercube Software System

The BTL Hypercube has software that provides the
programmer with an enhanced set of primitives. The
BTL Hypercube is a experimental hypercube
constructed at Bell Labs in 1984 with a similar design
to commercial hypercubes. Experimental system
software and applications were developed for this
machine, which are reported in the literature (lo-

15). There is another project at Bell Labs to develop
hardware with similar functionality -- which is
described later.

The operating system for the BTL Hypercube
supports the distributed primitives illustrated in
figure 6 as first-class objects. In addition, a
programmer can develop primitives for inclusion in a
single application, or as an addition to the operating
system. The programmer can therefore choose the
most appropriate primitives for a given application.

Tvues of Distributed Primitives
Queues
Master-Slave Objects

(control distribution+collective acknowledge)
Synchronizers
Distributed Additron Objects

(fetch and add)
+ single application primitives

Figure 6. Primitives on BTL Hypercube.

BTL Hypercube software supports an tremendous
number of instances of these primitives, as
illustrated in figure 7. The PE has access via
subroutine calls to primitives of up to 256 different
types, and up to 4 billion independent instances of
each type. The operating system has a table with an
input function, output function, and state vectors for up
to 256 different protocol behaviors. Protocols are
installed at program initialization time by presenting
to the operating system functions for input and
output state transitions (protocol behavior) and a
chunk of memory for demand allocation of state
vectors (protocol instances). The software has a
virtual distributed primitive facility where memory is
allocated for each of the 4 billion protocol instances
on its first use. Each protocol instance is uniquely
identified in the entire multiprocessors by a global
names consisting of its tvne and instance numbers.

subroutine I sync” I
access

rp;1 r+Jf!F-

232 instances

I-

type 3

type 2

i I type 1
256 types
maximum

Figure 7. Arbitrary Number of Primitives.

All primitives are independent, which prevents
spurious system crashes when modules are combined -
- as may happen with some commercial hypercubes.
When two subroutines are combined on some

16

message arrival
invokes input function

output function
generates message
when network is
ready

Figure 8. BTL Hypercube System Operation.

commercial hypercubes, there is a possibility that the
buffer memory in some PE might overflow, causing
deadlock and a system crash.

The operation of the BTL Hypercube’s software
system is illustrated in figure 8. Each primitive is an
arbitrary finite state protocol between all the PEs in
the multiprocessor, addressed by a global name, and
defined by input-output functions and a state vector.
When a message arrives, the operating system decodes
the protocol type and instance to identify the
primitive’s input function and state vector. If the
particular primitive has not been previously accessed
on that PE, a state vector is allocated from a freelist
of state vectors. The operating system then invokes
the input function, which modifies the state vector.
Sometimes this is the end of the story, at other
times the appropriate response to the input message
is for another message to be sent in reply or to
another PE. If a message is to be sent, the operating
system invokes the output function on the state
vector -- when the network is ready to accept input.

Joe Koszarek has a project which generally
incorporates some of these features into hardware,
and this project is described in detail in the paper
Hardware Support for Distributed Objects in a
Hypercube, elsewhere in this volume. In summary,
Joe’s machine uses special purpose hardware to
execute the protocols associated with primitives.
State vectors are in special memory, and the input
and output functions are in microcode. Finally, the
interface between the structured portion of an
application and the primitives are by memory
accesses, rather than subroutine calls. Each primitive
is assigned several memory addresses in the address
map of the main CPU. To access a primitive, the CPU
does a memory read or write from the appropriate
address. The special purpose hardware may delay the
memory access by at most a few cycles while
processing the access. The hardware version is much
faster than the software version.

CODING-EFFICIENT PARALLEL PROGRAMMING

The way people think determines computer
programming and not vice-versa. To illustrate this
point, consider the following tongue-in-cheek
example:

potential hypercube user: I want to solve a
problem on a hypercube which I describe in such-
and-such a way.

hypercube guru: Your conceptualization of the
problem is wrong. Come back when you can
formulate it in terms of bees flying near a
beehive under the influence of artificial forces.

The potential user seldom comes back. This is a
clear example of hyperbole because hypercubes are
not programmed with bees, beehives, and artificial
forces. However, the methods of hypercube
programming -- multiple computers, loosely
synchronous programming, and messages -- may be
equally ridiculous to a user accustomed to
programming with mathematical operations,
statements, and subroutines.

To avoid scenarios like the one above, there must
be compatibility between the abilities of the user and
the machine. There is some consensus that
multiprocessors will fail to be compatible in some
ways -- dusty decks of code will not run, and new
languages will have to be developed. I will show here
that the thought processes that programmers use to
translate problems into programs can be similar,
however. I will also show that operating systems can
be exactly the same -- which is important since most
people access computers only through operating
system commands.

Conventional computers have different
programming languages with different features. Every
computer language is based on a small set of language
features upon which a tremendous amount of
programming experience can be developed.
Sometimes a small change in the features will result
in a tremendous change in programming experience --
a person can be a good LISP programmer but a poor C
programmer. There is a major class of languages that
are similar -- Fortran, Basic, Algol, Pascal, and PLL

(FBAF’P’) -- to name a few. These languages have
many of the same features -- and perhaps not
surprisingly, programming skill in one language often
can be applied to another. My suggestion is to apply
features from this class of languages to parallel

‘1 got this term from Alan Perlis -- before the popularity of
C -- which is now one of FBAPP’s most popular members.

17

machines.
There are four additional language features which,

in my judgement, would make multiprocessors
FBAPP-like. There many other features that already
apply to hypercubes -- because hypercubes use
Fortran and C as base languages, a good set of
primitive data types are available, for example. It
can only be conjectured that there are only four more
features needed and that these are the correct ones:
to prove the conjecture requires building a hypercube
based on these features, waiting a decade, and seeing
what people think about it. The four features are
listed in figure 9, along with feature “etc.” to
illustrate tentative nature of the list.

Subroutines + Hierarchical Composition

The Work of Others

The common programming paradigm for
hypercubes -- named loosely synchronous by Caltech -
- provides a particular kind of program structuring.
In this paradigm, the hypercube PEs all enter a
computational phase at the same time. When done
computing, the PEs communicate and synchronize by
sending and receiving a fixed number of messages.
There is some master code which is invoked during
the synchronization phase: this code may be on one
PE or may be redundantly executed with the same
input data on every PE, or both. The cycle repeats
until the master code decides the program is done, at
which point all PEs exit together.

This paradigm has one level hierarchical
composition. PE programs (the subprograms), one
per PE, can be combined into a master program (the

Output and input
connected at

Sends to eriecution time.

variable output.

Receives from
variable input.

el

Figure 10. Parallel Communication Channel.

calling program). The method is limited because
master programs cannot be combined into other
master programs, except by running them sequentially.

Distributed computer systems offer a form of
control parallelism through the piping facility of the
Unix rlogin command. If a network has machines
named ml, m2, and m3, then the Unix pipeline
command mt eqn 1 m2 tbl 1 m3 troff will run programs
eqn, tbl, and troff on the three machines in parallel.
The rlogin facility will route the output of each
program to be the input of the next program in the
sequence.

This paradigm also has a one level structure, but
also has scoped variables and separate compilation. C
programs can be combined into pipeline programs
which are executed in parallel. The method is
restricted however, by the fact that the pipeline
language is much weaker than C. While it is possible
to combine pipeline programs into larger pipeline
programs, the pipeline language cannot be considered
general purpose in any sense of the word. Pipes are a
communication facility represented by variables (file
descriptors) local to a program and its subprograms.
Fir&y, the method is completely dynamic: no
compilation or linking is required to put programs
together.

The Ncube Axis hypercube operating system has an
interesting combination of these two methods, but it
is also limited. A Ncube hypercube can run several
programs simultaneously through space sharing. It is
possible for a parallel main program to run two
parallel subroutines. This would appear to be the
desired behavior, but on the Ncube system, programs
can send messages only to other PEs in their subcube,
and to the host. Interactions between a parallel
program and a parallel subroutine would therefore
have to go through the host. Of the four language
features discussed, Axis has general hierarchical
composition on the host, subroutine arguments, and
local scoping for message destinations.

In summary, the various multiprocessor projects
have addressed all four of the language features
listed, but never all at once. Since programmers use
each of these features many times in each application,
absence of a single feature will cripple a programming
system. For this reason, T’suggest putting all the
features into a single system.

Parallel Communication Channels

My suggestions on parallel program structuring are
summarized in the next few paragraphs, and are
described in more detail in the paper Distributed
Programs and Subroutines for Multiprocessors,
elsewhere in this volume, Extending the Axis
model, figure 10 illustrates two parallel programs
which are separately compiled yet able to
communicate in parallel. In the illustration, one
program does output to a distributed variable named
output (distributed variables are written in
boldface). A distributed variable is a symbolic

18

Conventional Computer Multiprocessor 1
memory for comm. parallel comm. channel
memory for storage
variable

memory
distributed variable

local variable
global variable
subroutine argument

Figure 11. Analogies.
representation of a parallel communication channel.
At run time the operating system binds the output
variable of one program to the input variable of
another program. Messages directed to output are
sent directly to the appropriate PE of the other
program.

It seems apparent that parallel communications
channels are analogous to memory locations in
conventional computer languages. Figure 11
illustrates some derived analogies. Memory in a
conventional computer is sometimes used for
communication between parts of the hierarchical
control structure. Since different parts of the
hierarchy may appear on different PEs, the analogy of
memory for this purpose must involve distributed
programming primitives. This is not meant to imply
that all memory on a conventional computer is to be
replaced by distributed programming primitives:
memory on a conventional computer is sometimes
used for storage of intermediate results, and
multiprocessors have memory for the same purpose.
A variable is a symbolic abstraction of a memory
location in a conventional computer, and I use the
term disfributed variable to name the symbolic
abstraction of a parallel communication channel on a
multiprocessor. Conventional computer languages
have scoping rules for variables -- distinguishing
between local and global variables and subroutine
arguments. Proper variable scoping is known to be
important in language abstractions. The next two
sections illustrate distributed variables in local and
global contexts.

Local Variables

Figure 12 shows a use of a parallel communication

channel represented by a distributed variable. The
left part shows a shell program (a sequence of
commands for the Unix user interface) which is
running a pipeline subprogram. The pipeline runs
programs sl and s2, connecting output to input. The
shell program creates a variable called pipe and
passes a reference to it to the two subprograms. The
symbolic representation of pipe is interpreted at run
time to allow messages to be sent from sl to s2. A
second shell program, illustrated on the right, runs a
second pipeline program. This shell creates a
different pipe. The result is that the two pipelines
operate independently, as desired.

Global Variables

Figure 13 shows a global distributed variable acting
as an access point to a disk subsystem. At boot time,
the operating system creates a distributed variable
for disk accesses and passes reference to this to the
parallel disk subsystem. The shell on the left and
the 1s command (Unix directory listing) are given
access to the variable disk. The shell on the right and
its 1s command likewise inherit the same variable.
The two 1s programs therefore access the same disk
system, which is the desired behavior for a
timesharing system.

In this example, the distributed variables have
three functions: they represent the multiple
communication channels that result from connecting
parallel programs; they channel the data directly
from source to destination, avoiding a bottleneck by
following the inheritance path to the operating
system; and they must convey enough information to
the disk subsystem in order to indntify where the
reply should be sent.

The previous example made it easy for distributed
programs to send messages to parallel disks.
However, messages may not be the most convenient
interface. Standards for user interfaces to operating
systems require specific semantics for input and
output -- such as a common read/write pointer. It
would be possible to implement these semantics in
the parallel communication channel if protocol-based
distributed programming primitives were used
instead of messages.

‘-ligyll+
Figure 12. Parallel Local Variable.

19

parallel
disk system

Figure 13. Parallel Global Variable.

CONCLUSIONS

With the methods outlined, we can construct a
parallel system that has the same behavior as Unix
pipelines. Pipelines consist of programs and
communications channels, and we have parallelized
both. Methods have been presented for parallel
access to disks which also share disks appropriately
for a timesharing environment. The execution time
of such pipelines could be fundamentally faster than
current uniprocessor Unix systems. Specifically, the
runtime of a pipeline on a conventional Unix system
is proportional to the number of i/o bytes and
instruction executions. In a parallel system as
outlined here, both i/o and instructions can be done
concurrently. This demonstrates my view of how
hypercubes will be used like conventional computers,
but will run faster due to their transparent use of
parallelism.

Unix pipelines, even when the connections are
parallel, are less general than subroutines in
conventional languages. This paper outlined how
distributed variables could be used to implement
variable scoping in a hierarchical distributed program
in a way similar to several popular languages.

Three immediate suggestions for improvements to
hypercubes were given. Enhanced primitives can be
coded in software. These are compatible with the
current ‘loosely synchronous’ programming paradigm,
but may make some programs easier to code because
the programmer has a richer set of communication
primitives available. This is not a trivial addition
because the behavior of enhanced primitives cannot
generally be added to ‘loosely synchronous’ programs
by subroutines. Second, hypercube hardware can be
enhanced to assure independence of communication
operations, and to improve the speed of programming
primitives. Finally, program structuring methods can

be used to allow composition of parallel programs.
As a first step, ‘loosely synchronous’ programs can be
combined with others and with system software --
disk subsystems for example. As a second step,
multiple user programs can be combined.

References
1. L. Rudolph and 2. &gall, Dynamic Decentralized Cache Schemes

for MIMD Parallel Processors, Proceedings of Ihe 11th Annual

Inkrnational Symposium on Computer Architecture, pp. 340-347
(June 1985).

2. A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph,
and M. Snir, The NYU Ultracomputer -- Designing an MIMD
Shared Memory Parallel Computer, IEEE Transactions on

Compufers, pp. 175-189 (February 1983).

3. J. Basu, L. Patnaik, A. Goswami, Ordered Ports -- a Language
Concept for High-level Distributed Programming, The Computer

Journal, pp. 487-497 (1987).

4. A. Danthine, Protocol Representation with Finite-State Models,
IEEE Transactions on Communicalions, pp. 632-643 (April 1980).

5. G. Micheli, R. Brayton, A. Sangiovanni-Vincentelli, Optimal State
Assignment for Finite State Machines, IEEE Transactions on

Computer-Aided Design, pp. 269-285 (July 1985).

6. G. Berry, L. Cosserat, The ESTEREL Synchronous Programming
Language and its Mathematical Semantics, Seminar on
Concurrency, (ed.), S. Brookes, A. Roscoe, G. Winskel,
Springer-Verlag, pp. 389-448.

7. D. Parnas, On the criteria To Be Used in Decomposing Systems
into Modules, CommunicaGons of the ACM, pp. 1053-1058
(December 1972).

8. G. Birtwhistle, et al, Simula Begin, Auerboch (1973).

9. Learning to Program = Learning to Construct Mechanisms and
Explanations, Communications of Ihe ACM, pp. 850-858
(September 1986).

10. B. A&and, A. Ahuja, E. DeBenedictis, T. London, S. Lucco, and
D. Romero, MOS Timing Simulation on a Message Based
Multiprocessor, Proceedings of the IEEE Internalional Conference

on Computer Design, pp. 446-450 (October 1986).

11. E. DeBenedictis, Multiprocessor Programing with Distributed
Variables, Hypercube Multiprocessors 1986, (ed.), M. Heath,
SIAM, pp. 70-86 (1986).

12. E. DeBenedictis, Protocol-Based Multiprocessors, Hypercube
Multiprocessors 1987, (ed.), M. Heath, SLAM, pp. LO-16 (1987).

13. E. DeBenedictis, A MuItiprocessor Using Protocol-Based
Programming Primitives, Jnternntionol Journal of Parallel

Programming, pp. 53-84 (February 1987).

14. S. Ghosh, An Asynchronous Distributed Approach for the
Simulation of Behavior-Level Models on Parallel Processors,
submitted to the 1988 International Converence on Parallel

Processing.

15. S. Lucco, A Heuristic Linda Kernel for Hypercube
Multiprocessors, Hypercube Multiprocessors 1987, (ed.), M.
Heath, SLAM, pp. 32-37 (1987).

20

