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Abstract

It is suggested that there are infinite computable sets of natural numbers
with the property that no infinite subset can be computed more simply
or more quickly than the whole set. Attempts to establish this without
restricting in any way the computer involved in the calculations are not
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entirely successful. A hypothesis concerning the computer makes it pos-
sible to exhibit sets without simpler subsets. A second and analogous
hypothesis then makes it possible to prove that these sets are also with-
out subsets which can be computed more rapidly than the whole set. It
is then demonstrated that there are computers which satisfy both hy-
potheses. The general theory is momentarily set aside and a particular
Turing machine is studied. Lastly, it is shown that the second hypoth-
esis is more restrictive then requiring the computer to be capable of
calculating all infinite computable sets of natural numbers.
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Introduction

Call a set of natural numbers perfect if there is no way to compute in-
finitely many of its members essentially better (i.e. simpler or quicker)
than computing the whole set. The thesis of this paper is that per-
fect sets exist. This thesis was suggested by the following vague and
imprecise considerations.

One of the most profound problems of the theory of numbers is that
of calculating large primes. While the sieve of Eratosthenes appears to
be as simple and as quick an algorithm for calculating all the primes as
is possible, in recent times hope has centered on calculating large primes
by calculating a subset of the primes, those that are Mersenne numbers.
Lucas’s test is simple and can test whether or not a Mersenne number is
a prime with rapidity far greater than is furnished by the sieve method.
If there are an infinity of Mersenne primes, then it appears that Lucas

1Address: Mario Bravo 249, Buenos Aires, Argentina.
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has achieved a decisive advance in this classical problem of the theory
of numbers.2

An opposing point of view is that there is no way to calculate large
primes essentially better than to calculate them all. If this is the case
it apparently follows that there must be only finitely many primes.

1. General Considerations

The notation and terminology of this paper are largely taken from Davis
[3].

Definition 1. A computing machine Σ is defined by a 2-ary non-
vanishing computable function σ in the following manner. The natural
number n is part of the output Σ(p, t) of the computer Σ at time t re-
sulting from the program p if and only if the nth prime3 divides σ(p, t).
The infinite set Σ(p) of natural numbers which the program p causes
the computing machine Σ to calculate is defined to be

⋃
t

Σ(p, t)

if infinitely many numbers are put out by the computer in numerical
order and without any repetition. Otherwise, Σ(p) is undefined.

Definition 2. A program complexity measure Π is a computable
1-ary function with the property that only finitely many programs p
have the same complexity Π(p).

Definition 3. The complexity ΠΣ(S) of an infinite computable
set S of natural numbers as computed by the computer Σ under the
complexity measure Π is defined to be equal to

{
minΣ(p)=S Π(p), if there are such p,
∞, otherwise.

2For Lucas’s test, cf. Hardy and Wright [1, Sec. 15.5]. For a history of number
theory, cf. Dantzig [2], especially Sections 3.12 and B.8.

3The 0th prime is 2, the 1st prime is 3, etc. The primes are, of course, used here
only for the sake of convenience.
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I.e. ΠΣ(S) is the complexity of the simplest program which causes the
computer to calculate S, and if there is no such program,4 the com-
plexity is infinite.5

In this section we do not see any compelling reason for regarding
any particular computing machine and program complexity measure as
most closely representing the state of affairs with which number theo-
rists are confronted in their attempts to compute large primes as simply
and as quickly as possible.6 The four theorems of this section and their
extensions hold for any computer Σ and any program complexity mea-
sure Π. Thus, although we don’t know which computer and complexity
measure to select, as this section holds true for all of them, we are
covered.

Theorem 1. For any natural number n, there exists an infinite
computable set S of natural numbers which has the following properties:

(a) ΠΣ(S) > n.

(b) For any infinite computable set R of natural numbers, R ⊂ S
implies ΠΣ(R) ≥ ΠΣ(S).

Proof. We first prove the existence of an infinite computable set A
of natural numbers having no infinite computable subset B such that
ΠΣ(B) ≤ n. The infinite computable sets C of natural numbers for
which ΠΣ(C) ≤ n are finite in number. Each such C has a smallest
element c. Let the (finite) set of all these c be denoted by D. We take
A = D.

Now let A0, A1, A2, . . . be the infinite computable subsets of A. Con-
sider the following set:

E = {ΠΣ(A0), ΠΣ(A1), ΠΣ(A2), . . .}.
4This possibility can never arise for the simple-program computers or the quick-

program computers introduced later; such computers can be programmed to com-
pute any infinite computable set of natural numbers.

5A more formal definition would perhaps use ω, the first transfinite ordinal,
instead of ∞.

6In Sections 2 and 3 the point of view is different; some computing machines are
dismissed as degenerate cases and an explicit choice of program complexity function
is suggested.
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From the manner in which A was constructed, we know that each mem-
ber of E is greater than n. And as the natural numbers are well-ordered,
we also know that E has a smallest element r. There exists a natural
number s such that ΠΣ(As) = r. We take S = As, and we are finished.
Q.E.D.

Theorem 2. For any natural number n and any infinite computable
set T of natural numbers with infinite complement, there exists a com-
putable set S of natural numbers which has the following property:
T ⊂ S and ΠΣ(S) > n.

Proof. There are infinitely many computable sets of natural num-
bers which have T as a subset, but the infinite computable sets F of
natural numbers for which ΠΣ(F ) ≤ n are finite in number. Q.E.D.

Theorem 3. For any 1-ary computable function f , there exists an
infinite computable set S of natural numbers which has the following
property: Σ(p) ⊂ S implies the existence of a t0 such that for t > t0,
n ∈ Σ(p, t) only if t > f(n).

Proof. We describe a procedure for computing S in successive stages
(each stage being divided into two successive steps); during the kth
stage it is determined in the following manner whether or nor k ∈
S. Two subsets of the computing machine programs p such that p <
[k/4] are considered: set A, consisting of those programs which have
been “eliminated” during some stage previous to the kth; and set B,
consisting of those programs not in A which cause Σ to output the
natural number k during the first f(k) time units of calculation.

Step 1. Put k in S if and only if B is empty.
Step 2. Eliminate all programs in B (i.e. during all future stages

they will be in A).
The above constructs S. That S contains infinitely many natural

numbers follows from the fact that up to the kth stage at most k/4
programs have been eliminated, and thus at most k/4 natural numbers
less than or equal to k can fail to be in S.7

7I.e. the Schnirelman density d(S) of S is greater than or equal to 3/4. It follows
from d(S) ≥ 3/4 that S is basis of the second order; i.e. every natural number can
be expressed as the sum of two elements of S. Cf. Gelfond and Linnik [4, Sec. 1.1].
We conclude that the mere fact that a set is a basis of the second order for the
natural numbers does not provide a quick means for computing infinitely many of
its members.
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It remains to show that Σ(p) ⊂ S implies the existence of a t0 such
that for t > t0, n ∈ Σ(p, t) only if t > f(n). Note that for n ≥ 4p + 4,
n ∈ Σ(p, t) only if t > f(n). For a value of n for which this failed to be
the case would assure p’s being in A, which is impossible. Thus given
a program p such that Σ(p) ⊂ S, we can calculate a point at which the
program has become slow and will remain so; i.e. we can calculate a
permissible value for t0. In fact, t0(p) = maxj<4p+4 f(j). Q.E.D.

The following theorem and the type of diagonal process used in its
proof are similar in some ways to Blum’s exposition of a theorem of
Rabin in [5, pp. 241–242].

Theorem 4. For any 1-ary computable function f and any infinite
computable set T of natural numbers with infinite complement, there
exists an infinite computable set S of natural numbers which is a su-
perset of T and which has the following property: Σ(p) = S implies the
existence of a t0 such that for t > t0, n ∈ Σ(p, t) only if t > f(n).

Proof. First we define three functions: a(n) is equal to the nth
natural number in T ; b(n) is equal to the smallest natural number j
greater than or equal to n such that j ∈ T and j + 1 6∈ T ; and c(n) is
equal to maxn≤k≤b(n) f(k). As proof, we give a process for computing
S ∩ T in successive stages; during the kth stage it is determined in the
following manner whether or not a(k) ∈ S. Consider the computing
machine programs 0, 1, 2, . . . , k to fall into two mutually exclusive sets:
set A, consisting of those programs which have been eliminated during
some stage previous to the kth; and set B, consisting of all others.

Step 1. Determine the set C consisting of the programs in B which
cause the computing machine Σ to output during the first c(a(k)) time
units of calculation any natural numbers greater than or equal to a(k)
and less then or equal to b(a(k)).

Step 2. Check whether C is empty. Should C = ∅, we neither
eliminate programs nor put a(k) in S; we merely proceed to the next
(the (k + 1)-th) stage. Should C = ∅, however, we proceed to step 3.

Step 3. We determine p0, the smallest natural number in C.
Step 4. We ask, “Does the program p0 cause Σ to output the num-

ber a(k) during the first c(a(k)) time units of calculation?” According
as the answer is “no” or “yes” we do or don’t put a(k) in S.

Step 5. Eliminate p0 (i.e. during future stages p0 will be in A).
The above constructs S. We leave to the reader the verification that
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the constructed S has the desired properties. Q.E.D.
We now make a number of remarks.
Remark 1. We have actually proved somewhat more. Let U be

any infinite computable set of natural numbers. Theorems 1 and 3
hold even if it is required that the set S whose existence is asserted
be a subset of U . And if in Theorems 2 and 4 we make the additional
assumption that T is a subset of U , and U ∩ T is infinite, then we can
also require that S be a subset of U .

The above proofs can practically be taken word for word (with obvi-
ous changes which may loosely be summarized by the command “ignore
natural numbers not in U”) as proofs for these extended theorems. It
is only necessary to keep in mind the essential point, which in the case
of Theorem 3 assumes the following form. If during the kth stage of
the diagonal process used to construct S we decide whether to put in
S the kth element of U , we are still sure that Σ(p) ⊂ S is impossible
for all the p which were eliminated before. For if Σ(p) ⊂ U , then p
is eliminated as before; while if Σ(p) has elements not in U , then it is
clear that Σ(p) ⊂ S is impossible, for S is a subset of U .

Remark 2. In Theorems 1 and 2 we see two possible extremes
for S. In Theorem 1 we contemplate an arbitrarily complex infinite
computable set of natural numbers that has the property that there
is no way to compute infinitely many of its members which is simpler
than computing the whole set. On the other hand, in Theorem 2 we
contemplate an infinite computable set of natural numbers that has the
property that there is a way to compute infinitely many of its members
which is very much simpler than computing the whole set. Theorems
3 and 4 are analogous to Theorems 1 and 2, but Theorem 3 does not
go as far as Theorem 1. Although Theorem 3 asserts the existence
of infinite computable sets of natural numbers which have no infinite
subsets which can be computed quickly, it does not establish that no
infinite subset can be computed more quickly than the whole set. In this
generality we are unable to demonstrate a Theorem 3 truly analogous
to Theorem 1, although an attempt to do so is made in Remark 5.

Remark 3. The restriction in the conclusions of Theorems 3 and
4 that t be greater than t0 is necessary. For as Arbib remarks in [6,
p. 8], in some computers Σ any finite part of S can be computed very
quickly by a table look-up procedure.
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Remark 4. The 1-ary computable function f of Theorems 3 and
4 can go to infinity very quickly indeed with increasing values of its
argument. For example, let f0(n) = 2n, fk+1(n) = fk(fk(n)). For each
k, fk+1(n) is greater than fk(n) for all but a finite number of values
of n. We may now proceed from finite ordinal subscripts to the first
transfinite ordinal by a diagonal process: fω(n) = maxk≤n fk(n). We
choose to continue the process up to ω2 in the following manner, which
is a natural way to proceed (i.e. the fundamental sequences can be
computed by simple programs) but which is by no means the only way
to get to ω2. i and j denote finite ordinals.

fωi+j+1(n) = fωi+j(fωi+j(n)),

fω(i+1)(n) = max
k≤n

fωi+k(n),

fω2(n) = max
k≤n

fωk(n).

Taking f = fω2 in Theorem 3 yields an S such that any attempt
to compute infinitely many of its elements requires an amount of time
which increases almost incomprehensibly quickly with the size of the
elements computed.

More generally, the above process may be continued through to
any constructive ordinal.8 For example, there are more or less natural
manners to reach ε0, the first epsilon-number; the territory up to it is
very well charted.9

The above is essentially a constructive version of remarks by Borel
[8] in an appendix on a theorem of P. du Bois-Reymond. These remarks
are partly reproduced in Hardy [9].

Remark 5. Remark 4 suggests the following approach to the speed
of programs. For any constructive ordinal α there is a computable 2-ary
function f (by no means unique) with the property that the set of 1-ary
functions fk defined by fk(n) = f(k, n) is a representative of α when
ordered in such a manner that a function g comes before a function h
if and only if g(n) < h(n) holds for all but a finite number of values of
n. We now associate an ordinal OrdΣ(S) with each infinite computable
set S of natural numbers in accordance with the following rules:

8Cf. Davis [3, Sec. 11.4] for a definition of the concept of a constructive ordinal
number.

9Cf. Fraenkel [7, pp. 207–208].
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(a) OrdΣ(S) equals the smallest ordinal β < α such that fk0 , the
βth element of the set of functions fk, has the following property:
There exists a program p and a time t0 such that Σ(p) = S and
for t > t0, n ∈ Σ(p, t) only if t ≤ fk0(n).

(b) If (a) fails to define OrdΣ(S) (i.e. if the set of ordinals β is empty),
then OrdΣ(S) = α.

Then for any constructive ordinal α we have the following analogue
to Theorem 1.

Theorem 1′. Any infinite computable set T of natural numbers
has an infinite computable subset S with the following properties:

(a) OrdΣ(S) ≤ OrdΣ(T ).

(b) For any infinite computable set R of natural numbers, R ⊂ S
implies OrdΣ(S) ≤ OrdΣ(R).

Proof. Let T0, T1, T2, . . . be the infinite computable subsets of T .
Consider the following set of ordinal numbers less than or equal to α:

{OrdΣ(T0), OrdΣ(T1), OrdΣ(T2), . . .}.

As the ordinal numbers less than or equal to α are well-ordered, this
set has a smallest element β. There exists a natural number s such
that OrdΣ(Ts) = β. We take S = Ts. Q.E.D.

However, we must admit that this approach to the speed of pro-
grams does not seem to be a convincing support for the thesis of this
paper.

2. Connected Sets, Simple-Program Com-

puters, and Quick-Program Computers

The principal results of subsections 2.A and 2.B, namely, Theorems 6
and 8, hold only for certain computers, but we argue that all other
computing machines are degenerate cases of computers which in view
of their unnecessarily restricted capabilities do not merit consideration.
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In this section and the next we attempt to make plausible the con-
tention that some connected sets (defined below) may well be consid-
ered to be perfect sets. In subsection 2.A we study the complexity of
subsets of connected sets, and in subsection 2.B we study the speed
of programs for computing subsets of connected sets. The treatments
are analogous but we find the second more convincing, because in the
first treatment one explicit choice is made for the program complexity
measure Π. Π(p) is taken to be [log2(p + 1)].

The concept of a connected set is analogous to the concept of a
retraceable set, cf. Dekker and Myhill [10].

Definition 4. A connecting function γ is a one-to-one onto map-
ping carrying the set of all finite sets of natural numbers onto the set of
all natural numbers. The monotonicity conditions γ(V ∪W ) ≥ γ(W )
must be satisfied and there must be a 1-ary computable function g
such that γ(W ) = g(

∏
n∈W pn), where pn denotes the nth prime.2 Let

S = {s0, s1, s2, . . .} (s0 < s1 < s2 < · · ·) be a computable set of natural
numbers with m members (0 ≤ m ≤ ℵ0). From a connecting function
γ we define a secondary connecting function Γ as follows:10

Γ(S) =
⋃

k<m

{γ(
⋃
j≤k

{sj})}.

A γ-connected set is defined to be any infinite computable set of natural
numbers which is in the range of Γ.

Remark 6. Consider a connecting function γ. Note that any two
γ-connected sets which have an infinite intersection must be identical.
In fact, two γ-connected sets which have an element in common must
be identical up to that element.

The following important results concerning γ-connected sets are es-
tablished by the methods of Section 1 and thus hold for any computer
Σ and complexity measure Π. For any natural number n there exists
a γ-connected set S such that ΠΣ(S) > n. This follows from the fact
that there are infinitely many γ-connected sets, while the infinite com-
putable sets H of natural numbers such that ΠΣ(H) ≤ n are only finite
in number. Theorem 3 remains true if we require that the set S whose

10Thus Γ(S) always has the same number of elements as S, be S empty, finite or
infinite.
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existence is asserted be a γ-connected set. S may be constructed by
a procedure similar to that of the proof of Theorem 3; during the kth
stage instead of deciding whether or not k ∈ S, it is decided whether
or not k ∈ Γ−1(S). These two results should be kept in mind while
appraising the extent to which the theorems of this section and the
next corroborate the thesis of this paper.

2.A. Simplicity

In this subsection we make one explicit choice for the program com-
plexity measure Π. We consider programs to be finite binary sequences
as well as natural numbers:

Programs

Binary Sequence Λ 0 1 00 01 10 11 000 001 010 011 . . .
Natural Number 0 1 2 3 4 5 6 7 8 9 10 . . .

Henceforth, when we denote a program by a lowercase (uppercase)
Latin letter, we are referring to the program considered as a natural
number (binary sequence). Next we define the complexity of a program
P to be the number of bits in P (i.e. its length). I.e. the complexity
Π(p) of a program p is equal to [log2(p + 1)], the greatest integer not
greater than the base-2 logarithm of p + 1.

We now introduce the simple-program computers. Computers sim-
ilar to them have been used in Solomonoff [11], Kolmogorov [12], and
in [13].

Definition 5. A simple-program computer Σ has the following
property: For any computer Ξ, there exists a natural number cΣΞ such
that ΠΣ(S) ≤ ΠΞ(S) + cΣΞ for all infinite computable sets S of natural
numbers.

To the extent that it is plausible to consider all computer programs
to be binary sequences, it seems plausible to consider all computers
which are not simple-program computers as unnecessarily awkward de-
generate cases which are unworthy of attention.

Remark 7. Note that if Σ and Ξ are two simple-program com-
puters, then there exists a natural number cΣ

Ξ which has the following
property: |ΠΣ(S) − ΠΞ(S)| ≤ cΣ

Ξ for all infinite computable sets S of
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natural numbers. In fact we can take

cΣ
Ξ = max(cΣΞ, cΞΣ).

Theorem 5. For any connecting function γ, there exists a simple-
program computer Σγ which has the following property: For any γ-
connected set S and any infinite computable subset R of S,

ΠΣγ (S) ≤ ΠΣγ (R).

Proof. Taking for granted the existence of a simple program com-
puter Σ∗ (cf. Theorem 9), we construct the computer Σγ from it as
follows:


Σγ(Λ, t) = ∅,
Σγ(P0, t) = Σ∗(P, t),

Σγ(P1, t) =
⋂

t′<t Σ
γ(P1, t′) ∩ Γ(

⋃
n∈Σ∗(P,t) γ−1(n)).

(1)

As Σ∗ is a simple-program computer, so is Σγ, for Σγ(P0, t) = Σ∗(P, t).
Σγ also has the following very important property: For all programs P0
for which Σγ(P0) is a subset of some γ-connected set S, Σγ(P1) = S.
Moreover, Σγ(P1) cannot be a proper subset of any γ-connected set.
In summary, given a P such that Σγ(P ) is a proper subset of a γ-
connected set S, then by changing the rightmost bit of P to a 1 we get
a program P ′ with the property that Σγ(P ′) = S. This implies that for
any infinite computable subset R of a γ-connected set S,

ΠΣγ (S) ≤ ΠΣγ (R).

Q.E.D.
In view of Remark 7, the following theorem is merely a corollary to

Theorem 5.
Theorem 6. Consider a simple-program computer Σ. For any

connecting function γ, there exists a natural number cγ which has the
following property: For any γ-connected set S and any infinite com-
putable subset R of S, ΠΣ(S) ≤ ΠΣ(R) + cγ. In fact, we can take11

cγ = 2 max(cΣΣγ , cΣγΣ).

11That
cγ = cΣΣγ + cΣγΣ

will do follows upon taking a slightly closer look at the matter.
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2.B. Speed

This treatment runs parallel to that of subsection 2.A.
Definition 6. A quick-program computer Σ has the following prop-

erty: For any computer Ξ, there exists a 1-ary computable function sΣΞ

such that for all programs p for which Ξ(p) is defined, there exists a
program p′ such that Σ(p′) = Ξ(p) and

⋃
t′≤t

Ξ(p, t′) ⊂ ⋃
t′≤sΣΞ(t)

Σ(p′, t′)

for all but a finite number of values of t.
Theorem 7. For any connecting function γ, there exists a quick-

program computer Σγ which has the following property: For any pro-
gram P such that Σγ(P ) is a proper subset of a γ-connected set S, there
exists a program P ′ such that Σγ(P ′) = S and Σγ(P, t) ⊂ Σγ(P ′, t) for
all t. In fact, P ′ is just P with the 0 at its right end changed to a 1, as
the reader has no doubt guessed.

Proof. Taking for granted the existence of a quick-program com-
puter Σ∗ (cf. Theorem 9), we construct Σγ from it exactly as in the
proof of Theorem 5. I.e. Σγ is defined, as before, by eqs. (1). The
remainder of the proof parallels the proof of Theorem 5. Q.E.D.

Theorem 7 yields the following corollary in a manner analogous to
the manner in which Theorem 5 yields Theorem 6.

Theorem 8. Consider a quick-program computer Σ. For any con-
necting function γ there exists a 1-ary computable function sγ which
has the following property: For any program p such that Σ(p) is a
subset of a γ-connected set S, there exists a program p′ such that

Σ(p′) = S,⋃
t′≤t

Σ(p, t′) ⊂ ⋃
t′≤sγ(t)

Σ(p′, t′)

for all but a finite number of values of t. In fact we can take

sγ(n) = sΣΣγ (sΣγΣ(n)).

Remark 8. Arbib and Blum [14] base their treatment of program
speed upon the idea that if two computers can imitate act by act the
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computations of the other, and not take too many time units of calcu-
lation to imitate the first several time units of calculation of the other,
then these computers are essentially equivalent. The idea used to de-
rive Theorem 8 from Theorem 7 is similar: Any two quick-program
computers (and in particular Σγ and Σ) can imitate act by act each
other’s computations and are thus in a sense equivalent.

In order to clarify the above, let us formally define within the frame-
work of Arbib and Blum a concept analogous to that of the quick-
program computer. In what remains of this remark we use the notation
and terminology of Arbib and Blum, not that of this paper. However, in
order to prove that this analogous concept is not vacuous, it is necessary
to make explicit an assumption which is implicit in their framework.
For any machine M there exists a total recursive function m such that
m(i, x, t) = 2y if and only if φM

i (x) = y and ΦM
i (x) = t.

Definition AB. A quick-program machine M is a machine with
the following property. Consider any machine N . There exists a to-
tal recursive function fNM increasing in both its variables such that
N ≥(fNM ) M ; i.e. M is at least as complex as N (modulo (fNM)). Here,
a two-variable function enclosed in parentheses denotes the monoid with
multiplication ∗ and identity e(x, y) = y, which is generated by the
function.

Then by (ii) of Theorem 2 [14] we have
Theorem AB. Consider two quick-program machines M and N .

There exists a total recursive function gNM increasing in both of its
variables such that N ≡(gNM ) M ; i.e. N and M are (gNM)-equivalent.

Remark 9. In an effort to make this subsection more comprehen-
sible, we now cast it into the framework of lattice theory, cf. Birkhoff
[15].

Definition L1. Let Σ1 and Σ2 be computing machines. Σ1 im Σ2

(Σ1 can be imitated by Σ2) if and only if there exists a 1-ary computable
function f which has the following property: For any program p for
which Σ1(p) is defined, there exists a program p′ such that Σ2(p

′) =
Σ1(p) and ⋃

t′≤t

Σ1(p, t
′) ⊂ ⋃

t′≤f(t)

Σ2(p
′, t′)

for all but a finite number of values of t.
Lemma L1. The binary relation im is reflexive and transitive.
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Definition L2. Let Σ1 and Σ2 be computing machines. Σ1 eq Σ2

if and only if Σ1 im Σ2 and Σ2 im Σ1.
Lemma L2. The binary relation eq is an equivalence relation.
Definition L3. L is the set of equivalence classes induced by the

equivalence relation eq. For any computer Σ, (Σ) is the equivalence
class of Σ, i.e. the set of all computers Σ′ such that Σ′ eq Σ. For any
(Σ1), (Σ2) ∈ L, (Σ1) ≤ (Σ2) if and only if Σ1 im Σ2.

Lemma L3. L is partially ordered by the binary relation ≤.
Lemma L4. Consider a computer which cannot be programmed

to compute any infinite set of natural numbers, e.g. the computer Σ0

defined by Σ0(p, t) = ∅. Denote by 0 the equivalence class of this
computer; i.e. denote by 0 the computers which compute no infinite
sets of natural numbers. 0 bounds L from below; i.e. 0 ≤ A for all
A ∈ L.

Lemma L5. Consider a quick-program computer, e.g. the com-
puter Σ∗ of Theorem 9. Denote by 1 the equivalence class of this
computer; i.e. denote by 1 the quick-program computers. 1 bounds L
from above; i.e. A ≤ 1 for all A ∈ L.

Lemma L6. Let Σ1 and Σ2 be computers. Define the computer
Σ3 as follows: Σ3(Λ, t) = ∅, Σ3(P0, t) = Σ1(P, t), Σ3(P1, t) = Σ2(P, t).
(Σ3) is the l.u.b. of (Σ1) and (Σ2).

Lemma L7. Let Σ1 and Σ2 be computers. Define the computer
Σ3 as follows: Consider the sets

S1 =
⋃
t′≤t

Σ1(K(p), t′),

S2 =
⋃
t′≤t

Σ2(L(p), t′),

where (K(p), L(p)) is the pth ordered pair in an effective enumeration
of the ordered pairs of natural numbers (cf. Davis [3, pp. 43–45]). If Σ1

and Σ2 output in size order and without repetitions the elements of,
respectively, S1 and S2, and S1 ⊂ S2 or S2 ⊂ S1, then

Σ3(p, t) = S1 ∩ S2 ∩
⋃
t′<t

Σ3(p, t′).

Otherwise, Σ3(p, t) = ∅. (Σ3) is the g.l.b. of (Σ1) and (Σ2).
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Theorem L. L is a denumerable, distributive lattice with zero el-
ement and one element.

We may describe the g.l.b. and l.u.b. operations of this lattice as
follows. The l.u.b. of two computers is the slowest computer which is
faster than both of them, and the g.l.b. of two computers is the fastest
computer which is slower than both of them.

3. A Simple, Quick-Program Computer

This section is the culmination of this paper. A computer is constructed
which is both a simple-program computer and a quick-program com-
puter.

If it is believed that programs are essentially binary sequences and
that the only natural measure of the complexity of a program consid-
ered as a binary sequence is its length, then apparently the conclusion
would have to be drawn that only simple, quick-program computers are
worthy of attention, all other computers being degenerate cases.

It would seem to follow that the connected sets indeed corroborate
this paper’s thesis. For there is a simple, quick-program computer
which best represents mathematically the possibilities open to number
theorists in their attempts to calculate large primes. We do not know
which it may happen to be, but we do know (cf. Remark 6) that there
are connected sets which are very complex and which must be computed
very slowly when one is using this computer. In view of Theorems 6
and 8 it would seem to be appropriate to consider these connected sets
to be perfect sets. Thus our quest for perfect sets comes to a close.

Theorem 9. There exists a simple, quick-program computer,
namely Σ∗.

Proof. We take it for granted that there is a computer Σ$ which
can compute every 2-ary computable function f in the following sense:
There exists a binary sequence Pf and a 2-ary computable function #f

increasing in its second argument such that

{f(n, m)} = Σ$(B(n)Pf , #f (n, m))

for all natural numbers n and m. Moreover, Σ$(B(n)Pf , t) is nonempty
only if there exists an m such that t = #f (n, m). Here B is the function
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carrying each natural number into its associated binary sequence, as in
Section 2.

From Σ$ we now construct the computer Σ∗: n ∈ Σ∗(p, t) if and
only if Σ$(p, t) has only a single element, this element is not zero, and
the nth prime divides it.2

We now verify that Σ∗ is a simple, quick-program computer. Con-
sider a computer Ξ. We give the natural number cΣ∗Ξ explicitly: cΣ∗Ξ

is the length of Pξ. We also give the 1-ary computable function sΣ∗Ξ

explicitly:
sΣ∗Ξ(n) = max

k≤n
#ξ(k, n).

Here ξ is, of course, the 2-ary computable function which defines the
computer Ξ as in Definition 1. Q.E.D.

Appendix A. A Turing Machine

The contents of this appendix have yet to be fitted into the general
framework which we attempted to develop in Sections 1–3.

Definition A. ∆ is a Turing machine. ∆’s “tape” is a quarter-plane
or quadrant divided into squares. It has a single scanner which scans
one of the squares. If the scanner runs off the quadrant, ∆ halts. ∆ can
perform any one of the following operations: quadrant one square left
(L), right (R), up (U), or down (D); or the scanner can overprint a 0
(0), a 1 (1), or erase (E) the square of the quadrant being scanned. The
programs of ∆ are tables with three columns headed “blank,” “0,” and
“1,” and consecutively numbered rows. Each place in the table must
have an ordered pair; the first member of the pair gives the operation
to be performed and the second member gives the number of the next
row of the table to be obeyed. As program complexity measure Ω,
we take the number of rows in the program’s table. One operation
(L, R, U, D, 0, 1, or E) is performed per unit time. The computing
machine ∆ begins calculating with its scanner on the corner square,
with the quadrant completely erased, and obeying the last row of its
program’s table. The Turing machine outputs a natural number n when
the binary sequence which represents n in base-2 notation appears at
the bottom of the quadrant, starting in the corner square, ending in
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the square being scanned, and with ∆ obeying the next to last row of
its program’s table.

Theorem A1. For any connecting function γ there exists a natural
number cγ and a 1-ary computable function sγ which have the following
property: For any program p for which ∆(p) is a subset of a γ-connected
set S, there is a program p′ such that

(a) ∆(p′) = S, Ω(p′) = Ω(p) + cγ ;
12 and

(b) for all natural numbers t,

⋃
t′≤t

∆(p, t′) ⊂ ⋃
t′≤t+sγ(n)

∆(p′, t′),

where n stands for the largest element of the left-hand side of the
relation, if this set is not empty (otherwise, n stands for 0).

Proof. p′ is obtained from p in the following manner. cγ rows are
added to the table defining the program p. All transfers to the next
to the last row in the program p are replaced by transfers to the first
row of the added section. The new rows of the table use the program
p as a subroutine. They make the program p think that it is working
as usual, but actually p is using neither the quadrant’s three edge rows
nor the three edge columns; p has been fooled into thinking that these
squares do not exist because the new rows moved the scanner to the
fourth square on the diagonal of the quadrant before turning control
over to p for the first time by transferring to the last row of p. This
protected region is used by the new rows to do its scratch-work, and
also to keep permanent records of all natural numbers which it causes
∆ to output.

Every time the subroutine thinks it is making ∆ output a natural
number n, it actually only passes n and control to the new rows. These
proceed to find out which natural numbers are in Γ(γ−1(n)). Then

12This implies
Ω∆(S) ≤ Ω∆(∆(p)) + cγ .

I.e.
Ω∆(S) ≤ Ω∆(R) + cγ

for any infinite computable subset R of the γ-connected set S.
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the new rows eliminate those elements of Γ(γ−1(n)) which ∆ put out
previously. Finally, they make ∆ output those elements which remain,
move the scanner back to what the subroutine last thought was its
position, and return control to the subroutine. Q.E.D.

Remark A. Assuming that only the computer ∆ and program
complexity measure Ω are of interest, it appears that we have before
us some connected sets which are in a very strong sense perfect sets.
For, as was mentioned in Remark 6, there are γ-connected sets which
∆ must compute very slowly. For such sets, the term sγ(n) in (b) above
is negligible compared with t.

Theorem A2. Consider a simple-program computer Σ and the
program complexity measure Π(p) = [log2(p + 1)]. Let S0, S1, S2, . . .
be a sequence of distinct infinite computable sets of natural numbers.
Then we may conclude that

lim
k→∞

ΠΣ(Sk)

2Ω∆(Sk) log2 Ω∆(Sk)

exists and is in fact unity.
Proof. Apply the technique of [16, Pt. 1].
Of course,
Theorem A3. ∆ is a quick-program computer.

Appendix B. A Lattice of Computer Spe-

eds

The purpose of this appendix is to study L∗, the lattice of speeds of
computers which calculate all infinite computable sets of natural num-
bers. L∗ is a sublattice (in fact, a filter) of the lattice L of Remark 9.
It will be shown that L∗ has a rich structure: every countable partially
ordered set is imbeddable in L∗.13 Thus to require a computer to be
a quick-program computer is more than to require that it be able to
compute all infinite computable sets of natural numbers.

13An analogous result is due to Sacks [17, p. 53]. If P is a countable partially
ordered set, then P is imbeddable in the upper semilattice of degrees of recursively
enumerable sets. Cf. also Sacks [17, p. 21].
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Definition B1. L∗ is the sublattice of L consisting of the (Σ) such
that Σ can be programmed to compute all infinite computable sets of
natural numbers.

In several respects the following theorem is quite similar to Theorem
9 of Hartmanis and Stearns [18] and to Theorem 8 of Blum [19]. The
diagonal process of the proof of Theorem 3 is built into a computer’s
circuits.

Theorem B1. There exists a quick-program computer Σ1 with
the property that for any 1-ary computable function f and any infinite
computable set U of natural numbers, there exists a 1-ary computable
function g and an infinite computable set S of natural numbers such
that

(a) S ⊂ U ,

(b) g(n) > f(n) for all but a finite number of values of n,

(c) there exists a program p such that Σ1(p) = S and n ∈ Σ1(p, g(n)+
1) for all n ∈ S,

(d) for all programs p′ such that Σ1(p
′) ⊂ S, n ∈ Σ1(p

′, t) only if
t > g(n), with the possible exception of a finite number of values
of n.

Proof. Let Σ be a quick-program computer. We construct Σ1 from
it. Σ1(Λ, t) = ∅, Σ1(P0, t) = Σ(P, t), Σ1(P1, 0) = ∅, and Σ1(P1, t + 1)
is a subset of Σ(P, t). For each element n# of Σ(P, t), it is determined
in the following manner whether or not n# ∈ Σ1(P1, t + 1). Define m,
nk (0 ≤ k ≤ m), m′, and tk (0 ≤ k ≤ m) as follows:⋃

t′≤t

Σ(P, t′) = {n0, n1, n2, . . . , nm} (n0 < n1 < n2 · · · < nm),

n# = nm′ ,

nk ∈ Σ(P, tk) (0 ≤ k ≤ m).

Define A(i, j) (the predicate “the program j is eliminated during the
ith stage”),14 A (the set of programs eliminated before the m′ th stage),

14During the ith stage of this diagonal process it is decided whether or not the
ith element of Σ(P ) is in Σ1(P1).
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and A′ (the set of programs eliminated before or during the m′th stage)
as follows:

A(i, j) iff j < [i/4] and ni ∈
⋃

t′≤ti

Σ1(j, t
′),

A = {j|A(i, j) for some i < m′},
A′ = {j|A(i, j) for some i ≤ m′}.

n# ∈ Σ1(P1, t + 1) iff A′ = A.
That the above indeed constructs Σ1 follows from the fact that each

of the tk is less than t+1, and thus Σ1(P1, t+1) is defined only in terms
of Σ1(p

′, t′), for which t′ is less than t + 1. I.e. that Σ1(p, t) is defined
follows by induction on t. Also, Σ1 is a quick-program computer, for
Σ1(P0, t) = Σ(P, t).

We now define the function g and the set S, whose existence is
asserted by the theorem. By one of the extensions of Theorem 3, there
exists a program P which has the following properties:

1. Σ(P ) ⊂ U .

2. For all but a finite number of values of n, n ∈ Σ(P, t) only if
t > f(n).

S = Σ1(P1). That S is infinite follows from the fact that at most k/4
of the first k elements of Σ(P ) fail to be in S. g(n) is defined for all
n ∈ Σ(P ) by n ∈ Σ(P, g(n)). It is irrelevant how g(n) is defined for
n 6∈ Σ(P ), as long as g(n) > f(n).

Part (a) of the conclusion follows from the fact that Σ1(P1, t+1) ⊂
Σ(P, t) ⊂ U for all t. Part (c) follows from the fact that if n ∈ Σ1(P1),
then

n ∈ Σ1(P1, g(n) + 1).

Part (d) follows from the fact that if Σ1(p
′) is defined and n is the first

element of Σ1(p
′)∩Σ(p) which is greater than or equal to the (4p′+4)-

th element15 of Σ(P ) and which is contained in a Σ1(p
′, t) such that

t ≤ g(n), then n is not an element of S. Q.E.D.
Corollary B1. On the hypothesis of Theorem B1, not only do the

g and S whose existence is asserted have the properties (a) to (d), they

15I.e. it is greater than or equal to n4p′+4.
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also, as follows immediately from (c) and (d), have the property that
for any quick-program computer Σ:

(e) There exists a program p2 such that Σ(p2) = S and n ∈ Σ(p2, t)
with t ≤ sΣΣ1(g(n) + 1) for all but a finite number of values of
n ∈ S.

(f) For all programs p3 such that Σ(p3) ⊂ S, n ∈ Σ(p3, t) only if
sΣ1Σ(t) > g(n), with the possible exception of a finite number of
values of n.

Remark B. Theorem B1 is a “no speed-up” theorem; i.e. it con-
trasts with Blum’s speed-up theorem (cf. [5, 6, 19]). Each S whose
existence is asserted by Theorem B1 has a program for Σ1 to compute
it which is as fast as possible. I.e. no other program for Σ1 to compute
S can output more than a finite number of elements more quickly. Thus
it is not possible to speed up every program for computing S by the
computer Σ1. And, as is pointed out by Corollary B1, this also holds
for any other quick-program computer, but with the slight “fogginess”
that always results in passing from a statement about one particular
quick-program computer to a statement about another.

Definition B2. Let S be a computable set of natural numbers and
let Σ be a computer. ΣS denotes the computer which can compute only
subsets of S, but which is otherwise identical to Σ. I.e.

ΣS(p, t) =

{
Σ(p, t), if

⋃
t′≤t Σ(p, t′) ⊂ S,

∅, otherwise.

Theorem B2. There is a computer Σ0 such that (Σ0) ∈ L∗ and
(Σ0) < 1. Moreover, for any computable sets T and R of natural
numbers,

(a) if T − R and R − T are both infinite, then l.u.b. (Σ0), (Σ
T
1 ) and

l.u.b. (Σ0), (Σ
R
1 ) are incomparable members of L∗, and

(b) if T ⊂ R and R−T is infinite, then the first of these two members
of L∗ is less than the second.
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Proof. Σ0 is constructed from the computer Σ1 of Theorem B1 as
follows. n ∈ Σ0(p, t) if and only if there exist t′ and t′′ with max(t′, t′′) =
t such that

n ∈ Σ1(p, t
′), st′ ∈ Σ1(p, t

′′)

where ⋃
t3≤t

Σ1(p, t3) = {s0, s1, s2, . . .} (s0 < s1 < s2 < · · ·),

and for no n1 ≥ n2, t1 < t2 ≤ t is it simultaneously the case that
n1 ∈ Σ1(p, t1) and n2 ∈ Σ1(p, t2). Note that for all p, Σ1(p) = Σ0(p),
both sides of the equation being undefined if one of them is.

Sets S whose existence is asserted by Theorem B1 which must be
computed very slowly by Σ1 must be computed very much more slowly
indeed by Σ0, and thus Σ1 im Σ0 cannot be the case. Moreover, within
any infinite computable set U of natural numbers, there are such sets
S.

We now show in greater detail that (Σ0) < (Σ1) = 1 by a reductio
ad absurdum of Σ1 im Σ0. Suppose Σ1 im Σ0. Then by definition
there exists a 1-ary computable function h such that for any program p
for which Σ1(p) is defined, there exists a program p′ such that Σ0(p

′) =
Σ1(p) and ⋃

t′≤t

Σ1(p, t
′) ⊂ ⋃

t′≤h(t)

Σ0(p
′, t′)

for all but a finite number of values of t.
In Theorem B1 we now take f(n) = max(n, maxk≤n h(k)). We

obtain g and S satisfying

1. g(n) > n,

2. g(n) > maxk≤n h(k) for all but finitely many n. From (1) it follows
that for all but a finite number of values of n ∈ S, the fastest
program for Σ1 to compute S outputs n at time t′ = g(n) + 1,
while the fastest program for Σ0 to compute S outputs n at time

t′′ = g(sg(n)+1) + 1 = g(st′) + 1 > st′ + 1 ≥ t′ + 1.

Here, as usual, S = {s0, s1, s2, . . .} (s0 < s1 < s2 < · · ·). Note
that sk, the kth element of S, must be greater than or equal to
k:
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3. sk ≥ k.

By the definition of (Σ1) im (Σ0) we must have

h(g(n) + 1) ≥ g(sg(n)+1) + 1,

for all but finitely many n ∈ S. By (2) this implies

h(g(n) + 1) > max
k≤sg(n)+1

h(k) + 1;

hence g(n) + 1 > sg(n)+1 for all but finitely many n ∈ S. Invoking (3)
we obtain g(n) + 1 > sg(n)+1 ≥ g(n) + 1, which is impossible. Q.E.D.

A slightly different way of obtaining the following theorem was an-
nounced in [20].

Theorem B3. Any countable partially ordered set is order-
isomorphic with a subset of L∗. That is, L∗ is a “universal” countable
partially ordered set.

Proof. We show that an example of a universal partially ordered set
is C, the computable sets of natural numbers ordered by set inclusion.
Thus the theorem is established if we can find in L∗ an isomorphic image
of C. This isomorphic image is obtained in the following manner. Let
S be a computable set of natural numbers. Let S ′ be the set of all odd
multiples of 2n, where n ranges over all elements of S. The isomorphic
image of the element S of C is the element l.u.b. (Σ0), (Σ

S′
1 ) of L∗. Here

Σ0 is the computer of Theorem B2, Σ1 is the computer of Theorem B1,
and “ΣS′

1 ” is written in accordance with the notational convention of
Definition B2.

It only remains to prove that C is a universal partially ordered set.
Sacks [17, p. 53] attributes to Mostowski [21] the following result: There
is a universal countable partially ordered set A = {a0, a1, a2, . . .} with
the property that the predicate an ≤ am is computable. We finish the
proof by constructing in C an isomorphic image A′ = {A0, A1, A2, . . .}
of A [as follows:

Ai = {k|ak ≤ ai}.
It is easy to see that Ai ⊂ Aj if and only if ai ≤ aj.] Q.E.D.

Corollary B2. L∗ has exactly ℵ0 elements.
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