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Abstract
The linear isomers HCN and HNC are both well known astrophysically.
Electron collision calculations are presented using a 24 target state close-
coupling expansion and a variety of models. All of these confirm the presence
of the previously identified 2� HCN anion shape resonance, although it is
found that this resonance is somewhat narrower than suggested by previous
calculations. HNC is also predicted to have 2� anion shape resonance at a
similar energy but somewhat narrower than its HCN− counterpart. Furthermore
HNC also supports two narrow Feshbach resonances of 2�+ and 2� symmetry.
Results are presented for the electron impact electronic excitation of both
molecules.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The isomers hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) are very polar linear
species. Despite the fact that HCN is the significantly more stable form, both are well known
in the cold interstellar medium (ISM) where concentrations of HNC often exceed those of
HCN (Hirota et al 1998). More recently HNC has also been identified in the spectra of cool
carbon stars where HCN is well known (Harris et al 2003).

Electron collisions with these two molecules are of potential interest to the astrophysical
community. Their large dipole moments, both about 3 Debye, means that cross-sections
for electron collisions can be expected to be large. Recently calculated electron collision
cross-sections for the iso electronic molecular ion HCO+ have been used to measure electron
densities in a shocked region of the ISM (Jimenez-Serra et al 2006). HCN and HNC are
possible neutral candidates for similar studies. Indeed electron impact excitation of HCN has
been shown to be important in cometary tails (Lovell et al 2004).

Electron collisions with HCN have been studied by a number of workers. Srivastava
et al (1978), Edard et al (1990) and Burrow et al (1992) all performed experiments which
showed the existence of a shape resonance of 2� symmetry. Edard et al also obtained absolute
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cross-sections by comparing, in the same experimental conditions, the electron loss spectrum
of the isoelectronic species N2. However, none of these studies considered electron impact
electronic excitation of HCN.

Theoretically electron collisions with HCN were extensively studied by Jain and Norcross
(1985, 1986) using a variety of one state models. They also reported finding a shape resonance
of 2� symmetry and found that its calculated position and width were sensitive to the
treatment of polarization in the calculation. The work of Jain and Norcross remains the
most comprehensive theoretical treatment of this problem to date.

To our knowledge there has been no previous work, either experimental or theoretical,
on electron collisions with HNC. However, we note that HCN and HNC are each predicted to
support an extremely weakly (dipole) bound anion state (Skurski et al 2001).

In this work we report simultaneous coupled states calculations on electron collisions with
both HCN and HNC. This allows not only the study of possible resonances in these collision
systems but also the consideration of other properties such as electronic excitation. The
following section gives a brief overview of the R-matrix method used for these calculations;
it is followed by details of the theoretical models tested and our results.

2. The R-matrix method

The UK polyatomic R-matrix method (Morgan et al 1997, 1998) has been applied to a wide
variety of diatomic and polyatomic molecules including polar polyatomic molecules CF3

(Rozum et al 2003) and NH3 (Munjal and Baluja 2006). The development of the underlying
theory is well documented (Burke and Berrington 1993, Burke and Tennyson 2005).

The R-matrix method is based on the splitting of co-ordinate space into an inner and outer
region, separated by a spherical boundary, here of radius r = 10a0, whose centre coincides
with the centre of mass of the molecule. The boundary is such that the molecular electron cloud
is fully contained within the sphere. Interaction between the scattering electron and target
have qualitatively different properties in the two regions. In the inner region the scattering
electron is inside the molecular charge cloud so exchange and electron–electron correlation
interactions are important. This anionic complex behaves in a similar way to a molecular
bound state and consequently configuration interaction (CI) is used in the same manner as for
molecular bound state calculations. In the outer region however, exchange and correlation
are negligible and only long-range multi-polar interactions between the target and scattering
electrons need to be considered. In this region the scattering problem may be reduced to
solving coupled second-order differential equations which in practice is done by propagating
the R-matrix and asymptotic expansion of the solution (Morgan et al 1998).

In the inner region the scattering wavefunction �N+1
k is expressed as a close-coupling

(CC) expansion:

�N+1
k = A

∑

i

ψN
i (x1, x2, . . . , xn)

∑

j

κj (xN+1)aijk +
∑

l

χl(x1, x2, . . . , xN+1)blk, (1)

where A is the anti-symmetrization operator and xi = riσi is the spin-space co-ordinate of the
ith electron, ψN

i is the target wavefunction and κj is the j th continuum orbital spin coupled
with the scattering electron. The expansion coefficients are such that they diagonalize the
inner region Hamiltonian to which a Bloch operator needs to be added so as to ensure this
Hamiltonian remains Hermitian on the boundary. The first summation yields the target and
continuum configurations and the second runs over the χl which are configurations in which
all electrons are placed in target molecular orbitals. These configurations are square integrable
and often referred to as L2 functions.
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The target wavefunctions are usually determined from a CI calculation, in which a
wavefunction is written as a linear combination of CSFs (configuration state functions)

ψN
k =

∑

i

ckiφ
N
i , (2)

where the expansion coefficients cki are such that they diagonalize the target Hamiltonian
matrix due to the basis of the CSFs. The target molecular orbitals are constructed from
Gaussian-type orbitals (GTOs). The continuum orbitals used here are those of Faure et al
(2002) and include up to g (l = 4) orbitals; unlike those used in the electron-diatomic molecule
code (Tennyson and Morgan 1999), these orbitals have no particular boundary conditions. The
advantage of using Gaussian-type orbitals is that infinite integrals are then evaluated exactly.
The integrals are actually required over the inner region, hence the tail integrals representing
the outer region contribution have to be subtracted. This can be done efficiently using property
integrals for the short-range GTOs (see Morgan et al (1997) for details).

In this work complete active space (CAS) CI target wavefunctions are employed. In
this model the target molecular orbitals included in the scattering calculation are divided into
core (which are fully occupied in all configurations), active and virtual orbitals. In the latter
two orbital spaces electrons are allowed to undergo excitation to orbitals of higher energy by
following a prescription which retains the balance between target and scattering calculations
(Tennyson 1996).

While most of the calculations reported below used the standard UK molecular R-matrix
codes (Morgan et al 1998), we took the opportunity to use the Quantemol-N scattering software
(Tennyson et al 2006). Quantemol-N is an expert system which runs the R-matrix codes with
a minimal set of input parameters. It is black box software in much the same spirit as the
Gaussian package (Frisch et al 2004). It was our intention to compare the results of the target
and scattering model automatically generated by the software with that of our own. The
defaults which most affect the calculations below are that the orbitals for the CAS and the
number of target states included in the close-coupling equation are chosen on energy grounds.
Unless stated otherwise these default values were used in all Quantemol-N calculations.

All the calculations reported here were carried out in the fixed nuclei approximation.

3. HCN and HNC target calculation

There have been a number of previous studies on the electronically excited states of HCN
(Schwenzer et al 1974, Nayak et al 2005). The most comprehensive appears to be the recent
study by Nayak et al (2005) who aimed at characterizing the excited triplet states of HCN.
Their transition energies were computed using coupled-cluster-based linear response theory.
Unfortunately they only report adiabatic excitation energies whereas for our calculations the
higher vertical excitation energies are required. Experimentally obtained adiabatic excitation
energies are only available for a rather smaller set of states (Herzberg 1966, Krishnamachari
S and Venkatsubramanian 1986).

Schwenzer et al (1975) provide a rare theoretical study of electronically excited HNC.
They too only report adiabatic excitation energies. As their calculations used only a double
zeta basis set and single excitation CI, their results cannot be regarded as definitive.

In the present study, experimental equilibrium geometries (NIST 2005) were used for
all calculations on both molecules. The ground-state electronic configuration of HCN and
its isomer in the C∞v symmetry is 1σ 22σ 23σ 24σ 25σ 21π4, hence both ground states have
symmetry 1�+. However, since the polyatomic code only supports Abelian point groups
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(Morgan et al 1998), all calculations were performed in the C2v sub-group, in which the
ground state electron configuration is 1a2

1 2a2
1 3a2

1 4a2
1 5a2

1 1b2
1 1b2

2.
A number of Gaussian-type orbital (GTO) target basis sets of double zeta or better

quality were tested: 6-31G, 6-31G* and 6-311G. In each case a Hartree–Fock self-consistent
field (SCF) calculation was performed to obtain initial occupied and virtual orbitals. In the
subsequent configuration interaction (CI) calculations the 1a1 and 2a1 orbitals (hence four
electrons) were frozen. The remaining ten electrons were allowed to move freely among the
3a1, 4a1, 5a1, 6a1, 1b1, 2b1, 1b2 and 2b2 active orbitals.

For calculations using Quantemol-N the basis set 6-31G was adopted. This software
generates its own complete active space, subject to the analysis of the molecular orbital
energies obtained from its SCF calculation. The complete active space used by the software
for the CI calculation was slightly larger than as ours:

(1a12a1)
4(3a14a15a16a17a11b12b11b22b2)

10 (3)

whereas for HNC the Quantemol-N CAS and that of this work coincided.
One problem with representing the target states in a scattering calculation is the need to

use a single orbital set for all states. It is possible to further improve the quality of the target
wavefunctions by constructing weighted pseudo natural orbitals (NOs). In all NO calculations
we used the first five lowest target states (1A1,

3A1,
3A2,

3B1,
3B2). Each target state is

represented by a CI wavefunction. All possible single and double excitation to unoccupied
virtual orbitals were included. In order to be able to incorporate the double excitations
however, it was necessary to freeze eight electrons (the 1 s and 2 s electrons of C and N).
For both HCN and HNC the weighting coefficients for the averaging procedure on the density
matrix were 5.75, 1.5, 1.5, 1.5, 1.5 for 1A1,

3A1,
3A2,

3B1,
3B2, respectively. Care needs to be

taken in choosing a target model for the natural orbitals calculation. If not treated in exactly
the same fashion, the degeneracy between orbitals (e.g., those of b1 and b2 symmetry) can be
easily broken.

3.1. HCN target model results

Table 1 reports HCN vertical excitation energies (those below the first ionization energy), the
absolute ground state energy and dipole moments obtained from the target models discussed
above. We compare our results to the adiabatic data of (Nayak et al 2005) and the experimental
results of Herzberg (1966).

It should be noted that whereas we chose to compute vertical excitation energies for 24
states (three states per irreducible representation per spin multiplicity), by default Quantemol-
N only considers those states energies whose vertical excitation energies are less than 10 eV.

3.2. HNC target model results

Results of our HNC calculations are summarized in table 2 where they are compared with the
cruder study of Schwenzer et al (1975). We know of no experimental measurement of the
excitation energy. The calculated ground state dipole moments are all close to the observed
value of −1.20 au (NIST 2005).

The data obtained from Quantemol-N and the equivalent R-matrix calculation are in
agreement because, as mentioned previously, the target models used are the same. Note that
we find the ground state of HNC lies 0.73 eV above that of HCN, close to the accurate value
of 0.65 eV obtained by Van Mourik et al (2001).
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Table 1. HCN vertical excitation energies, in eV, calculated in this work compared to the published
adiabatic excitation energies. Also given are the absolute energy of the ground state, in Hartree, the
ground state dipole moment and the number of configurations generated by our CAS CI calculation.
State designations are give in C∞v (C2v) symmetry.

Target State N 6-31G 6-311G 6-31G* 6-31G+NO Quantemol-N CCa Experimentb

X 1�+ (1A1) 328 −92.902 −92.911 −92.939 −92.939 −92.9109
1 3�+ (3A1) 360 6.87 7.04 6.90 6.63 6.85 6.13
1 3� (3A1,

3A2) 384 8.03 8.04 7.98 7.96 8.05 7.00
1 3� (3B1,

3B2) 384 8.50 8.61 8.89 8.53 8.50 4.44 8.53c

1 3�− (3A2) 384 8.72 8.72 8.67 8.97 5.47
1 1�− (1A2) 272 9.09 9.02 8.98 9.23 9.15 6.48 6.48
1 1� (1A1,

1A2) 272 9.41 9.30 9.26 9.82 6.93 6.77
1 1� (1B1,

1B2) 288 9.84 9.91 10.18 10.04 9.83 8.10 8.10
2 3� (3B1,

3B2) 384 11.87 11.69 11.70 6.81
2 1� (1B1,

1B2) 288 12.17 11.80 11.98 8.64 8.88
2 3�+ (3A1) 360 12.40 12.16 12.61
2 1�+ (1A1) 328 12.53 12.24 12.76 7.79
3 3� (3B1,

3B2) 384 7.47
µ/au −1.19 −1.21 −1.17 −1.13 −1.193 −1.26d −1.172e

a Coupled Cluster results from Nayak et al (2005).
b Herzberg (1966).
c Krishnamachari S and Venkatsubramanian (1986).
d Jain and Norcross (1985).
e NIST (2005).

Table 2. HNC vertical excitation energies, in eV, calculated in this work compared to the published
adiabatic excitation energies. Also given are the absolute energy of the ground state, in Hartree,
and the calculated ground state dipole moment. Since HCN and HNC are isoelectronic the number
of configurations for each symmetry is the same as those given in table 1.

Target State 6-31G 6-311G 6-31G* 6-31G+NO Quantemol-N Theorya

X 1�+ (1A1) −92.875 −92.892 −92.909 −92.897 −92.875
1 3� (3B1,

3B2) 6.16 6.40 6.48 6.20 6.16
1 3�+ (3A1) 7.88 7.94 7.91 7.45 7.88 4.46
1 3� (3A1,

3A2) 8.61 8.63 8.65 8.36 8.61 4.60
1 3�− (3A2) 8.98 8.99 9.06 8.94 5.22
1 1� (1B1,

1B2) 9.01 9.08 9.313 9.18 9.01 7.34
1 1�− (1A2) 9.26 9.25 9.310 9.20 9.26 4.95
1 1� (1A1,

1A2) 9.27 9.26 9.35 9.38 5.51
2 3�+ (3A1) 10.52 10.23 10.66 13.31 5.44
2 1�+ (1A1) 10.56 10.25 10.71 13.42 6.22
2 3� (3B1,

3B2) 11.85 11.46 11.67 13.83
2 1� (1B1,

1B2) 12.23 11.71 12.05 8.50
2 3�− (3A2) 5.96
2 1�− (1A2) 8.17
3 3�− (3A2) 6.09
µ/au −1.15 −1.21 −1.16 −1.146 −1.15

a Schwenzer et al (1975).

4. HCN and HNC scattering calculation

As the calculation of resonances involves the variational principle, 24 target states were
included in the close-coupling expansion in order to keep the expected resonance position as
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Figure 1. Comparison of HCN eigenphase sum curve 2�+ symmetry for calculations with a 6-31G
target basis.

low as possible, and to avoid any pseudo resonances which may otherwise appear when too
few states are included in the expansion. Calculations were performed for the (C2v) scattering
symmetries 2A1,

2B1,
2B2 and 2A2. The continuum GTOs were symmetrically (Lowden)

orthogonalized among themselves and then Schmidt orthogonalized to the target orbitals.
Only those continuum orbitals with an eigenvalue greater than 2 × 10−7 in the symmetric
orthogonalization were retained. One virtual orbital was chosen for each symmetry where
target orbitals were available to do so (see section 2). The scattering model used by Quantemol-
N was the same as the above except that only those states with vertical excitation energies
lower than 10 eV were included in the close-coupling expansion.

Convergence of the polarization interactions in methods based on close-coupling
expansions remains an issue (Gil et al 1994, Gorfinkiel and Tennyson 2004). For this reason
we tried calculations which not only differed in the target parameters, i.e. basis set and orbitals,
but also tested models which differed in the way the virtual orbitals are used. Calculations on
electron collisions with the isoelectronic CO molecule (Salvini et al 1984) showed significant
dependence on how the virtuals were treated. Our initial calculations contracted CSFs in
which the scattering electron occupied a virtual orbital with the target CI (see Tennyson
(1996), meaning that such CSFs are treated as part of the first sum in equation (1). However,
to allow for increased polarizability, which appears to be systematically underestimated in
previous calculations (Gorfinkiel and Tennyson 2004, Gorfinkiel and Tennyson 2005), we
also tested models which use a separable treatment of virtual and continuum orbitals. In this
treatment CSFs are not contracted, thus moving them to the second, or L2, summation in
equation (1).

Resonance parameters were obtained by fitting the eigenphase sum curve to a Breit-Wigner
profile (Tennyson and Noble 1984).

4.1. HCN resonance parameters

The eigenphase curve for 2�+ scattering symmetry given in figure 1 shows a sharp upturn as
the scattering energy goes to zero—the behaviour one would expect by Levinson’s theorem
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Figure 2. Comparison of HCN eigenphase sum curve 2� symmetry for calculations with a 6-31G
target basis.

Table 3. HCN resonance parameters in eV as a function of model.

2� 6-31G 6-31Ga 6-311G 6-31G* 6-31G+NOa Quantemol-N Theoryb Experimentc

Er 2.83 2.46 2.84 3.14 2.79 3.27 2.56–2.80 2.26
�r 1.34 1.14 1.49 1.59 1.22 1.64 1.78–2.40

a Obtained using separate treatment of virtual and continuum orbitals.
b Jain and Norcross (1985).
c Burrow et al (1992).

for a system supporting a weakly bound state. The 2�+ eigenphase for HNC shows a similar
behaviour. We note however, that for HCN the 2�+ eigenphase curve in figure 1 does not show
any resonance features. The structure of the curve at energies below the first target excitation
threshold, at about 6.8 eV, is very similar to the curve given by Jain and Norcross (1985).
Figure 2 which presents the same data for the 2� symmetry shows the clear signature of a
broad, low-energy resonance, also in agreement with the previous studies. For both scattering
symmetries our eigenphases show considerable structure associated with the opening of new
target electronic excitation channels above 6.8 eV; this structure is not present in Jain and
Norcross’s study since they used a 1-state approximation.

Table 3 summarizes the results we obtained for the position and width of the 2� resonance.
These results show considerable sensitivity to the precise model used, with the position varying
by more than 0.5 eV and the width by over 20% between different calculations. This behaviour
is similar to that observed by Jain and Norcross (1985), for whom only results which explicitly
included polarization effects are quoted. Unsurprisingly their static exchange results give
resonances which are systematically broader and higher.

Our predicted resonances lie at very similar energies to those of Jain and Norcross
(1985), the lowest being about 0.2 eV higher than the most precise experimental resonance
energy position measurement of due to Burrow et al (1992). However, it should be noted
this experiment measures the adiabatic resonance energy whereas the calculations are for the
higher vertical energy.
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Table 4. HNC shape resonance parameters in eV.

2� 6-31G 6-31Ga 6-311G 6-31G* 6-31G+NOa Quantemol-N

Er 2.77 2.57 2.90 3.03 2.43 3.15
�r 0.91 0.80 1.06 1.10 0.67 1.15

a Obtained using the separate treatment of continuum and virtual orbitals.

Table 5. HNC resonance parameters in eV.

2�+ 6-31G 6-31Ga 6-311G 6-31G* 6-31G+NOa Quantemol-N

Er 7.82 7.85 7.43 7.84
�r 2.2 × 10−3 3.0 × 10−3 1.2 × 10−3 9.6 × 10−4

2� 6-31G 6-31Ga 6-311G 6-31G* 6-31G+NOa Quantemol-N

Er 8.57 8.61 8.34 8.58
�r 4.0 × 10−4 5.5 × 10−4 3.5 × 10−4 3.4 × 10−4

a Obtained using separate treatment of virtual and continuum orbitals.

The HCN 2� shape resonance is rather broad. However, all our calculations find it to
be systematically narrower than the studies of Jain and Norcross (1985, 1986). A narrower
resonance normally corresponds to an improved treatment of short-range polarization effects
as this lowers the energy with a corresponding reduction in the phase space available for the
continuum. Our widths, which are still greater than 1 eV, are consistent with the experimental
finding (Burrow et al 1992) that the resonance is too broad to support any vibrational
structure.

Finally we note that for HCN we found no evidence of any Feshbach resonances.

4.2. HNC resonance parameters

Our calculations clearly show that HNC also has a 2� symmetry shape resonance, the
parameters for which are given in table 4 as a function of different models. Our calculations
predict the position of the resonance to be very similar to the HCN 2� shape resonance;
however they all suggest that the HNC resonance is narrow with a width only about 60% of
that calculated for HCN.

The most notable difference in our scattering calculation on HNC compared to HCN is the
appearance of a number of narrow resonances. These resonances, unlike the shape resonance
found for both isomers, do not appear in all calculations but only those with an enhanced
treatment of polarization. This behaviour is thus characteristic of Feshbach resonances which
do not occur in calculations containing an inadequate treatment of polarization effects.

Table 5 gives parameters for the narrow 2�+ and 2� symmetry resonances. Results
absent from this table mean that the model did not predict a resonance. The resonance
positions in the table appear to vary by nearly 0.5 eV. This is not actually a property of
the scattering calculations but of the underlying representation of the target states. The
2�+ and 2� resonances appears to be associated with the first excited 3�+ and 3� states
of HNC, respectively. In all cases our calculations find the resonance appears less than
0.1 eV below their respective parent state. The sensitivity in the resonance position is thus
directly associated with the differences in target vertical excitation energies, see table 2. The
correlation between which models (i.e., those with the uncontracted treatment of short-range
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Figure 3. Comparison of HNC 2�+ eigenphase sum curves for the basis set 6-31G.
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polarization) predict Feshbach resonances of both 2�+ and 2� symmetry is hardly surprising
since the two resonances both arise from the addition of a σ electron to target states with the
same configuration (1σ 22σ 23σ 24σ 25σ 21π32π1), these resonances therefore probably both
have the same configuration: 1σ 22σ 23σ 24σ 25σ 21π32π16σ 1.

Two of our models found a further, narrow 2�+ resonance at 9.2 eV. However, we cannot
be confident that our study gives stable results at this energy given the uncertainties in the
target state calculations.

Figures 3 and 4 show the 2�+ and 2� eigenphases. Both are similar to those of HCN
(whose 2� eigenphase is not shown) below the excitation thresholds. Above these thresholds
the eigenphases display considerable structure.
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Figure 5. HCN electron impact excitation cross-section for X1�+ → 13�+.
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Figure 6. HCN electron impact excitation cross-section for X1�+ → 13�.

4.3. Electronic excitation

Electron impact electronic excitation of either HCN or HNC does not appear to have been
considered previously. Figures 5–8 give electron impact excitation cross-sections for excitation
to the lowest two excited states of HCN and HNC, respectively. The cross-sections presented
were all calculated using the 6-31G GTO basis and uncontracted virtual orbital CSFs. However,
the main variation between models in the magnitude of the calculated excitation cross-sections
in the near-threshold region studied is due to location of the excitation threshold. Therefore
the resonance energy position is determined by the quality of the target calculation rather
than any details of the scattering model used. In all figures the differences between full and
dashed curves can be thought of as approximately representing the degree of uncertainty in
our calculations.
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5. Conclusion

We have applied the R-matrix method to electron scattering by HCN and HNC. The present
work represents the first study of electron scattering by the latter molecule. 24 target states
were included in the scattering calculation and were represented by CI wavefunctions, which
in our best model, were subsequently improved by the use of pseudo natural orbitals. We
detect an HCN− 2� shape resonance in our models. This resonance is well known both
experimentally (Srivastava et al 1978, Edard et al 1990, Burrow et al 1992) and theoretically
(Jain and Norcross 1985, 1986). Our resonance positions are in reasonable agreement with
previous studies. The resonance width does not appear to have been determined experimentally
and our calculations suggest that the width is somewhat narrower than that predicted by Jain
and Norcross. Indeed, as resonances tend to narrow as the treatment of polarization effects is
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improved, we would actually expect that our narrowest width, 1.14 eV, probably represents an
upper limit on the true width.

Electron collision calculations on the linear isomer HNC find that there is also HNC− 2�

shape resonance at an energy similar to its HCN− counterpart. However, we find that the
HNC− shape resonance is some 40% narrower than the HCN− one. Unlike HCN, HNC
appears to support a number of Feshbach resonances. In particular our better calculations
found narrow resonances of 2�+ and 2� symmetry lying less than 0.1 eV below the first
excited states of 3�+ and 3� symmetry, respectively. These resonances probably both arise
from the same configuration: 1σ 22σ 23σ 24σ 25σ 21π32π16σ 1.

Coupled-state electron scattering calculations such as these contain a wealth of
information on various different scattering processes. We present results on electron impact
electronic excitation of both isomers and plan, in future work, to study electron impact
rotational excitation rates which are of particular importance in astrophysics (Lovell et al
2004). Elastic and inelastic cross-sections for other processes discussed in the present paper
are available from the authors.

Finally we have taken the opportunity to compare our results with those obtained by the
new Quantemol-N R-matrix expert system. In general this code gives very similar results
to those obtained using the standard UK Molecular R-matrix code. The most important
difference, which gives rise to slightly higher positions for the shape resonances, is the
reduced number of target states used by Quantemol-N in its default mode.
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