2007 SUMMARY REPORT of Countryside Lake

Lake County, Illinois

Prepared by the

LAKE COUNTY HEALTH DEPARTMENT ENVIRONMENTAL HEALTH SERVICES LAKES MANAGEMENT UNIT

3010 Grand Avenue Waukegan, Illinois 60085

Leonard Dane

Michael Adam Shaina Keseley Adrienne Orr

TABLE OF CONTENTS

LAKE FACT	'S	1
SUMMARY	OF WATER QUALITY	2
SUMMARY	OF AQUATIC MACROPHYTES	13
SUMMARY	OF WILDLIFE AND HABITAT	22
TABLES		
Table 1.	Water quality data for Countryside Lake, 2005, 2006, and 2007	5
	Lake County average TSI phosphorous (TSIp) ranking 2000-2007	9
Table 3a.	Aquatic plant species found at the 159 sampling sites on Countryside Lake,	
	2007. Maximum depth that plants were found was 11.0 feet.	
	Distribution of rake density across all sampled sites.	
	Aquatic plant species found in Countryside Lake in 2007	17
Table 5.	Floristic quality index (FQI) of lakes in Lake County, calculated with exotic	
	species (w/Adventives) and with native species only (native)	
Table 6.	Wildlife species observed on Countryside Lake, May – September 2007	23
FIGURES		
	Water quality sampling site on Countryside Lake.	4
	Yearly Secchi depth averages from VLMP and LCHD records for Countryside Lake.	
Figure 3.	Total suspended solid (TSS) concentrations vs. Secchi depth for Countryside Lake, 2007.	
Figure 1	Aquatic plant sampling grid illustrating plant density on Countryside Lake,	0
I iguic 4.	May 2007.	15
Figure 5.	Aquatic plant sampling grid illustrating plant density on Countryside Lake, August 2007	
	Tugust 2007	10
APPENDICE	S	
Appendix	A. Methods for field data collection and laboratory analyses.	
	B. Multi-parameter data for Countryside Lake in 2007.	
	C. Interpreting your lake's water quality data.	
	D. Water quality statistics for all Lake County lakes.	
Appendix	E. Grant program opportunities.	

LAKE FACTS

Lake Name:	Countryside Lake
Historical Name:	None
Nearest Municipality:	Mundelein
Location:	T44N, R10E, Sections 26,27,34,35
Elevation:	785.0 feet
Major Tributaries:	Indian Creek
Watershed:	Des Plaines River
Sub-watershed:	Indian Creek
Receiving Waterbody:	Des Plaines River
Surface Area:	141.8 acres
Shoreline Length:	3.9 miles
Maximum Depth:	10.0 feet
Average Depth:	6.5 feet
Lake Volume:	921.6 acre-feet
Lake Type:	Impoundment
Watershed Area:	1780.0 acres
Major Watershed Land Uses:	Single Family, Forest and Grassland
Bottom Ownership:	Private
Management Entities:	Countryside Lake Association
Current and Historical Uses:	Fishing, no wake boating, swimming
Description of Access:	No public access

In 2005, Countryside Lake was chosen to be one of seven "sentinel" lakes in the county that the Lakes Management Unit (LMU) will be monitoring annually for five years, beginning with the 2005 season. This report summarizes the water quality sampling results and aquatic plant surveys conducted in 2007 on Countryside Lake. Similar reports have been written on data collected in 2000, 2005, and 2006 and are available from the LMU.

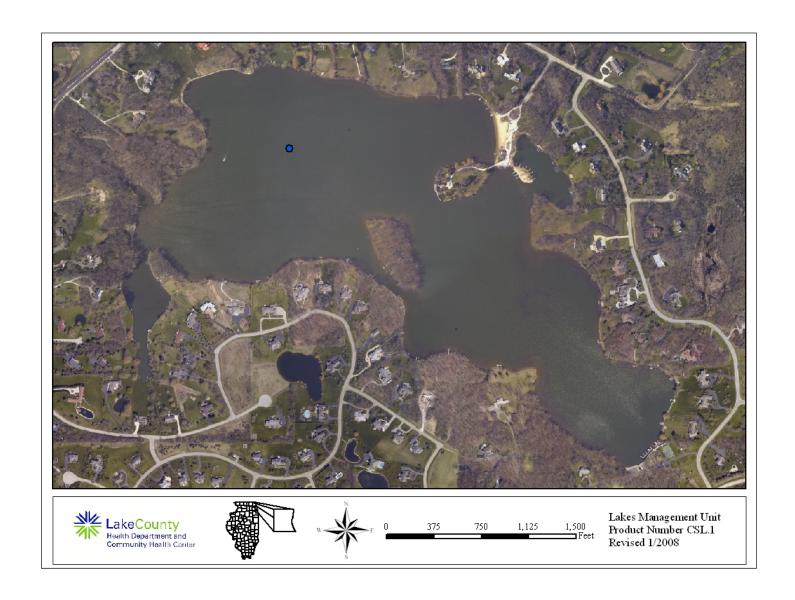
SUMMARY OF WATER QUALITY

Water samples were collected monthly from May through September at the deepest point in the lake (Figure 1; Appendix A). Countryside Lake was sampled at depths of three feet and six feet, and the samples were analyzed for various water quality parameters (Appendix C). In addition, the LMU's beach sampling program has included the Countryside Lake Association (CLA) beach since 1988. In 2007 there were no recommended beach closings.

Countryside Lake was well mixed throughout the season due to the lake being shallow and easily mixed by wind. This mixing was reflected in the dissolved oxygen (DO) concentrations, as well as the other water quality parameters. The concentrations from the epilimnion were similar to the hypolimnion, therefore only the data from the epilimnion will be discussed. DO concentrations of at least 5.0 mg/L were recorded in Countryside Lake in 2007 from the water's surface down to the lake bottom during all months, except August (Appendix B). In August the DO concentration was below 5.0 mg/L at depths greater than eight feet. This was likely due to the decomposition of plants and algae from the monthly chemical treatments. Since a bathymetric map with a morphometric table was not available, it was not possible to calculate the percent of the lake affected by the low DO conditions.

Secchi disk depth (water clarity) averaged 5.38 feet during 2007, which was above the Lake County median of 3.28 feet (Appendix D). This was an increase from the 2006 average of 5.07 feet and the 2005 average of 4.09 feet (Table 1). The water was clear to the bottom in June, so no measurement was able to be taken by the LMU. Countryside Lake has participated in the Illinois Environmental Protection Agency's (IEPA) Volunteer Lake Monitoring Program (VLMP) since 2001. The VLMP Secchi depth averages over the past seven years have been between 2.97 feet and 8.08 feet (Figure 2). The VLMP data in 2007 was only collected during May and June which is why the average is so high. The LMU had high readings in May and June and then saw a decline from July through September. If the VLMP data would have been collected for the entire season, it is expected that the seasonal average would have been similar to that of the LMU. The VLMP data from 2001 through 2007 had an average Secchi depth of 4.53 feet while the LMU data from 2000, 2005, 2006, and 2007 had an average Secchi depth of 4.55 feet. Water clarity is related to the amount of total suspended solids (TSS) concentration in the water column. As the TSS increased, the water clarity decreased (Figure 3). The 2007 average TSS concentration of 4.7 mg/L was a decrease from the 2006 average of 6.7 mg/L, but an increase from the 2005 average of 4.0 mg/L. The 2007 average TSS was below the Lake County median of 8.0 mg/L. The decrease from 2006 could be due to less algae blooms in 2007. The decrease could have been as result of the dry conditions early in the year. These conditions caused no water to flow into the lake from the surrounding watershed. Once the precipitation began in August, the TSS increased and water was noted flowing over the outlet. As part of the monthly sampling, water level was measured at the boat launch near the outlet. The lake level

decreased by 4.6 inches from May through July and then increased 6.8 inches from July to August. The level then dropped 3.5 inches from August to September for a seasonal decrease of 1.4 inches.


Data collected by the IEPA, LMU, and CLA has shown negative impacts on the Countryside Lake watershed due to runoff from an upstream development. CLA has also been monitoring the lake's turbidity, TP, TSS, and Total organic carbon after significant rain events at six locations around the lake. They continue to see high levels entering the lake from Indian Creek, however not as high as when the land upstream was under development.

Total phosphorous (TP) was relatively consistent throughout the 2007 sampling season and was below the Lake County median of 0.063 mg/L. The average TP concentrations for 2005, 2006, and 2007 were 0.051 mg/L, 0.079 mg/L, and 0.033, respectively. This decrease in TP was likely the result of an increase in plant density from previous years. Aquatic plants consume phosphorous. In addition, there were no inputs from upstream due to the low water levels at the beginning of the summer. In lakes that do not stratify, like Countryside Lake, phosphorus can be released from sediment through biological/mechanical processes or from plants/algae as they die. The trophic state of Countryside Lake, in terms of its phosphorus concentration, from 2005 through 2007 was eutrophic, with TSIp scores of 60.9, 67.1, and 54.7, respectively. Countryside Lake was 40th out of 163 lakes in Lake County (Table 2).

The IEPA has assessment indices to classify Illinois lakes for their ability to support aquatic life and recreational uses. The guidelines consider several aspects, such as water clarity, phosphorus concentrations (for the trophic state index), and aquatic plant coverage. According to this index, Countryside Lake provided *Full* support of aquatic life and recreational activities (such as boating), and provided *Full* overall use in 2007.

The Lake County median conductivity reading for near surface samples was 0.8038 milliSiemens/cm (mS/cm). During 2007, the average conductivity reading for Countryside Lake was lower at 0.6842 mS/cm. This was down from the 2005 and 2006 averages of 0.7546 mS/cm and 0.7196 mS/cm. The 2005 and 2006 averages were likely higher due to the lack of precipitation, which decreased the lake volume and therefore concentrated the Cl⁻. Plus there was minimal "flushing". The 2007 average Cl concentration in Countryside Lake was lower than the Lake County median of 158 mg/L, with a seasonal average of 129 mg/L. This was down from the 2006 average of 133 mg/L and up from the 2005 average of 122 mg/L. When looking at the data on a monthly basis, the conductivity and Cl⁻ concentrations were above the 2006 averages until August and September when the conductivity and Cl concentrations dropped. This drop was due to heavy rains during those months. It was reported that water flowed over the dam which caused the system to be "flushed." Road salt used for winter deicing was the probable source of Cl⁻. The Illinois Environmental Protection Agency (IEPA) standard for chloride is 500 mg/L. Once values exceed this standard, the waterbody is deemed to be impaired, thus impacting aquatic life. A study done in Canada reported 10% of aquatic species were harmed by prolonged exposure to Cl⁻ concentrations greater than 220 mg/L. Additionally, shifts in algal populations were associated with Cl concentrations as low as 12 mg/l. Therefore, it is important to keep the use of road salts to a minimum within the watershed.

Figure 1. Water quality sampling site on Countryside Lake, 2007.

 \mathcal{S}

Table 1. Water quality data for Countryside Lake, 2005, 2006, and 2007.

		=													
2007	Epilimnion														
DATE	DEPTH	ALK	TKN	NH ₃ -N	NO ₂ +NO ₃ -N	TP	SRP	Cl ⁻	TSS	TS	TVS	SECCHI	COND	pН	DO
08-May	3	167	0.54	< 0.1	< 0.05	0.025	< 0.005	134	3.3	502	98	5.25	0.7510	8.19	8.57
12-Jun	3	158	0.66	< 0.1	< 0.05	0.014	< 0.005	139	<1.0	512	137	9.20 ^a	0.7110	8.40	9.04
10-Jul	3	152	0.74	< 0.1	< 0.05	0.024	< 0.005	142	3.2	508	137	5.32	0.7270	8.38	6.69
07-Aug	3	131	0.71	< 0.1	< 0.05	0.030	< 0.005	137	3.2	457	111	4.26	0.6910	8.44	7.45
11-Sep	3	151	1.00	< 0.1	< 0.05	0.073	< 0.005	94	9.1	370	107	2.86	0.5410	8.35	6.12
	Average	152	0.73	<0.1	< 0.05	0.033	< 0.005	129	4.7 ^k	470	118	5.38 ^b	0.6842	8.35	7.57
2006	Epilimnion]													
DATE	DEPTH	ALK	TKN	NH ₃ -N	NO ₂ +NO ₃ -N	TP	SRP	Cl ⁻	TSS	TS	TVS	SECCHI	COND	pН	DO
11-May	3	121	0.76	< 0.1	< 0.05	0.027	0.006	134	1.1	436	121	9.10 ^a	0.7416	8.95	10.66
15-Jun	3	114	0.77	< 0.1	< 0.05	0.057	0.014	131	2.7	445	138	7.87	0.7056	9.35	10.61
13-Jul	3	111	1.43	< 0.1	< 0.05	0.066	< 0.005	134	6.8	465	162	4.49	0.6947	9.51	9.00
10-Aug	3	134	1.69	< 0.1	< 0.05	0.099	< 0.005	135	11.0	466	147	2.33	0.7335	8.82	7.23
14-Sep	3	150	2.15	0.161	< 0.05	0.145	< 0.005	129	12.0	448	140	1.54	0.7224	8.30	5.65
	Average	126	1.36	0.161^{k}	< 0.05	0.079	0.010^{k}	133	6.7	452	142	5.07 ^b	0.7196	8.99	8.63
2005	Epilimnion]													
DATE	DEPTH	ALK	TKN	NH ₃ -N	NO ₃ -N*	TP	SRP	Cl ⁻	TSS	TS	TVS	SECCHI	COND	pН	DO
11-May	3	136	0.67	< 0.1	< 0.05	0.026	< 0.005	111	1.4	429	99	0°	0.7135	8.05	9.34
15-Jun	3	159	0.92	0.130	< 0.05	0.056	0.015	118	3.1	467	122	5.12	0.7788	7.63	4.85
13-Jul	3	155	0.80	< 0.1	< 0.05	0.045	0.011	123	3.6	483	140	4.86	0.7855	7.71	5.89
10-Aug	3	152	1.08	< 0.1	< 0.05	0.063	< 0.005	128	5.2	468	135	3.61	0.7519	8.95	8.07
14-Sep	3	147	1.11	< 0.1	< 0.05	0.066	< 0.005	132	6.8	478	149	2.76	0.7435	8.77	6.53
	Average	150	0.92	0.130^{k}	< 0.05	0.051	0.013^{k}	122	4.0	465	129	4.09 ^d	0.7546	8.22	6.94
Glossary				1						depth was of	-				
	alinity, mg/L CaCO				otal dissolved sol	, ,			b = Secchi	disk was on	the bottom a	t least one mo	nth and there	fore the ave	rage
TKN - Tota	TSS = Total suspended solids mg/L														

TKN = Total Kjeldahl nitrogen, mg/L

 NH_3 -N = Ammonia nitrogen, mg/L

 $NO_2+NO_3-N = Nitrate + Nitrite nitrogen, mg/L$

NO₃-N = Nitrate + Nitrite nitrogen, mg/L

TP = Total phosphorus, mg/L

SRP = Soluble reactive phosphorus, mg/L

Cl⁻ = Chloride, mg/L

TSS = Total suspended solids, mg/L

TS = Total solids, mg/L

TVS = Total volatile solids, mg/L

SECCHI = Secchi disk depth, ft.

COND = Conductivity, milliSiemens/cm

DO = Dissolved oxygen, mg/L

could have been deeper

c = Secchi depth was obstructed by plants

d = Secchi disk depth average does not include data from May because Secchi disk was obstructed by plants

k = Denotes that the actual value is known to be less than the value presented.

NA= Not applicable

* = Prior to 2006 only Nitrate - nitrogen was analyzed

	•	
	٦	

Table 1. Continued.

		İ													
2007	Hypolimnion				•			ı	ı	ı	1			ı	
DATE	DEPTH	ALK	TKN	NH ₃ -N	NO ₂ +NO ₃ -N	TP	SRP	Cl ⁻	TSS	TS	TVS	SECCHI	COND	pН	DO
08-May	6	167	0.57	< 0.1	< 0.05	0.027	< 0.005	133	3.6	514	119	NA	0.8609	8.06	8.22
12-Jun	6	159	0.61	< 0.1	< 0.05	0.014	< 0.005	139	1.2	523	138	NA	0.8451	8.39	9.20
10-Jul	6	152	0.68	< 0.1	< 0.05	0.023	< 0.005	143	3.2	504	129	NA	0.8470	8.29	6.37
07-Aug	6	133	0.70	< 0.1	< 0.05	0.037	< 0.005	140	3.6	485	143	NA	0.7851	8.49	6.38
11-Sep	6	151	0.91	< 0.1	< 0.05	0.063	< 0.005	94	8.5	366	79	NA	0.6273	8.17	6.05
	Average	152	0.69	<0.1	< 0.05	0.033	< 0.005	130	4.0	478	122	NA	0.7931	8.28	7.24
2006	Hypolimnion														
DATE	DEPTH	ALK	TKN	NH ₃ -N	NO ₂ +NO ₃ -N	TP	SRP	Cl ⁻	TSS	TS	TVS	SECCHI	COND	pН	DO
11-May	6	121	0.68	< 0.1	< 0.05	0.029	0.006	135	1.0	433	116	NA	0.7403	8.97	10.54
15-Jun	6	114	0.75	< 0.1	< 0.05	0.057	0.015	132	2.3	456	149	NA	0.7058	9.38	10.80
13-Jul	6	111	1.40	< 0.1	< 0.05	0.063	< 0.005	136	6.6	448	146	NA	0.6954	9.46	8.15
10-Aug	6	134	1.58	< 0.1	< 0.05	0.082	< 0.005	135	9.9	441	124	NA	0.7335	8.74	6.51
14-Sep	6	151	1.97	0.171	< 0.05	0.132	< 0.005	127	11.0	443	131	NA	0.7229	8.22	4.97
	Average	126	1.28	0.171 ^k	< 0.05	0.073	0.011 ^k	133	6.2	444	133	NA	0.7196	8.95	8.19
2005	Hypolimnion														
DATE	DEPTH	ALK	TKN	NH ₃ -N	NO ₃ -N*	TP	SRP	Cl ⁻	TSS	TS	TVS	SECCHI	COND	pН	DO
11-May	6	134	0.76	< 0.1	< 0.05	0.048	< 0.005	112	18.6	441	109	NA	0.7005	8.14	11.80
15-Jun	6	159	0.89	0.138	< 0.05	0.052	0.012	119	3.3	471	116	NA	0.7788	7.61	4.82
13-Jul	6	155	0.79	< 0.1	< 0.05	0.052	0.009	122	3.6	483	134	NA	0.7854	7.70	5.87
10-Aug	6	151	1.01	< 0.1	< 0.05	0.054	< 0.005	128	4.4	460	126	NA	0.7535	8.84	7.08
a.	Average	150	0.86	0.138 ^k	<0.05	0.052	0.011 ^k	120	7.5	464	121	NA	0.7546	8.07	7.39
Glossary	linites mar/I C CO			TDC - T	4-1 3:13 - 1	J/T]	I D	414 41-	11 ·	- 1 4 1	144	1	4 J
	alinity, mg/L CaCO	-			otal dissolved soli						ctual value i	s known to be	iess than the	e value prese	ented.
	al Kjeldahl nitrogen	_			tal suspended sol	ius, mg/L		NA= Not applicable							
-	NH_3 - $N = Ammonia nitrogen, mg/L$ $TS = Total solids, mg/L$				* = Prior to 2006 only Nitrate - nitrogen was analyzed										

 $NO_2+NO_3-N = Nitrate + Nitrite nitrogen, mg/L$

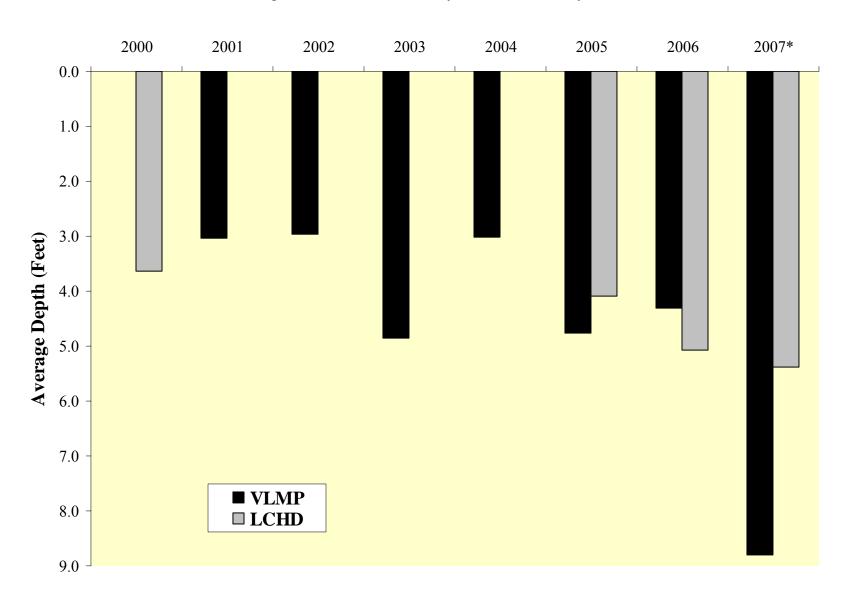
 NO_3 -N = Nitrate + Nitrite nitrogen, mg/L

TP = Total phosphorus, mg/L

SRP = Soluble reactive phosphorus, mg/L

Cl⁻ = Chloride, mg/L

TVS = Total volatile solids, mg/L


SECCHI = Secchi disk depth, ft.

COND = Conductivity, milliSiemens/cm

DO = Dissolved oxygen, mg/L

Figure 2. Yearly Secchi depth averages from VLMP and LCHD records for Countryside Lake.

* During 2007 VLMP data was only collected from May – June.

7

Figure 3. Total suspended solid (TSS) concentrations vs. Secchi depth for Countryside Lake, 2007.

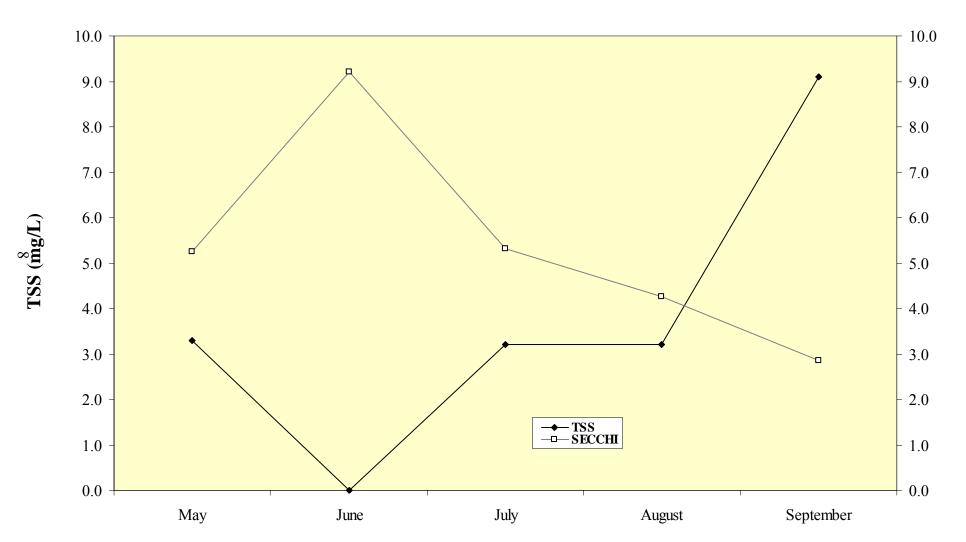


Table 2. Lake County average TSI phosphorous (TSIp) ranking 2000-2007.

RANK	LAKE NAME	TP AVE	TSIp
1	Lake Carina	0.0100	
2		0.0100	37.35 37.35
3	Sterling Lake Independence Grove	0.0100	37.35 39.24
4		0.0114	41.36
5	Sand Pond (IDNR) Cedar Lake	0.0132	41.60
6	Windward Lake	0.0157	43.95
7	Windward Lake Pulaski Pond	0.0138	45.83
8	Timber Lake (North)	0.0180	45.83
9	Fourth Lake	0.0180	45.83
10	West Loon Lake	0.0182	45.99
10	Lake Kathyrn	0.0182	43.99
12	Lake of the Hollow	0.0200	47.35
13	Banana Pond	0.0200	47.33 47.49
13	Lake Minear	0.0202	47.49
15	Bangs Lake	0.0204	48.17
16	Cross Lake	0.0212	48.72
17	Dog Pond	0.0220	48.72
18	Stone Quarry Lake	0.0222	49.36
19	Cranberry Lake	0.0230	49.56
20	Deep Lake	0.0234	49.01
20	Druce Lake	0.0240	50.22
22	Little Silver Lake	0.0244	50.33
23	Round Lake	0.0246	50.80
23	Lake Leo	0.0254	50.80
25	Dugdale Lake	0.0236	51.89
26	Peterson Pond	0.0274	51.89
27	Lake Miltmore	0.0274	51.89
28	East Loon Lake	0.0270	52.20
29	Last Loon Lake	0.0280	52.30
30	Lake Fairfield	0.0282	53.00
31	Gray's Lake	0.0290	53.29
32	Highland Lake	0.0302	53.29
33	Hook Lake	0.0302	53.29
34	Lake Catherine (Site 1)	0.0302	53.57
35	Lambs Farm Lake	0.0308	53.76
36	Old School Lake	0.0312	53.76
37	Sand Lake	0.0312	53.70
38	Sullivan Lake	0.0320	54.13
39	Lake Linden	0.0326	54.39
40	Countryside Lake	0.0320	54.66
41	Gages Lake	0.0338	54.92
42	Hendrick Lake	0.0344	55.17
43	Third Lake	0.0344	55.24
44	Diamond Lake	0.0372	56.30
45	Channel Lake (Site 1)	0.0372	56.60
46	Ames Pit	0.0390	56.98

Table 2. Continued.

RANK	LAKE NAME	TP AVE	TSIp
47	White Lake	0.0408	57.63
48	Sun Lake	0.0410	57.70
49	Potomac Lake	0.0424	58.18
50	Duck Lake	0.0426	58.25
51	Old Oak Lake	0.0428	58.32
52	Deer Lake	0.0434	58.52
53	Schreiber Lake	0.0434	58.52
54	Nielsen Pond	0.0448	58.98
55	Turner Lake	0.0458	59.30
56	Seven Acre Lake	0.0460	59.36
57	Willow Lake	0.0464	59.48
58	Lucky Lake	0.0476	59.85
59	Davis Lake	0.0476	59.85
60	East Meadow Lake	0.0478	59.91
61	College Trail Lake	0.0496	60.45
62	Lake Lakeland Estates	0.0524	61.24
63	Butler Lake	0.0528	61.35
64	West Meadow Lake	0.0530	61.40
65	Heron Pond	0.0545	61.80
66	Little Bear Lake	0.0550	61.94
67	Lucy Lake	0.0552	61.99
68	Lake Christa	0.0576	62.60
69	Lake Charles	0.0580	62.70
70	Crooked Lake	0.0608	63.38
71	Waterford Lake	0.0610	63.43
72	Lake Naomi	0.0616	63.57
73	Lake Tranquility S1	0.0618	63.62
74	Werhane Lake	0.0630	63.89
75 - -	Liberty Lake	0.0632	63.94
76 	Countryside Glen Lake	0.0642	64.17
77	Lake Fairview	0.0648	64.30
78 78	Leisure Lake	0.0648	64.30
79	Tower Lake	0.0662	64.61
80	Wooster Lake	0.0663	64.63
81	St. Mary's Lake	0.0666	64.70
82	Mary Lee Lake	0.0682	65.04
83 84	Hastings Lake Honey Lake	0.0684 0.0690	65.08 65.21
	-		
85 86	Spring Lake ADID 203	0.0726	65.94
86 87	ADID 203 Bluff Lake	0.0730 0.0734	66.02 66.10
88	Harvey Lake	0.0734	66.71
88 89	Broberg Marsh	0.0786	67.01
89 90	Echo Lake	0.0782	67.19
90 91	Sylvan Lake	0.0792	67.19
	•		
92	Big Bear Lake	0.0806	67.45

Table 2. Continued.

RANK	LAKE NAME	TP AVE	TSIp
93	Petite Lake	0.0834	67.94
94	Timber Lake (South)	0.0848	68.18
95	Lake Marie (Site 1)	0.0850	68.21
96	North Churchill Lake	0.0872	68.58
97	Grand Avenue Marsh	0.0874	68.61
98	Grandwood Park, Site II, Outflow	0.0876	68.65
99	North Tower Lake	0.0878	68.68
100	South Churchill Lake	0.0896	68.97
101	Rivershire Pond 2	0.0900	69.04
102	McGreal Lake	0.0914	69.26
103	International Mine and Chemical Lake	0.0948	69.79
104	Eagle Lake (Site I)	0.0950	69.82
105	Valley Lake	0.0950	69.82
106	Dunns Lake	0.0952	69.85
107	Fish Lake	0.0956	69.91
108	Lochanora Lake	0.0960	69.97
109	Owens Lake	0.0978	70.23
110	Woodland Lake	0.0986	70.35
111	Island Lake	0.0990	70.41
112	McDonald Lake 1	0.0996	70.50
113	Longview Meadow Lake	0.1024	70.90
114	Long Lake	0.1029	70.96
115	Lake Barrington	0.1053	71.31
116	Redwing Slough, Site II, Outflow	0.1072	71.56
117	Lake Forest Pond	0.1074	71.59
118	Bittersweet Golf Course #13	0.1096	71.88
119	Fox Lake (Site 1)	0.1098	71.90
120	Osprey Lake	0.1108 0.1126	72.04
121 122	Bresen Lake Round Lake Marsh North	0.1126	72.27 72.27
122	Deer Lake Meadow Lake	0.1128	72.67
123	Taylor Lake	0.1138	72.99
124	Columbus Park Lake	0.1184	73.49
126	Nippersink Lake (Site 1)	0.1220	73.66
127	Grass Lake (Site 1)	0.1240	74.21
128	Lake Holloway	0.1288	74.58
129	Lakewood Marsh	0.1322	74.67
130	Summerhill Estates Lake	0.1384	75.24
131	Redhead Lake	0.1412	75.53
132	Forest Lake	0.1422	75.63
133	Antioch Lake	0.1422	75.89
134	Slocum Lake	0.1496	76.36
135	Drummond Lake	0.1510	76.50
136	Pond-a-Rudy	0.1514	76.54
137	Lake Matthews	0.1516	76.56
138	Buffalo Creek Reservoir	0.1550	76.88
-50			

Table 2. Continued.

RANK	LAKE NAME	TP AVE	TSIp
139	Pistakee Lake (Site 1)	0.1592	77.26
140	Salem Lake	0.1650	77.78
141	Half Day Pit	0.1690	78.12
142	Lake Eleanor Site II, Outflow	0.1812	79.13
143	Lake Farmington	0.1848	79.41
144	ADID 127	0.1886	79.71
145	Lake Louise Inlet	0.1938	80.10
146	Grassy Lake	0.1952	80.20
147	Dog Bone Lake	0.1990	80.48
148	Redwing Marsh	0.2072	81.06
149	Stockholm Lake	0.2082	81.13
150	Bishop Lake	0.2156	81.63
151	Hidden Lake	0.2236	82.16
152	Fischer Lake	0.2278	82.43
153	Lake Napa Suwe (Outlet)	0.2304	82.59
154	Patski Pond (outlet)	0.2512	83.84
155	Oak Hills Lake	0.2792	85.36
156	Loch Lomond	0.2954	86.18
157	McDonald Lake 2	0.3254	87.57
158	Fairfield Marsh	0.3264	87.61
159	ADID 182	0.3280	87.69
160	Slough Lake	0.4134	91.02
161	Flint Lake Outlet	0.4996	93.75
162	Rasmussen Lake	0.5025	93.84
163	Albert Lake, Site II, outflow	1.1894	106.3

SUMMARY OF AQUATIC MACROPHYTES

Aquatic plant (macrophyte) surveys were conducted in May and August of 2007. Sampling sites were based on a grid system created by mapping software (ArcGIS), with each site located 60 meters apart. On Countryside Lake there were 159 sites sampled in May (Figure 4) and 156 sites sampled in August (Figure 5). Plants were found at 106 sites in May and 144 sites in August (Table 3a,b). Overall, a total of four plant species and one macro-algae were found (Table 4). Only a macro-algae (*Chara* spp.) and Curlyleaf Pondweed were found in May, at 21% and 53% of the sampling sites. In August, Curlyleaf Pondweed was found at 78% of the sampling sites and Chara spp. at 45% of the sampling sites. Flatsteam Pondweed, Sago Pondweed, and Southern Naiad were other species found but were less abundant. These aquatic plant densities did not seem to affect the recreational use of Countryside Lake. Diversity was down from 2006 when five aquatic plant species and one macro-algae were found, but up from 2005 when only three aquatic plants species and one macro-algae were found. In 2000 12 aquatic plant species and one macro-algae were present. Countryside Lake was dominated by Curlyleaf Pondweed in May and *Chara* spp. in August during 2000, 2005, 2006, and 2007. During 2007, the 1% light level reached the bottom from May through August. In May, plants were found down to 11.0 feet and in August they were found down to 9.8 feet.

CLA treated the lake with fluridone (Sonar ASTM) at a concentration of 8 ppb on April 10, 2007 (5 gallons) and a bump up to hold concentration on May 3, 2007 (2.5 gallons) to control the aquatic plants. It was also treated weekly with copper sulfate (a season total of 1330+ pounds) to control algae from the end of April through mid-September with the exception of May 16th, June 6th, July11th, and 18th, August 15th, and September 5th. This was a significant decrease in the amount of Copper Sulfate applied in 2006 when a seasonal total of 2005 pounds were applied. Even though there was a decrease, it may not be necessary to apply this much copper sulfate. Therefore, the current aquatic plant management plan should be evaluated for possible changes. This could save money and provide less potential impact to the environment. In addition, during the August aquatic plant survey Water Hyacinth was noticed growing along the west shoreline between two piers. This sighting was brought to the attention of CLA and they had their applicator treat that section of shoreline on August 16th to kill this exotic, invasive plant. During the September sampling all of the Water Hyacinth appeared to be dead. CLA should inform members that the release of any exotic species into natural lakes is strongly discouraged.

Floristic Quality Index (FQI) is a rapid assessment tool designed to evaluate the closeness of the flora of an area to that of undisturbed conditions. It can be used to: 1) identify natural areas, 2) compare the quality of different sites or different locations within a single site, 3) monitor long-term floristic trends, and 4) monitor habitat restoration efforts. A high FQI number indicates that there is a large number of sensitive, high quality plant species present in the lake. Non-native species were also included in the FQI calculations for Lake County lakes. The average FQI for 2000-2007 Lake County lakes was 13.6 (Table 5). Countryside Lake had a FQI of 10.5 in 2007. This was down from 2006 when the FQI was 12.5 and up from 2005 when the FQI was 5.8.

Table 3a. Aquatic plant species found at the 159 sampling sites on Countryside Lake, 2007. Maximum depth that plants were found was feet 11.0.

May	-			
		N /	~	
		v		

Plant Density	Chara	Curlyleaf Pondweed
Absent	125	75
Present	24	81
Common	9	2
Abundant	0	0
Dominant	0	0
% Plant Occurrence	20.9	52.5

August

Plant Density	Chara	Curlyleaf Pondweed	Flatstem Pondweed	Sago Pondweed	Southern Naiad
Absent	86	35	153	155	136
Present	29	61	3	0	11
Common	1	40	0	1	3
Abundant	7	16	0	0	3
Dominant	33	4	0	0	3
% Plant Occurrence	44.9	77.6	1.9	0.6	12.8

Table 3b. Distribution of rake density across all sampled sites.

M	av

May		
Rake Density (Coverage)	# of Sites	%
No plants	53	33.3
>0 to 10%	95	59.7
>10 to 40%	11	6.9
>40 to 60%	0	0.0
>60 to 90%	0	0.0
>90%	0	0.0
Total Sites with Plants	106	66.7
Total # of Sites	159	100.0

August

Rake Density (Coverage)	# of Sites	%
No plants	12	7.7
>0 to 10%	48	30.8
>10 to 40%	33	21.2
>40 to 60%	20	12.8
>60 to 90%	4	2.6
>90%	39	25.0
Total Sites with Plants	144	92.3
Total # of Sites	156	100.0

Figure 4. Aquatic plant sampling grid illustrating plant density on Countryside Lake, May 2007.

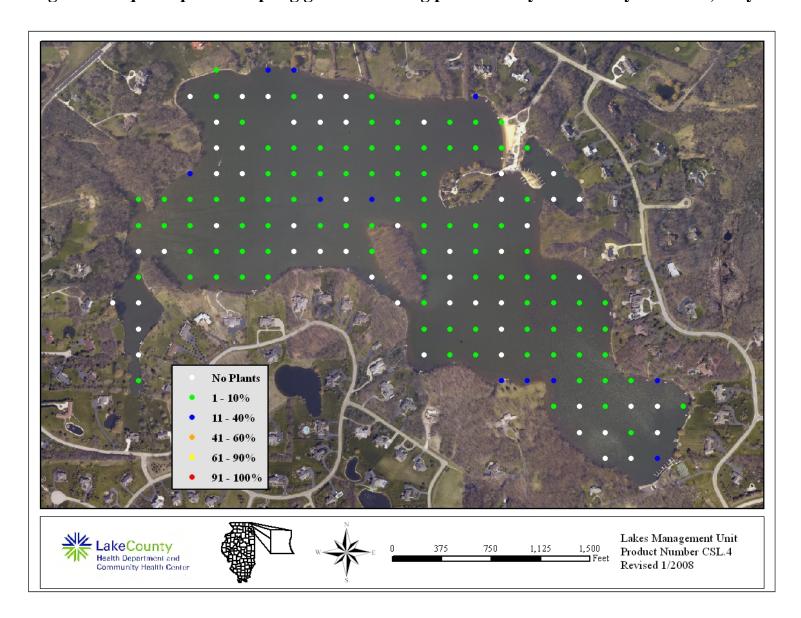
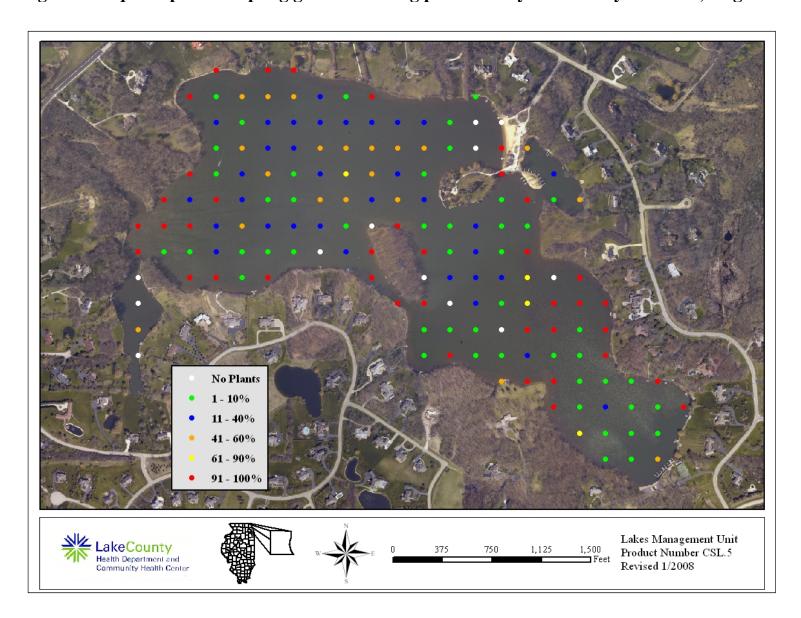



Figure 5. Aquatic plant sampling grid illustrating plant density on Countryside Lake, August 2007.

Table 4. Aquatic plant species found in Countryside Lake in 2007.

Chara (Macro algae) Curlyleaf Pondweed[^] Flatstem Pondweed Sago Pondweed Southern Naiad Chara spp.
Potamogeton crispus
Potamogeton zosterformis
Potamogeton pectinatus

Najas guadalupensis

^ Exotic

Table 5. Floristic quality index (FQI) of lakes in Lake County, calculated with exotic species (w/Adventives) and with native species only (native).

RANK	LAKE NAME	FQI (w/A)	FQI (native)
1	Cedar Lake	35.1	37.3
2	Deep Lake	33.9	35.4
3	Cranberry Lake	30.1	31.0
4	Round Lake Marsh North	29.1	29.9
5	East Loon Lake	28.4	29.9
6	Sullivan Lake	28.2	29.7
7	Deer Lake	28.2	29.7
8	Little Silver Lake	27.9	30.0
9	Schreiber Lake	26.8	27.6
10	West Loon Lake	26.0	27.6
11	Cross Lake	25.2	27.8
12	Independence Grove	24.6	27.5
13	Sterling Lake	24.5	26.9
14	Bangs Lake	24.5	26.2
15	Lake Zurich	24.0	26.0
16	Lakewood Marsh	23.8	24.7
17	Lake of the Hollow	23.8	26.2
18	Round Lake	23.5	25.9
19	Fourth Lake	23.0	24.8
20	Druce Lake	22.8	25.2
21	Sun Lake	22.7	24.5
22	Countryside Glen Lake	21.9	22.8
23	Butler Lake	21.4	23.1
24	Duck Lake	21.1	22.9
25	Wooster Lake	20.8	22.6
26	Timber Lake (North)	20.8	22.8
27	Davis Lake	20.5	21.4
28	Broberg Marsh	20.5	21.4
29	ADID 203	20.5	20.5
30	McGreal Lake	20.2	22.1
31	Lake Kathryn	19.6	20.7
32	Redhead Lake	19.3	21.2
33	Owens Lake	19.3	20.2
34	Fish Lake	19.3	21.2
35	Turner Lake	18.6	21.2
36	Salem Lake	18.5	20.2
37	Lake Miltmore	18.4	20.3
38	Hendrick Lake	17.7	17.7
39	Summerhill Estates Lake	17.1	18.0
40	Seven Acre Lake	17.0	15.5
41	Gray's Lake	16.9	19.8
42	Third Lake	16.8	18.7
43	Lake Barrington	16.7	17.7
44	Bresen Lake	16.6	17.8

Table 5. Continued.

Rank	Lake Name	FQI (w/A)	FQI (native)
45	Windward Lake	16.3	17.6
46	Lake Napa Suwe	16.3	17.4
47	Diamond Lake	16.3	17.4
48	Long Lake	16.1	18.0
49	Dog Bone Lake	15.7	15.7
50	Redwing Slough	15.6	16.6
51	Osprey Lake	15.5	17.3
52	Lake Fairview	15.2	16.3
53	Heron Pond	15.1	15.1
54	North Churchill Lake	15.0	15.0
55	Lake Tranquility (S1)	15.0	17.0
56	Island Lake	14.7	16.6
57	Dog Training Pond	14.7	15.9
58	Highland Lake	14.5	16.7
59	Taylor Lake	14.3	16.3
60	Grand Avenue Marsh	14.3	16.3
61	Eagle Lake (S1)	14.0	15.1
62	Dugdale Lake	14.0	15.1
63	Longview Meadow Lake	13.9	13.9
64	Hook Lake	13.4	15.5
65 66	Bishop Lake Ames Pit	13.4	15.0
67	Old School Lake	13.4 13.1	15.5 15.1
68	McDonald Lake 2	13.1	14.3
69	Mary Lee Lake	13.1	15.1
70	Buffalo Creek Reservoir	13.1	14.3
71	White Lake	12.7	14.7
72	Timber Lake (South)	12.7	14.7
73	Old Oak Lake	12.7	14.7
74	Dunn's Lake	12.7	13.9
75	Stone Quarry Lake	12.5	12.5
76	Sand Lake	12.5	14.8
77	Hastings Lake	12.5	14.8
78	Echo Lake	12.5	14.8
79	Stockholm Lake	12.1	13.5
80	Pond-A-Rudy	12.1	12.1
81	Lambs Farm Lake	12.1	14.3
82	Lake Leo	12.1	14.3
83	Lake Carina	12.1	14.3
84	Honey Lake	12.1	14.3
85	Lake Matthews	12.0	12.0
86	Harvey Lake	11.8	13.0
87	Flint Lake	11.8	13.0
88	Rivershire Pond 2	11.5	13.3
89	Lake Linden	11.3	11.3
90	Lake Charles	11.3	13.4

Table 5. Continued.

Rank	Lake Name	FQI (w/A)	FQI (native)
91	Antioch Lake	11.3	13.4
92	Pulaski Pond	11.2	12.5
93	Lake Naomi	11.2	12.5
94	West Meadow Lake	11.0	11.0
95	Tower Lake	11.0	11.0
96	Redwing Marsh	11.0	11.0
97	Lake Minear	11.0	13.9
98	Nielsen Pond	10.7	12.0
99	Lake Holloway	10.6	10.6
100	Countryside Lake	10.5	12.1
101	Crooked Lake	10.2	12.5
102	Lake Lakeland Estates	10.0	11.5
103	College Trail Lake	10.0	10.0
104	Valley Lake	9.9	9.9
105	Werhane Lake	9.8	12.0
106	Little Bear Lake	9.5	11.0
107	Big Bear Lake	9.5	11.0
108	Loch Lomond	9.4	12.1
109	Sylvan Lake	9.2	9.2
110	Columbus Park Lake	9.2	9.2
111	Lake Fairfield	9.0	10.4
112	Grandwood Park Lake	9.0	11.0
113	Fischer Lake	9.0	11.0
114	McDonald Lake 1	8.9	10.0
115	South Churchill Lake	8.5	8.5
116	Lucy Lake	8.5	9.8
117	Lake Farmington	8.5	9.8
118	Lake Christa	8.5	9.8
119	East Meadow Lake	8.5	8.5
120	Woodland Lake	8.1	9.9
121	Bittersweet Golf Course #13	8.1	8.1
122	Lake Louise	7.5	8.7
123	Lake Eleanor	7.5	8.7
124 125	Fairfield Marsh Banana Pond	7.5 7.5	8.7 9.2
125	Albert Lake	7.5 7.5	8.7
120	Slough Lake	7.3 7.1	7.1
127	Rasmussen Lake	7.1 7.1	7.1 7.1
128	Patski Pond	7.1	7.1 7.1
130	Lucky Lake	7.0	7.0
130	Lake Forest Pond	6.9	8.5
131	Leisure Lake	6.4	9.0
132	Peterson Pond	6.0	8.5
134	Slocum Lake	5.8	7.1
135	Grassy Lake	5.8	7.1
136	Gages Lake	5.8	10.0
130	Guges Luke	5.0	10.0

Table 5. Continued.

Rank	Lake Name	FQI (w/A)	FQI (native)
137	Deer Lake Meadow Lake	5.2	6.4
138	Oak Hills Lake	5.0	5.0
139	Liberty Lake	5.0	5.0
140	IMC Lake	5.0	7.1
141	Drummond Lake	5.0	7.1
142	ADID 127	5.0	5.0
143	Sand Pond (IDNR)	3.5	5.0
144	Forest Lake	3.5	5.0
145	Half Day Pit	2.9	5.0
146	Lochanora Lake	2.5	5.0
147	Willow Lake	0.0	0.0
148	Waterford Lake	0.0	0.0
149	St. Mary's Lake	0.0	0.0
150	Potomac Lake	0.0	0.0
151	North Tower Lake	0.0	0.0
152	Hidden Lake	0.0	0.0
	Mean	13.6	14.9
	Median	12.5	14.3

SUMMARY OF WILDLIFE AND HABITAT

Wildlife observations were made on a monthly basis during water quality and aquatic plant sampling activities. Because the lake is in the middle of a residential setting with the majority of the shoreline riprap, habitat for wildlife was limited. Most of the birds were those common to residential settings (Table 6). There was a healthy population of mature trees providing good habitat for a variety of bird species. A few large, dead trees provided excellent habitat for Double Crested Cormorants, Osprey, and Great Blue Herons. Additionally, there were several shrub areas that provided habitat for smaller bird and mammal species. However, there are several areas in need of habitat improvement on Countryside Lake. Enhancing habitat for terrestrial wildlife such as birds and small mammals can be accomplished through the addition of shoreline buffer zones and is recommended as one aspect of shoreline protection. Erecting birdhouses and allowing brush or trees that have fallen into the water to remain creates additional habitat for birds, fish, reptiles, and amphibians. Countryside Lake also had a substantial population of the exotic Chinese Mystery Snail. Many dead snails were noted near the boat ramp on several occasions throughout the summer.

Countryside Lake has an ongoing fish-stocking program. Fish species that have been stocked include Largemouth Bass, Black Crappie, Bluegill, Northern Pike, Tiger Musky, Walleye, and Yellow Perch.

Table 6. Wildlife species observed on Countryside Lake, May – September 2007.

Birds

Mute Swan Cygnus olor

Double-crested Cormorant Phalacrocorax auritus Canada Goose Branta canadensis Mallard Anas platyrhnchos Ring-billed Gull Larus delawarensis **Great Egret** Casmerodius albus Great Blue Heron Ardea herodias Red-tailed Hawk Buteo jamaicensis Green Heron Butorides striatus Mourning Dove Zenaida macroura

Red-headed Woodpecker Melanerpes erythrocephalus

Barn Swallow
Tree Swallow
Iridoprocne bicolor
Blue Jay
Cyanocitta cristata
American Robin
Turdus migratorius
Red-winged Blackbird
Northern Oriole
Northern Cardinal
Agelaius phoeniceus
Cardinalis
Cardinalis

Mammals

Grey Squirrel Sciurus carolinensis
Muskrat Ondatra zibethicus
White-tailed Deer Odocoileus virginianus

Amphibians

American Toad Bufo americanus

Fish

Bluegill Lepomis macrochirus
Largemouth Bass Micropterus salmoides
Black Crappie Pomixis nigromaculatus

<u>Mussels</u>

Giant Floater Pyganodon grandis
Chinese Mystery Snail Viviparus malleatus

^ Exotic

APPENDIX A. MI	ETHODS FOR FIELI LABORATORY A	ΓΙΟΝ AND

Water Sampling and Laboratory Analyses

Two water samples were collected once a month from May through September. Sample locations were at the deepest point in the lake (see sample site map), three feet below the surface, and 3 feet above the bottom. Samples were collected with a horizontal Van Dorn water sampler. Approximately three liters of water were collected for each sample for all lab analyses. After collection, all samples were placed in a cooler with ice until delivered to the Lake County Health Department lab, where they were refrigerated. Analytical methods for the parameters are listed in Table A1. Except nitrate nitrogen, all methods are from the Eighteenth Edition of Standard Methods, (eds. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1992). Methodology for nitrate nitrogen was taken from the 14th edition of Standard Methods. Dissolved oxygen, temperature, conductivity and pH were measured at the deep hole with a Hydrolab DataSonde® 4a. Photosynthetic Active Radiation (PAR) was recorded using a LI-COR® 192 Spherical Sensor attached to the Hydrolab DataSonde® 4a. Readings were taken at the surface and then every two feet until reaching the bottom.

Plant Sampling

In order to randomly sample each lake, mapping software (ArcMap 9.1) overlaid a grid pattern onto a 2006 aerial photo of Lake County and placed points 60 or 30 meters apart, depending on lake size. Plants were sampled using a garden rake fitted with hardware cloth. The hardware cloth surrounded the rake tines and is tapered two feet up the handle. A rope was tied to the end of the handle for retrieval. At designated sampling sites, the rake was tossed into the water, and using the attached rope, was dragged across the bottom, toward the boat. After pulling the rake into the boat, plant coverage was assessed for overall abundance. Then plants were individually identified and placed in categories based on coverage. Plants that were not found on the rake but were seen in the immediate vicinity of the boat at the time of sampling were also recorded. Plants difficult to identify in the field were placed in plastic bags and identified with plant keys after returning to the office. The depth of each sampling location was measured either by a hand-held depth meter, or by pushing the rake straight down and measuring the depth along the rope or rake handle. One-foot increments were marked along the rope and rake handle to aid in depth estimation.

Wildlife Assessment

Species of wildlife were noted during visits to each lake. When possible, wildlife was identified to species by sight or sound. However, due to time constraints, collection of quantitative information was not possible. Thus, all data should be considered anecdotal. Some of the species on the list may have only been seen once, or were spotted during their migration through the area.

Table A1. Analytical methods used for water quality parameters.

Parameter	Method
Temperature	Hydrolab DataSonde® 4a or
	YSI 6600 Sonde®
Dissolved oxygen	Hydrolab DataSonde ®4a or
	YSI 6600 Sonde®
Nitrate and Nitrite nitrogen	USEPA 353.2 rev. 2.0
	EPA-600/R-93/100
	Detection Limit = 0.05 mg/L
Ammonia nitrogen	SM 18 th ed. Electrode method,
	#4500 NH ₃ -F
	Detection Limit = 0.1 mg/L
Total Kjeldahl nitrogen	SM 18 th ed, 4500-N _{org} C
	Semi-Micro Kjeldahl, plus 4500 NH ₃ -F
	Detection Limit = 0.5 mg/L
pН	Hydrolab DataSonde® 4a, or
	YSI 6600 Sonde®
	Electrometric method
Total solids	SM 18 th ed, Method #2540B
Total suspended solids	SM 18 th ed, Method #2540D
	Detection Limit = 0.5 mg/L
Chloride	SM 18 th ed, Method #4500C1-D
Total volatile solids	SM 18 th ed, Method #2540E, from total solids
Alkalinity	SM 18 th ed, Method #2320B,
	patentiometric titration curve method
Conductivity	Hydrolab DataSonde® 4a or
_	YSI 6600 Sonde®
Total phosphorus	SM 18 th ed, Methods #4500-P B 5 and
	#4500-P E
	Detection Limit = 0.01 mg/L
Soluble reactive phosphorus	SM 18 th ed, Methods #4500-P B 1 and
	#4500-P E
	Detection Limit = 0.005 mg/L
Clarity	Secchi disk
Color	Illinois EPA Volunteer Lake
	Monitoring Color Chart
Photosynthetic Active Radiation	Hydrolab DataSonde® 4a or YSI 6600
(PAR)	Sonde®, LI-COR® 192 Spherical
	Sensor

APPENDIX B. MULTI-PARAMETER DATA FOR COUNTRYSIDE LAKE IN 2007.

Countryside Lake 2007 Multiparameter data

		Text								Depth of Light		
Date	Time	Depth	Dep25	Temp	DO	DO%	SpCond	рН	PAR	Meter	% Light	Extinction
MMDDYY	HHMMSS	feet	feet	øС	mg/l	Sat	mS/cm	Units	æE/s/mý	feet	Transmission	Coefficient
									•		Average	0.66
50807	90316	0.25	0.28	17.47	8.59	92.3	0.8604	8.13	2468	Surface	_	
50807	90410	1	1.05	17.23	8.65	92.5	0.8642	8.11	2215	Surface	100%	
50807	90459	2	1.98	17.16	8.56	91.4	0.8642	8.11	891	0.23	40%	3.96
50807	90606	3	3.00	17.07	8.57	91.3	0.8625	8.1	433	1.25	20%	0.58
50807	90705	4	4.02	16.93	8.51	90.4	0.8615	8.11	454	2.27	20%	-0.02
50807	90810	5	5.02	16.63	8.59	90.7	0.8614	8.12	480	3.27	22%	-0.02
50807	90909	6	6.02	15.62	8.22	85.0	0.8609	8.06	367	4.27	17%	0.06
50807	91035	7	7.03	15.44	7.85	80.8	0.8612	8.00	326	5.28	15%	0.02
50807	91133	8	8.04	15.28	6.61	67.8	0.8629	7.81	236	6.29	11%	0.05
		Text								Depth of Light		
Date	Time	Depth	Dep25	Temp	DO	DO%	SpCond	рΗ	PAR	Meter	% Light	Extinction
MMDDYY	HHMMSS	feet	feet	øС	mg/l	Sat	mS/cm	Units	æE/s/mý	feet	Transmission	Coefficient
					Ū				•		Average	0.47
61207	93420	0.25	0.45	24.63	9.2	113.1	0.8458	8.38	3656	Surface		
61207	93525	1	1.04	24.63	9.09	111.8	0.8456	8.37	3639	Surface	100%	
61207	93625	2	2.02	24.63	9.16	112.6	0.8461	8.38	1721	0.27	47%	2.77
61207	93739	3	3.01	24.61	9.04	111.1	0.8448	8.38	1115	1.26	31%	0.34
61207	93834	4	4.02	24.60	9.04	111.1	0.8452	8.38	1072	2.27	29%	0.02
61207	94005	5	5.00	24.55	9.11	111.9	0.8451	8.38	1083	3.25	30%	0.00
61207	94103	6	6.06	24.51	9.20	112.8	0.8451	8.39	1207	4.31	33%	-0.03
61207	0.4250	7	7.04	24.44	0.21	1111	0.0450	0.4	(00	<i>5</i> 20	100/	0.11
	94250	7	7.04	24.44	9.31	114.1	0.8459	8.4	690	5.29	19%	0.11

MMDDYY			Text								Depth of		
MMDDYY	Date	Time	Denth	Den25	Temn	DO	DO%	SpCond	nН	PAR	Light Meter	% Light	Extinction
71007 93518 0.25 0.38 27.35 6.83 8.5.4 0.8463 8.29 2599 Surface 71007 94106 1 1.07 27.37 6.63 82.8 0.8468 8.31 2209 Surface 100% 71007 94320 2 2.01 27.37 6.66 83.2 0.8468 8.31 1209 Surface 100% 71007 94320 2 2.01 27.37 6.66 83.2 0.8468 8.31 120 0.26 51% 2.61 71007 94456 4 3.99 27.34 6.60 82.5 0.8472 8.31 556 2.24 25% 0.12 71007 94921 5 4.99 27.3 6.57 82 0.8474 8.31 612 3.24 28% -0.03 71007 95501 6 6.01 27.06 6.37 79.1 0.8472 8.29 490 4.26 22%			-	-				-	•			_	
T1007						0				· · · · · · · · · · · · · · · · · ·			
71007 94320 2 2.01 27.37 6.66 83.2 0.8468 8.31 1121 0.26 51% 2.61 71007 94624 3 3.03 27.34 6.69 83.6 0.847 8.31 720 1.28 33% 0.35 71007 94756 4 3.99 27.34 6.60 82.5 0.8472 8.31 556 2.24 25% 0.12 71007 94921 5 4.99 27.3 6.57 82 0.8474 8.31 612 3.24 28% -0.03 71007 95051 6 6.01 27.06 6.37 79.1 0.8478 8.29 490 4.26 22% 0.05 71007 95307 7 7.07 26.9 5.98 74.1 0.8472 8.23 364 5.32 16% 0.06 71007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 <	71007	93518	0.25	0.38	27.35	6.83	85.4	0.8463	8.29	2599	Surface	C	
71007 94624 3 3.03 27.36 6.69 83.6 0.847 8.31 720 1.28 33% 0.35 71007 94756 4 3.99 27.34 6.60 82.5 0.8472 8.31 556 2.24 25% 0.12 71007 94921 5 4.99 27.3 6.57 82 0.8474 8.31 612 3.24 28% -0.03 71007 95051 6 6.01 27.06 6.37 79.1 0.8472 8.29 490 4.26 22% 0.05 71007 95307 7 7.07 26.9 5.98 74.1 0.8472 8.23 364 5.32 16% 0.06 71007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 222 6.27 10% 0.08 Date Time Depth Dep25 Temp DO DO% SpCond pH	71007	94106	1	1.07	27.37	6.63	82.8	0.8468	8.31	2209	Surface	100%	
71007 94756 4 3.99 27.34 6.60 82.5 0.8472 8.31 556 2.24 25% 0.12 71007 94921 5 4.99 27.3 6.57 82 0.8474 8.31 612 3.24 28% -0.03 71007 95051 6 6.01 27.06 6.37 79.1 0.8472 8.29 490 4.26 22% 0.05 71007 95307 7 7.07 26.9 5.98 74.1 0.8472 8.23 364 5.32 16% 0.06 71007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 222 6.27 10% 0.06 Date Time Depth Dep25 Temp DO DO% SpCond pH PAR Meter % Light Extinction MMDDYY HHMMSS feet feet øC mg/l Sat mS/cm Units	71007	94320	2	2.01	27.37	6.66	83.2	0.8468	8.31	1121	0.26	51%	2.61
71007 94921 5 4.99 27.3 6.57 82 0.8474 8.31 612 3.24 28% -0.03 71007 95051 6 6.01 27.06 6.37 79.1 0.847 8.29 490 4.26 22% 0.05 71007 95307 7 7.07 26.9 5.98 74.1 0.8472 8.23 364 5.32 16% 0.06 71007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 222 6.27 10% 0.08 Date Time Depth Depts Depts Temp DO DO% SpCond pH PAR Meter % Light Extinction MMDDYY HHMMSS feet feet øC mg/l Sat mS/cm Units æE/s/mý feet Transmission Coefficient MMDDYY HHMMSS feet feet øC mg/l	71007	94624	3	3.03	27.36	6.69	83.6	0.847	8.31	720	1.28	33%	0.35
71007 95051 6 6.01 27.06 6.37 79.1 0.847 8.29 490 4.26 22% 0.05 71007 95307 7 7.07 26.9 5.98 74.1 0.8472 8.23 364 5.32 16% 0.06 71007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 2222 6.27 10% 0.08 Date Time Depth Dep25 Temp DO DO% SpCond pH PAR Meter % Light Extinction MMDDYY HHMMSS feet feet øC mg/l Sat mS/cm Units æE/s/mý feet % Light Light 80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 100% 10% 551 807 93900 2 2.03 27.31 7.54 94.2 0.75	71007	94756	4	3.99	27.34	6.60	82.5	0.8472	8.31	556	2.24	25%	0.12
T1007 95307 7 7.07 26.9 5.98 74.1 0.8472 8.23 364 5.32 16% 0.06 T1007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 222 6.27 10% 0.08 Text	71007	94921	5	4.99	27.3	6.57	82	0.8474	8.31	612	3.24	28%	-0.03
71007 95421 8 8.02 26.8 5.58 69.0 0.8478 8.19 222 6.27 10% 0.08 Date Time Depth of feet Depth of feet Temp DO DO% SpCond pH PAR Meter Meter % Light Average Extinction Coefficient Average 80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 <td>71007</td> <td>95051</td> <td>6</td> <td>6.01</td> <td></td> <td></td> <td>79.1</td> <td>0.847</td> <td></td> <td></td> <td></td> <td>22%</td> <td></td>	71007	95051	6	6.01			79.1	0.847				22%	
Date Time Depth Dep25 Temp DO DO% SpCond pH PAR Meter % Light Light Meter Meter			7				74.1						
Date Time Depth Depth Depth Depth Depth Depth Depth Doc DOW SpCond pH PAR Meter % Light Extinction MMDDYY HHMMSS feet feet øC mg/l Sat mS/cm Units æE/s/mý feet Transmission Coefficient 80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18 7.39	71007	95421	8	8.02	26.8	5.58	69.0	0.8478	8.19	222	6.27	10%	0.08
Date Time Depth Depth Depth Depth Depth Depth Dop. Dop. Dop. SpCond pH PAR Meter Meter % Light Meter Extinction MMDDYY HHMMSS feet feet øC mg/l Sat mS/cm Units æE/s/mý feet Transmission Average Coefficient 80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18			_										
Date MMDDYY Time HHMMSS Depth feet Dep25 Temp Feet DO Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l													
MMDDYY HHMMSS feet feet øC mg/l Sat mS/cm Units æE/s/mý feet Transmission Average Coefficient Average 80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18 7.39 92.2 0.7575 8.67 902 2.3 24% 0.16 80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606			Text										
80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18 7.39 92.2 0.7575 8.67 902 2.3 24% 0.16 80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606 3.27 16% 0.12 80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16	Date	Time		Den25	Temn	DO	DO%	SnCond	nН	PAR	Light	% Light	Extinction
80707 93412 0.25 0.34 27.31 7.54 94.2 0.7571 8.65 4177 Surface 80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18 7.39 92.2 0.7575 8.67 902 2.3 24% 0.16 80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606 3.27 16% 0.12 80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16% 0.06 80707 94803 7 7.02 26.31 5.55 <td></td> <td></td> <td>Depth</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>Light Meter</td> <td>•</td> <td></td>			Depth	-				-			Light Meter	•	
80707 93552 1 1.03 27.31 7.53 94.1 0.7567 8.66 3729 Surface 100% 80707 93900 2 2.03 27.31 7.36 92.0 0.7568 8.67 1604 0.28 43% 3.01 80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18 7.39 92.2 0.7575 8.67 902 2.3 24% 0.16 80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606 3.27 16% 0.12 80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16% 0.00 80707 94803 7 7.02 26.31 5.55 68.1 0.7881 8.41 445 5.27 12% 0.06 80707 94931 8 7.96 <			Depth	-				-			Light Meter	Transmission	Coefficient
80707 94042 3 3.07 27.29 7.45 93.1 0.7564 8.67 1315 1.32 35% 0.15 80707 94224 4 4.05 27.18 7.39 92.2 0.7575 8.67 902 2.3 24% 0.16 80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606 3.27 16% 0.12 80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16% 0.00 80707 94803 7 7.02 26.31 5.55 68.1 0.7881 8.41 445 5.27 12% 0.06 80707 94931 8 7.96 26.17 4.71 57.7 0.7891 8.29 280 6.21 8% 0.07	MMDDYY	HHMMSS	Depth feet	feet	øС	mg/l	Sat	mS/cm	Units	æE/s/mý	Light Meter feet	Transmission	Coefficient
80707 94224 4 4.05 27.18 7.39 92.2 0.7575 8.67 902 2.3 24% 0.16 80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606 3.27 16% 0.12 80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16% 0.00 80707 94803 7 7.02 26.31 5.55 68.1 0.7881 8.41 445 5.27 12% 0.06 80707 94931 8 7.96 26.17 4.71 57.7 0.7891 8.29 280 6.21 8% 0.07	MMDDYY 80707	93412	Depth feet 0.25	feet 0.34	øC 27.31	mg/l 7.54	Sat 94.2	mS/cm 0.7571	Units 8.65	æE/s/mý 4177	Light Meter feet Surface	Transmission Average	Coefficient
80707 94529 5 5.02 27.08 7.49 93.2 0.7584 8.67 606 3.27 16% 0.12 80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16% 0.00 80707 94803 7 7.02 26.31 5.55 68.1 0.7881 8.41 445 5.27 12% 0.06 80707 94931 8 7.96 26.17 4.71 57.7 0.7891 8.29 280 6.21 8% 0.07	80707 80707	93412 93552	Depth feet 0.25	feet 0.34 1.03	øC 27.31 27.31	mg/l 7.54 7.53	Sat 94.2 94.1	mS/cm 0.7571 0.7567	Units 8.65 8.66	æE/s/mý 4177 3729	Light Meter feet Surface Surface	Transmission Average	Coefficient 0.51
80707 94702 6 6.02 26.73 6.38 78.9 0.7851 8.49 606 4.27 16% 0.00 80707 94803 7 7.02 26.31 5.55 68.1 0.7881 8.41 445 5.27 12% 0.06 80707 94931 8 7.96 26.17 4.71 57.7 0.7891 8.29 280 6.21 8% 0.07	80707 80707 80707	93412 93552 93900	Depth feet 0.25 1 2	feet 0.34 1.03 2.03	gC 27.31 27.31 27.31	mg/l 7.54 7.53 7.36	Sat 94.2 94.1 92.0	mS/cm 0.7571 0.7567 0.7568	Units 8.65 8.66 8.67	æE/s/mý 4177 3729 1604	Light Meter feet Surface Surface 0.28	Transmission Average 100% 43%	Coefficient 0.51
80707 94803 7 7.02 26.31 5.55 68.1 0.7881 8.41 445 5.27 12% 0.06 80707 94931 8 7.96 26.17 4.71 57.7 0.7891 8.29 280 6.21 8% 0.07	80707 80707 80707 80707 80707	93412 93552 93900 94042	Depth feet 0.25 1 2 3	feet 0.34 1.03 2.03 3.07	φC 27.31 27.31 27.31 27.29	mg/l 7.54 7.53 7.36 7.45	94.2 94.1 92.0 93.1	0.7571 0.7567 0.7568 0.7564	Units 8.65 8.66 8.67 8.67	æE/s/mý 4177 3729 1604 1315	Light Meter feet Surface Surface 0.28 1.32	Transmission Average 100% 43% 35%	Coefficient 0.51 3.01 0.15
80707 94931 8 7.96 26.17 4.71 57.7 0.7891 8.29 280 6.21 8% 0.07	80707 80707 80707 80707 80707	93412 93552 93900 94042 94224	Depth feet 0.25 1 2 3 4	feet 0.34 1.03 2.03 3.07 4.05	øC 27.31 27.31 27.31 27.29 27.18	mg/l 7.54 7.53 7.36 7.45 7.39	Sat 94.2 94.1 92.0 93.1 92.2	mS/cm 0.7571 0.7567 0.7568 0.7564 0.7575	Units 8.65 8.66 8.67 8.67 8.67	æE/s/mý 4177 3729 1604 1315 902	Light Meter feet Surface Surface 0.28 1.32 2.3	Transmission Average 100% 43% 35% 24%	3.01 0.15 0.16
	80707 80707 80707 80707 80707 80707	93412 93552 93900 94042 94224 94529	Depth feet 0.25 1 2 3 4 5	feet 0.34 1.03 2.03 3.07 4.05 5.02	øC 27.31 27.31 27.31 27.29 27.18 27.08	mg/l 7.54 7.53 7.36 7.45 7.39 7.49	94.2 94.1 92.0 93.1 92.2 93.2	mS/cm 0.7571 0.7567 0.7568 0.7564 0.7575 0.7584	Units 8.65 8.66 8.67 8.67 8.67 8.67	æE/s/mý 4177 3729 1604 1315 902 606	Light Meter feet Surface Surface 0.28 1.32 2.3 3.27	Transmission Average 100% 43% 35% 24% 16%	3.01 0.15 0.16 0.12
00707 05224 0 0.02 25.01 2.40 20.2 0.7051 7.06 20.7 7.27 (0/ 0.04	80707 80707 80707 80707 80707 80707 80707	93412 93552 93900 94042 94224 94529 94702	Depth feet 0.25 1 2 3 4 5 6	feet 0.34 1.03 2.03 3.07 4.05 5.02 6.02	øC 27.31 27.31 27.31 27.29 27.18 27.08 26.73	mg/l 7.54 7.53 7.36 7.45 7.39 7.49 6.38	Sat 94.2 94.1 92.0 93.1 92.2 93.2 78.9	mS/cm 0.7571 0.7567 0.7568 0.7564 0.7575 0.7584 0.7851	Units 8.65 8.66 8.67 8.67 8.67 8.67 8.49	æE/s/mý 4177 3729 1604 1315 902 606 606	Light Meter feet Surface 0.28 1.32 2.3 3.27 4.27	Transmission Average 100% 43% 35% 24% 16% 16%	3.01 0.15 0.16 0.12 0.00
80707 95234 9 9.02 25.91 2.48 30.2 0.7951 7.96 207 7.27 6% 0.04	80707 80707 80707 80707 80707 80707 80707 80707 80707	93412 93552 93900 94042 94224 94529 94702 94803 94931	Depth feet 0.25 1 2 3 4 5 6 7	feet 0.34 1.03 2.03 3.07 4.05 5.02 6.02 7.02 7.96	øC 27.31 27.31 27.31 27.29 27.18 27.08 26.73 26.31 26.17	mg/l 7.54 7.53 7.36 7.45 7.39 7.49 6.38 5.55 4.71	Sat 94.2 94.1 92.0 93.1 92.2 93.2 78.9 68.1 57.7	mS/cm 0.7571 0.7567 0.7568 0.7564 0.7575 0.7584 0.7851 0.7881 0.7891	8.65 8.66 8.67 8.67 8.67 8.67 8.49 8.41 8.29	æE/s/mý 4177 3729 1604 1315 902 606 606 445 280	Light Meter feet Surface Surface 0.28 1.32 2.3 3.27 4.27 5.27 6.21	Transmission Average 100% 43% 35% 24% 16% 16% 12% 8%	3.01 0.15 0.16 0.12 0.00 0.06 0.07

		Text								Depth of Light		
Date	Time	Depth	Dep25	Temp	DO	DO%	SpCond	pН	PAR	Meter	% Light	Extinction
MMDDYY	HHMMSS	feet	feet	øС	mg/l	Sat	mS/cm	Units	æE/s/mý	feet	Transmission	Coefficient
											Average	0.35
91107	94622	0.25	0.32	22.18	9.83	102.8	0.0004	7.73	3657	Surface		
91107	94550	1	1.18	22.29	6.22	70.6	0.6273	8.17	3228	Surface	100%	
91107	94538	2	2.43	22.28	6.17	70	0.6272	8.17	1158	0.68	36%	1.51
91107	94524	3	3.51	22.28	6.12	69.5	0.6272	8.17	372	1.76	12%	0.65
91107	94508	4	4.87	22.27	6.04	68.5	0.6272	8.17	211	3.12	7%	0.18
91107	94120	5	5.12	22.27	6.05	68.6	0.6272	8.18	195	3.37	6%	0.02
91107	94211	6	5.93	22.27	6.05	68.6	0.6273	8.17	133	4.18	4%	0.09
91107	94259	7	7.03	22.24	5.98	67.8	0.6274	8.16	65	5.28	2%	0.14
91107	94350	8	8.05	22.25	6.01	68.1	0.6275	8.16	31	6.3	1.0%	0.12
91107	94428	9	8.55	22.24	5.41	61.4	0.6275	8.14	17	6.8	0.5%	0.09

APPENDIX C. INTERPRETING YOUR LAKE'S WATER QUALITY
DATA.

Lakes possess a unique set of physical and chemical characteristics that will change over time. These in-lake water quality characteristics, or parameters, are used to describe and measure the quality of lakes, and they relate to one another in very distinct ways. As a result, it is virtually impossible to change any one component in or around a lake without affecting several other components, and it is important to understand how these components are linked.

The following pages will discuss the different water quality parameters measured by Lake County Health Department staff, how these parameters relate to each other, and why the measurement of each parameter is important. The median values (the middle number of the data set, where half of the numbers have greater values, and half have lesser values) of data collected from Lake County lakes from 2000-2005 will be used in the following discussion.

Temperature and Dissolved Oxygen:

Water temperature fluctuations will occur in response to changes in air temperatures, and can have dramatic impacts on several parameters in the lake. In the spring and fall, lakes tend to have uniform, well-mixed conditions throughout the water column (surface to the lake bottom). However, during the summer, deeper lakes will separate into distinct water layers. As surface water temperatures increase with increasing air temperatures, a large density difference will form between the heated surface water and colder bottom water. Once this difference is large enough, these two water layers will separate and generally will not mix again until the fall. At this time the lake is thermally stratified. The warm upper water layer is called the *epilimnion*, while the cold bottom water layer is called the *hypolimnion*. In some shallow lakes, stratification and destratification can occur several times during the summer. If this occurs the lake is described as polymictic. Thermal stratification also occurs to a lesser extent during the winter, when warmer bottom water becomes separated from ice-forming water at the surface until mixing occurs during spring ice-out.

Monthly temperature profiles were established on each lake by measuring water temperature every foot (lakes < 15 feet deep) or every two feet (lakes > 15 feet deep) from the lake surface to the lake bottom. These profiles are important in understanding the distribution of chemical/biological characteristics and because increasing water temperature and the establishment of thermal stratification have a direct impact on dissolved oxygen (DO) concentrations in the water column. If a lake is shallow and easily mixed by wind, the DO concentration is usually consistent throughout the water column. However, shallow lakes are typically dominated by either plants or algae, and increasing water temperatures during the summer speeds up the rates of photosynthesis and decomposition in surface waters. When many of the plants or algae die at the end of the growing season, their decomposition results in heavy oxygen consumption and can lead to an oxygen crash. In deeper, thermally stratified lakes, oxygen production is greatest in the top portion of the lake, where sunlight drives photosynthesis, and oxygen consumption is greatest near the bottom of a lake, where sunken organic matter accumulates and decomposes. The oxygen difference between the top and bottom water layers can be dramatic, with plenty of oxygen near the surface, but practically none near the bottom. The oxygen profiles measured during the water quality study can illustrate if

this is occurring. This is important because the absence of oxygen (anoxia) near the lake bottom can have adverse effects in eutrophic lakes resulting in the chemical release of phosphorus from lake sediment and the production of hydrogen sulfide (rotten egg smell) and other gases in the bottom waters. Low oxygen conditions in the upper water of a lake can also be problematic since all aquatic organisms need oxygen to live. Some oxygen may be present in the water, but at too low a concentration to sustain aquatic life. Oxygen is needed by all plants, virtually all algae and for many chemical reactions that are important in lake functioning. Most adult sport-fish such as largemouth bass and bluegill require at least 3 mg/L of DO in the water to survive. However, their offspring require at least 5 mg/L DO as they are more sensitive to DO stress. When DO concentrations drop below 3 mg/L, rough fish such as carp and green sunfish are favored and over time will become the dominant fish species.

External pollution in the form of oxygen-demanding organic matter (i.e., sewage, lawn clippings, soil from shoreline erosion, and agricultural runoff) or nutrients that stimulate the growth of excessive organic matter (i.e., algae and plants) can reduce average DO concentrations in the lake by increasing oxygen consumption. This can have a detrimental impact on the fish community, which may be squeezed into a very small volume of water as a result of high temperatures in the epilimnion and low DO levels in the hypolimnion.

Nutrients:

Phosphorus:

For most Lake County lakes, phosphorus is the nutrient that limits plant and algae growth. This means that any addition of phosphorus to a lake will typically result in algae blooms or high plant densities during the summer. The source of phosphorus to a lake can be external or internal (or both). External sources of phosphorus enter a lake through point (i.e., storm pipes and wastewater discharge) and non-point runoff (i.e., overland water flow). This runoff can pick up large amounts of phosphorus from agricultural fields, septic systems or impervious surfaces before it empties into the lake.

Internal sources of phosphorus originate within the lake and are typically linked to the lake sediment. In lakes with high oxygen levels (oxic), phosphorus can be released from the sediment through plants or sediment resuspension. Plants take up sediment-bound phosphorus through their roots, releasing it in small amounts to the water column throughout their life cycles, and in large amounts once they die and begin to decompose. Sediment resuspension can occur through biological or mechanical means. Bottom-feeding fish, such as common carp and black bullhead can release phosphorus by stirring up bottom sediment during feeding activities and can add phosphorus to a lake through their fecal matter. Sediment resuspension, and subsequent phosphorus release, can also occur via wind/wave action or through the use of artificial aerators, especially in shallow lakes. In lakes that thermally stratify, internal phosphorus release can occur from the sediment through chemical means. Once oxygen is depleted (anoxia) in the hypolimnion, chemical reactions occur in which phosphorus bound to iron complexes in the sediment becomes soluble and is released into the water column. This phosphorus is trapped in the hypolimnion and is unavailable to algae until fall turnover, and can cause algae blooms once

it moves into the sunlit surface water at that time. Accordingly, many of the lakes in Lake County are plagued by dense algae blooms and excessive, exotic plant coverage, which negatively affect DO levels, fish communities and water clarity.

Lakes with an average phosphorus concentration greater than 0.05 mg/L are considered nutrient rich. The median near surface total phosphorus (TP) concentration in Lake County lakes from 2000-2005 is 0.063 mg/L and ranged from a non-detectable minimum of <0.010 mg/L on five lakes to a maximum of 3.880 mg/L on Albert Lake. The median anoxic TP concentration in Lake County lakes from 2000-2005 was 0.174 mg/L and ranged from a minimum of 0.012 mg/L in West Loon Lake to a maximum of 3.880 mg/L in Taylor Lake.

The analysis of phosphorus also included soluble reactive phosphorus (SRP), a dissolved form of phosphorus that is readily available for plant and algae growth. SRP is not discussed in great detail in most of the water quality reports because SRP concentrations vary throughout the season depending on how plants and algae absorb and release it. It gives an indication of how much phosphorus is available for uptake, but, because it does not take all forms of phosphorus into account, it does not indicate how much phosphorus is truly present in the water column. TP is considered a better indicator of a lake's nutrient status because its concentrations remain more stable than soluble reactive phosphorus. However, elevated SRP levels are a strong indicator of nutrient problems in a lake.

Nitrogen:

Nitrogen is also an important nutrient for plant and algae growth. Sources of nitrogen to a lake vary widely, ranging from fertilizer and animal wastes, to human waste from sewage treatment plants or failing septic systems, to groundwater, air and rainfall. As a result, it is very difficult to control or reduce nitrogen inputs to a lake. Different forms of nitrogen are present in a lake under different oxic conditions. NH₄⁺ (ammonium) is released from decomposing organic material under anoxic conditions and accumulates in the hypolimnion of thermally stratified lakes. If NH₄⁺ comes into contact with oxygen, it is immediately converted to NO₂ (nitrite) which is then oxidized to NO₃⁻ (nitrate). Therefore, in a thermally stratified lake, levels of NH₄⁺ would only be elevated in the hypolimnion and levels of NO₃ would only be elevated in the epilimnion. Both NH₄⁺ and NO₃⁻ can be used as a nitrogen source by aquatic plants and algae. Total Kjeldahl nitrogen (TKN) is a measure of organic nitrogen plus ammonium. Adding the concentrations of TKN and nitrate together gives an indication of the amount of total nitrogen present in the water column. If inorganic nitrogen (NO₃, NO₂, NH₄⁺) concentrations exceed 0.3 mg/L in spring, sufficient nitrogen is available to support summer algae blooms. However, low nitrogen levels do not guarantee limited algae growth the way low phosphorus levels do. Nitrogen gas in the air can dissolve in lake water and blue-green algae can "fix" atmospheric nitrogen, converting it into a usable form. Since other types of algae do not have the ability to do this, nuisance blue-green algae blooms are typically associated with lakes that are nitrogen limited (i.e., have low nitrogen levels).

The ratio of TKN plus nitrate nitrogen to total phosphorus (TN:TP) can indicate whether plant/algae growth in a lake is limited by nitrogen or phosphorus. Ratios of less than 10:1

suggest a system limited by nitrogen, while lakes with ratios greater than 20:1 are limited by phosphorus. It is important to know if a lake is limited by nitrogen or phosphorus because any addition of the limiting nutrient to the lake will, likely, result in algae blooms or an increase in plant density.

Solids:

Although several forms of solids (total solids, total suspended solids, total volatile solids, total dissolved solids) were measured each month by the Lakes Management Staff, total suspended solids (TSS) and total volatile solids (TVS) have the most impact on other variables and on the lake as a whole. TSS are particles of algae or sediment suspended in the water column. High TSS concentrations can result from algae blooms, sediment resuspension, and/or the inflow of turbid water, and are typically associated with low water clarity and high phosphorus concentrations in many lakes in Lake County. Low water clarity and high phosphorus concentrations, in turn, exacerbate the high TSS problem by leading to reduced plant density (which stabilize lake sediment) and increased occurrence of algae blooms. The median TSS value in epilimnetic waters in Lake County is 7.9 mg/L, ranging from below the 1 mg/L detection limit (10 lakes) to 165 mg/L in Fairfield Marsh.

TVS represents the fraction of total solids that are organic in nature, such as algae cells, tiny pieces of plant material, and/or tiny animals (zooplankton) in the water column. High TVS values indicate that a large portion of the suspended solids may be made up of algae cells. This is important in determining possible sources of phosphorus to a lake. If much of the suspended material in the water column is determined to be resuspended sediment that is releasing phosphorus, this problem would be addressed differently than if the suspended material was made up of algae cells that were releasing phosphorus. The median TVS value was 132 mg/L, ranging from 34 mg/L in Pulaski Pond to 298 mg/L in Fairfield Marsh.

Total dissolved solids (TDS) are the amount of dissolved substances, such as salts or minerals, remaining in water after evaporation. These dissolved solids are discussed in further detail in the *Alkalinity* and *Conductivity* sections of this document. TDS concentrations were measured in Lake County lakes prior to 2004, but was discontinued due to the strong correlation of TDS to conductivity and chloride concentrations.

Water Clarity:

Water clarity (transparency) is not a chemical property of lake water, but is often an indicator of a lake's overall water quality. It is affected by a lake's water color, which is a reflection of the amount of total suspended solids and dissolved organic chemicals. Thus, transparency is a measure of particle concentration and is measured with a Secchi disk. Generally, the lower the clarity or Secchi depth, the poorer the water quality. A decrease in Secchi depth during the summer occurs as the result of an increase in suspended solids (algae or sediment) in the water column. Aquatic plants play an important role in the level of water clarity and can, in turn, be negatively affected by low clarity levels. Plants increase clarity by competing with algae for

resources and by stabilizing sediments to prevent sediment resuspension. A lake with a healthy plant community will almost always have higher water clarity than a lake without plants. Additionally, if the plants in a lake are removed (through herbicide treatment or the stocking of grass carp), the lake will probably become dominated by algae and Secchi depth will decrease. This makes it very difficult for plants to become re-established due to the lack of available sunlight and the lake will, most likely, remain turbid. Turbidity will be accelerated if the lake is very shallow and/or common carp are present. Shallow lakes are more susceptible to sediment resuspension through wind/wave action and are more likely to experience clarity problems if plants are not present to stabilize bottom sediment.

Common Carp are prolific fish that feed on invertebrates in the sediment. Their feeding activities stir up bottom sediment and can dramatically decrease water clarity in shallow lakes. As mentioned above, lakes with low water clarity are, generally, considered to have poor water quality. This is because the causes and effects of low clarity negatively impact the plant and fish communities, as well as the levels of phosphorus in a lake. The detrimental impacts of low Secchi depth to plants has already been discussed. Fish populations will suffer as water clarity decreases due to a lack of food and decreased ability to successfully hunt for prev. Bluegills are planktivorous fish and feed on invertebrates that inhabit aquatic plants. If low clarity results in the disappearance of plants, this food source will disappear too. Largemouth Bass and Northern Pike are piscivorous fish that feed on other fish and hunt by sight. As the water clarity decreases, these fish species find it more difficult to see and ambush prey and may decline in size as a result. This could eventually lead to an imbalance in the fish community. Phosphorus release from resuspended sediment could increase as water clarity and plant density decrease. This would then result in increased algae blooms, further reducing Secchi depth and aggravating all problems just discussed. The average Secchi depth for Lake County lakes is 3.17 feet. From 2000-2005, Fairfield Marsh and Patski Pond had the lowest Secchi depths (0.33 feet) and Bangs Lake had the highest (29.23 feet). As an example of the difference in Secchi depth based on plant coverage, South Churchill Lake, which had no plant coverage and large numbers of Common Carp in 2003 had an average Secchi depth of 0.73 feet (over four times lower than the county average), while Deep Lake, which had a diverse plant community and few carp had an average 2003 Secchi depth of 12.48 feet (almost four times higher than the county average).

Another measure of clarity is the use of a light meter. The light meter measures the amount of light at the surface of the lake and the amount of light at each depth in the water column. The amount of attenuation and absorption (decreases) of light by the water column are major factors controlling temperature and potential photosynthesis. Light intensity at the lake surface varies seasonally and with cloud cover, and decreases with depth. The deeper into the water column light penetrates, the deeper potential plant growth. The maximum depth at which algae and plants can grow underwater is usually at the depth where the amount of light available is reduced to 0.5%-1% of the amount of light available at the lake surface. This is called the euphotic (sunlit) zone. A general rule of thumb in Lake County is that the 1% light level is about 1 to 3 times the Secchi disk depth.

Alkalinity, Conductivity, Chloride, pH:

Alkalinity:

Alkalinity is the measurement of the amount of acid necessary to neutralize carbonate (CO₃⁻) and bicarbonate (HCO₃⁻) ions in the water, and represents the buffering capacity of a body of water. The alkalinity of lake water depends on the types of minerals in the surrounding soils and in the bedrock. It also depends on how often the lake water comes in contact with these minerals. If a lake gets groundwater from aquifers containing limestone minerals such as calcium carbonate (CaCO₃) or dolomite (CaMgCO₃), alkalinity will be high. The median alkalinity in Lake County lakes (162 mg/L) is considered moderately hard according to the hardness classification scale of Brown, Skougstad and Fishman (1970). Because hard water (alkaline) lakes often have watersheds with fertile soils that add nutrients to the water, they usually produce more fish and aquatic plants than soft water lakes. Since the majority of Lake County lakes have a high alkalinity they are able to buffer the adverse effects of acid rain.

Conductivity and Chloride:

Conductivity is the inverse measure of the resistance of lake water to an electric flow. This means that the higher the conductivity, the more easily an electric current is able to flow through water. Since electric currents travel along ions in water, the more chemical ions or dissolved salts a body of water contains, the higher the conductivity will be. Accordingly, conductivity has been correlated to total dissolved solids and chloride ions. The amount of dissolved solids or conductivity of a lake is dependent on the lake and watershed geology, the size of the watershed flowing into the lake, the land uses within that watershed, and evaporation and bacterial activity. Many Lake County lakes have elevated conductivity levels in May, but not during any other month. This was because chloride, in the form of road salt, was washing into the lakes with spring rains, increasing conductivity. Most road salt is sodium chloride, calcium chloride, potassium chloride, magnesium chloride or ferrocyanide salts. Beginning in 2004, chloride concentrations are one of the parameters measured during the lake studies. Increased chloride concentrations may have a negative impact on aquatic organisms. Conductivity changes occur seasonally and with depth. For example, in stratified lakes the conductivity normally increases in the hypolimnion as bacterial decomposition converts organic materials to bicarbonate and carbonate ions depending on the pH of the water. These newly created ions increase the conductivity and total dissolved solids. Over the long term, conductivity is a good indicator of potential watershed or lake problems if an increasing trend is noted over a period of years. It is also important to know the conductivity of the water when fishery assessments are conducted, as electroshocking requires a high enough conductivity to properly stun the fish, but not too high as to cause injury or death.

pH:

pH is the measurement of hydrogen ion (H⁺) activity in water. The pH of pure water is neutral at 7 and is considered acidic at levels below 7 and basic at levels above 7. Low pH levels of 4-5 are toxic to most aquatic life, while high pH levels (9-10) are not only toxic to aquatic life but may also result in the release of phosphorus from lake sediment. The presence of high plant densities can increase pH levels through photosynthesis, and lakes dominated by a large amount of plants or algae can experience large fluctuations in pH levels from day to night, depending on the rates of photosynthesis and respiration. Few, if any pH problems exist in Lake County lakes. Typically, the flooded gravel mines in the county are more acidic than the glacial lakes as they have less biological activity, but do not usually drop below pH levels of 7. The median near surface pH value of Lake County lakes is 8.30, with a minimum of 7.06 in Deer Lake and a maximum of 10.28 in Round Lake Marsh North

Eutrophication and Trophic State Index:

The word *eutrophication* comes from a Greek word meaning "well nourished." This also describes the process in which a lake becomes enriched with nutrients. Over time, this is a lake's natural aging process, as it slowly fills in with eroded materials from the surrounding watershed and with decaying plants. If no human impacts disturb the watershed or the lake, natural eutrophication can take thousands of years. However, human activities on a lake or in the watershed accelerate this process by resulting in rapid soil erosion and heavy phosphorus inputs. This accelerated aging process on a lake is referred to as cultural eutrophication. The term trophic state refers to the amount of nutrient enrichment within a lake system. Oligotrophic lakes are usually deep and clear with low nutrient levels, little plant growth and a limited fishery. Mesotrophic lakes are more biologically productive than oligotrophic lakes and have moderate nutrient levels and more plant growth. A lake labeled as *eutrophic* is high in nutrients and can support high plant densities and large fish populations. Water clarity is typically poorer than oligotrophic or mesotrophic lakes and dissolved oxygen problems may be present. A hypereutrophic lake has excessive nutrients, resulting in nuisance plant or algae growth. These lakes are often pea-soup green, with poor water clarity. Low dissolved oxygen may also be a problem, with fish kills occurring in shallow, hypereutrophic lakes more often than less enriched lakes. As a result, rough fish (tolerant of low dissolved oxygen levels) dominate the fish community of many hypereutrophic lakes. The categorization of a lake into a certain trophic state should not be viewed as a "good to bad" categorization, as most lake residents rate their lake based on desired usage. For example, a fisherman would consider a plant-dominated, clear lake to be desirable, while a water-skier might prefer a turbid lake devoid of plants. Most lakes in Lake County are eutrophic or hypereutrophic. This is primarily as a result of cultural eutrophication. However, due to the fertile soil in this area, many lakes (especially man-made) may have started out under eutrophic conditions and will never attain even mesotrophic conditions, regardless of any amount of money put into the management options. This is not an excuse to allow a lake to continue to deteriorate, but may serve as a reality check for lake owners attempting to create unrealistic conditions in their lakes.

The Trophic State Index (TSI) is an index which attaches a score to a lake based on its average

total phosphorus concentration, its average Secchi depth (water transparency) and/or its average chlorophyll *a* concentration (which represent algae biomass). It is based on the principle that as phosphorus levels increase, chlorophyll *a* concentrations increase and Secchi depth decreases. The higher the TSI score, the more nutrient-rich a lake is, and once a score is obtained, the lake can then be designated as oligotrophic, mesotrophic or eutrophic. Table 1 (below) illustrates the Trophic State Index using phosphorus concentration and Secchi depth.

Table 1. Trophic State Index (TSI).

Trophic State	TSI score	Total Phosphorus (mg/L)	Secchi Depth (feet)
Oligotrophic	<40	≤ 0.012	>13.12
Mesotrophic	≥40<50	>0.012 \le 0.024	≥6.56<13.12
Eutrophic	≥50<70	$>0.024 \le 0.096$	≥1.64<6.56
Hypereutrophic	≥70	>0.096	< 1.64

APPENDIX D. WATER QUALITY STATISTICS FOR ALL LAK COUNTY LAKES.	Œ

2000 - 2007 Water Quality Parameters, Statistics Summary

Average Median Minimum Maximum STD n =	ALKoxic <=3ft00-2007 167.3 162.0 64.9 330.0 42.0 803	IMC Flint Lake	Average Median Minimum Maximum STD n =	ALKanoxic 2000-2007 200 193 103 470 48 253	Heron Pond Lake Marie
Average Median Minimum Maximum STD n =	Condoxic <=3ft00-2007 0.8856 0.8038 0.2542 6.8920 0.5243 802	Broberg Marsh IMC	Average Median Minimum Maximum STD n =	Condanoxic 2000-2007 1.0035 0.8340 0.3210 7.4080 0.7787 252	Lake Kathyrn IMC
Average Median Minimum Maximum STD n = *ND = Many I	NO3-N, Nitrate+Nitrite,oxic <=3ft00-2007 0.515 0.150 <0.05 9.670 1.082 808 akes had non-detects (74.	*ND South Churchill Lake 5%)	Average Median Minimum Maximum STD n = *ND = 19.8	NH3-Nanoxic 2000-2007 2.070 1.340 <0.1 18.400 2.296 252 % Non-detects from	*ND Taylor Lake om 28 different lakes

concentrations to the statistics above

Beginning in 2006, Nitrate+Nitrite was measured.

	pHoxic			pHanoxic	
	<=3ft00-2007			2000-2007	
Average	8.31		Average	7.22	
Median	8.31		Median	7.21	
Minimum	7.07	Bittersweet #13	Minimum	6.24	Banana Pond
		Round Lake Marsh			
Maximum	10.28	North	Maximum	8.48	Heron Pond
STD	0.44		STD	0.41	
n =	797		n =	252	

	All Secchi	
	2000-2007	
Average	4.57	
Median	3.28	
3.4° '	0.22	Fairfield Marsh, Patski
Minimum	0.33	Pond
Maximum	21.33	Bangs Lake
STD	3.81	
n =	750	

Only compare lakes with detectable

2000 - 2007 Water Quality Parameters, Statistics Summary (continued)

	TKNoxic			TKNanoxic	
	<=3 ft 00-2007			2000-2007	
Average	1.457		Average	2.910	
Median	1.220		Median	2.320	
Minimum	<0.1	* ND	Minimum	< 0.5	*ND
Maximum	10.300	Fairfield Marsh	Maximum	21.000	Taylor Lake
STD	0.830		STD	2.272	
n =	808		n =	252	
*ND = 4.5% Nc	on-detects from 16	different lakes	*ND = 2.8% N	on-detects from	4 different lakes
	TPoxic			TPanoxic	
	<=3ft00-2007			2000-2007	
Average	0.100		Average	0.294	
Median	0.063		Median	0.177	
					Indep. Grove and W. Loon
Minimum	< 0.01	* ND	Minimum	0.012	Lake
Maximum	3.880	Albert Lake	Maximum	3.800	Taylor Lake
STD	0.171		STD	0.380	
n =	808		n =	252	
*ND = 2.4% Nc	on-detects from 7 of	lifferent lakes			
(Carina, Minear	,& Stone Quarry)				
	TSSall			TVSoxic	
	<=3ft00-2007			<=3ft00-2007	
Average	15.5		Average	135.3	
Average Median			Average Median		
Median	8.0		Median	132.0	

	TSSall			TVSoxic	
	<=3ft00-2007	7		<=3ft00-2007	
Average	15.5		Average	135.3	
Median	8.0		Median	132.0	
Minimum	<0.1	*ND	Minimum	34.0	Pulaski Pond
					Fairfield
Maximum	165.0	Fairfield Marsh	Maximum	298.0	Marsh
STD	20.3		STD	39.9	
n =	814		n =	758	
*ND = 1.8% Not	n-detects from	11 different lakes	No 2002 IEPA	Chain Lakes	

	TDSoxic <=3ft00-2004			CLanoxic <=3ft00-2007	
Average	470		Average	232	
Median	454		Median	119	
					Timber Lake
Minimum	150	Lake Kathryn, White	Minimum	41	(N)
Maximum	1340	IMC	Maximum	2390	IMC
STD	169		STD	400	
n =	745		n =	102	
No 2002 IEPA	Chain Lakes.				
	CT .				

NO 2002 IEFA	Chain Lakes.	
	CLoxic	
	<=3ft00-2007	
Average	211	
Median	158	
Minimum	30	White Lake
Maximum	2760	IMC
STD	247	
n =	411	

77 of 163 lakes had anoxic conditions
Anoxic conditions are defined <=1 mg/l D.O.
pH Units are equal to the -Log of [H] ion activity
Conductivity units are in MilliSiemens/cm
Secchi Disk depth units are in feet
All others are in mg/L

Minimums and maximums are based on data from all lakes from 2000-2007 (n=1363).

Average, median and STD are based on data from the most recent water quality sampling year for each lake.

LCHD Lakes Management Unit ~ 12/17/2007

APPENDIX E. GRANT PROGRAM OPPORTUNITES.
APPENDIX E. GRANT PROGRAM OPPORTUNITES.

Table E1. Potential Grant Opportunities

			Funding Focus				
Grant Program Name	Funding Source	Contact Information	Water Quality/ Wetland	Habitat	Erosion	Flooding	Cost Share
Challenge Grant Program	USFWS	847-381-2253 or 309-793-5800		X	X		
Chicago Wilderness Small Grants	CW	312-346-8166 ext. 30					None
Partners in Conservation (formerly C2000)	IDNR	http://dnr.state.il.us/orep/c2000/		X			None
Conservation Reserve Program	NRCS	http://www.nrcs.usda.gov/programs/crp/		X			Land
Ecosystems Program	IDNR	http://dnr.state.il.us/orep/c2000/ecosystem/		X			None
Emergency Watershed Protection	NRCS	http://www.nrcs.usda.gov/programs/ewp/			X	X	None
Five Star Challenge	NFWF	http://www.nfwf.org/AM/Template.cfm		X			None
Illinois Flood Mitigation Assistance Program	IEMA	http://www.state.il.us/iema/construction.htm				X	None
Great Lakes Basin Program	GLBP	http://www.glc.org/basin/stateproj.html?st=il	X		X		None
Illinois Clean Energy Community Foundation	ICECF	http://www.illinoiscleanenergy.org/		X			
Illinois Clean Lakes Program	IEPA	http://www.epa.state.il.us/water/financial-assistance/index.html					None
Lake Education Assistance Program (LEAP)	IEPA	http://www.epa.state.il.us/water/conservation- 2000/leap/index.html	X				\$500

CW = Chicago Wilderness

ICECF = Illinois Clean Energy Community Foundation

IEMA = Illinois Emergency Management Agency

IEPA = Illinois Environmental Protection Agency

IDNR = Illinois Department of Natural Resources

IDOA = Illinois Department of Agriculture

LCSMC = Lake County Stormwater Management Commission

LCSWCD = Lake County Soil and Water Conservation District
NFWF = National Fish and Wildlife Foundation

NRCS = Natural Resources Conservation Service

USACE = United States Army Corps of Engineers

USFWS = United States Fish and Wildlife Service

Table E1. Continued

			Funding Focus				
Grant Program Name	Funding Source	Contact Information	Water Quality/ Wetland	Habitat	Erosion	Flooding	Cost Share
Northeast Illinois Wetland Conservation Account	USFWF	847-381-2253	X				
Partners for Fish and Wildlife	USFWS	http://ecos.fws.gov/partners/		X			> 50%
River Network's Watershed Assistance Grants Program	River Network	http://www.rivernetwork.org	X	X	X		na
Section 206: Aquatic Ecosystems Restoration	USACE	312-353-6400, 309-794-5590 or 314-331-8404		X			35%
Section 319: Non-Point Source Management Program	IEPA	http://www.epa.state.il.us/water/financial-assistance/nonpoint.html	X	X			>40%
Section 1135: Project Modifications for the Improvement of the Environment	USACE	312-353-6400, 309-794-5590 or 314-331-8404		X			25%
Stream Cleanup And Lakeshore Enhancement (SCALE)	IEPA	http://www.epa.state.il.us/water/watershed/scale.html	X	X			None
Streambank Stabilization & Restoration (SSRP)	IDOA/ LCSWCD	http://www.agr.state.il.us/Environment/conserv/ or call LCSWCD at (847) 223-1056		X	X		25%
Watershed Management Boards	LCSMC	http://www.co.lake.il.us/smc/projects/wmb/default.asp	X		X	X	50%
Wetlands Reserve Program	NRCS	http://www.nrcs.usda.gov/programs/wrp/	X	X			Land
Wildlife Habitat Incentive Program	NRCS	http://www.nrcs.usda.gov/programs/whip/		X			Land

CW = Chicago Wilderness

ICECF = Illinois Clean Energy Community Foundation

IEMA = Illinois Emergency Management Agency

IEPA = Illinois Environmental Protection Agency

IDNR = Illinois Department of Natural Resources

IDOA = Illinois Department of Agriculture

LCSMC = Lake County Stormwater Management Commission

LCSWCD = Lake County Soil and Water Conservation District

NFWF = National Fish and Wildlife Foundation

NRCS = Natural Resources Conservation Service

USACE = United States Army Corps of Engineers

USFWS = United States Fish and Wildlife Service