1-4.01-1-0						
Review	Approval			ľ		
Prepare Request Search Requests Generate Reports Approvals	Search Detail	Submittel Detei	la			
👔 Help		Submittal Detai	15			
Wizard	Document Info Title : Quantum Dot Cellular Moore's Law Part 2, Document Number : 524542	Automata (QDCA) S Computer Science I	trategic Partnership Issues	o: Extending		
Search Requests New Search Refine Search Search Results Clone Request Edit Request	Review Type : Electror Sandia Contact : DEBENEDI Requestor : DEBENEDI Comments : Jointly partner Peer Reviewed? : N	CTIS,ERIK P. Submiti CTIS,ERIK P. Submiti CTIS,ERIK P. Subn prepared presentationship.	Status : Approved tal Type : Viewgrap nit Date : 08/18/20 on documenting a Li	h/Presentation 006 DRD strategic		
Cancel Request	Author(s) craig lent Di Jerry Floro m MURPHY,SARAH Pe Robert Hull	EBENEDICTIS,ERIK arco ottavi eter Kogge	P. greg snider Mike Niemier PRAGER,AARO	N A.		
	Event (Conference/Journal/Bo Name : QDCA Seminar City : Albuquerque Start Date : 08/01/2006 Partnership Info Partnership Involved : N	State : NM End Date : 08/	Country /01/2006	: USA		
	Partner Approval : Agreement Number :					
	Patent Info Scientific or Technical in Technical A SD	Content : Yes Advance : No Number :	TA Form Filed: N	o		
	Title : Unclassified-Unlimited	Abstract : Release Info : None.	Document : Unclas	ssified-Unlimited		
	DUSA : None.					
	Routing Details					
		ROULED 10	мри олеа ву			
	Derivative Classifier Approver Conditions:	AIDUN,JOHN B.	AIDUN, JOHN B.	08/22/2006		
	Classification Approver Conditions:	WILLIAMS, RONALD L.	WILLIAMS, RONALD L.	08/28/2006		
	Manager Approver Conditions: The Title should sp	PUNDIT,NEIL D. Dell out " Part 2, C	PUNDIT,NEIL D. omputer Science Is	08/30/2006 sues"		
	Sondia Contact			00/20/2020		
	Sandia Contact Agreement: Sandia Contact ha release. Comments:	s agreed to incorpor	rate above listed cor	08/30/2006 nditions prior to		
	Administrator Approver	LUCERO,ARLENE M.				

ς.

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner

Quantum Dot Cellular Automata (QDCA) Strategic Partnership: Extending Moore's Law: Part 2, Computer Sciences Issues

Erik DeBenedictis¹ (PI), Jerry Floro^{1,3}, Robert Hull³, Peter Kogge², Craig Lent², Sarah Murphy^{1,2}, Mike Niemier², Marco Ottavi¹, Aaron Prager^{1,2}, Greg Snider² (¹Sandia, ²Notre Dame, ³U. Virginia)

SAND2006-5382P Approved for Unclassified Unlimited Release

Moore's Law for Logic Switching Power

Emerging Research Devices (notes 2005)

- Table shows drop in replacements for CMOS transistors that defeat limit in previous slide
- Color code: OK, marginal, unacceptable
- CNFET on table only for political reasons

> 20 >18 - 20	Funoming P.	•16 - 18 16	ia Dorigo Tog	hnologia	For each Techno horizontally over Max Sum = 24 Min Sum = 8	logy Entry (e.g • the 8 Criteria	, 1E Structures, si	ım	
Logic Device Technologies	Scalability	Perform- ance	Energy Efficiency	Gain	Operational Reliability	Room Temp. Operation ***	CMOS Compatibility **	CMOS Architectural Compatibility *	
1D Structures	2.4	2.4	2.1	24	2.3	2.9	2.4	2.6	
Resonant Tunneling Devices	1.4	2.0	1.9	17	1.7	2.9	2.1	2.1	
SETs	1.9	1.0	2.5	13	1.2	1.9	2.4	2.0	
Molecular Devices	1.9	1.1	2.0	11	1.3	2.6	1.9	1.6	
Ferromagnetic Devices	1.5	1.2	1.8	15	1.8	2.2	1.5	1.8	Sar Nat
Soin Transistor	1.7	1.7	2.2	1.5	2.0	2.2	1.7	1.8	Lat

Obeying Moore's Law and Beating CMOS

Tie Between Information and Device Physics

- We use Boolean logic today, based on AND-OR-NOT
- AND and OR gates "destroy" information, which creates heat irrespective of physical implementation (to be described later)
- This limit can be circumvented by a different form of logic that does not "destroy" information
- However, this will also require different devices...

Quantum-dot cellular automata

Represent binary information by charge configuration of cell.

QCA cell

- Dots localize charge
- Two mobile charges
- Tunneling between dots
- Clock signal varies relative energies of "active" and "null" dots
 Clock need not separately contact each cell.

Notre Dame Center for Nano Science and Technology

"null"

Neighboring cells tend to align in the same state.

"1"

"null"

Neighboring cells tend to align in the same state.

Neighboring cells tend to align in the same state.

This is the COPY operation.

Majority Gate

Majority Gate

Majority Gate

Three input majority gate can function as

programmable 2-input AND/OR gate.

"C"

QCA single-bit full adder

Hierarchical layout and design are possible. Notre Dame Simple-12 microprocessor (Kogge & Niemier)

Center for Nano Science and Technology

We would like "kink energy" $E_k > k_B T$.

Molecular Wire

ONIOM/STO-3G (Gaussian 03)

- Power gain is crucial for practical devices because some energy is always lost between stages.
- Lost energy must be replaced.
 - Conventional devices current from power supply
 - QCA devices from the clock
- Unity power gain means replacing exactly as much energy as is lost to environment.

Power gain > 3 has been measured in metal-dot QCA.

Landauer clocking with echo of inputs to outputs

Energy dissipation in the OR gate

Output is used to erase intermediate results.

Bennett clocked OR gate

Center for Nano Science

and Technology

For QCA no change in layout is required.

Bennett-style computation may be practical in QCA

reversible circuit can dissipate much less than k_BT In(2)

ter for Nano Science and Technology

- Semiconductor-dot QCA
 - SiGe quantum fortresses
 - Silicon P-doping
 - GaAs
 - Silicon dot SET's
- Magnetic QCA
- Metal-dot QCA
- Molecular QCA
- CMOS analogue

Quantum Fortress Growth

h nm Ge_{0.3}Si_{0.}/Si(100), 550° C, 0.09 nm/s

Quantum Fortress QCA

FIB are used to deposit Pt contacts to ease the alignment requirements of the E-beam lithography.

Architecture Summary

- 1. Irreversible
- 2. Fully Reversible: Landauer Clocking
 - Reversible Components
- 3. Fully Reversible: Bennett Clocking
 - Possibly Irreversible Components
- 4. Fully Reversible: Collapsed Bennett
 - General purpose floorplan
 - Size of computation limited only by stack size
- 5. Partially Reversible: Pipelined Bennett
 - Advantages of reversible combined with higher throughput

UNIVERSITY OF NOTRE DAME Computer Science and Engineering

Architecture Summary

1. Irreversible

Previous Architecture Work

- 2. Fully Reversible: Landauer Clockinget a
 - Reversible Components
- 3. Fully Reversible: Bennett Clocking
 - Possibly Irreversible Components

4. Fully Reversible: Collapsed Bennett

- General purpose floorplan
- Size of computation limited only by stack size

5. Partially Reversible: Pipelined Bennett

Advantages of reversible combined with higher throughput

UNIVERSITY OF NOTRE DAME Computer Science and Engineering

QDCA Reversible Toffoli

University of Notre Dame Computer Science and Engineering

Bennett's Algorithm (1982)

Logic Segments

- Original input saved throughout computation
- Intermediate state decomputed when possible
- Intermediate stage can be decomputed only if previous stage is computed
- Final state consists of original input and final output
- For 8 segments, at most 4 checkpoints need to be stored at any given time

UNIVERSITY OF NOTRE DAME Computer Science and Engineering

Collapsed Bennett Layout: Regions of QCA Circuit

Collapsed Bennett Layout: Disable Regions

Logic Disable

University of Notre Dame Computer Science and Engineering

Collapsed Bennett Layout

University of Notre Dame Computer Science and Engineering

Collapsed Bennett Layout

S.E. Murphy

Bennett Pipelined: Architecture (Top view)

n clock phases:

 ϕ_n = phased signals for Bennett clocking V_{min} :cell released V_{max} :cell locked <u>M stages:</u> Bennett zones + Registers

Data pipelining

Case study: XOR Tree

M stages parity checker

Partition in stages: Lower limit: stage size = 2 QCA cell Middle solution: stage size = 1 XOR GATE Upper Limit: stage size = M XOR gates

Performance evaluations

 Landauer scheme shows higher throughput and the gap between the performances increases with the increase of c (c=14 only one Bennett stage). (note: c=1not same as Landauer due to the size of the basic stage)

Performance evaluations

 The improvement in terms of power consumption becomes better with the increase of c (note: the power dissipated also with a pure Bennett scheme c=14 does not become zero as the inputs to the whole circuit are still deleted every T)

Performance evaluations

- "Given a second of time and a Joule of energy, what is the amount of operations (output bits) obtained?"
- The result shows an intersection of the two curves:
 - c< 3 Landauer clocking has better performances</p>
 - c>3 Bennett clocking behaves better

Silicon P-dot QCA cell

APPLIED PHYSICS LETTERS 89, 013503 (2006)

Demonstration of a silicon-based quantum cellular automata cell

M. Mitic,^{a)} M. C. Cassidy, K. D. Petersson,^{b)} R. P. Starrett, E. Gauja, R. Brenner, R. G. Clark, and A. S. Dzurak

Centre for Quantum Computer Technology, School of Electrical Engineering and School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia

C. Yang and D. N. Jamieson

Centre for Quantum Computer Technology, School of Physics, University of Melbourne, Victoria 3010, Australia

(Received 8 March 2006; accepted 18 May 2006; published online 5 July 2006)

We report on the demonstration of a silicon-based quantum cellular automata (QCA) unit cell incorporating two pairs of metallically doped (n^+) phosphorus-implanted nanoscale dots, separated from source and drain reservoirs by nominally undoped tunnel barriers. Metallic cell control gates, together with Al-AlO_x single electron transistors for noninvasive cell-state readout, are located on the device surface and capacitively coupled to the buried QCA cell. Operation at subkelvin temperatures was demonstrated by switching of a single electron between output dots, induced by a driven single electron transfer in the input dots. The stability limits of the QCA cell operation were also determined. © 2006 American Institute of Physics. [DOI: 10.1063/1.2219128]

- Dots defined by implanted phosphorus
- Single-donor creation foreseen
- Direct measurement of cell switching

FIG. 1. (Color online) (a) Simplified circuit equivalent of the QCA cell, (b) SEM image of phosphorus-implanted n^+ regions (dark in image), and (c) SEM image of completed device. The buried n^+ dots and leads are marked using dashed lines.

Classical QCA Gate (to scale)

Base diagram from Physical Review B 74, 045311 2006, Two-dimensional architectures for donor-based quantum computing

440 nm

Self-Contained Classical+Quantum Logic

Two-dimensional architectures for donor-based quantum computing

Advantages

- QCA logic "lives" in the single electron world, thus avoiding the need to amplify single electron signals to CMOS levels
- QCA logic would be used to execute the classical part of QEC recovery mechanisms, which is most (e. g. 99%) of the activity in a projected QC
- Each QCA "island" would consume less resources than SET, amplifier, bonding pad, and cable to controller through cryostat it replaces
- QCA would allow the classical circuitry to be implemented on-chip without over-heating the dilution refrigerator.

System + Application Architectures

Device architecture maps well to many system architectures...

Notre Dame Center for Nano Science and Technology

Good for FIR, FT, Matrix multiply, graph algorithms, etc.

Simulations

New simulators

Simulation levels

1) Quantum chemistry		
Ab initio, all-electron, and approx.		
2) Density matrix (coherence vector)		
Quantum, dynamic, thermal effects, dissipation		
3) Time-independent Schrod. Eq.		
4) Semiclassical thermodynamic		
5) Logic level		
6) Architecture level	fast	
	•	

QCA design tools

QCADesigner

Konrad Walus U. British Columbia

QCADesigner screenshot showing a simple 4-bit processor layout.

QCA design tools

QCATS

<u>QCA</u> <u>T</u>hermodynamic <u>S</u>imulator

Semiclassical

🛛 Microsoft Excel				
É <u>Elle Edit View Insert Format Iools Data Window H</u> elp Ado <u>b</u> e PDF	Type a question for help 👻			
:] 📸 🛃 💪 🛃 🛍 • 約 • Σ • Θ 📲 Arial 🔹 10 • Β Ι U 三 三 三 🕮 5	\$% • 🖽 • 🖄 • 🗛 • 📲 🚼 🔁 🔁 👘			
R28C42 ▼ fx				
1 Q-CATS(1_4).xls				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3	35 36 37 38 39 40 41 <mark>42</mark> 43 44 45 46 47 48 49			
	Q-CATS Toolbox			
1_QCA Circuit Layout	Parameters Design Run			
2	Fill selection with:			
	Clear			
	Show Overlay			
₽ ₽ ₽				
	C Alpha			
	C Beta			
	Gamma			
	C Delta			
5				
	δβαβδ			
9	δβαβδ			
24				
۲				
25 E				

Notre Dame Center for Nano Science and Technology Under development

M-AQUINAS

Molecular version of <u>A</u> <u>QU</u>antum <u>Interconnected</u> <u>Network</u> <u>Array</u> <u>Simulator</u>

Authors: Enrique Blair

Amy DeCelles

- GUI allows pointand-click and dragand-drop editing of QCA circuits.
- Schrödinger solver coupled to local clocking field.

Notre Dame Center for Nano Science and Technology

Sandia National Laboratories

Simulation hierarchies

Conclusions

- Power is a problem for logic today, and it is related to an approach to thermodynamic limits on computing
- However, these limits are due in part to historical choices that can be circumvented
 - Requires new basis for logic
 - Requires new devices, notably devices that handle information and heat differently
- Also: A tie in to coherent quantum computing

Partnership Opportunity

- This is a project under NINE and SBET
 - We are advocating research in
 - Computing beyond the limits of CMOS
 - Physics of information processing
 - The overall project's deliverables to Sandia are to bootstrap multiple projects in
 - Physical science
 - Information science
 - Simulation
 - We've tried to outline opportunity and expose Sandia to willing partners

Applications and \$100M Supercomputers

[Jardin 03] S.C. Jardin, "Plasma Science Contribution to the SCaLeS Report," Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. [Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, "High-End Computing in Climate Modeling," contribution to SCaLeS report. [NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, "Compute as Fast as the Engineers Can Think!" NASA/TM-1999-209715, available on Internet.

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.

[DeBenedictis 04], Erik P. DeBenedictis, "Matching Supercomputing to Progress in Science," July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library

- Continuation of Quantum Fortress work 1100
- Molecular QCA 1800
- Quantum Computing Tie-In
 - Architecture
 - Quantum Dot Measurements
 - Quantum Dot Manufacturing classical/quantum
- Computer Architecture beyond limits of Moore's Law
- Simulation of information+Physics

