Reasoning about Infinite Computations®

Moshe Y. Vardi' Pierre Wolper?
IBM Almaden Research Center Université de Liege

Abstract

We investigate extensions of temporal logic by connectives defined by finite automata on
infinite words. We consider three different logics, corresponding to three different types
of acceptance conditions (finite, looping and repeating) for the automata. It turns out,
however, that these logics all have the same expressive power and that their decision
problems are all PSPACE-complete. We also investigate connectives defined by alternat-
ing automata and show that they do not increase the expressive power of the logic or the
complexity of the decision problem.

1 Introduction

For many years, logics of programs have been tools for reasoning about the input/output
behavior of programs. When dealing with concurrent or nonterminating processes (like
operating systems) there is, however, a need to reason about infinite computations. Thus,
instead of considering the first and last states of finite computations, we need to con-
sider the infinite sequences of states that the program goes through. Logics to reason
about such sequences include temporal logic [Pn77] and temporal-logic-based process log-
ies [Ni80, HKP80].

In the propositional case, computations can be viewed as infinite sequences of propo-
sitional truth assignments. For reasoning about individual propositional truth assign-
ments, propositional logic is a descriptively complete language, i.e., it can specify any set
of propositional truth assignments. There is, however, no a priori robust notion of de-
scriptive completeness for reasoning about sequences of propositional truth assignments.

*A preliminary version of this paper, authored by P. Wolper, M.Y. Vardi, and A.P. Sistla, appeared
in Proc. 24th IEEE Symp. on Foundations of Computer Science, 1983, pp. 185-194, under the title
“Reasoning about Infinite Computation Paths”.

TAddress: IBM Almaden Research K53-802, 650 Harry Rd., San Jose, CA 95120-6099 USA,
vardi@almaden.ibm.com

tAddress: Institut Montéfiore, B28, Université de Liege, B-4000 Liége Sart-Tilman, Belgium,
pw@montefiore.ulg.ac.be

In [GPSS80] propositional temporal logic (PT'L) was shown to be expressively equiva-
lent to the monadic first-order theory of (N, <), the natural numbers with the less-than
relation. This was taken as an indication that PT'L and the process logics based on it
are “descriptively complete”.

The above assumes that first-order notions are all we need to reason about infinite
computations. But, the very fundamental notion of regularity of sets of event sequences
is not first-order; even the simple assertion that “the proposition p holds at least in every
other state on a path” is not expressible in PT' L [Wo83]. In fact, PT L and the first-order
theory of (N, <) are known to be expressively equivalent to star-free w-regular languages
[Lad77, Tho79, Tho81]. On the other hand, w-regular sequences are a natural way of
describing concurrent processes [Sh79], [Mi80]; and furthermore, the ability to describe
w-regular sequences is crucial to the task of program verification [LPZ85].

There are several different ways to extend the expressive power of PT'L. We could add
some non-first-order construct, such as least-fixpoint or second-order quantification, but
we prefer here to add an explicit mechanism for specifying w-regular events as was done
in [Wo83]. There, PTL is extended with a temporal connective corresponding to every
nondeterministic finite automaton on infinite words.!"* For example, if ¥ = {a, b} and
A is the automaton accepting all infinite words over ¥ having a in every other position,
then A is also a binary temporal connective, and the formula A(p,true) is satisfied by
the paths where p holds in at least every other state.

An important point that was not considered in [Wo83] is that to define w-regular
sequences one needs to impose certain repeating conditions on accepting automata runs.
For example, Biichi automata, which define exactly the w-regular languages, require that
some accepting state occurs infinitely often in the run [Bu62, McN66]. Using Biichi
automata to define temporal connectives gives rise to an extended temporal logic that

we call ETL.,.

In addition to the notion of repeating acceptance, we also consider two other notions
of acceptance. The first notion is finite acceptance: an automaton accepts an infinite
word if it accepts some prefix of the word by the standard notion of acceptance for finite
words. The second notion is looping acceptance: an automaton accepts an infinite word if
it has some infinite run over the word (this is the notion used in [Wo83]). Using automata
with finite and looping acceptance conditions to define temporal connectives gives rise
to extended temporal logics that we call ET'L; and ET'L;, respectively. We should note
that our interest in finite and looping acceptance is not due to their automata-theoretic

1To be precise, the formalism used in [Wo83] is that of right-linear context-free grammars over infinite
words.

?Note that here the use of automata is conceptually different from the use of automata in dynamic
logic (cf. [Ha84, HS84, Pr81]). In dynamic logic automata are used to describe flowchart programs,
while here automata are used to describe temporal sequences. Thus, dynamic logic automata describe
regular sequences of program statements, while temporal logic automata describe regular properties of
state sequences.

significance,? but due to their significance as specification constructs. Finite acceptance
can be viewed as describing a liveness property, i.e., “something good will eventually
happen”, while looping acceptance can be viewed as a safety condition, i.e., “something
bad will never happen”.* Thus, finite and looping acceptance can be viewed as extensions
of the “Fventually 7 and “Always” constructs of PT'L.

The notions of finite and looping acceptance are incomparable and are strictly weaker
than the notion of repeating acceptance. For example, the sequence (ab*)* can be defined
by repeating acceptance but not by finite or looping acceptance. Thus, we could expect
the logics ET'L,, ET Ly, and ETL; to have different expressive powers. One of the main
results of this paper is that all these logics are expressively equivalent. They all have
the expressive power of w-regular expressions, which by [Bu62] is the same as that of
the monadic second-order theory of (N, <), usually denoted S1S. We also consider the
complexity of the decision problem for ET'L; and ETL;. It turns out that both logics
have the same complexity as PT L: polynomial space (cf. [HR83, SC85]). In contrast,
the decision problem for S1S is nonelementary [Me75], as is the emptiness problem for
regular expressions with complement [MS73].?

An important contribution of this paper is to show that temporal logic formulas can
be directly compiled into equivalent Biichi automata. To make the construction and
its proof of correctness easier and more systematic, we first define variants of Biichi
automata that are geared towards recognizing models of temporal formulas and prove
that these variants can be converted to Biichi automata. We then use our construction
to obtain decision procedures. Our approach is, starting with a formula, to build an
equivalent Biichi automaton and then to check that this automaton is nonempty.® Note
that the construction of Biichi automata from temporal logic formulas is not only useful
for obtaining decision procedures for the logic but is also the cornerstone of synthesis
and verification methods based on temporal logic [MW84, PR89, VW86b, Wo89]. This
construction is also the cornerstone for applications of temporal logic to the verification
of probabilistic and real-time programs (cf. [AH90, Va85b].

Finally, to explore the full power of our technique, we introduce alternating finite
automata connectives. These can be exponentially more succinct than nondeterministic

3For an extensive study of acceptance conditions for w-automata see [Ch74, Ka85, Lan69, MY88,
Sta87, Tho90, Wa79]. Our three conditions corresponds to the first three conditions in [Lan69]. Tt
is known that these three conditions exhaust all the possibilities in the Landweber classification (cf.
[WaT79]).

“The notions of safety and liveness are due to Lamport [Lam77]. Our notion of liveness here corre-
sponds to the notion of guarantee in [MP89].

°In [SVW8T] it is shown that the decision problem for ETL, is also PSPACE-complete. This result
requires significantly more complicated automata-theoretic techniques that are beyond the scope of this
paper. For other comments on the complexity of FTL, see Section 3.

5The automata-theoretic approach described here can be viewed as a specialization of the automata-
theoretic approach to decision problems of dynamic logic described in [VW86a] (see also [ES84, St82]).
Note, however, that while the tree automata constructed in [ES84, St82, VW86a] accept only some
models of the given formulas, the automata constructed here accept all models of the given formulas.

automata connectives, and one may expect their introduction to push the complexity of
the logic up. We investigate both AT'L; and AT'L;, which are the alternating analogues
of ETLy and RTL;. Surprisingly, we show that the decision problems for these logics
are still PSPACE-complete.

2 Finite Automata on Infinite Words

In this section we define several classes of finite automata on infinite words and examine
their nonemptiness problem. The framework developed here is a specialization of the tree-
automata framework developed in [VW86a]. In view of the wide range of applications
of temporal logic (cf. [BBP89]), we describe the word-automata framework in detail, in
order to make the paper self-contained.

2.1 Definitions

We start by making our notation for infinite words precise. We denote by w the set of
natural numbers {0,1,2,...}. We use the notation [z, j] for the interval {¢,¢ +1,...,5}
of w. An infinite word over an alphabet ¥ is a function w : w — Y. The th letter in an
infinite word w is thus w(¢). We will often denote it by w; and write w = wgw;

A nondeterministic finite automaton (abbr. NFA) on infinite words is a tuple A =

(X, 5, p, S, F') where:

e Y is a finite alphabet of letters,

S is a finite set of states,

p: S x ¥ — 2% is the transition function, mapping each state and letter to a set of

possible successor states,

Sp 1s a set of initial states, and

o F'C Sis a set of accepting states.

The automaton is deterministic if | So [= 1 and | p(s,a) |[< 1 for all s € S and a € X.

A finite run of A over an infinite word w = wpw; ..., is a finite sequence o =
5081 . ..8n-1, Where sg € So, si11 € p(si,w;), for all 0 < ¢ < n—1. A run of A over
an infinite word w = wow; ..., is an infinite sequence o = s¢8;1..., where sy € S,
Siy1 € p(si,w;), for all ¢ > 0.

Depending on the acceptance condition we impose, we get different types of automata.
In finite acceptance automata, a finite run o = 8981 ...38,_1 1s accepting if s,_1 € F. In
looping acceptance automata, any run o = 8g81... 18 accepting, i.e., no condition is
imposed by the set F. In repeating acceptance automata (Bichi automata [Bu62]), a run

0 = S051 ... 18 accepting if there 1s some accepting state that repeats infinitely often, i.e.,
for some s € I there are infinitely many ¢’s such that s; = s.

In all three types of automata, an infinite word w is accepted if there is some accepting
run over w. The set of infinite words accepted by an automaton A is denoted L(A).

The three different types of automata recognize different classes of languages. It
turns out that the class of languages accepted by repeating acceptance automata (Lyepeat)
strictly contains the class of languages accepted by looping (Ls,) and finite acceptance
(L finite) automata. These last two classes are incomparable. The languages accepted
by Biichi (repeating acceptance) automata are often called the w-regular languages. By
results of Biichi [Bu62] (see also McNaughton [McN66]), this class of languages is closed
under union, intersection and complementation and is equivalent to the class of languages
describable in the monadic second-order theory of one successor (S1.5) and by w-regular
expressions. The monadic second-order theory of successor is the interpreted formalism
which has individual variables ranging over the natural numbers, monadic predicate
variables ranging over arbitrary sets of natural numbers, the constant 0, the successor
function, boolean connectives and quantification over both types of variables. w-regular

“ where the union is finite, « and 3 are

expressions are expressions of the form U;a;(3;)
classical regular expressions, and w denotes countable repetition.

To establish the relations between L,cpeqt, Livop and Ly, we state the following

well-known facts (cf. [Ch74, Ka85, Lan69, MY88, Sta87, Tho90, Wa79]).

Lemma 2.1:
1. The language a* over the alphabet ¥ = {a, b} is in Lo, but not in L.
2. The language a*b(a U b)* over the alphabet ¥ = {a,b} is in Lyinie but not in L.

3. The language (a*b)* over the alphabet ¥ = {a, b} is in Lyepeat, but not in Lyinie or
mn Lloop-

Corollary 2.2:
1. Lyepear Strictly contains Lyinie and Lig,,.

2. Lyinite and Lo, are incomparable.

For the rest of this section, we will only deal with Bilichi automata.

2.2 The Nonemptiness Problem for Biichi Automata

An important problem we will have to solve for Biichi automata is the nonemptiness
problem, which is, given a Biichi automaton, to determine whether it accepts at least
one word. We are interested in the complexity of this problem as a function in the size

of the given automaton. (We assume some standard encoding of automata, so the size
of an automaton is the length of its encoding.)

Let A = (X, 9,p, 5, F) be an automaton. We say that a state ¢ is reachable from a
state s if there are a finite word w = wy...w; in ¥* and a finite sequence sq, ..., s of
states in S such that sg = s, sy =1, and s,41 € p(s;,w;qq1) for 0 <@ <k — 1.

Lemma 2.3: [TB73] A Biichi automaton accepts some word iff there is an acceptling
state of the automaton that is reachable from some initial state and is reachable from

itself.
We can now prove the following:

Theorem 2.4: The nonemptiness problem for Bichi automata is logspace-complete for

NLOGSPACE.
Proof: We first prove that the problem is in NLOGSPACE. Given Lemma 2.3, to de-

termine if a Biichi automaton accepts some word, we only need to check if there is some
accepting state reachable from some initial state and reachable from itself. To do this,
we nondeterministically guess an initial state s and an accepting state r; we then nonde-
terministically attempt to construct a path from s to r and from r to itself. To construct
a path from any state x to any other state y, we proceed as follows:

1. Make x the current state.

2. Choose a transition from the current state and replace the current state by the
target of this transition.

3. If the current state is y, stop. Otherwise repeat from step (2).

At each point only three states are remembered. Thus the algorithm requires only loga-
rithmic space.

To show NLOGSPACE hardness, given Lemma 2.3, it is straightforward to construct
a reduction from the graph accessibility problem, proved to be NLOGSPACE complete
in [Jo75]. 1

To solve the satisfiability problem for extended temporal logic, we will proceed as
follows: build a Biichi automaton accepting the models of the formula and determine if
that automaton is nonempty. The automata we will build are exponential in the size of
the formula. However, as the fact that the nonemptiness problem is in NLOGSPACE in-
dicates, 1t is possible to solve the satisfiability problem using only polynomial space. The
argument 1s that it is not necessary to first build the whole automaton before applying
the algorithm for nonemptiness. (A similar argument, though in a somewhat different
framework, is used in [HR83, SC85, Wo83].) We now make this argument more precise.

Let A be some fixed finite alphabet. A problem P is a subset of A*. An instance is an
element x of A* for which we want to determine membership in P. Assume that we also
use A to encode Bilichi automata and their constituent elements (alphabet,states,. ..).

Lemma 2.5: Let P be a problem, let f be a polynomial, let «, 3,7,0,0 be algorithms
that associate with any instance x the encoding of a Bichi automaton

Ax = (21’7 Sl’? Pz, Sg? Fl’)
in the following manner:

ify € Xy ory €Sy, then |y [< f(] 2]),

b

given y € A*, o determines whether y € ¥, using at most f(| « |) space,

given y € A*, B determines whether y € S, using at most f(| x |) space,
(

given y € A, v determines whether y € SY using at most f

)
| z |) space,
)

given y € A*, & determines whether y € F, using at most f(| x |) space,

SN A s

given u,v,w € A*, § determines whether u € p,(v,w), using at most f(| x |) space,
and

7. x € P iff Ay accepts some word.
Then there is a polynomial space algorithm for determining membership in P.

Proof: We use the algorithm described in the proof of Theorem 2.4 to check if A, is
nonempty. Given the assumptions we have made, each of the steps in the algorithm can
be executed in polynomial space. Moreover, the two states being remembered are also of
size polynomial in the size of the problem. So, the whole algorithm requires polynomial

space. This establishes that the problem is in NPSPACE and hence PSPACE. I

When constructing Biichi automata from temporal logic formulas, we will often have
to take the intersection of several Biichi automata. The following lemma is a special case

of Theorem A.1 in [VW86a] and extends a construction of [Ch74] (see also [ES84]).

Theorem 2.6: Let Aq, ..., A_1 be Biichi automata. There is a Biuchi automaton A
with k x T2} Ay| states such that L(A) = L(Ag) N ...N L(Ap_1).

Proof: Let A; = (%, 5%, p, Si, I'"). Define A = (%, S, p, So, I) as follows: S = S%x...x
S {0,k =1}, So = 59 x ... x SE {0}, F= F° x ST x ... x SF1 % {0}, and

(89,...,8575) € p((s°,...,s"1,0),a) iff s} € p(s',a), for 0 <[< k—1, and either
ssgFlandi=jors €l andj=(i+1) mod k.

The automaton A consists of k copies of the cross product of the automata A;. In-
tuitively, one starts by running the first copy of this cross product. One then jumps
from the copy ¢ to the copy (¢ + 1) mod k when a final state of A; is encountered. The
acceptance condition imposes that one goes infinitely often through a final state of Ag in
the copy 0. This forces all the components of A to visit their accepting states in a cyclic
order. We leave it to the reader to formally prove that L(A) = L(A¢)N...N L(Ak—1). 1

2.3 Subword Automata

To make the construction of Biichi automata from extended temporal logic formulas
easier, we define more specialized classes of automata: subword automata and set-subword
automata. They are the specialization to words of subtree automata and set-subtree
automata defined in [VW86b]. For completeness sake, we give a detailed treatment of
this specialization.

Intuitively, a subword automaton checks that, starting at every position in an infinite
word, there is a finite word accepted by some automaton. The automata accepting
finite words at the various positions differ only by their initial state. The initial state
corresponding to a position is determined by the symbol appearing at that position in
the infinite word. Formally, a subword automaton A is a tuple (X, 5, p, ¢, F'), where

e Y is the alphabet,

e S is the state set,

p:S x ¥ — 2% is the transition function,

£: Y — S is the labeling function, and

o F' C S is the nonempty set of accepting states.
An infinite word w € X% is accepted by A if the following two conditions hold:
o labeling condition: {(wiy1) € p(&(w;), w;) for every ¢ € w

o subword condition: for every ¢ € w, there exists some j > ¢ and a mapping ¢ :
[2,7] — S such that ¢(i) = &(w;), ¢(j) € F,and for all k, e <k < j, p(k+1) €
p(g‘o(k)vwk)'

The labeling condition requires the labeling ¢ of the word to be compatible with the
transition function of A. The subword condition, requires that from each position ¢ in
the word, there be a subword accepted by A viewed as an automaton on finite words
with initial state £(w;).

Using a construction similar to the flag construction of Choueka [Ch74], a subword
automaton, even without the labeling condition, can be converted to a Biichi automaton
with at most an exponential increase in size. We show now that because of the labeling
condition we can do this conversion with only a quadratic increase in size. Before proving
this we need a technical lemma.

Lemma 2.7: Let A = (X,5,p,&, F) be a subword automaton. Then A accepts a word
w:w — X aff

o {(wit1) € p(&(w;),w;) for every i € w, and

o for cvery i € w, there exists some 7 > 1 and a mapping ¢ : [i,7] — S such that

e(i) = E(wi), o(j) € F, and for all k, i <k < j, o(k+1) € p(e(k),wy).

Proof: The only difference between the condition in the lemma and the standard con-
dition of acceptance is the requirement that the interval [z, j] contain at least two points
and hence that the accepted subword w;...w;—; be nonempty. Thus the “if” direction
is trivial. For the “only it” direction assume that A accepts w. The labeling condition
clearly holds, so it remains to show the existence of the “right” subword.

Let ¢ € w. Then, there exists some j > ¢ and a mapping ¢; : [, j] — S that satisfies
the subword condition at 2. If ¢ > 7, then we are done. So, let us assume ¢z = 5. We know
that there exists some & > ¢ + 1 and a mapping ¢,41 : [¢ + 1, k] — 5 that satisfies the
subword condition at point 7 + 1. We claim that the interval [¢, k] satisfies the subword
condition at :. Indeed, because of the labeling condition, the mapping ¢ = ¢; U ;41
satisfies the required conditions I

Theorem 2.8: Fvery subword automaton with m states is equivalent to a Bichi automa-
ton with O(m?) stales.

Proof: Let A= (S5,%,p, &, F) be a subword automaton. We now define two new transi-
tion functions py, py : S x ¥ — 29 :

o pi(s,a) = p(s,a)if s =¢(a), and pi(s,a) = 0 otherwise.
o pa(s,a)=p(&(a),a)if s € F, and py(s,a) = p(s,a) otherwise.

These transition functions let us define two Biichi automata By = (X, 5, p1,.5,5) and
By = (X,5,p2, 5, F). Basically, By will take care of checking the labeling condition and
By of checking the subword condition.
Let us show that a word w : w — ¥ is accepted by A iff it is accepted by both By and
Bs.

Suppose first that w is accepted by B; and B;. This means there are accepting runs
01 = $10, 811, .. and 03 = S0, 891,... of By and By (resp.) on w. We verify first that
the labeling property holds. Clearly, p1(sy;,w;) # 0 for every i € w. Thus, s;; = &(w;).
Consequently, for every ¢ € w,

E(wipr) = S1,i41 € pr(s15,w;) = p(&(w;), w;).

It remains to verify the subword condition.

Let ¢« > 0. As the run oy is accepting, there is some j > ¢ such that sy; € F'. For
the same reason, there is a k > j such that sop € F'. Assume without loss of generality
that sq ¢ F for all j < < k. Consider the interval [i, k]. We claim that it satisfies the
subword condition at :.

Indeed, a suitable mapping ¢ : [7, k] — 5 can be defined in the following way: (/) =
E(wy) for 1 € [e,5] and p(l) = sy for I € [j 4+ 1,k]. Clearly p(k) € F. For i <1< j we
have

el +1) = &(wira) € p(&(wi),wi) = p((l),wr).

For [= j we have
Pl +1) = 5241 € palsar,wi) = p(&(wi), wi) = p(ep(1),wi)
as sy; € F. Finally, for j +1 <1<k
Pl +1) = sa41 € palsar, wr) = p(sar,wr) = p(p(1),wr)

as s & F for 7+ 1 <[< k.

We now have to show that if w is accepted by A then it is accepted by both B; and
Bs. Consider the run oy = sy, $11, $12, . . . Where s1; = £(w;). By the labeling condition,
oy 1s an accepting run of By on w.

We now define a computation oy = sq9, S21, S22, ... of By by defining it on a sequence
of increasing intervals [0, 71], [0, j2], . . . such that for each j;, s2;, € F. The first interval is
[0,0] and we define sy9 = s, where s is an arbitrary member of F'. Suppose now that oy
is defined on the interval [0, j,|. By induction, s9;, € F. By Lemma 2.7, there exists an
interval [Jn, Jnt1l)s Jnt1 > Jn and a mapping ¢ : [Jn, Jnt1] — S such that o(j,) = &(w;,),
©(Jny1) € F, and for all k, 7, < k < jog1, ek + 1) € p(p(k),wg). Without loss of
generality, we can assume that p(k) € F for j, < k < jug1. For j, < k < jup1, we define
s9k = (k). We show now that for every j, < k < jui1, Sop11 € pa(Sak, wi). Indeed, if
k = j,, then sq = £(w;,) and s9i, € F. Consequently,

saht1 = Pk +1) € p(€(wi), wi) = p2(s2r, wy).
If , < k < jng1, then so = (k) € F. Consequently,

sopt1 = P(k+ 1) € ple(k), wr) = pa(szk, w(k)).

Clearly, U220, 7,] = w. Hence we have defined a run oy of By. Moreover, as for each

Jn, S2j, € I, the run is accepting.

We have shown that w is accepted by both By and Bs. Finally, by Theorem 2.6, we
can construct an automaton B such that a word w is accepted by B iff it is accepted by
both By and B;. It follows that the subword automaton A is equivalent to the Biichi
automaton B. 1

Subword automata are more adequate than Biichi automata for the purpose of re-
ducing satisfiability of formulas to nonemptiness of automata. Nevertheless, to facilitate
our task in the rest of the paper, we now specialize the notion of subword automata
even further. The words that we shall deal with are going to consists of sets of formulas,

10

and the states of the automata that will accept these words are also going to be sets of
formulas. Thus, we consider automata where the alphabet and the set of states are the
same set and have the structure of a power set. We will call these automata set-subword
automata.

Formally, a set-subword automaton A is a pair (U, p), where

e U is a finite set of basic symbols (in fact these symbols will be just formulas of
the logic). The power set 27 serves both as the alphabet ¥ and as the state set S.
The empty set serves as a single accepting state. We will denote elements of 2¥ by
a,b,... when viewed as letters from the alphabet ¥, and by s,sy,... when viewed
as elements of the state set S. Intuitively, a letter is a set of formulas that are
“alleged” to be true and a state is a set of formulas that for which the automaton
tries to verify the “allegation”.

e p:S x ¥ — 25 is a transition function such that

L. p(s,a) # 0 iff s C a,

2. 0 € p(0,a),

3. ifs C¢', sy Csf and s; € p(s',a), then s] € p(s,a),

4. if 8} € p(s1,a) and s}, € p(s,,a), then s} Us) € p(s; Usy, a).

A word w : w — X is accepted by A if for every ¢ € w and every f € w; there exists
a finite interval [z, j] and a mapping ¢ : [¢, 7] — S such that

o ©(1) ={f},
i 99(]) = Q)v and
o forall i <k <j, p(k+1)€ plek),w).

The acceptance condition requires that for each position ¢ in the word and for each
formula f in w;, the “right” formulas appear in the letters w; 41, w;s2,.... Intuitively,
the transition of the automaton are meant to capture the fact that if a certain formula
appears in w;, then certain formulas must appear in w;y;. The four conditions imposed
on the transition relation p can be explained as follows:

1. The formulas in the state of the automaton are formulas that the automaton is trying
to verify. A minimal requirement is that these formulas appear in the letter of
the scanned position of the word. As we will see, this condition is related to the
labeling condition defined for subword automata.

2-3. These are what we call monotonicity conditions. A transition of the automaton
is a minimum requirement on the formulas in w;y; given the formulas that the
automaton is trying to verify at ¢. Clearly if there is nothing to verify at ¢, then
nothing is required at ¢ + 1 (condition (2)). Also, the transition is still legal if we
try to verify fewer formulas at 7 or more formulas at ¢ + 1.

11

4. This is an additivity condition. It says that there is no interaction between different
formulas that the automaton is trying to verify at position :. Thus the union of
two transitions is a legal transition.

The acceptance condition requires that for each position in the word, if we start the
automaton in each of the singleton sets corresponding to the members of the letter of
that position, it accepts a finite subword. We will now prove that, given conditions (2),
(3) and (4), it is equivalent to require that the automaton accept when started in the
state identical to the letter of the node.

Theorem 2.9: Let A = (U, p) be a set-subword automaton, let w : w — 2% be a word,
and let 1 € w. The following are equivalent:

1. There exists some j > 1 and a mapping ¢ : [i,7] — S such that (i) = w;, p(j) =0,
and for all t <k < j, o(k+1) € plp(k), w).

2. For every [€ w;, there exists some j; > @ and a mapping oy : [1,j5] — S such that
er(0)=A{f} ¢s(j) =0, and for all i < k < js, ¢s(k+1) € ples(k),wy).

Proof:

(1) = (2). Let f € w;. We take j; = j, and define ¢y as follows: ¢¢(:) = {f} and
ws(k) = (k) for i < k < j;. We only have to show that ¢s(k+ 1) € p(es(k),ws)
for « < k < js. But this follows, by the monotonicity condition (3) in the definition of
set-subword automata, since () C ¢(1).

(2) = (1). If w; = 0 take j = ¢, otherwise take j = ?nax{jf}. For every f € w;, extend ¢y
cwy

to [i, 7] by defining @ s(k) = 0 for j; < k < j. If w; =) we define ¢(i) = 0, otherwise we
define @ (k) = Uye,, ws(y) for each k € [i, j]. Because j > j; for each f € wy, ¢(j) = 0.
Furthermore, by condition (4) in the definition of set-subword automata, if ¢« < k < 7,
then o(k+ 1) € p(p(k), wy). 1

We can now prove that set-subword automata can be converted to subword automata
without any increase in size. Thus, by Theorem 2.8, a set-subword automaton can be
converted to an equivalent Bilichi automaton with only a quadratic increase in size.

Theorem 2.10: The set-subword automaton A = (U, p) is equivalent to the subword
automaton A" = (2¥.2% p, £, {0}) , where £ is the identity function.

Proof: By Lemma 2.9, it is immediate that if a word w is accepted by the automaton
A’ then it is also accepted by A. Also by Lemma 2.9, if the word w is accepted by
the set-subword automaton A, the subword condition of the subword automaton A’ is
satisfied. It remains to show that ¢ satisfies the labeling condition. In other words, since
¢ is the identity mapping, we have to show that for every ¢ € w, w;41 € p(w;, w;). Since
A accepts w, there exists some j > ¢ and a mapping ¢ : [, j] — S such that ¢(¢) = w;,

12

©(j) = 0 and for all : < k < j, o(k+ 1) € p(p(k),w). If j =4, then w; = 0, and
by the monotonicity conditions we have w;y1 € p(w;,w;). Otherwise, 1 + 1 € [i,], so
o(t+1) € p(w;,w;). Consider now 7+ 1. If (i + 1) = 0, then clearly ¢(i + 1) C w;41.
Otherwise, p(p(7 + 1),w;41) # 0, so, by condition (1) in the definition of set-subword
automata, ©(7 + 1) C w;41. Thus by the monotonicity condition w;41 € p(w;, w;). 1

3 Temporal Logic with Automata Connectives

3.1 Definition

We consider propositional temporal logic where the temporal operators are defined by
finite automata, similarly to the extended temporal logic (ETL) of [Wo83]. More pre-
cisely, we consider formulas built from a set Prop of atomic propositions. The set of
formulas is defined inductively as follows:

e Every proposition p € Prop is a formula.
o If f; and f; are formulas, then = f; and f; A f; are formulas.

e For every nondeterministic finite automaton A = (X, 5, p, So, F'), where ¥ is the
input alphabet {ai,...,a,}, S is the set of states, p: ¥ x S — 27 is the transition
relation, Sy C S is the set of initial states, and F' C S is a set of accepting states,
if f1,..., f, are formulas (n = |X|) then A(f1,..., f.) is a formula. We call A an

automaton connective.

We assume some standard encoding for formulas. The length of a formula is the length
of its encoding. This of course includes also the encoding of the automata connectives.

A structure for our logic is an infinite sequence of truth assignments, i.e., a function
7w — 2P7P that assigns truth values to the atomic propositions in each state. Note
that such a function 7 is an infinite word over the alphabet 2777, We will thus use
the terms word and sequence interchangeably. We now define satisfaction of formulas
and runs of formulas A(fi,..., f.) over sequences by mutual induction. Satisfaction of a
formula f at a position ¢ in a structure 7 is denoted 7,7 = f. We say that a sequence 7

satisfies f (denoted 7 |= f) if #,0 = f.
e 7,1 |=piff p € (i), for an atomic proposition p.
e i EfNfiffr i Efi and 7, E fo.
o 7.0 E—fiff not i = f.

o 7,1 = A(f1,..., fn), where A = (X,5,p, So, F'), iff there is an accepting run o =
80, 81,... of A(f1,...,f.) over w, starting at ¢.

13

e A run of a formula A(f1,..., f.), where A = (X,5,p, So, F'), over a structure ,
starting at a point ¢, is a finite or infinite sequence o = sg, 51, ... of states from S,
where sq € Sp and for all k, 0 < k < |o|, there is some a; € ¥ such that 7, i+ k = f;
and sp41 € p(sk, aj).

Depending on how we define accepting runs, we get three different versions of the
logic:

e FTL;: A run o is accepting iff some state s € F' occurs in o (finite acceptance)
e FTL;: A run o is accepting iff it is infinite (looping acceptance)

o KTL, : A run o is accepting iff some state s € I occurs infinitely often in o
(repeating or Biichi acceptance).

Every formula defines a set of sequences, namely, the set of sequences that satisfy it.
We will say that a formula is satisfiable if this set is nonempty. The satisfiability problem
is to determine, given a formula f, whether f is satisfiable. We are also interested in the
expressive power of the logics we have defined. Our yardstick for measuring this power
is the ability of the logics to define sets of sequences. Note that, by Corollary 2.2, ET'L,
is at least as expressive as F'T'Ly and ETL;. We can not, however, use Corollary 2.2, to
infer that ET'L, is more expressive than E'T Ly and ET'L;. Similarly, Corollary 2.2 does
not give any information about the relative expressive power of KT L; and ETL;.

Example 3.1: Consider the automaton A = (X, 95, p, So, F'), where ¥ = {a,b}, S =
{50751}7 p(so,a) = {50}7 p(So,b) = {51}7 p(Slva) = p(Slvb) = Q)v SO = {50} and F = {51}'
If we consider finite acceptance, it accepts the language a*b. It thus defines an ET'Ly
connective such that A(fi, f2) is true of a sequence iff f; is true until f; is true. Thus A;
is equivalent to “Until” connective of [GPSS80]. It is indeed not hard to see that all the
extended temporal logics (ET Ly, ETL;, and ETL,) are at least as expressive as PTL. 11

Example 3.2: Consider the automaton A = (3,95, p, So, F'), where ¥ = {a,b}, S =
{s0,51}, p(s0,a) = {s1}, p(s0,b) = 0, p(s1,a) = 0, p(s1,6) = {s0}, So = {so} and F' = 0.
It we consider looping acceptance, it only accepts one word: w = ababababab. ... 1t thus
defines an F'T L; connective such that A;(f1, f2) is true of a sequence iff f; is true in every
even state and f; is true in every odd state of that sequence. It is shown in [Wo83] that
this property is not expressible in PT'L. 1

3.2 Translations to Automata and Decision Procedure

As we have pointed out, the structures over which ETL is interpreted can be viewed
as infinite words over the alphabet 277°?. It is not hard to show that our logics are
translatable into S1S, and hence, by [Bu62] and [McN66], they define w -regular sets of

14

words. That is, given a formula in one of the logics ET'Ly, ET'L;, or ETL,, one can build
a Buchi automaton that accepts exactly the words satisfying the formula. Nevertheless,
since negation in front of automata connectives causes an exponential blow-up, we might
have expected the complexity of the translation to be nonelementary, as is the translation
from S1S to Biichi automata [Bu62]. Not so; for each of the logics we have defined,
there is an exponential translation to Biichi automata. This translation also yields a
PSPACE decision procedure for the satisfiability problem. In this section, we will give
the translation for ET Ly and ET L;. The translation for KT L, is given in [SVW8T7]. We
start with the translations for ET'L; and then outline the differences that occur when

dealing with E'TL;.

We first need to define the notion of the closure of an ET L formula ¢, denoted ¢l(g).
It is similar in nature to the closure defined for PDL in [FL79]. From now on we identify
a formula =g’ with ¢’. Given an automaton A = (¥, 5, p, So, F'), for each s € S we
define A; to be the automaton (3,5, p,{s}, F'). The closure ¢l(g) of an ET Ly formula ¢

is then defined as follows:

e g<clyg).

g1 A g2 € cllg) — g1, 92 € cl(g).

—g1 € cl(g) — g1 € cl(g).

g1 € cllg) — —g1 € cllg).

o A(gr,....g9n) €Ecllg) = g1,..., 90 € cl(g).

e Algi,...,90) €cllg) = As(g1,---,90) € cl(g), for all s € S.

Intuitively, the closure of ¢ consists of all subformulas of ¢ and their negations, as-
suming that As(g1,...,¢,) is considered to be a subformula of A(¢,...,¢,). Note that
the cardinality of ¢l(g) can easily be seen to be at most 2[, where [is the length of ¢.

A structure 7 : w — 207 for an ETL; formula g can be extended to a sequence
I : w — 290 in a natural way. With each point 7 € w, we associate the formulas in ¢l(f)
that are satisfied at that point. Sequences on 209 corresponding to models of a formula
satisfy some special properties.

A Hintikka sequence for an ETL; formula ¢ is a sequence II : w — 2°09) that satisfies
conditions 1-5 below. To state these conditions, we use a mapping that, for an automaton
connective A, associates states of A to elements of 2¢9). Precisely, given A(g1,...,¢n) €
cl(g) with A = (3,5, p, So, F'), we define a mapping o4 : 2¢9) — 25 such that

oa(a) ={s € p(so,a;) : sop € So,a; € X, and ¢g; € a}.

In the following conditions, whenever A(g¢1,...,¢,) € cl(g) is mentioned, we assume that

A=(%,5,p,5,F). The conditions are then:

15

1. gEHO,

and for all ¢ € w
2. hell;iff =h & 11,
3. h/\h/EHiiffhEHiandh/EHi,

4. if A(g1,...,9,) € IL; then either So N I # () or there exists some j > ¢ and a
mapping ¢ : [, 7] — 29) such that:

o (k) C I fori <k <y,
o A (g1,.--,9n) € p(i) for some s € S,
o o(j) =0,
o forall k,i <k <y, if A(g1,...,9n) € p(k), then either
—sel' or
— there is some t € o4 (1l;) such that A:(g1,...,9.) € @(k + 1),
5. if A(g1,...,9,) € I, then:

e SyNF =10 and
o Aj(g1,...,9n) & Uiy for all s € o4(11;).

Hintikka conditions 2 and 3 are intended to capture the semantics of propositional
connectives, while Hintikka conditions 4 and 5 are intended to capture the semantics of
automata connectives. Note that for each propositional connective we need one condition
using a double implication (“iff”), while we need two conditions for automata connectives
due to the use of a single implication (“if ... then”). The reason for doing this is that
Hintikka condition 5 is weaker than the converse of Hintikka condition 4. This makes it
easier to construct an automaton that checks these conditions.

Proposition 3.3: An ETL; formula g has a model iff it has a Hintikka sequence.

Proof: Only if: Let g be an ET Ly formula and let # be a model of g. We define a
Hintikka sequence Il for g as follows: for all ¢ > 0, I, = {h € ¢l(g) : =,i | h}. We
now have to show that Il is indeed a Hintikka sequence. By the definition of a model,
7,0 |= ¢ ; this implies Hintikka condition 1. That Hintikka conditions 2, 3, 4, and 5 hold
follows immediately from the semantic definition of ET'Ly.

If: Let g be an ET Ly formula and let II be a Hintikka sequence for ¢g. Consider the
structure = such that #x(¢) = {p € Prop : p € 1I;}. We now show that 7,0 |= g. For
this, we show by induction that for all ¢’ € ¢l(g) and ¢ € w, we have that ¢’ € 1, iff
7,1 = ¢'. For the base case (¢’ € Prop), this is immediate by construction. The inductive
step for formulas of the form =h and h A &' follows directly from the Hintikka conditions

16

2 and 3, respectively. It remains to prove the inductive step for formulas of the form

Algiy -y Gn)-
Suppose first that A(gy,...,9,) € lI;. By Hintikka condition 4 and the inductive hy-

pothesis, there is a finitely accepting run of A over « starting at ¢, so 7,7 = A(g1,. .., 9n)-
Suppose now that A(g1,...,9,) € II; but 7,7 = A(g1,...,¢,). Then there is a finitely
accepting run of A over 7 starting at :. That is, there are finite sequences sq, ..., s,

and Jjo,...,Jk k >0, such that sg € Sp, s, € F, and if 0 < [< k, then 7,¢i + 1 = g,
and s;41 € p(s;,aj,). By Hintikka condition 5 and by induction on k it follows that
A g1y oy gn) & 1Ly for 0 < 1 < k. In particular, A, (g1,...,9n) &€ iyr. But sp € F,
so Hintikka condition 5 is violated. 1

We now build a Biichi automaton over the alphabet 2°9) that accepts precisely the
Hintikka sequences for g. We do that by building two automata, Ay, and Ag, such that
L(Ap) N L(Ag) is the set of Hintikka sequences for g. The first automaton Ay, called
the local automaton, checks the sequence locally, i.e., it checks Hintikka conditions 1-3
and 5. This automaton is a Biichi automaton. The second automaton Ag, called the
eventuality automaton, is a set-subword automaton that checks Hintikka condition 4.
This automaton ensures that for all eventualities (i.e., formulas of the form A(g¢,...,g,)
), there is some finite word for which condition Hintikka 4 is satisfied. Finally, we
convert the eventuality automaton to a Biichi automaton and combine it with the local
automaton.

The Local Automaton

The local automaton is Az, = (2¢19),2¢19) pr N, 2¢9)). The state set is the collection
of all sets of formulas in ¢l(g).

For the transition relation py, we have that s’ € pr(s,a) iff a = s and:
o hesiff -h¢&s,
e hAR €siff h €sand b €s,

o if =A(g1,...,9,) € s, the Sy N F = @, and for all s € o4(a) we have that
—|A5(g17...,gn) & S/.

The set of starting states N, consists of all sets s such that g € s. Clearly, Ay, accepts
precisely the sequences that satisty Hintikka conditions 1-3 and 5.

The Eventuality Automaton

The eventuality automaton is a set-subword automaton Ap = (cl(g), pr). For the
transition relation pg, we have that s’ € pg(s,a) iff:

e sCa,and

o If A(g1,...,9,) € s, then, either So N I # () or there is a state s € o4(a) such that
As(g1,. ., 90) € 5.

17

It is immediate to check that conditions (1-4) of the definition of set-subword au-

tomata are satisfied for Ag. Furthermore, Ap accepts precisely the sequences that satisfy
Hintikka condition 4.

We now have:

Proposition 3.4: Let g be an ETL; formula and 11 : w — 299 be a sequence, then 11
is a Hintikka sequence for f iff Il € L(AL) N L(Ag).

By Theorems 2.8 and 2.10, we can build a Biichi automaton that accepts L(Ag). This
automaton will have 2219 gtates. Then by using Theorem 2.6, we can build a Biichi
automaton accepting L(Ar) N L(Ag). This automaton will have 23l @) 41 gates.”

The automaton we have constructed, accepts words over 2°19). However, the models
of f are defined by words over 2F7°P. So, the last step of our construction is to take the
projection of our automaton on 2777, This is done by mapping each element b € 2¢19)
into the element a € 2F7°P such that bN Prop = a. Equivalently, the automaton runs over
a word over 2779 guesses a corresponding word over 2909 and verify that the latter is
a Hintikka sequence for g. To summarize, we have the following:

Theorem 3.5: Given an ET Ly formula g buwilt from a set of atomic propositions Prop,
one can construct a Biichi automaton A, (over the alphabet 2F7°7), whose size is 200D
that accepts exactly the sequences satisfying g.

We can now give an algorithm and complexity bounds for the satisfiability problem
for ET L. To test satisfiability of an ET' Ly formula g, it is sufficient to test if L(A,) # 0.
By Theorem 2.4, this can be done in nondeterministic logarithmic space in the size of
A,. Moreover, it is not hard to see that the construction of A, satisfies the conditions of
Lemma 2.5. Combining this with the fact that satisfiability for propositional temporal
logic (a restriction of ET Ly) is PSPACE-hard [SC85], we have:

Theorem 3.6: The satisfiability problem for E'T Ly is logspace complete for PSPACE.

Let us now consider ET'L;. The construction proceeds similarly to the one for ET'L;.
The first difference is that Hintikka conditions 4 and 5 are replaced by the following:

4" if A(g1,...,gn) € II;, then there is some s € o4(1l;) such that As(g1,...,9n) € lig1.

5') if =A(gi,...,g,) € II;, then there exists some j > ¢ and a mapping ¢ : [i,] — 2
such that:

o o(k) ClI fori <k <y,

"This construction contains some redundancy, since the work done by the component that checks
for the labeling condition (from the proof of Theorem 2.7) is subsumed by the work done by the local
automaton. By eliminating this redundancy we can build an equivalent automaton with 22¢(9) states.

18

o Ay (g1,.-.,9n) € (1) for all sg € Sy,
o ©(j) =10,

o forall ke <k <y, if “As(g1,...,9,) € ©(k), then = Ay(g1,...,9,) € e(k+1)
for all t € o4, (I}).

The analogue of Proposition 3.3 holds:
Theorem 3.7: An ET L, formula g has a model iff it has a Hintikka sequence.

Proof: As in Proposition 3.3, one direction is immediate.

Let g be an ETL; formula and let II be a Hintikka sequence for ¢g. Consider the
structure = such that =(¢) = {p € Prop : p € 1I;}. We show by induction that for all
g € cl(g) and ¢ € w, we have that ¢’ € II; iff 7,7 = ¢’. We show the inductive step that
corresponds to automata connectives.

Suppose first that A(g¢1,...,9,) € II;. By Hintikka condition 4’ there are infinite
sequences Sg, $1,. .. and jo, J1,. .. such that sqg € So and if [> 0 then s;41 € p(s;,aj,) and
gi, € ;4. By the induction hypothesis 7, ¢+ 1 |= gj, for all l > 0, so 7,i = A(g1,. .., gn)-

Suppose now that A(g1,...,9,) € Il;. Then, by Hintikka condition 2, we have that
-A(g1, ..y 90) € ;. It 7,0 = A(g1,...,9n), there is an infinite run o = s¢, sq,... of
A(g1,...,9n) over 7 starting at ¢. More explicitly, we have that sq € Sy and for all £ > 0
there is some a; € ¥ such that 7,71 + k& | ¢g; and sgy1 € plaj, sg). By the induction
hypothesis, if 7,2+ k |= g;, then g; € Il;44. But then, Hintikka condition 5’ cannot hold.
|

We again construct an automaton to recognize Hintikka sequences in two parts: the
local automaton and the eventuality automaton. This time the local automaton deals
with Hintikka conditions 1-4 and the eventuality automaton deals with condition 5.
The local and eventuality automata only differ from those for E'T'L; by their transition
functions. They are the following:

The Local Automaton
We have that s’ € pp(s,a) iff a =s and:

o hesiff -h¢&s,
e hAR €siff h €sand b €s,

o if A(g1,...,9n) € s, the for some s € o4(s) we have that As(¢1,...,9,) € 8.

The Eventuality Automaton
We have that s’ € pg(s,a) iff:

e sCa,and

19

o If ~A(g1,...,gn) € s, then for all s € o4(a) we have that A (¢1,...,9,) € 8.

We now have the analogues of Proposition 3.4 and Theorems 3.5 and 3.6:

Proposition 3.8: Let g be an ETL; formula and 11 : w — 279 be a sequence, then 11
is a Hintikka sequence for g iff Il € L(Ar) N L(Ag).

Theorem 3.9: Given an E'TL; formula g built from a set of atomic propositions Prop,
one can construct a Biichi automaton A, (over the alphabet 2F7°7), whose size is 200D
that accepts exactly the sequences satisfying f.

Theorem 3.10: The satisfiability problem for E'T'L; is logspace complete for PSPACE.

The construction described above simultaneously takes care of running automata in
parallel, when we have an automata connective nested within another automata con-
nective, and complementing automata, when we have a negated automata connective.
Thus, the construction can be viewed as combining the classical subset construction of
[RS59] and Choueka’s “flag construction” in [Ch74]. This should be contrasted with the
treatment of KT'L, in [SVW8T7], where a special construction is needed to complement
Biichi automata. As a result, the size of the automaton A, constructed in [SVW87] for
an ETL, formula ¢ is 2009, Using results by Safra [Sa88], this can be improved to
20UslleglsD) which is provably optimal. Thus, while the construction given here for ETL;
and ETL; as well as the construction given in [SVWS8T] for KT L, are exponential, the
exponent for KT'L; and ET'L; is linear, while it is nonlinear for ETL,.

It is interesting the compare our technique here to Pratt’s model construction tech-
nique [Pr79]. There one starts by building a maximal model, and then one eliminates
states whose eventualities are not satisfied. Our local automata correspond to those
maximal models. However, instead of eliminating states, we combine the local automata
with the eventuality automata checking the satisfaction of eventualities. This construc-
tion always yields automata whose size is exponential in the size of the formula. We
could also construct our automata using the tableau technique of [Pr80]. This technique
can sometimes be more efficient than the maximal model technique.

A major feature of our framework here is the use of set-subword automata to check
for eventualities. A direct construction of a Biichi automaton to check for eventualities
would have to essentially use the constructions of Theorems 2.8 and 2.9. To appreciate
the simplicity of our construction using set-subword automata, the reader is encouraged
to try to directly construct a Biichi automaton that checks Hintikka condition 4 for
ETLy or checks Hintikka condition 5" for EFTL;. There are, however, other possible
approaches to the translation of formulas to automata. Streett [St90] suggested using
so-called formula-checking automata. His approach eliminates the need for distinction
between the local automaton and the eventuality automaton. Another approach, using
weak alternating automata is described in [MSS88]. In that approach not only there

20

is no distinction between the local automaton and the eventuality automaton, but the
automaton is constructed by a simple induction on the structure of the formula. We
believe, however, that the distinction between the local automaton, which checks local
properties, and the eventuality automaton that checks global properties is fundamental,
even if it is avoidable for ET'Ly and ETL;. For example, for ET'L, or the temporal
p-calculus, the construction of the local automaton is straightforward, and the main
difficulty lies in the construction of the “global” automaton [SVW87, Va88]. Unlike our
approach, the “unitary” approaches of [MSS88, St90] do not generalize to these logics.

4 Translations Among the Logics

The results of the previous section show that the set of sequences describable by ET Ly,
ETL; or ETL, formulas are expressible by Biichi automata. In the case of ET'L,, the
converse is also clearly true. Thus, KT L, has exactly the same expressive power as Biichi
automata. Since, by Lemma 2.1, the notions of finite and looping acceptance are weaker
than the notions of repeating acceptance, it would be conceivable for ET' Ly and ET'L; to
be less expressive than K'T'L, and hence Biichi automata. We show that this is not the
case as there is a translation of ET'L, formulas to E'T'L; and ET'L;. As we will see, these
translations involves an exponential increase in the length of the formula. Before giving
these constructions, which are based on nontrivial automata-theoretic results from [Sa88],
we show that there are straightforward translations between ET Ly and ET L; (which also
involves a single exponential increase in the length of the formulas).

We start by going from ET' Ly to ETL;.

Theorem 4.1: Given an ETL; formula g of length m, one can construct an ETL,
formula ¢ of length 2°U™), that is satisfied by exactly the same sequences as g.

Proof: To prove our theorem, we need to show how an ET L formula A(f1,..., f.),
where A is defined by a nondeterministic finite acceptance automaton can be translated
into ET'L;. The idea of this translation is that the sequences accepted by a finite accep-
tance automaton are those rejected by a closely related looping acceptance automaton, if
the automaton is deterministic. To determinize finite acceptance automata, we can use
the classical subset construction of [RS59].

The subset construction alone, however, does not assure sufficient determinism. What
we want is that, given a structure, there is only one run of the deterministic automa-
ton over that structure. Now, even though the automaton A is deterministic, a for-
mula A(f1,..., f,) could be nondeterministic because states in a structure might sat-
isfy more than one formula f;. To overcome this type of nondeterminism, we replace
A =(%,85,p,So, I') by an automaton over 2¥. The automaton is A’ = (2%, 5, p/, So, F),
where the transition relation p’ is defined as follows: s; € p'(s;, X) iff s; € p(s;,a) for
some a € X. Now, A(f1,...,[n) is equivalent to A'(¢1,...,g2n), where the formula g;
corresponding to a set X; C X is (As;ex, fi) A (Ag,gx, —fj). Clearly, in a given state
exactly one ¢; is satisfied.

21

Our next step, is to apply the subset construction to the automaton A’. This yields
an automaton A” = (2%, 2% p" {So}, F'") where

o s' € pl(a,s)iff s ={s’ € 5|ds € s such that s’ € p(a,s)}.

o "={sec2%snF #0}.

Now, for a given structure, there is a unique computation of A”(g¢1,...,gen) on that
structure and that computation is accepting iff it reaches a state in /. In other words,
the computation is nonaccepting if it is a looping computation of the automaton A" =

(2%,25 — F" p" {5}, —)®. Hence our translation of A(fi,...,f,) into ETL, is

_‘A/”(gl,...,gzn) (1)

The size of (1) is clearly exponential in the size of A(f1,..., f.) and hence the translation
of a formula of length m will be of length 200", g

We now turn to the translation from ETL; to ETLy.

Theorem 4.2: Given an ETL; formula g of length m, one can construct an ET Ly
formula ¢ of length 2°U™) | that is satisfied by exactly the same sequences as g.

Proof: The proof is identical to that of Theorem 4.1 except that this time the automaton
A" is the finite acceptance automaton defined by A" = (2,25 p"” {So},0). I

To translate from ETL, to ET Ly and ETL;, we will also use the determinization of
the automaton defining a connective. However, here the automata are Biichi automata
and they cannot be determinized by the subset construction. It is possible to build
a deterministic finite-state automaton corresponding to a Biichi automaton, but this
automaton will have to use a more general type of accepting condition than the infinite
repetition of some state in a set F' [McN66, Ch74]. Rather than using this more general
type of automaton, we will rely on a construction that partially determinizes Biichi
automata.

Lemma 4.3: [Sa88]: Given a Bichi automaton A = (X, S, p, So, F'), where |S| = m, one
can construct k < m nondeterministic automata on finite words A; each of size at most
O(m) and k deterministic Biichi automata B;, each of size at most 200" such that the
language L(A) accepted by A satisfies L(A) = Uy<i<p L(A)L(B;).

We can now give our translations. We first deal with ET'L;.

Theorem 4.4: Given an ETL, formula g of length m, one can construct an ET Ly
formula ¢ of length 2°U™) | that is satisfied by exactly the same sequences as f.

8Remember that for looping automata the set of designated states is irrelevant.

22

Proof: For convenience in the proof, we temporarily use the following definition. Given
a set of KTL, formulas {fi,...,f.}, a set of infinite words L over an alphabet ¥ =
{ai,...,a,} is satisfied by a sequence 7 iff there is a word wqwy... in L such that
7,1 | f; if w; = a;. Note that this definition coincides with the definition of automata
connectives when the language L is the language accepted by an automaton.

To prove our theorem, we need to show how an ET L, formula A(f1,..., f.), where
A is defined by a nondeterministic Biichi automaton can be translated into K7T'L;. The
main difficulty is to express in £T'L; the condition imposed by the repetition set of the
nondeterministic Biichi automaton. By using Lemma 4.3, we will replace the nondeter-
ministic Biichi automaton A by the deterministic automata B;. We will then show how
repetition for deterministic Biichi automata can be expressed in ET'L;.

However, similarly to the proof of Theorem 4.1, we will want the deterministic au-
tomata B; to be deterministic over the structure. This implies that we have to ensure
that only one argument of the automaton connective is true in each state of the structure.
Thus, we first use the same construction as in Theorem 4.1 and replace the automaton
A =(%,8,p,S0,) by the automaton A’ = (2%, 5, ', So, F'). The formula A(fi,..., f,)
is then equivalent to A’(g1,...,gan).

Now, we will use Lemma 4.3 on the automaton A’. Lemma 4.3 enables us to express
the language accepted by A as

L(A) = U L(A)L(B)

1<e<k

Each of the terms of the union defines a language on infinite strings. Similarly to au-
tomata connectives, each of these languages is satisfied by a given set of sequences.
Clearly, a sequence satisfies A'(g1, ..., gan) iff it satisfies one of the languages L(A})L(BY).
Hence, if we build an ET' Ly formula f; corresponding to each of the terms of the union,
the ET'L¢ formula corresponding to A’(¢, ..., g2n) will be

V£

1<i<k

We now give the translation for each of the terms of the union. We start with the infinite
parts of the term, B..

Given a deterministic Biichi automaton B! = (2%, S%, p}, S'3, F!), we want to construct
an ET Ly formula f! such that a sequence satisfies f! iff it satisfies B!(gy1,...,gan). We
use the fact that given a infinite sequence, there is exactly one run of B!(g1,...,gan) over
that sequence. That run is accepting if it goes through some state in F7 infinitely often.
Similarly, it is nonaccepting if after some point, it never goes through a state in F/. We
will express the latter condition and then negate it.

To do this, we express that B! eventually reaches a state s after which it never

goes through a state in F/. The sequences that cause B! never to go through a state

in I} from the state s are those rejected by the finite-acceptance automaton B, =

23

(2%, 8!, ph, {s}, /). They are hence also those satisfying the formula , = =Bl (915, 927).

To express that B! eventually reaches s and satisfies @, we use the finite-acceptance au-

tomaton BY, = (2% U {a}, S/ U {e},pgs,S’?, {e}), where @ is a new letter and e a new

state. The transition relation pf, is p; extended with p{ (s,a) = {e}. The formula
!o= B! (g1,.-,92m,ps) then expresses that the automaton B} eventually reaches state

s and from then on never goes through any state in F. Thus, to state that the computa-

tion of the automaton B! is accepting, we need to state for all states s € 5!, the formula
/s does not hold. In other words,

fi= /\ - 2(7’5.

sES{

Now, to construct f;, we need to express that there is some computation of A’ after

which f/ holds. Le A’ be the automaton (2%,77, 8!, 1", G"). We build the automaton
A = (25 U {a}, TI U {e}, 67,17, {e}) where a is a new letter, e is a new state and the
transition relation ¢! is ¢! augmented with 6/'(a,s) = {e} for s € ;. We then finally
have that

fi = A;/(glv cee 792"7.]62'/)'

The size of each B! is exponential in the size of the original automaton A whereas
the size of each A’ is linear. The formula f; contains at most one copy of A! and 2 x | B
copies of Bl. It is thus exponential in the size of A. Hence the formula \i<;«; fi is
also exponential in the size of A(fi,..., f,). Thus when translating an £7'L, formula of
length [to ET Ly, the result will be of length 200

We now consider the translation to ET'L;. The result is similar to the one for ETLy.

Theorem 4.5: Given an ETL, formula g of length m, one can construct an ETL;
formula [’ of length O(Zo(m)), that is satisfied by exactly the same sequences as g.

Proof: The proof is along the same lines as that of Theorem 4.4 However, we have to
use looping acceptance automata instead of finite acceptance automata. We outline how
this is done for each of the finite acceptance automata appearing in the proof of Theorem
4.4 The first such automaton is B],. We use instead the looping automaton

B/ = (2275;_]72'/7/);7{5}7_)-

%,8,lo00p

That is, the automaton B, is the automaton B;, with the set of designated states

removed and the transition relation updated accordingly. The formula ¢, then becomes
Ys = Bz{,s,loop(gh . 79271).
The second finite acceptance automaton used is B;’; We replace it by

B! = (22 X {07 1}7 Sz{vp;'/,s,loopv Sl?v _)7

%,8,lo00p

where the transition relation pY ;. is defined as follows:

24

o if o # s, then for all letters v € 2%, p!/, 1. ((,0),0) = p, oo, (@, 1), 0) = pi(a, o).

o if 0 = s, then for all letters a € 227 p;{s’loop((a, 0),0) = pi(a,0) and
p;'/,s,loop((O% 1)7 U) = @

We then have

Fl = 2Bl 1001 NPy gon N 200, g1t N sy gan N o)

Intuitively, we have constructed the operator B, so that it is strictly deterministic

and is true only if the formula @, is false each time B! goes through the state s. Thus
its negation will be satisfied if at some point B! goes through the state s with ¢, true.

The last finite acceptance operator appearing in the proof of Theorem 4.4 is AY. As
we have shown in Theorem 4.1, it is always possible to replace an ET'L; operator by an
ETL; operator at the cost of an exponential increase in size. This is what we do here.
It does not affect the exponential overall complexity of our translation as the automaton
A” is of size linear in the length of the original formula. I

5 Alternating Temporal Logic

The results of the preceding sections show that our technique is applicable to automata
connectives and to the negation of automata connectives. This suggests that this tech-
nique can also deal with alternation.

Given a set S of states, let us denote by Bg the set of all Boolean formulas that use
the states in S as variables. Members of Bg can be viewed as Boolean-valued functions
on 2°. Let p € Bs and 5" C S. Then (5’) is the Boolean value of ¢ when the states in
S" are assigned 1 and the states in S — S are assigned 0. Formulas of the form s or —s,
where s € 5, are called atomic formulas.

An alternating finite automaton [BL80, CKS81] (abbr. AFA) A is a tuple A =
(3,9, p, 00, F'), where ¥ is the input alphabet, S is the set of states {s1,...,s,}, p:
S x Y — Bg 1s the transition function that associates with each state and letter a
Boolean formula in Bg, ¢g € Bg is the start formula, and F* C 5 is the set of accepting
states. We can extend p to Bs x ¥ : p(¢,a) is obtained by substituting p(s;,a) in ¢
for each s;, 1 < j < m. For example, if p(s1,a) = s3V sq and p(sq,a) = s3 A 784, then
p(—s81V s3,a) = (—83 A —84) V (s3 A —54). We define an auxiliary mapping « : 2% — 2Bs
by

al)y={s : seTtU{~s : s€S5-T}.

We first consider acceptance of finite words by AFA. The run of A on a word w =
ay,...,a; is the sequence ¢y, ..., ¢; of formulas from Bg, where ¢, = p(pi_1,a;). A
accepts w if ¢;(F') = 1. An equivalent way of defining acceptance of finite words by AFA
is in terms of finite run forests. A finite run forest of A on w is a collection of finite trees
labeled by atomic formulas satistying the following conditions:

25

e The length of all branches is [.

e There is a set S C S such that ¢o(S’) =1 and for all ¢ € a(S') there is a tree in
the forest whose root is labeled by ¢.

o Let x be an internal node of depth j, 0 < j < [, labeled by ¢,. Then there is a set
S" C S such that p(¢s,a;)(S") = 1 and for all ¢ € «(S”) there is a child y of «
labeled by .

A node z labeled by ¢, is accepting if ¢, (F) = 1. The run forest is accepting if x is
accepting whenever z is a leaf. A accepts w if it has an accepting run forest on w.

Afa’s define regular languages. Nevertheless, it follows from the results in [Le81],
[CKS81] that they can be exponentially more succinet than NFA’s. That is, given any
n-state AFA, one can construct an 2"-state NFA that accepts the same language. Fur-
thermore, for each n there is an n-states AFA A, such that the language defined by A is
not definable by any NFA with less than 2" states.

The notion of alternation can also be extended to automata on infinite words [MH84].
Finite acceptance is defined by means of finite acceptance forests. A finite run forest of A
on an infinite word w = ayas ... is a collection of finite trees labeled by atomic formulas
satisfying the following conditions:

e There is a set S C S such that po(S’) =1 and for all ¢ € a(S") there is a tree in
the forest whose root is labeled by ¢.

e Let @ be an internal node of depth j labeled by ¢,.. Then there is a set S” C S such
that p(@s,a;)(S”) =1 and for all ¢ € a(S”) there is a child y of x labeled by .

Again, the run forest is accepting if = is accepting whenever z is a leaf. A accepts w if it
has an accepting run forest on w. Note that, as opposed to the definition used in the case
of finite words, all branches of the run forest are not required to have the same length.

Looping acceptance is defined by means of infinite run forests. An infinite run forest
of A on an infinite word w = ajas... is a collection of infinite trees labeled by atomic
formulas satisfying the following conditions:

e All branches are infinite.

e There is a set S C S such that po(S’) =1 and for all ¢ € a(S") there is a tree in
the forest whose root is labeled by ¢.

e Let @ be an internal node of depth j labeled by ¢,.. Then there is a set S” C S such
that p(@s,a;)(S”) =1 and for all ¢ € a(S”) there is a child y of x labeled by .

A accepts w if it has a run forest on w.

Repeating acceptance is also defined by means of infinite run forests. The condition
is that along any branch of the run forest there are infinitely many accepting nodes.

26

As is the case with finite words, alternation does not add any expressive power beyond
nondeterminism. More precisely, finite acceptance (resp., looping acceptance, repeating
acceptance) AFA has the same expressive power as finite acceptance (resp., looping ac-
ceptance, repeating acceptance) NFA [MHS84]. Thus the only gain in using alternation is
in succinctness.

We first deal with the alternating analog of ET'L;. AT'L; is defined analogously to
ETL;, with AFA connectives replacing NFA connectives. Foran AFA A = (X, 5, p, o, F)
and a formula ¢ € Bg, we define A, to be the AFA (X,5,p, ¢, F'). The semantics of
AT L; are defined as follows:

e 7,1 |=piff p € (i), for an atomic proposition p.
® 7T,i |: fl /\f2 iﬂﬂ,i |: fl and 7T,i |: fg.

o 7.0 E—fiff not i = f.

To define the semantics of automata connectives we first adapt the definition of finite run
forests. A finite run forest of A(fi,...,f,), where A = (2,95, p, @0, F), on a structure
7 starting at ¢ is a collection of finite trees labeled by atomic formulas satisfying the
following conditions:

e There is a set S C S such that po(S’) =1 and for all ¢ € a(S") there is a tree in
the forest whose root is labeled by ¢.

o Let = be an internal node of depth j labeled by ¢,. Then there are an a; € ¥ and
a set S” C S such that 7,0+ j = fi, plos, @)(S”) = 1 and for all ¢ € a(S") there
is a child y of x labeled by ¢.

The run forest is accepting if x is accepting whenever z is a leaf. A accepts w if it has
an accepting run forest on w.

Notice the difference between the definitions of run forests for AFA and AFA formulas.
In a run forest of an AFA all “spawned” automata read the same input. This is not the
case in run forests of AFA formulas, since it is possible that more than one argument
of the AFA connective holds at a point 7 of the structure =. Essentially, AFA read
complete description of states (i.e., the input letter), while AFA formulas only read
partial description of states (i.e., the input formula). We believe that this definition is the
appropriate one in our context. Furthermore, as is shown in [HRV90], using the standard
definition of run forests for AFA causes an exponential increase in the complexity of the
logic.

We can now define satisfaction for automata connectives:

o 7,1 = A(f1,...,fn) if and only if A(fi,..., fn) has an accepting run forest on =
starting at .

27

Clearly, AT L is at least as expressive as ET'Ly. Indeed, if we restrict the formulas in
Bg to be positive disjunctions then AT Ly reduces to ET'Ly. Also, there is an exponential
translation from AT Ly to ETLy. The interest in this logic is twofold. First, since the
translation from AT Ly to E'T Ly causes a one exponential blow-up, one may expect AT'Ly
to be of higher complexity then ET L. Surprisingly, it has the same complexity. Also
the study of AFA connectives reveals the full power of our techniques.

Theorem 5.1:

1. Given an AT Ly formula g buill from a set of atomic propositions Prop, one can
construct a Biichi automaton A, (over the alphabet 2777), whose size is 2°U9D | that

accepts exactly the sequences satisfying g.

2. The satisfiability problem for AT Ly is complete in PSPACE.

Proof: We prove here the first claim, and the second claim follows as in Section 3. The
proof parallels those given in Section 3. We are given a formula ¢, and we construct
an automaton, which is the cross product of the local automaton and the eventuality
automaton. The notion of closure is similar to that in Section 3. For an AT L formula
g, cl(g) is defined as follows:

e g €cllg)

e 1 Ngs €cllg) — g1,92 € cl(g)

o —g1 €cllg) — g1 € cl(g)

* g1 €cllg) — ~g1 € cl(g)

o Algi,....02) €cl(g) = g1,- ... gn € cl(g)

o Algr,---,9a) € cl(g) = As(g1,....9n) € cl(g), for all 5 € S.
o A(gry. . gn) € cl(g) = Aos(gr,- .. gn) € €l(g), for all s € S.

Hintikka sequences for AT'L; formulas are defined similarly to those used in Section
3, except for conditions 4 and 5. We again need a technical definition to state these
conditions. Given A(g1,...,9.) € cl(g) with A = (X, 5, p, @0, F'), we define a mapping
o4 2¢0) 227 such that

os(a) ={T : a; € ¥, g € a, and p(po,a;)(T) =1}.

In the following conditions, whenever A(g¢1,...,¢,) € cl(g) is mentioned, we assume that
A=(%,5,p,¢0, F). The new conditions 4 and 5 are then:

4"y I A(g1, -+ ., 9n) € II;, then there exists some j > i and a mapping ¢ : [1, 5] — 2
such that:

28

o ¥(j) =10,
o there is a set S” C S such that po(S’) = 1, and for all § € a(S5’) we have
As(g1,- - gn) € (1),

o forall k, i <k <y, if Au(g1,...,9n) € ¥(k), then either
—o(F)=1,or
— thereissome S” € o 4(Ilj) such that for all @ € S” we have Ag(¢1,...,9,) €

p(k+1).
") it = A(g1,...,9) € 1L, then @o(F) = 0 and for all S" € o4(1Il;) there exists some
6 € «(S") such that = Ag(g1,...,9,) € ig1.

The Local Automaton

The local automaton is L = (2°1(9),2¢49) p; N, 2°19). For the transition relation pr,
we have that s’ € pr(s,a) iff a =s and:

e gesiff g s,
o g1 Ngy €siff g €s and g5 € s,

o if A(g1,...,9,) € s, then there is 5" C S such that po(S’) = 1 and for all § € S we
have Ag(g1,...,9n) € s.

o if “A(g1,...,9,) € s, then po(F) = 0 and for all 5" € o4(a) there exists some
6 € a(S") such that Ay (g1,...,9,) € 8.

Finally, the set of starting states IV, consists of all sets s such that ¢ € s.
The Eventuality Automaton

The eventuality automaton is a set-subword automaton Ap = (cl(g), pr). For the
transition relation pg, we have that s’ € pg(s,a) iff:

e sCa,and

o If A(g1,...,9,) € s, where g is atomic, then either ¢o(F') = 1 or there is some
S’ € o4(a) such that for all § € «(S’) we have Ag(g1,...,9,) € 8.

We now deal with the alternating analog of ET'L;. ATL; is defined analogously to
ETL;, with AFA connectives replacing NFA connectives. We now define the semantics
of automata connectives in AT L;. We first need the following definition: An infinite
run forest of A(f1,..., f.), where A = (32,95, p, @0, F'), on a structure = starting at ¢ is a
collection of infinite trees labeled by states of S or negation of states of S satisfying the
following conditions:

29

e All branches are infinite.

e There is a set S C S such that po(S’) =1 and for all ¢ € a(S") there is a tree in
the forest whose root is labeled by ¢.

o Let x be a node of depth j labeled by ,. Then there are an a; € ¥ and a set
S" C S such that m,i + 7 E fi, ples, a)(5”) =1 and for all ¢ € a(S”) there is a
child y of = labeled by ¢.

We can now define satisfaction for automata connectives in AT L;.

e 7,1 = A(f1,...,fn) if and only if A(f1,...,[f.) has an infinite run forest on =
starting at .

Clearly, AT L; is at least as expressive as E'T'L;. Indeed, if we restrict the formulas in
Bgs to be positive disjunctions, then AT L; reduces to E'T'L;. Also, there is an exponential
translation from AT Ly to ET'Ly. The proof of the following theorem is similar to the
proof of Theorem 5.1 and is left to the reader.

Theorem 5.2:

1. Given an ATL; formula g built from a set of atomic propositions Prop, one can
construct a Biichi automaton A, (over the alphabet) 2F7°P whose size is 2°U9D | that

accepts exactly the sequences satisfying g.

2. The satisfiability problem for AT L; is complete in PSPACE.

Finally, we describe the alternating analog of KT L,. Recall that an accepting node
in a run forest is a node x labeled by ¢, such that ¢, (F) = 1. In ATL,, an infinite run
forest is accepting if every branch has infinitely many accepting nodes. Satisfaction for
automata connectives in AT L, is defined by:

o 7,1 = A(f1,..., fn) if and only if A(f1,..., f,) has an accepting infinite run forest
on 7 starting at 2.

In [MH84] it is shown that alternation can be eliminated from repeating acceptance
automata by an exponential construction. We conjecture that this construction can be
combined with the techniques of [SVW8T7] to prove the analogue of Theorems 5.1 and 5.2
(though with a nonlinear exponent in the exponential bound) for AT'L,.

30

6 Concluding Remarks

There are other approaches to extending PT'L. In [HP85] the language is extended by
regular operators corresponding to concatenation and the Kleene star. This, however,
pushes the decision problem for their language to nonelementary complexity. Further-
more, it does not show the fine interplay between the different acceptance conditions that
we have considered. In [Si83, SVWS8T], PT'L is extended with quantifiers over proposi-
tions. For this extension, the complexity of the decision procedure is again nonelementary.
The extension of PT'L closest to the one discussed in this paper is probably that of the
temporal p-calculus, in which PT'L is extended with fixpoint operators. It was introduced
in [EC80]; see also [BKP85, BKP86]. It has the same expressive power as ET'L and, as
is shown in [Va88], also has a PSPACE-complete decision problem (see also [BB89]). It
is interesting to note however that this last result was obtained using an extension of the
automata-theoretic techniques presented in this paper.

The relation between the various types of acceptance criteria for finite automata can
also be presented within the framework of propositional dynamic logic (PDL) [FL79].
Since we are reasoning here about computation paths, we consider PD L with one deter-
ministic atomic program (1DPDL), where the structures are infinite sequences. In this
framework, the finite acceptance condition corresponds to the diamond construct [FL79],
the looping acceptance condition corresponds to the loop construct [HP79], and the re-
peating acceptance condition corresponds the repeat construct [HP79]. It follows that
adding to 1D P DL looping, repeating, fixpoint, and even quantification over propositions
does not change the expressive power of the language and does not render it undecidable.
This in sharp contrast with what happens for propositional dynamic logic in general. It
is known that PDL is less expressive than PDL + loop (Pratt, see [HS82]), which is less
expressive than PDL + repeat [HS82], which is less expressive than PDL + fixpoint
[Ko83], which can be shown to be less expressive than PDL + quanti fication. Also, the
last language can even be shown to be highly undecidable (I} — complete).

It should be noted that the automata-theoretic techniques developed here are also
applicable to propositional dynamic logic; see [Va85a, VW86a]. Also, the temporal logics
discussed here can be combined with dynamic logic to yield expressive process logics
which are also amenable to automata-theoretic methods [VW83].

In conclusion, we note that our results have an interesting interpretation from a
purely automata-theoretic point of view. The ability to have an automaton operator
nested within another automaton operator is essentially equivalent to the ability of an
automaton to consult an oracle. That is, when the automaton reaches certain states it
asks the oracle whether it accepts the rest of the word, and its next move depends on the
answer. Consider now the following hierarchy. Let Ay be the class of nondeterministic
finite automata, let A; be the class of nondeterministic finite automata with oracles from
Ai_q, and let A be UjsgA;. If € is a class of automata, then C denotes the class of
languages defined by automata in C.

Now we have three hierarchies A/, A, and A”, depending whether we use finite,

31

looping, or repeating acceptance, respectively. Our results show that not only do these
hierarchies collapse but that they are also equivalent: Af = Al = A7 = Af = A_l2 = A},
However, since each complementation causes at least an exponential blow-up, we might
have expected the complexity of the emptiness problem for automata in Af, A!, and A” to
be nonelementary. Our results show that the problem is logspace complete for PSPACE
for the three types of automata. This should be contrasted with the nonelementariness
of the emptiness problem for regular expressions with complement [MS73]).

Acknowledgements.

We wish to thank R. Fagin, J. Halpern, R. Rosner, and L. Stockmeyer for helpful com-
ments. We are also grateful to R. Streett and an anonymous referees for their careful
reviews of the paper.

References

[AH90] R. Alur and T. Henzinger, “Real-time logics: complexity and expressiveness”,

Proc. 5th IEEE Symp. on Logic in Computer Science, 1990, pp. 390-401.

[BB89] B. Baniegbal and H. Barringer, “Temporal Logic with Fixed Points”, in Proc.
Temporal Logic in Specification, B. Baniegbal, H. Barringer, and A. Pnueli,

eds., Lecture Notes in Computer Science 398, Springer-Verlag, 1989, pages
62-74.

[BKP85] H. Barringer, R. Kuiper, and A. Pnueli, “A Compositional Temporal Approach
to a CSP-like Language”, in Formal Methods of Programming, E. J. Neuhold
and G. Chroust, eds., North Holland, 1985, pp. 207-227.

[BKP86] H. Barringer, R. Kuiper, and A. Pnueli, “A Really Abstract Concurrent Model
and its Temporal Logic”, Proc. 15th ACM Symp. on Principles of Program-
ming Languages, St. Petersburgh, 1986, pp. 173-183.

[BBP89] B. Baniegbal, H. Barringer, and A. Pnueli, eds., “Temporal Logic in Specifica-
tion”, Lecture Notes in Computer Science 398, Springer-Verlag, 1989.

[BL80] J.A. Brzozowski and E. Leiss, “On Equations for Regular Languages, Fi-
nite Automata, and Sequential Networks”, Theoretical Computer Science

10(1980), pp. 19-35.

[Bu62] J. R. Biichi, “On a Decision Method in Restricted Second Order Arithmetic”,
Proc. Internat. Congr. Logic, Method. and Philos. Sei. 1960, Stanford Uni-
versity Press, 1962, pp. 1-12.

32

[Ch74]

[CKSS1]

[ECS0]

[ES84]

[FL79]

[GPSS80]

[HaT9]

[Ha84]

[HP79]

[HKP80]

[HPS5]

[HRV90]

[HRS3]

Y. Choueka, “Theories of Automata on w-Tapes: A Simplified Approach”, J.
Computer and System Seciences 8(1974), pp. 117-141.

A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer, “Alternation”, J. ACM
28(1981), pp. 114-133.

E. A. Emerson and E. M. Clarke, “Characterizing Correctness Properties of
Parallel Programs as Fixpoints”, Proc. 7th Int. Colloguium on Automata, Lan-
guages and Programming, Lecture Notes in Computer Science 85, Springer-

Verlag, 1981, pp. 169-181.

E. A. Emerson and A. P. Sistla, “Deciding Full Branching Time Logic”, In-
formation and Control 61(1984), pp. 175-201.

M. Fischer and R. Ladner, “Propositional Dynamic Logic of Regular Pro-
grams”, J. Computer and System Sciences 18(2), 1979, pp. 194-211.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “The Temporal Analysis of
Fairness”, Proc. 7th ACM Symp. on Principles of Programming Languages,
Las Vegas, 1980, pp. 163-173.

D. Harel, First Order Dynamic Logic, Lecture Notes in Computer Science 68,
Springer-Verlag, 1979

D. Harel, “Dynamic Logic”, in Handbook of Philosophical Logic, vol. 2, (D.
Gabbay and F. Guenther, eds.), 1984, pp. 497-604.

D. Harel and V. Pratt, “Nondeterminism in Logics of Programs”, Proc. 5th
ACM Symp. on Principles of Programming Languages, Tuscon, 1978, pp.
203-213.

D. Harel, D. Kozen, and R. Parikh, “Process Logic: Expressiveness, Decid-
ability, Completeness”, J. Computer and System Science 25(2), 1982, pp.
144-170

D. Harel and D. Peleg, “Process logic with Regular Formulas”, Theoretical
Computer Science 38(1985), pp. 307-322.

D. Harel, R. Rosner, and M.Y. Vardi, “On the Power of Bounded Concurrency
ITI: Reasoning about Programs”, Proc. 5th IEEFE Symp. on Logic in Computer
Science, 1990, pp. 478-488.

J. Y. Halpern and J. H. Reif, “The Propositional Dynamic Logic of Determin-
istic, Well-Structured Programs”, Theoretical Computer Science 27(1983), pp.
127-165.

33

[HS82]

[HS84]

[JoT5]

[Ka85]

[KoS83]

[Lad77]

[Lam77]

[Lan69]

[Le81]

[LPZ85]

[McN66]

[MeT5]

[MI84]

[MiS0]

[MSS8S]

D. Harel and R. Sherman, “Looping vs. Repeating in Dynamic Logic”, Infor-
mation and Control 55(1982), pp. 175-192.

D. Harel and R. Sherman, “Propositional Dynamic Logic of Flowcharts”, In-
formation and Control 64(1985), pp. 119-135.

N. D. Jones, “Space-bounded Reducibility among Combinatorial Problems”,
J. Computer and System Science, 11 (1975), pp. 68-75.

M. Kaminski, “A Classification of w-Regular Languages”, Theoretical Com-
puter Science 36(1985), pp. 217-229.

D. Kozen, “Results on the Propositional p-Calculus”, Theoretical Computer
Science 27(1983), pp. 333-354.

R. E. Ladner, ” Application of Model-Theoretic Games to Discrete Linear Or-
ders and Finite Automata”, Information and Control, 33(1977), pp. 281-303.

L. Lamport, “Proving the Correctness of Multiprocess Programs”, [EFFE
Trans. on Soft. Eng. SE-T(1977).

L. H. Landweber, “Decision Problems for w-Automata”, Math. Systems Theory
4(1969), pp. 376-384.

E. Leiss, “Succinct Representation of Regular Languages by Boolean Au-
tomata”, Theoretical Computer Science 13(1981), pp. 323-330.

O. Lichtenstein, A. Pnueli, and L. Zuck, “The Glory of the Past”, Proc. Work-
shop on Logics of Programs, Brooklyn, Springer-Verlag, Lecture Notes in Com-
puter Science 193, 1985 pp. 196-218.

R. McNaughton, “Testing and Generating Infinite Sequences by a Finite Au-
tomaton”, Information and Control 9(1966), pp. 521-530

A. R. Meyer, “Weak Monadic Second Order Theory of Successor is not Ele-
mentary Recursive”, Proc. Logic Colloquium, Lecture Notes in Mathematics

453, Springer-Verlag, 1975, pp. 132-154.

S. Miyano and T. Hayashi, “Alternating Automata on w-Words”, Theoretical
Computer Science 32(1984), pp. 321-330.

R. Milner, “A Calculus of Communicating Systems”, Lecture Notes in Com-
puter Science 92, Springer-Verlag, 1980.

D.E. Muller, A. Saoudi, and P.E. Schupp, “Weak Alternating Automata Give a
Simple Explanation of Why Most Temporal and Dynamic Logic are Decidable

in Exponential Time”, Proc. 3rd IEEE Symp. on Logic in Computer Science,
1988, pp. 422-427.

34

[MST73]

[MP89)]

MW84]

[Mu63]

[MYSS]

[Ni80]

[Pn77]

[Pr76]

[Pr79]

[Pr30]

[Pr81]

[PRSY]

[RS59]

A.R. Meyer and L.J. Stockmeyer, “Non-elementary Word Problems in Au-
tomata and Logic”, Proc. AMS Symp. on Complexity of Computation, April
1973.

Z. Manna and A. Pnueli, “The Anchored Version of the Temporal Framework”,
in Linear Time, Branching Time, and Partial Order in Logics and Models for

Concurrency (J.W. de Bakker, W. P. de Roever, and G. Rozenberg, eds.),
Lecture Notes in Computer Science 354, Springer-Verlag, 1989, pp. 201-284.

Z. Manna and P. Wolper, “Synthesis of Communicating Processes from Tem-
poral Logic specification”, ACM Trans. on Programming Languages and Sys-
tems 6(1984), pp. 68-93.

D.E. Muller, “Infinite Sequences and Finite Machines”, Proc. 4th IEEE Symp.
on Switching Circuit Theory and Logical Design, New York, 1963, pp. 3—16.

T. Moriya and H. Yamusaki, “Accepting Conditions for Automata on w-
Languages”, Theoretical Computer Science 61(1988) pp. 137-147.

H. Nishimura, “Descriptively Complete Process Logic”, Acta Informatica

14(1980), pp. 359-369.

A. Pnueli, “The Temporal Logic of Programs”, Proc. 8th IEEFE Symp. on
Foundations of Computer Science, Providence, 1977, pp. 46-57.

V.R. Pratt, “Semantical Considerations on Floyd-Hoare Logic”, Proceedings
17th IEEE Symposium on Foundations of Computer Science, October 1976,
pp. 109-121.

V.R. Pratt, “Models of program logics”, Proc. 20th IEEE Symp. on Foundation
of Computer Science, San Juan, 1979, pp. 115-122.

V.R. Pratt, “A Near-Optimal Method for Reasoning about Action”, .J. Com-
puter and System Sciences 20(1980), pp. 231-254.

V.R. Pratt, “Using Graphs to Understand PDL”, Proc. Workshop on Logics
of Programs, (D. Kozen, ed.), Yorktown-Heights, Lecture Notes in Computer
Science 131, Springer-Verlag, 1982, pp. 387-396.

A. Pnueli and R. Rosner, “On the Synthesis of a Reactive Module”, Proc.
16th ACM Symp. on Principles of Programming Languages, Austin, 1989, pp.
179-190.

M. O. Rabin and D. Scott, “Finite Automata and their Decision Problems”,
IBM Journal of Research and Development 3(1959), pp. 114-125.

35

[Sa88]

[SC85]

[Sh79]

[9i83]

[St82]

[St90]
[Sta87]

[SVWST]

[TB73]

[ThoT9]

[Tho81]

[Tho90]

[VW386a]

[VWS86b]

[Va85a]

S. Safra, “On the Complexity of w-Automata”, Proc. 29th IEEE Symp. on
Foundation of Computer Science, 1988, pp. 319-327.

A. P. Sistla and E. M. Clarke, “The Complexity of Propositional Linear Tem-
poral Logic”, J. ACM 32(1985), pp. 733-749.

A.C. Shaw, “Software Specification Languages Based on Regular Expressions”,
Technical Report, ETH Zurich, June 1979.

A. P. Sistla, “Theoretical Issues in The Design and Analysis of Distributed
Systems”, PhD Thesis, Harvard University, 1983.

R. Streett, “Propositional Dynamic Logic of Looping and Converse is Elemen-
tarily Decidable”, Information and Control, 54(1982), pp. 121-141.

R. Streett, personal communication.

L. Staiger, “Research in the Theory of w-Languages”, Electron. Inf. Verarbeit.
Kybernetic 23(1987), pp. 415-439.

A.P. Sistla, M.Y. Vardi, and P. Wolper, “The Complementation Problem for
Biichi Automata with Applications to Temporal Logic”, Theoretical Computer
Science 49(1987), pp. 217-237.

B. A. Trakhtenbrot and Y. M. Barzdin, “Finite Automata: Behavior and
Synthesis”, North-Holland, 1973.

W. Thomas, “Star-Free Regular Sets of w-Sequences”, Information and Con-

trol 42(1979), pp. 148-156.

W. Thomas, “A Combinatorial Approach to the Theory of w-Automata”, In-
formation and Control 48(1981), pp. 261-283.

W. Thomas, “Automata on Infinite Objects”, in Handbook of Theoretical Com-
puter Science, Vol. B. (J. v. Leeuwen, ed.), Elsevier, 1990, pp. 135-191.

M.Y. Vardi and P. Wolper. “Automata-Theoretic Techniques for Modal Logic
of Programs”, J. Computer and System Sciences, 32(1986), pp. 183-221.

M.Y. Vardi and P. Wolper, “An Automata-Theoretic Approach to Automatic
Program Verification”, Proc. 1st IEEE Symp. on Logic in Computer Science,
Boston, 1986, pp. 332-334.

M.Y. Vardi, “The Taming of the Converse: Reasoning about 2-way Compu-
tations”, Proc. Workshop on Logics of Programs, Brooklyn, Springer-Verlag
Lecture Notes in Computer Science 193, 1985, pp. 413-424.

36

[Va85b]

[Va88]

(VW83

[WaT9]

[Wo83]

[Wo82]

[Wo89]

M.Y. Vardi, “Automatic verification of probabilistic concurrent finite-state
programs”, Proc. 26th IEEE Symp. on Foundations of Computer Science,
Portland, Oct. 1985, pp. 327-338.

M. Y. Vardi, “A Temporal Fixpoint Calculus”, Proc. 15th ACM Symp. on
Principles of Programming Languages, San Diego, 1988, pp. 250-259.

M. Y. Vardi and P. Wolper, “Yet Another Process Logic”, Proc. Workshop
Logic of Programs, Lecture Notes in Computer Science 164, Springer-Verlag,
1983, pp. H01-512.

K. Wagner, “On w-Regular Sets”, Information and Control 43(1979), pp. 123—
177.

P. Wolper, “Temporal Logic Can Be More Expressive”, Information and Con-
trol 56(1983), pp. 72-99.

P. Wolper, “Synthesis of Communicating Processes from Temporal Logic Spec-
ifications”, Ph. D. Thesis, Stanford University, 1982.

P. Wolper, “On the relation of programs and computations to models of tempo-
ral logic”, in Proc. Temporal Logic in Specification, B. Baniegbal, H. Barringer,
and A. Pnueli, eds., Lecture Notes in Computer Science 398, Springer-Verlag,
1989, pages 75—123.

37

