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Moore’s Law for Logic Switching Power
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100 kBT Power Limit

(to be discussed)

Today 2020 End of

Roadmap

2030+

A 100 kBT “thermal device limit” closely 

related to kBT ln(2) “Landauer Limit”

creates a floor of Joules/logic operation 

that will halt evolutionary progress

This is an immediate concern evidenced 

by growing µP heat

Lower is

Better



Emerging Research Devices (notes 2005)

• Table shows drop in replacements for CMOS 
transistors that defeat limit in previous slide

•Color code: OK, marginal, unacceptable

•CNFET on table only for political reasons



Obeying Moore’s Law and Beating CMOS
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100 kBT Power Limit

(to be discussed)

Today 2020 End of

Roadmap

2030+

Many proposed 

devices are 

subject to the 

same limits as 

CMOS

This project addresses approaches that can decisively beat CMOS at 

the end of the roadmap: Principal concepts: Reversible Logic and

Quantum Computing

Lower is

Better



Tie Between Information and Device Physics

•We use Boolean logic today, based on AND-OR-
NOT

•AND and OR gates “destroy” information, which 
creates heat irrespective of physical 
implementation (to be described later)

• This limit can be circumvented by a different form 
of logic that does not “destroy” information

•However, this will also require different devices…



Notre Dame
Center for Nano Science 

and Technology

Quantum-dot cellular automata

Represent binary 

information by charge 

configuration of cell.

QCA cell
• Dots localize charge

• Two mobile charges

• Tunneling between dots

• Clock signal varies relative

energies of “active” and “null” dots

“0”

“null”

“1”

active

Clock need not separately contact each cell.
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and Technology

“null”

Quantum-dot cellular automata

Neighboring cells tend to 

align in the same state.

“1”
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Quantum-dot cellular automata

Neighboring cells tend to 

align in the same state.

“1” “1”
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Quantum-dot cellular automata

Neighboring cells tend to 

align in the same state.

“1” “1”

This is the COPY operation.
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Majority Gate

“1”

“1”

“0”

“null”
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Majority Gate

“1”

“1”

“0”

“1”
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Majority Gate

Three input majority gate can function as 

programmable 2-input AND/OR gate.

“A”

“C”

“B”

“out”

M
A

B

C
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QCA single-bit full adder

Hierarchical layout and design are possible.

Simple-12 microprocessor (Kogge & Niemier)

result of SC-HF calculation  

with site model 



Notre Dame
Center for Nano Science 

and Technology

Computational wave: adder back-end
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Characteristic energy

E=0

kink

E=Ek

We would like “kink energy” Ek > kBT. 
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Molecular Wire

ONIOM/STO-3G (Gaussian 03)

E
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aligned

error
Ek = 0.8 eV

1

1

1

0
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Power Gain in QCA Cells

• Power gain is crucial for practical devices 

because some energy is always lost between 

stages.

• Lost energy must be replaced.

– Conventional devices – current from power supply

– QCA devices – from the clock

• Unity power gain means replacing exactly as 

much energy as is lost to environment.

Power gain > 3 has been measured in metal-dot QCA.
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Landauer Clocking
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Energy dissipation in 

Landauer-clocked circuit
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Test circuit: OR gate

A

1

B

A

B

A+B

Landauer clocking with echo of inputs to outputs
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Energy dissipation in the OR gate 
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Bennett clocking of QCA

Output is used to erase intermediate results.
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Test circuit: OR gate

A

1

B

A+B

Bennett clocked OR gate
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Bennett clocking of QCA

For QCA no change in layout is required.
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Bennett-style computation may be 

practical in QCA

Direct time-dependent calculations shows: Logically 

reversible circuit can dissipate much less than kBT ln(2) 
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QCA implementations

• Semiconductor-dot QCA
– SiGe quantum fortresses

– Silicon P-doping 

– GaAs

– Silicon dot SET’s

• Magnetic QCA

• Metal-dot QCA

• Molecular QCA

• CMOS analogue



Quantum Fortress Growth



Quantum Fortress QCA

FIB are used to deposit Pt contacts 

to ease the alignment requirements 

of the E-beam lithography.

Pt contact

Quantum dot

Source

Drain

Gate



S.E. Murphy

Architecture Summary

1. Irreversible

2. Fully Reversible: Landauer Clocking
• Reversible Components

3. Fully Reversible: Bennett Clocking
• Possibly Irreversible Components

4. Fully Reversible: Collapsed Bennett
• General purpose floorplan

• Size of computation limited only by stack size

5. Partially Reversible: Pipelined Bennett
• Advantages of reversible combined with higher 

throughput 



S.E. Murphy

Architecture Summary

1. Irreversible

2. Fully Reversible: Landauer Clocking
• Reversible Components

3. Fully Reversible: Bennett Clocking
• Possibly Irreversible Components

4. Fully Reversible: Collapsed Bennett
• General purpose floorplan

• Size of computation limited only by stack size

5. Partially Reversible: Pipelined Bennett
• Advantages of reversible combined with higher throughput 

Previous Architecture Work

Lent, et al
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Bennett’s Algorithm (1982)

• Original input saved throughout 
computation

• Intermediate state decomputed when 
possible

• Intermediate stage can be 
decomputed only if previous stage is 
computed

• Final state consists of original input 
and final output

• For 8 segments, at most 4 
checkpoints need to be stored at any 
given time

T
im
e

Logic Segments
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Collapsed Bennett Layout: 

Regions of QCA Circuit

Stack Right

Stack Left

Logic

Shifter
Stack Interface
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Collapsed Bennett Layout: 

Disable Regions
Logic Disable

Shift Disable



S.E. Murphy

Collapsed Bennett Layout
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Collapsed Bennett Layout

T
im
e

Compute Uncompute Shift Right

Shift Left

T
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e

T
im
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Logic Enabled

Shifter Disabled Logic Disabled

Shifter Enabled



Bennett Pipelined:
Architecture (Top view)

n clock phases:
φn = phased signals for Bennett 
clocking 

Vmin :cell released

Vmax :cell locked

M stages:
Bennett zones +

Registers

Input
Register

φnφ...φ2φ1

Logic

Stage
Register

φnφ...φ2φ1

Logic

Output
Register

Stage
Register

…

φnφ...φ2φ1

Logic1 2 3 M k
Outputs

j
Inputs



Data pipelining 

t

0

T/2

T

3T/2

2T

5T/2

A

A

A

A

B

B

B

B

C

C

computation

de-computation

M Stages

Initial latency: M *(T/2)
Throughput: 1/T



Case study: XOR Tree

XOR

XOR

X0

X1

X2

Parity

M stages parity checker

Partition in stages:

Lower limit: stage size = 2 QCA cell

Middle solution: stage size = 1 XOR GATE

Upper Limit: stage size = M XOR gates

XOR

XOR

XOR

XOR

XOR

X3

X4

X5

X6

X7



Performance evaluations

Throughput

1.0E+07
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1.0E+09
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1.0E+11

1.0E+12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

number XOR/stage  (c)

b
p
s Bennett

Landauer

• Landauer scheme shows higher throughput and the gap between 

the performances increases with the increase of c (c=14 only one

Bennett stage). (note: c=1not same as Landauer due to the size of 

the basic stage)



Performance evaluations

• The improvement in terms of power consumption becomes 

better with the increase of c (note: the power dissipated also 

with a pure Bennett scheme c=14 does not become zero as the 

inputs to the whole circuit are still deleted every T)

Energy per period

1.E-21

1.E-20

1.E-19

1.E-18

1.E-17

1.E-16

1.E-15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

number XOR/stage  (c)

J
o
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Landauer



Performance evaluations

op/(joule*s)

1E+24

1E+25
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1E+29

1E+30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

number XOR/stage (c)

o
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u
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*s
)

Bennett

Landauer

• “Given a second of time and a Joule of energy, what is the 

amount of operations (output bits) obtained?”

• The result shows an intersection of the two curves: 

– c< 3 Landauer clocking has better performances 

– c>3 Bennett clocking behaves better



Center for Nanoscience and Technology

Silicon P-dot QCA cell

• Dots defined by implanted phosphorus

• Single-donor creation foreseen

• Direct measurement of cell switching



QDCA Logic Directly Attached to QC

Base diagram from Physical Review B 74, 045311 2006,

Two-dimensional architectures for donor-based quantum computing

Classical QCA Gate 

(to scale)

φ1φ2φ3QDCA Clock

Advantages:

• Integration on one substrate

• Low power dissipation 

reduces load on cooling 

system



Self-Contained Classical+Quantum Logic

QCA QEC

Steane 5-bit QEC 

Measure-Classical 

Syndrome-Correct 

with no external 

connection except 

clock

Base diagram from Physical Review B 74, 045311 2006,

Two-dimensional architectures for donor-based quantum computing



Large QC and QCA Arrays



Advantages

• QCA logic “lives” in the single electron world, thus 
avoiding the need to amplify single electron signals to 
CMOS levels

• QCA logic would be used to execute the classical part of 
QEC recovery mechanisms, which is most (e. g. 99%) of the 
activity in a projected QC

• Each QCA “island” would consume less resources than 
SET, amplifier, bonding pad, and cable to controller through 
cryostat it replaces

• QCA would allow the classical circuitry to be implemented 
on-chip without over-heating the dilution refrigerator.
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System + Application 

Architectures
Grounded in device physics & simulation Incorporate clock driven dataflow

A

B

C

D

A

B

Device architecture maps well to many system architectures…

A A’ B B’ C C’

AB

AC

AND Plane OR Plane

AB + BC + AC

BC

Reconfigurable General PurposeSystolic

Good for FIR, FT, 

Matrix multiply, graph 

algorithms, etc.
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Simulations

New devices
New circuits
New architectures 

� New simulators
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Simulation levels

1) Quantum chemistry
Ab initio, all-electron, and approx.

2) Density matrix (coherence vector)
Quantum, dynamic, thermal effects, dissipation

3) Time-independent Schrod. Eq.

4) Semiclassical thermodynamic

5) Logic level

6) Architecture level

slow

fast
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QCA design tools

QCADesigner

Konrad Walus

U. British Columbia
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QCA design tools

QCATS

QCA

Thermodynamic 

Simulator

Under development

Semiclassical
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M-AQUINAS
Molecular version of A QUantum Interconnected Network Array Simulator 

• GUI allows point-

and-click and drag-

and-drop editing of 

QCA circuits.

• Schrödinger solver 

coupled to local 

clocking field. 

Authors: Enrique Blair

Amy DeCelles
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Simulation hierarchies

A A’ B B’ C C’

AB

AC

AND Plane OR Plane

AB + BC + AC

BC

Archi
tectur

al-lev
el 0 (AND gate)

1 (OR gate)

Minterm-In

Literal-In Select Bit (S)

Minterm-Out

Literal-In

Minterm-In

Select Bit (S)

+ Log
ic-lev

el…

+ dev
ice-le

vel…

= 

Application-level 

performance 

metrics



Conclusions

• Power is a problem for logic today, and it is 
related to an approach to thermodynamic limits 
on computing

•However, these limits are due in part to historical 
choices that can be circumvented

– Requires new basis for logic

– Requires new devices, notably devices that handle 
information and heat differently

•Also: A tie in to coherent quantum computing



Partnership Opportunity

• This is a project under NINE and SBET
–We are advocating research in

• Computing beyond the limits of CMOS

• Physics of information processing

– The overall project’s deliverables to Sandia are to 
bootstrap multiple projects in
• Physical science

• Information science

• Simulation

–We’ve tried to outline opportunity and expose 
Sandia to willing partners



Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System 

Performance

2000 2010 2020 2030 Year �

↑ � Red Storm/Cluster

Technology

� Nanotech +

Reversible Logic µP
(green) best-case logic 

(red) �

� Quantum Computing

Requires Rescaled

Graph (see later slide)

↑� Architecture: IBM 
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by 

source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.

[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.

[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”

NASA/TM-1999-209715, available on Internet.

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.

[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as

Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.
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[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.

[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”

NASA/TM-1999-209715, available on Internet.

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.

[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as

Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast 

as the engineer 

can think

[NASA 99]

↓ 100× ↑1000× [SCaLeS 03]

Full Global Climate 

[Malone 03]

Plasma 

Fusion 

Simulation 

[Jardin 03]

MEMS

Optimize



Experiments Under Discussion

•Continuation of Quantum Fortress work 1100

•Molecular QCA 1800

•Quantum Computing Tie-In

– Architecture

– Quantum Dot Measurements

– Quantum Dot Manufacturing classical/quantum

•Computer Architecture beyond limits of Moore’s 
Law

• Simulation of information+Physics
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