
Fast Approximate String Matching in a DictionaryRicardo Baeza-Yates Gonzalo NavarroDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractA successful technique to search large textual data-bases allowing errors relies on an online search in thevocabulary of the text. To reduce the time of that on-line search, we index the vocabulary as a metric space.We show that with reasonable space overhead we canimprove by a factor of two over the fastest online algo-rithms, when the tolerated error level is low (which isreasonable in text searching).1 IntroductionApproximate string matching is a recurrent problemin many branches of computer science, with applica-tions to text searching, computational biology, patternrecognition, signal processing, etc.The problem can be stated as follows: given a longtext of length n, and a (comparatively short) pattern oflength m, retrieve all the segments (or \occurrences")of the text whose edit distance to the pattern is at mostk. The edit distance ed() between two strings is de�nedas the minimum number of character insertions, dele-tions and replacements needed to make them equal.In the online version of the problem, the pattern canbe preprocessed but the text cannot. The classical so-lution uses dynamic programming and is O(mn) time[16]. Nowadays, the best practical results are O(kn)time in the worst case and O(kn log�(m)=m) on av-erage (where � is the alphabet size), e.g. [13, 20, 9,4, 15, 18, 6]. The average case mentioned is \sublin-ear" in the sense that not all the text characters areinspected, but the online problem is 
(n) if m is takenas constant.We are interested in large textual databases in thiswork, where the main motivations for approximatestring matching come from the low quality of the text(e.g. because of optical character recognition (OCR)

or typing errors), heterogeneousness of the databases(di�erent languages which the users may not spellcorrectly), spelling errors in the pattern or the text,searching for foreign names and searching with uncer-tainty. Those texts take gigabytes and are relativelystatic. Even the fastest online algorithms are not prac-tical for this case, since they process a few megabytesper second. Preprocessing the text and building anindex to speed up the search becomes necessary.However, only a few years ago indexing text for ap-proximate string matching was considered one of themain open problems in this area [22, 2]. The practicalindices which are in use today rely on an online searchin the vocabulary of the text, which is quite smallcompared to the text itself. This takes a few secondsat most. While this may be adequate for single-userenvironments, it is interesting to improve the searchtime for multi-user environments. For instance, a Websearch engine which receives many requests per secondcannot spend a few seconds to traverse the vocabulary.In this paper we propose to organize the vocabu-lary as a metric space using the distance function ed(),and use a known data structure to index such spaces.We show experimentally that this imposes a reasonablespace overhead over the vocabulary, and that the re-ward is an important reduction in search times (closeto half of the best online algorithms). This algorithmmay also have other applications where a dictionary ofwords is searched allowing errors, such as in spellingproblems.This paper is organized as follows. In Section 2 weexplain the basic concepts used. In Section 3 we presentour metric space technique. In Section 4 we experimen-tally evaluate our technique. In Section 5 we give ourconclusions.



2 Basic Concepts
2.1 Indices for Approximate String MatchingThe �rst indices for approximate string match-ing appeared in 1992, in two di�erent avors: word-oriented and sequence-oriented indices. In the �rsttype, more oriented to natural language text and in-formation retrieval, the index can retrieve every wordwhose edit distance to the pattern is at most k. Inthe second one, useful also when the text is not nat-ural language, the index will retrieve every sequence,without notion of word separation.We focus on word-oriented indices in this work,where the problem is simpler and hence has been solvedquite well. Sequence-retrieving indices are still very im-mature to be useful for huge text databases (i.e. theindices are very large, are not well-behaved on disk,are very costly to build and update, etc.). It must beclear, however, that word-oriented indices are only ca-pable of retrieving an occurrence that is a sequence ofwords. For instance, they cannot retrieve "flower"with one error from "flo wer" or "many flowers"from "manyflowers". In many cases the restrictionis acceptable, however.Current word-oriented indices are basically invertedindices: they store the vocabulary of the text (i.e. theset of all distinct words in the text) and a list of occur-rences for each word (i.e. the set of positions where theword appears in the text). Approximate string match-ing is solved by �rst running a classical online algorithmon the vocabulary (as if it was a text), thus obtainingthe set of words to retrieve. The rest depends on theparticular index. Full inverted indices such as Igrep[1] simply make the union of the lists of occurrences ofall matching words to obtain the �nal answer. Block-oriented indices such as Glimpse and variations on it[14, 5] reduce space requirements by making the occur-rences point to blocks of text instead of exact positions,and must traverse the candidate text blocks to �nd theactual answers. In some cases the blocks need not betraversed (e.g. if each block is a Web page and we donot need to mark the occurrences inside the page) andtherefore the main cost corresponds to the search inthe vocabulary. See Figure 1.This scheme works well because the vocabulary isvery small compared to the text. For instance, in the 1Gb TREC collection [11] the vocabulary takes no morethan 5 Mb. An empirical law known as Heaps Law[12] states that the vocabulary for a text of n wordsgrows as O(n�), where 0 < � < 1. In practice, � isbetween 0.4 and 0.6 [1]. An online algorithm can searchsuch vocabulary in a few seconds. While improving this

vocabularyoccurrences TEXTINDEXxxxOnlineApprox.Search OnlineSearch
Figure 1. Approximate searching on an in-
verted index. The online search on the text
may or may not be necessary.may not be necessary in a single-user environment, itis always of interest in a multi-user environment like aWeb search engine.

2.2 Online SearchingThe classical algorithm for approximate stringmatching [16] is based on dynamic programming andtakes O(mn) time. It is a minor modi�cation of an al-gorithm to compute the edit distance between to wordsa and b, which costs O(jajjbj). This algorithm is un-beaten in exibility, since it can be adapted to a num-ber of variations in the distance function (e.g. to allowtranspositions, or to give di�erent costs to the opera-tions). There exists no signi�catively better algorithmto compute the exact edit distance among two randomstrings, but there are many improvements to the searchalgorithm allowing k errors. They are orders of mag-nitude faster than the classical algorihtm, but they arenot so exible and rely on speci�c properties of the editdistance.The technique that we study in this paper needsto compute the exact edit distance among strings, andtherefore it relies on the classical algorithm. The resultis that, although it may perform a few evaluations ofthe edit distance (say, 5% of the whole vocabulary), itmay be slower than an online traversal with a fast algo-rihtm. It is very important to understand this when anindexing scheme is evaluated, since traversing a smallpercentage of the vocabulary does not guarantee use-fulness in practice. On the other hand, many of the



fastest algorithm could not be usable if some extensionover the edit distance was desired, while the classicalalgorithm (and hence our technique) can accomodatemany extensions at no extra cost.On our machine (described later), the fastest on-line approximate search algorithms run at a maxi-mum speed of 25 megabytes per second when searchingwords (for k = 1), and at a minimum of 1 megabyte persecond (the dynamic programming algorithm, which isgeneral).
2.3 Searching in General Metric SpacesThe concept of \approximate" searching has appli-cations in a vast number of �elds. Some examples areimages, �ngerprints or audio databases; machine learn-ing; image quantization and compression; text retrieval(for approximate string matching or for document sim-ilarity); genetic databases; etc.All those applications have some common charac-teristics. There is a universe U of objects, and a non-negative distance function d : U � U �! R+ de�nedamong them. This distance satis�es the three axiomsthat makes the set a metric spaced(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is called the \triangular inequality"and is valid for many reasonable distance functions.The smaller the distance between two objects, the more\similar" they are. This distance is considered expen-sive to compute (e.g. comparing two �ngerprints). Wehave a �nite database S � U , which is a subset of theuniverse of objects and can be preprocessed (to buildan index, for instance). Later, given a new object fromthe universe (a query q), we must retrieve all similarelements found in the database. There are di�erentqueries depending on the application, but the simplestone is: given a new element q and a maximum dis-tance k, retrieve all the elements in the set which areat distance at most k from q.This is applicable to our problem because we havea set of elements (the vocabulary) and the distanceed() satis�es the stated axioms. A number of datastructures exist to index the vocabulary so that thequeries can be answered without inspecting all the el-ements. Our distance is discrete (i.e. gives integeranswers), which determines the data structures whichcan be used. We briey survey the main applicablestructures now.The �rst proposed structure is the Burkhard-KellerTree (or BK-tree) [8], which is de�ned as follows: an

arbitrary element a 2 S is selected as the root, whosesubtrees are identi�ed by integer values. In the i-thchildren we recursively build the tree for all elementsin S which are at distance i from a. This process canbe repeated until there is only one element to process,or there are no more than b elements (and we store abucket of size b).To answer queries of the form (q; k), we begin at theroot and enter into all children i such that d(a; q) �k � i � d(a; q) + k, and proceed recursively (the otherbranches are discarded using the triangular inequality).If we arrive to a leaf (bucket of size one or more) wecompare sequentially all the elements. We report allthe elements x found that satisfy d(q; x) � k.Another structure is called \Fixed-Queries Tree" orFQ-tree [3]. This tree is basically a BK-tree where allthe elements stored in the nodes of the same level arethe same (and of course do not necessarily belong tothe set stored in the subtree), and the real elements areall in the leaves. The advantage of such constructionis that some comparisons are saved between the queryand the nodes along the backtracking that occurs inthe tree. If we visit many nodes of the same level, wedo not need to perform more than one comparison perlevel. This is at the expense of somewhat taller trees.Another variant is proposed in [3], called \Fixed-HeightFQ-trees", where all the leaves are at the same depth h,regardless of the bucket size. This makes some leavesdeeper than necessary, which makes sense because wemay have already performed the comparison betweenthe query and one intermediate node, therefore elimi-nating for free the need to compare the leaf. In [17], anintermediate structure between BK-trees and FQ-treesis proposed.An analysis of the performance of FQ-trees is pre-sented in [3], which disregarding some complicationscan be applied to BK-trees as well. We show the re-sults in the Appendix. We also give an analysis of�xed-height FQ-trees which is new.Some approaches designed for continuous distancefunctions , e.g. [19, 23, 7, 10], are not covered in thisbrief review. The reason is that these structures do notuse all the information obtained from the comparisons,since this cannot be done in continuous spaces. Thisis, however, done in discrete spaces and this fact makesthe reviewed structures superior to those for continuousspaces, although they would not be directly applicableto the continuous case. We also do not cover algorithmswhich need O(n2) space such as [21] because they areimpractical for our application.



Metric SpaceData StructureApproximateSearch
Exact or specialized search Vocabulary... doctor j doctoral j document j documental j extra j ...

Figure 2. Proposed data structure.3 The Vocabulary as a Metric SpaceTraversing the whole vocabulary online is like com-paring the query against the whole database in a metricspace. Our proposal is to organize the vocabulary suchas to avoid the complete online traversal. This organi-zation is based on the fact that we want, from a set ofwords, those which are at edit distance at most k froma given query. The edit distance ed() used satis�es theaxioms which make it a metric, in particular a discretemetric.The proposal is therefore, instead of storing the vo-cabulary as a sequence of words, organize it as a metricspace using one of the available techniques. The dis-tance function to use is ed(), which is computed by dy-namic programming in time O(m1m2), where m1 andm2 are the lengths of the two words to compare. Al-though this comparison takes more than many e�cientalgorithms, it will be carried out only a few times toget the answer. On the other hand, the dynamic pro-gramming algorithm is very exible to add new editingoperations or changing their cost, while the most e�-cient online algorithms are not that exible.Figure 2 shows our proposed organization. The vo-cabulary is stored as a contiguous text (with separatorsamong words) where the words are sorted. This allowsexact or pre�x retrieval by binary search, or anotherstructure can be built onto it. The search structureto allow errors goes on top of that array and allowsapproximate or exact retrieval.An important di�erence between the general as-sumptions and our case is that the distance functionis not so costly to compute as to make negligible allother costs. For instance, the space overhead and non-locality of accesses incurred by the new search struc-

tures could eliminate the advantage of comparing thequery against less words in the vocabulary. Hence, wedo not consider simply the number of comparisons butthe complete CPU times of the algorithms, and com-pare them against the CPU times of the best sequen-tial search algorithms run over the complete vocabu-lary. Moreover, the e�ciency in all cases depends onthe number of errors allowed (all the algorithms worsenif more errors are allowed). We have also to considerthe extra space incurred because the vocabulary is al-ready large to �t in main memory. Finally, althoughthe asymptotic analysis of the Appendix shows thatthe number of traversed nodes is sublinear, we mustverify how does this behave for the vocabulary sizeswhich are used in practice.It is interesting to notice that any structure to searchin a metric space can be used for exact searching, sincewe just search allowing zero errors (i.e. distance zero).Although not as e�cient as data structures designedspeci�cally for exact retrieval (such as hashing or bi-nary search), the search times may be so low that thereduced e�ciency is not as important as the fact thatwe do not need an additional structure for exact search(such as a hash table).4 Experimental ResultsWe show experimentally the performance obtainedwith our metric space techniques against online algo-rithms. We ran our experiments on a Sun UltraSparc-1of 167 MHz, with 32 Mb of RAM, running Solares 2.5.1.We tested three di�erent structures: BK-trees(BKT), FQ-trees (FQT) and FQ-trees of �xed height(FQH). For the �rst two we tested buckets of size 1, 10and 20; while for the last one we tested �xed heightsof 5, 10 and 15. As explained before, other structuresfor metric spaces are not well suited to this case (weveri�ed experimentally this fact). We used the 500,000words (5 Mb) vocabulary of the English TREC collec-tion (1 Gb). The vocabulary was randomly permutedand separated in 10 incremental subsets of size 50,000to 500,000.Our �rst experiment deals with space and time over-head of the data structures that implement the searchin a metric space, and its suitability for exact search-ing. Figure 3 shows the results. As it can be seen, buildtimes are linear for FQH (exactly h comparisons perelement) and slightly superlinear (O(n log n) in fact,since the height is O(log n)) for BKT and FQT. Theoverhead to build them is normally below 2 minutes,which is a small percentage (10% at most) of the timenormally taken to build an index for a 1 Gb text data-base.



If we consider extra space, we see that the BKTposes a �xed space overhead, which reaches a maximumof 115% for b = 1. This corresponds to the fact thatthe BKT stores at most one node per element. Thespace of the FQT is slightly superlinear (the internalnodes are empty) and for this experiment is well above200% for b = 1. Finally, the space of the FQH tendsto a constant, although in our case is very large exceptfor h = 51 (the case h = 15 is above 500% and is notshown).Finally, we show that the work to do for exactsearching involves a few distance evaluations (20 orless) with very low growth rate (logarithmic). Thisshows that the structure can be also used for exactsearching. The exception is FQH (h = 5), since theFQH is O(n) time for �xed h, and this is noticed es-pecially for small h (it grows linearly from 100 to 1000and is not shown).We show in Figure 4 the query performance of theindices to search with one error. As it can be seen, nomore than 5-8% of the dictionary is traversed (the per-centage is decreasing since the number of comparisonsare sublinear except for FQH). The user times corre-spond quite well to the number of comparisons. Weshow the percentage of user times using the structuresversus the best online algorithm for this case [6] (as im-plemented in [4]). As it can be seen, for the maximumdictionary size we reach 40% of the online time for thebest metric structures. From those structures, we be-lieve that BKT with b = 1 is the best choice, sinceit is faster than all the FQT's (and takes less space)and it is similar to FQH (h = 15) and takes muchless space. Another alternative which takes less space(close to 70%) is BKT with b = 10, while it achieves60% of the times of online searching.The result for two errors (not shown) is not so good.This time the metric space algorithms do not improvethe online search, despite that the best ones traverseonly 17%-25% of the vocabulary. The reason is thatthe o�ine algorithms are much more sensitive to theerror level than the online ones. This shows that ourscheme is only useful to search with one error.Table 1 shows the results of the least squares �t-ting over the number of comparisons performed by thedi�erent data structures. For k = 0 we obtain a goodlogarithmic approximation, while the bucket size seemsto a�ect the constant rather than the multiplying fac-tor. The exception is the FQH, which is O(n) (and theconstant is very close to h as expected).For k = 1, the results con�rm the fact that thestructures inspect a sublinear number of nodes. Notice1It is possible to have h as a function of n, but we cover thereasonable range here by showing three �xed values

that the exponent is smaller for BKT than for FQT,although the last ones have a better constant. Theconstant, on the other hand, seems to keep unchangedwhen the bucket size varies (only the exponent is af-fected). This allows to extrapolate that BKT will con-tinue to improve over FQT for larger data sets2. TheFQH, on the other hand, shows clearly that it are infact linear for �xed h (this can be changed if h is takenas a function of n, but we have not done this yet).The results for k = 2 increase the exponent (whichwill be close to 1 for k = 3). The exception is FQH,which increases a lot the constant (its exponent can-not possibly increase). The percentual error is between15% and 20% in all cases.The least squares �tting over the real CPU timesgive similar growth rates, for instance it is O(n0:65) forBKT (b = 1).5 ConclusionsWe proposed a new method to organize the vocab-ulary of inverted �les in order to support approximatesearching on the indexed text collection. Most presentmethods rely on a sequential search over the vocabularywords using a classical online algorithm. We proposeinstead to organize the vocabulary as a metric space,taking advantage of the fact that the edit distance thatmodels the approximate search is indeed a metric. Thismethod can also be applied to other problems when adictionary is searched allowing errors, such as spellingapplications.We show in our experiments over a 5 Mb vocabu-lary of a 1 Gb text, that the best data structure forthis task is the Burkhard-Keller tree with no buckets.That structure allows, with almost negligible construc-tion time and reasonable space overhead (100% extraover the space taken by the plain vocabulary), to searchclose to 5%-8% of the dictionary for one error and 17%-25% for two errors. This cuts down the times of thebest online algorithms to 40%-60% for one error, al-though for two errors the online algorithms (thoughtraversing the whole dictionary) are faster. We haveshown experimentally that those trees, as well as theFixed-Queries trees, perform a sublinear number ofcomparisons, close to O(n0:6::0:7) for 1 error. We alsopresent the �rst analysis for �xed-height Fixed Queriestrees.Our implementation of the BK-trees is not opti-mized for space. We estimate that with a careful imple-2It is well known that all the conclusions about metric spacedata structures depend strongly on the particular space and dis-tance function, so this does not allow a generalization to othercases.



� � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100

5000000
010000002000000300000040000005000000

n � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100

100
020406080

100
nsec

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100
300
050100150200250300

n � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 106
22
6101418
22

n� FQT b = 1� FQT b = 10� FQT b = 20 � FQH h = 15� FQH h = 10� FQH h = 5 � BKT b = 1� BKT b = 10� BKT b = 20
Figure 3. Comparison of the data structures. From top to bottom and left to right, number of distance
evaluations and user times to build them, extra space taken over the vocabulary size, and number of
distance evaluations for exact search. The x axis is expressed in multiples of 50,000.Structure k = 0 k = 1 k = 2BKT (b = 1) 0:87 ln(n) � 1:52 2:25 n0:639 1:91 n0:822BKT (b = 10) 0:96 ln(n) + 0:39 2:21 n0:673 1:52 n0:859BKT (b = 20) 0:69 ln(n) + 8:36 2:16 n0:691 1:42 n0:871FQT (b = 1) 1:91 ln(n)� 10:84 0:36 n0:777 0:54 n0:926FQT (b = 10) 1:17 ln(n) + 0:26 0:50 n0:798 0:63 n0:921FQT (b = 20) 1:73 ln(n) � 1:58 0:49 n0:814 0:69 n0:919FQH (h = 5) 2:3� 10�3n+ 6:27 0:15 n0:998 0:46 n0:992FQH (h = 10) 1:7� 10�5n + 10:61 0:04 n1:006 0:30 n1:004FQH (h = 15) 1:1� 10�6n + 16:02 0:02 n0:992 0:26 n0:994
Table 1. Least squares fitting for the number of comparisons made by the different data structures.



� � � � � � � � � �� � � � � � � � � �� � � � � � � � �
� � � � � � � � � �� � � � � � � � �� �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100

20000
040008000120001600020000

n � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100
8
0123456
78 n%

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100.00

0.20
0.000.040.080.120.160.20

nsec � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 1030
100
304050607080
90100

n%
� FQT b = 1� FQT b = 10� FQT b = 20 � FQH h = 15� FQH h = 10� FQH h = 5 � BKT b = 1� BKT b = 10� BKT b = 20

Figure 4. Search allowing one error. The first row shows the number of comparisons (on the left,
absolute number, on the right, percentage over the whole dictionary). The second row shows user
times (on the left, seconds, on the right, percentage over the best online algorithm). The x axis is
expressed in multiples of 50,000.



mentation the overhead can be reduced from 100% to65%. This overhead is quite reasonable in most cases.We also leave for future work putting h as a function ofn for �xed-height Fixed-Queries trees, so that they alsoshow their sublinear behavior that we have analyticallypredicted in this paper.References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large textsearching allowing errors. In Proc. WSP'97, pages 2{20. Carleton University Press, 1997.[2] R. Baeza-Yates. Text retrieval: Theory and practice.In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier Science, Sep 1992.[3] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.Proximity matching using �xed-queries trees. In Proc.CPM'94, LNCS 807, pages 198{212, 1994.[4] R. Baeza-Yates and G. Navarro. A faster algorithmfor approximate string matching. In Proc. CPM'96,LNCS 1075, pages 1{23, 1996.[5] R. Baeza-Yates and G. Navarro. Block-addressing in-dices for approximate text retrieval. In Proc. ACMCIKM'97, pages 1{8, 1997.[6] R. Baeza-Yates and C. Perleberg. Fast and practi-cal approximate pattern matching. In Proc. CPM'92,pages 185{192, 1992. LNCS 644.[7] S. Brin. Near neighbor search in large metric spaces.In Proc. VLDB'95, pages 574{584, 1995.[8] W. Burkhard and R. Keller. Some approaches to best-match �le searching. CACM, 16(4):230{236, 1973.[9] W. Chang and J. Lampe. Theoretical and empiri-cal comparisons of approximate string matching algo-rithms. In Proc. CPM'92, pages 172{181, 1992. LNCS644.[10] C. Faloutsos and K. Lin. Fastmap: a fast algorithmfor indexing, data mining and visualization of tra-ditional and multimedia datasets. ACM SIGMODRecord, 24(2):163{174, 1995.[11] D. Harman. Overview of the Third Text REtrievalConference. In Proc. TREC-3, pages 1{19, 1995. NISTSpecial Publication 500-207.[12] J. Heaps. Information Retrieval - Computational andTheoretical Aspects. Academic Press, 1978.[13] G. Landau and U. Vishkin. Fast string matching withk di�erences. J. of Computer and Systems Science,37:63{78, 1988.[14] U. Manber and S. Wu. glimpse: A tool to searchthrough entire �le systems. Technical Report 93-34,Dept. of CS, Univ. of Arizona, Oct 1993.[15] G. Myers. A fast bit-vector algorithm for approximatepattern matching based on dynamic progamming. InProc. CPM'98. Springer-Verlag, 1998. To appear.[16] P. Sellers. The theory and computation of evolution-ary distances: pattern recognition. J. of Algorithms,1:359{373, 1980.[17] M. Shapiro. The choice of reference points in best-match �le searching. CACM, 20(5):339{343, 1977.

[18] E. Sutinen and J. Tarhio. On using q-gram locations inapproximate string matching. In Proc. ESA'95, 1995.LNCS 979.[19] J. Uhlmann. Satisfying general proximity/similarityqueries with metric trees. Information Processing Let-ters, 40:175{179, 1991.[20] E. Ukkonen. Finding approximate patterns in strings.J. of Algorithms, 6:132{137, 1985.[21] E. Vidal. An algorithm for �nding nearest neighboursin (approximately) constant average time. PatternRecognition Letters, 4:145{157, 1986.[22] S. Wu and U. Manber. Fast text searching allowingerrors. CACM, 35(10):83{91, 1992.[23] P. Yianilos. Data structures and algorithms for near-est neighbor search in general metric spaces. In Proc.ACM-SIAM SODA'93, pages 311{321, 1993.Appendix. Analysis of Fixed-Height FQ-treesWe call pi the probability that two random elementsfrom U are at distance i. Hence, Pi�0 pi = 1, andp�i = 0 for i > 0. In [3] the FQ-trees are analyzedunder the simplifying assumption that the pi distrib-ution does not change when we enter into a subtree(their analysis is later experimentally veri�ed). Theyshow that the number of distance evaluations done tosearch an element with tolerance k (in our application,allowing k errors) on an FQ-tree of bucket size b isPk(n) = O(n�)where 0 < � < 1 is the solution ofXi�0 i(k)p�i = 1where i(k) = Pi+kj=i�k pj . This Pk result is the sumof the comparisons done per level of the tree (a loga-rithmic term) plus those done at the leaves of the tree,which are O(n�).The CPU cost depends also on the number of tra-versed nodes Nk(n), which is also shown to be O(n�)(the constant is di�erent). Finally, the number of dis-tance evaluations for an exact search is O(b+ log n).Under the same simplifying assumption the analysisapplies to BK-trees too. The main di�erence is thatthe number of comparisons is for this case the sameas the number of nodes traversed plus the number ofleaf elements compared, which also adds up O(n�) (al-though the constant is higher). The distribution of thetree is di�erent but this di�erence is overriden by thesimplifying assumptions anyway.We analyze now FQ-trees of �xed height. The analy-sis is simpler than for FQ-trees. Let F hk (n) be the num-ber of elements not yet �ltered by a proximity search of



distance up to k after applying h �xed queries. Then,the expected number of comparisons for a proximityquery is P hk (n) = h+ F hk (n)Let �k be the probability of not �ltering an elementwhen doing the proximity search at distance k. If anelement is at distance i to a query, it is not �lteredwith probabilityPi+kj=i�k pj . The element is at distancei with probability pi, so�k =Xi�0 pi i+kXj=i�k pjNote that �k converges to 1 when k increases. So, theexpected number of elements not �ltered between twoconsecutive levels are related by F hk (n) = �kF h�1k (n).Clearly, F 0k = n, so F hk (n) = �hkn. Because F hk (n)decreases when h grows, the optimal h is obtained whenP hk (n) � P h+1k (n). That is, whenh+ �hkn � h+ 1 + �h+1k nSolving, we obtain the optimal h for a given khk = log(n(1� �k))log(1=�k)Replacing this h in P hk (n) we getPk(n) = log(n(1� �k))log(1=�k) + 11� �kThat is, Pk(n) is logarithmic for the optimal hk (andlinear for a �xed h). This is asymptotically better thanthe O(n�) results for FQ-trees and BK-trees. Never-theless, the constant factor in the log term grows ex-ponentially with k, so this is good for small to mediumk. To obtain this logarithmic behavior, the �xed heightmust increase as the number of elements grows (i.e.hk = O(log n)). Unfortunately the optimal height isdependent on the search tolerance k. However, the log-arithmic cost can be maintained even for non-optimal hprovided we use h = �(� log n), where � � 1= log 1=�k(i.e. we overestimate the optimal height).On the other hand, the number of nodes visited isbigger than in FQ-trees. In fact, using a recurrencesimilar to the one for FQ-trees, it is possible to showthat the number of nodes visited is O(hkn�) for � < 1which could easily be larger than n even for small k.So, these trees are good when the cost of comparingtwo elements is very high, like comparing two geneticsequences, polygons or graphs.A related problem is the size of the data structure,which can be superlinear. In fact, it is possible that the

optimal h cannot be used in many applications becauseof space limitations (for instance, we could hardly reachthe limit h = 15 in this work).Another problem is that the variance of the numberof elements �ltered per level is large (increases withevery level), so we may need more queries in practiceto achieve the desired �ltering.To decrease the number of nodes visited, we maycompress paths of degree 1 by using the same idea ofPatricia trees. We can store in every node which �xedquery (or how many we have to skip) we have to usein that node. Still, we cannot compress all the nodes ifwe want to �lter that element. Another idea, insteadof �xing the height, is �xing the probability of �lteringin every path recursively.


