Completing the Journey of Moore's Law

Erik P. DeBenedictis
Sandia National Laboratories

Potentials of Supercomputing

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
- Aerogel model
- Applications Modeling
- No Need For a Breakthrough
- Architecture
- Beyond Moore's Law

Roles of Applications?

- Drives funding
- Government funds supercomputers because applications provide benefit to society
- "There ought to be" a document for our Government describing supercomputer benefits over the next 50 years
- No so, see later
- Drives architecture
- I think we should design supercomputers to run classes of applications well
- This talk is about the class "simulating physics on a computer"
- We need to know about the applications to build the computer right

Applications

Example Application: Earthquake Mitigation

- Simulation of ground motion due to earthquakes can be useful in deciding where it is safe to build structures
- Until available data cartibe analyzed, there will be unnecessary loss of life and property

䋤若 89

- Required compute power for sufficient analysis of existing data: 1 Exaflops

Earthquake Risk Mitigation

- Forward Simulation
- Spectral elements code written
- Runs well on Earth Simulator (vectorizes)
- Earth Simulator can do to $\sim .1 \mathrm{~Hz}$
- Seismographs collect data to $\sim 100 \mathrm{~Hz}$; scaling to 100 Hz would require ~3 Petaflops
- Reverse, "Imaging"
- Adjoint method code written
- Uses multiple instances of the forward simulation model, one for each measurement station (hundreds)
- Scaling to image to the limit of collected data would require ~1 Exaflops

Earthquake Risk Mitigation

- Algorithms: Written
- Code: Runs
- Input Data: Exists
- Consequence of Not Proceeding: People Die
- Required FLOPS: 1E = 1000P = 1,000,000T
-25,000 \times Earth Simulator

The Class of Applications I'll Talk About

- Space is divided into cells, each with computer variables representing the physical state of the volume represented by the cell
- The computer updates the state of a cell for successive time intervals

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
- Aerogel model
- Applications Modeling
- No Need For a Breakthrough
- Architecture
- Beyond Moore's Law

*** This is a Preview ***

Thermal Noise Limit

This logical irreversibility is associated with physical irreversibility and requires a minimal heat generation, per machine cycle, typically of the order of $k T$ for each irreversible function.

- R. Landauer 1961

kT "helper line," drawn out of the reader's focus because it wasn't important at the time of writing
- Carver Mead, Scaling of MOS Technology, 1994

Metaphor to FM Radio on Trip to Anchorage

- You drive to Anchorage listening to FM radio
- Music clear for a while, but noise creeps in and then overtakes music
- Why?
- Signal at antenna weakens
- Thermal electron noise constant at $k_{B} T$
- Analogy: You live out the next dozen years buying PCs every couple years
- Electrical effect
- Moore's Law causes switching energy of gates to decrease at about 30\% per year
- Thermal electron noise constant at $k_{B} T$

Details: Erik DeBenedictis, "Taking ASCI Supercomputing to the End Game,"
SAND2004-0959

FM Radio and End of Moore's Law

Driving away from FM transmitter \rightarrow less signal Noise from electrons \rightarrow no change

Increasing numbers of gates \rightarrow less signal power Noise from electrons \rightarrow no change

Our Expectations of Reliability

- What is the consequence of a computer making a spontaneous logic error?
- We replace the computer
- Worse than DRAM, where we would add ECC logic
- Less severe than a heart-lung machine, where we would not build the machine in the first place
- A supercomputer operating at the physical limits a dozen years from now will perform $10^{30}-10^{40}$ gate operations in its lifetime
- To avoid premature replacement, the probability of a glitch in a gate should be $10^{-30}-10^{-40}$ per operation

Impact of Power on Reliability

- According to the ITRS roadmap, gates in 2016 and based on 22 nm transistors will be at $10 \times$ the power necessary to maintain reliable operation
- However, signal energy is lost for all sorts of reasons and manufacturing tolerances make it unwise to design to the limits
- End of road is on the map!

SNR (db)	Power Ratio	$P_{\text {error }}$
10	10	3.9×10^{-6}
14	25	6.8×10^{-13}
18	63	1.4×10^{-29}
22	160	Noise Limit
26	400	3.3×10^{-71}
30	1,000	ITRS 22 nm
34	2,500	4.5×10^{-175}
38	6,300	7.1×10^{-1094}
42	16,000	2.2×10^{-2743}
46	40,000	1.8×10^{-6886}
50	100,000	Red Storm
54	250,000	3.2×10^{-17293}
58	630,000	8.1×10^{-10194}
62	$1,500,000$	1.8×10^{-274025}
		9.6×10^{-688315}

$$
\mathbf{q}:=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d \mathbf{x} ; \mathbf{t} \rightarrow \sqrt{2 \pi 10^{\frac{\pi x}{10}}}
$$

SIA Semiconductor Roadmap

- Generalization of Moore's Law
- Projects many parameters
- Years through 2016
- Includes justification
- Panel of experts
- known to be wrong
- Size between

Albuquerque white and yellow pages

Semiconductor Roadmap

F2/ROFPRODVWFW	2020	2018	2016
DFAM去F77CH (hat)	45	32	22
	39	35	28
	2 Y	18	3
	H	48	8
	18	13	9
	0.5.0.8	0.4.0.6	0.A-0.s)
	0.5	0.fi	0.5
	1.2	1.0	0.9
	0.8	0.5	0.4
	3	7	10
Nominalitghy	1200	15900	13500
	30\%	70\%	100\%
	110	90	80
	2\%\%	30\%	3 3%
	31\%	36%	42\%
	0.39	0.77	0.15
		12	10.7
	0.015	0.007	0.002
	$9.7 \mathrm{E}-08$	$1.4 \mathrm{E}-07$	1.1E-07

 \square

Limits for a Red Storm-Sized Computer

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
- Aerogel model
- Applications Modeling
- No Need For a Breakthrough
- Architecture
- Beyond Moore's Law

Can We Reach the Limit?

- Method: Compare modeled running time on perfect computer to real computer
- Application: Local calculations with global time step (SOR)
- Technology comparison:
- $\mathbf{2 2} \mathbf{n m}$ transistors with 3D atom-by-atom assembly
- Our best shot at an architecture
- Definition of Success: Our best shot comes within a constant factor of the theoretical peak

Aerogel Computer

- Devise algorithm for a hypothetical aerogel computer
- Cell may be gate
- Cell may be memory
- Is space for cooling, but no cooling
- Model application runtime
- Engineer real computer
- Model application runtime

- If runtimes similar, you succeeded

Aerogel Cooling

- Inflate aerogel computer to point where heat emerging from faces is less than capacity of a designated cooling system
- Air 45KW/m²
- Water 62MW/m²
- Pulse $\infty W / m^{2}$

Architecture Target

Neighbors in Mesh

ALU/FPU that Evaluates Laws of Physics at Max Efficiency:
 Signal Processor

Cell State Storage for K Cells With Max Efficiency Access for Only The Needed Access Pattern

Global Synchronization

Application Modeling

- Sample Problem
- 3D finite difference equation with global synchronization
- SOR method
$\mathrm{T}_{\text {Step }}=\frac{\mathrm{K} \times \mathrm{F}_{\text {cell }}}{\text { floprate }}+\mathrm{T}_{\text {Global }}$
- where
- K is memory size
- Global synchronization limited by speed of light

$$
\mathrm{T}_{\mathrm{Global}} \geq \frac{2 \sqrt{3} \times \mathrm{L}_{\mathrm{Edge}}}{\mathrm{c}}
$$

- where
- $\mathrm{L}_{\text {Edge }}$ is edge dimension of cube

$$
6 \times L_{E d g e}^{2} \times C_{x} \leq \text { Power }
$$

Actual Applications Modeling

- Actual code was several hundred lines of C++
- Theoretical limit covered
- Coolant
- Realistic covered
- Layout on a 2D surface of a particular size
- Heat sink limits
- I/O bandwidth from chip
- Coolant

Performance on Sample Problem

Cost Efficiency

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
- Aerogel model
- Applications Modeling
- No Need For a Breakthrough
- Architecture
- Beyond Moore's Law

Example of Computer at Physics Limit

- Sandia is often approached by people who say we need some elaborate technology in order to run our applications at the Petaflops level
- Do we need elaborate technology?
- Is the person just looking for research funding?
- Question: can we make a computer that runs at the limits out of inexpensive components?
- Yes, subsequent slides are example

Air-Cooled Packaging

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
- Aerogel model
- Applications Modeling
- No Need For a Breakthrough
- Architecture
- Beyond Moore's Law

Which Microarchitecture?

- Task: Pick a winner
- Candidates $\mu \mathrm{P}$, PIM, vector, FPGA, reconfigurable, streaming, maybe more
- Each has advantages
- Not clear which is best
- Government gets bad press for picking winners too early
- Why do we pick winners
- Logic is a scarce resource
- But hang on a minute, don't we have more transistors than we know what to do with, and even turn some off at times?
- Can we change the rules of the game to make NOT picking a winner a virtue?

Multi-Architecture Idea

- Architecture to comprise
$-\mu \mathrm{P}$ and accelerator architectures 1 and 2
- Power control Vdd circuit so only one is turned on at a time
- Benefit
- Can expect support from cluster community and advocates of architectures 2 and 3
- Arch2=Vector, Arch3=PIM?

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
- Aerogel model
- Applications Modeling
- No Need For a Breakthrough
- Architecture
- Beyond Moore's Law

Extreme Computing

- I define Moore's Law as smaller transistors applied to similar logic circuits
- 2N transistors for a N-input gate
- However, some people believe Moore invented the exponential (explain joke)
- Moore's Law limited to $100 k_{B}$ T energy per op
- Doesn't matter how small the line width
- Can recover and recycle energy
- Reversible logic
- Non-FLOPS computing - neural nets, molecular...

Reversible Logic

- Reversible logic dissipates energy through "friction"
- If you run reversible logic at speed $\propto 1 / n$, it will dissipate power $\propto 1 / \mathbf{n}^{2}$
- However, any design will have a parasitic power loss, so actual loss is not $\propto 1 / \mathbf{n}^{\mathbf{2}}$, but

$$
\text { Power }=\frac{P_{0}}{n^{2}}+P_{\text {parasitic }}
$$

- Measured power down 4×, limit 2000×

Reversible Multiplier Status

- 8×8 Multiplier Designed, Fabricated, and Tested by IBM \& University of Michigan
- Power savings was up to 4:1

A True Single-Phase 8-bit Adiabatic Multiplier

Reversible Microprocessor Status

- Status
- Subject of Ph. D. thesis
- Chip laid out (no floating point)
- RISC instruction set
- C-like language
- Compiler
- Demonstrated on a PDE
- However: really weird and not general to program with +=, -=, etc. rather than =

Reversible Computer
Engineering and
Archilecture

Carlln Vier
MIT Artificial Intel gence Lahoratery

Tom Kinlght: Committee chalman

Gerald Sussmean, GIII Pratti readors

Pendulum Reversible
Processor

200,000 Transistors
${ }_{2} 18$ Instructions
3-phase SCRL
${ }^{8} 50 \mathrm{~mm}^{2}$ in HP14
180 Pins

- 32 power supplies

82 Person years for schematics and layout

Pendulum Chlp

Sandia

Thought Model for Reversible Red Storm

- Replace each Red Storm node with chips constructed from $\mathrm{n}^{2} \cong 1000$ layers of reversible logic operating $1 / n \cong 1 / 30$ speed
- Overall system $30 \times$ faster, same power, $1000 \times$ nodes

- Will become feasible for small "line width"

Conclusions

- There exists at least one application that gives a valuable result to society and requires Exaflops of computing (more work needed here)
- Supercomputers may increase in power exponentially for a very long time (100 years?)
- But CMOS driven by Moore's Law will flatline in 1-2 dozen years
- We can predict the end of Moore's Law with reasonable certainty (I gave a table with numbers)
- We can reach the limits of Moore's Law without major breakthroughs
- Applications modeling can be applied to distant future devices to yield quantitative information on computer architectures

Backup

Sandia
National
Laboratories

General Specifications at Physics Limit

	Red Storm	Limit $\mu \mathrm{P}$ Mode	Limit Turbo Mode
Nodes	10,000	200,000	$2,000,000$
Node Type	$\mu \mathrm{P}$	$\mu \mathrm{P}$	TBD - say 10 vector pipes
Clock	2 GHz	20 GHz	20 GHz
Flops/node	4 GFLOPS	40 GFLOPS	400 GFLOPS
Sys. Peak	40 TFLOPS	8 PFLOPS	800 PFLOPS
MPI Latency	$2.5 \mu \mathrm{~S}$	100 ns	N/A - no MPI
Power	2 MW	2 MW	2 MW

Packaging for a Spatial Locality

- Basic Module
- 2 Nodes
- Each node is an ASIC System On Chip Processor In Memory
- Each node has memory under ASIC
- Each module includes a power module
- Six mesh Interconnects
- Modules connect end-toend in "Shish Kabobs"

Packaging for a Spatial Locality

 single structure

- All mesh network wires are of constant length (8" max)
- Air flows front to back
- General approach will work for liquid cooling as well

Sandia
National Laboratories

Nearest-Neighbor Interconnect

- X Dimension
- From one board to another laying in the same plane - 2"
- Y Dimension
- 8" from one board to another spaced above or below - 8"
- Z Dimension
- Along the Shish Kabob -4"
- Name courtesy Monty Denneau IBM

Maintenance

- Each "Shish Kabob" can be removed for maintenance
- Connects via side-connect technology
- Similar to Cray shuttle connectors on T3E and X1
- Each Shish Kabob can be composed of segments to avoid limits on PC board technology
- Depth should be OK to 6’

Backup: Landauer's Arguments

- Landauer makes three arguments in his 1961 paper
- Kintetics of a bistable well
- Entropy generation
- We review the second \rightarrow
- Entropy of a system in statistical mechanics:

$$
S=k_{B} \log _{e}(W)
$$

W is number of states

- Entropy of a mechanical system containing a flip flop in an unknown state:

$$
S=k_{B} \log _{\mathrm{e}}(2 W)
$$

- After clearing the flip flop:

$$
S=k_{B} \log _{e}(W)
$$

- Difference $k_{B} \log _{\mathrm{e}}(2)$

Backup: Landauer's Arguments II

- Second law of thermodynamics says entropy of universe must increase
- Entropy is disorder
- Say you clear a computer memory of \mathbf{n} bits. The computer's memory is initially disordered (arbitrary bits) but becomes ordered (all zero). Entropy goes down.
- However, entropy of universe must increase.
- Resolution is that the material of the memory chip becomes more disordered (hotter), offsetting the information in the memory
- A logic gate with multiple inputs but one output has fewer output states than input states: same idea

Backup: k_{B} T Should Not Be A Surprise

This logical irreversibility is associated with physical irreversibility and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible function.

- R. Landauer 1961

kT "helper line," drawn out of the reader's focus because it wasn't important at the time of writing
- Carver Mead, Scaling of MOS Technology, 1994

Backup: Noise Levels

- 0 db Limit of hearing
- 20 db Rustling leaves
- 40-50 db Typical neighborhood
- 60-70 db Normal conversation
- 80 db Telephone dial tone
- 85 db City traffic inside car
- 90 db Train whistle @500'
- 95 db Subway train @200'
- 90-95 db Ear damage
- Red Storm: 50 db
- Thermal noise:Logic:: Rustling leaves:Talking
- ITRS 22 nm: $\mathbf{3 0}$ db
- Thermal noise:Logic:: Talking:Train Whistle
- Reliability limit 20 db
- Thermal noise:Logic:: Outside neighborhood:Talking

Backup: Floating Point

- A floating point unit has about 100,000 gates
- About 20,000 gates will switch for each operation
- Therefore,

$$
\begin{gathered}
\mathrm{E}_{\text {FLOP }} \approx \\
20,000 \mathrm{E}_{\text {gate }} \approx \\
2,000,000 \mathrm{k}_{\mathrm{B}} \mathrm{~T}
\end{gathered}
$$

- Landauer limit is: 100 TFLOPS/watt
- Accounting for engineering losses, more realistic:

10 TFLOPS/watt

- If $\mathbf{a} \mu \mathrm{P}$ is $\mathbf{1 \%}$ efficient, the probable limit for a microprocessor is:

10 TFLOPS/watt chip

Backup: What About Cryrogenics?

- Minimum power per logic op $100 \mathrm{k}_{\mathrm{B}}$ T
- Minimum power per FLOP $\mathbf{2} \times 10^{6} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
- Analysis
- At any T, performance may depend on cooling
- Cutting T won't save power because of offsetting power in refrigerator, but may make cooling system more efficient
- However
- Applications modeling indicates DOE apps aren't especially dependent on cooling
- Conclusion: Use room temperature

Backup: Authority on μ P Efficiency

Data parallelism realizes full potential of increased transistor count

Citation: Bill Dally, ASCI PI

Backup: Authority on μ P Efficiency

Data parallelism realizes full potential of increased transistor count

Citation: Bill Dally, ASCI PI
Meeting 2004

Backup: Languages

- For many years, computer languages have targeted higher programmer productivity, trading easy programming for higher resource consumption during execution. This was believed to be OK because Moore's Law would cut the excess cost over time. Not so anymore
- Need to study languages for mature "irreversible logic" computers that are both easy to use and avoid excessive use of resources

Backup Slide: Analog Computing

- Floating Point Energy/Op
$-20,000 \times 100 \times k_{B} T=$
$-2 \times 10^{6} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
- Analog Energy/Op
$-k_{B} T \log _{\mathrm{e}}$ ("\# states")
$-k_{B} T \log _{e}\left(2^{64}\right)$
$-64 k_{B} T \log _{e} 2$
$-44 k_{B} T$
- Analog 45,000 more efficient
- Heisenberg Uncertainty Principle
$-\Delta E \Delta t \geq h /(2 \pi)$
- Waiting Time
$-\Delta E=2^{-64} \times 64 k_{B} T \log _{e} 2$
$-\Delta t \geq \frac{h}{2 \pi \times 2^{-64} \times 64 k_{B} T \log _{e} 2}$
$-\Delta t \geq \sim 3$ hours
- Analog really slow

Conclusions

- When we look into the future of supercomputing
- We see some haze
- However, the end of the road is becoming visible through the haze
- Knowing the end of the road helps now
- What applications should we anticipate solving?
- Some software written today will run on end-ofroad supercomputers. What architectures will/will not be around?
- Other roads follow

