
Reasoning about In�nite Computations�Moshe Y. VardiyIBM Almaden Research Center Pierre WolperzUniversit�e de Li�egeAbstractWe investigate extensions of temporal logic by connectives de�ned by �nite automata onin�nite words. We consider three di�erent logics, corresponding to three di�erent typesof acceptance conditions (�nite, looping and repeating) for the automata. It turns out,however, that these logics all have the same expressive power and that their decisionproblems are all PSPACE-complete. We also investigate connectives de�ned by alternat-ing automata and show that they do not increase the expressive power of the logic or thecomplexity of the decision problem.1 IntroductionFor many years, logics of programs have been tools for reasoning about the input/outputbehavior of programs. When dealing with concurrent or nonterminating processes (likeoperating systems) there is, however, a need to reason about in�nite computations. Thus,instead of considering the �rst and last states of �nite computations, we need to con-sider the in�nite sequences of states that the program goes through. Logics to reasonabout such sequences include temporal logic [Pn77] and temporal-logic-based process log-ics [Ni80, HKP80].In the propositional case, computations can be viewed as in�nite sequences of propo-sitional truth assignments. For reasoning about individual propositional truth assign-ments, propositional logic is a descriptively complete language, i.e., it can specify any setof propositional truth assignments. There is, however, no a priori robust notion of de-scriptive completeness for reasoning about sequences of propositional truth assignments.�A preliminary version of this paper, authored by P. Wolper, M.Y. Vardi, and A.P. Sistla, appearedin Proc. 24th IEEE Symp. on Foundations of Computer Science, 1983, pp. 185{194, under the title\Reasoning about In�nite Computation Paths".yAddress: IBM Almaden Research K53-802, 650 Harry Rd., San Jose, CA 95120-6099,USA,vardi@almaden.ibm.comzAddress: Institut Mont�e�ore, B28, Universit�e de Li�ege, B-4000 Li�ege Sart-Tilman, Belgium,pw@monte�ore.ulg.ac.be 1

In [GPSS80] propositional temporal logic (PTL) was shown to be expressively equiva-lent to the monadic �rst-order theory of (N ; <), the natural numbers with the less-thanrelation. This was taken as an indication that PTL and the process logics based on itare \descriptively complete".The above assumes that �rst-order notions are all we need to reason about in�nitecomputations. But, the very fundamental notion of regularity of sets of event sequencesis not �rst-order; even the simple assertion that \the proposition p holds at least in everyother state on a path" is not expressible in PTL [Wo83]. In fact, PTL and the �rst-ordertheory of (N ; <) are known to be expressively equivalent to star-free !-regular languages[Lad77, Tho79, Tho81]. On the other hand, !-regular sequences are a natural way ofdescribing concurrent processes [Sh79], [Mi80]; and furthermore, the ability to describe!-regular sequences is crucial to the task of program veri�cation [LPZ85].There are several di�erent ways to extend the expressive power of PTL. We could addsome non-�rst-order construct, such as least-�xpoint or second-order quanti�cation, butwe prefer here to add an explicit mechanism for specifying !-regular events as was donein [Wo83]. There, PTL is extended with a temporal connective corresponding to everynondeterministic �nite automaton on in�nite words.1;2 For example, if � = fa; bg andA is the automaton accepting all in�nite words over � having a in every other position,then A is also a binary temporal connective, and the formula A(p; true) is satis�ed bythe paths where p holds in at least every other state.An important point that was not considered in [Wo83] is that to de�ne !-regularsequences one needs to impose certain repeating conditions on accepting automata runs.For example, B�uchi automata, which de�ne exactly the !-regular languages, require thatsome accepting state occurs in�nitely often in the run [Bu62, McN66]. Using B�uchiautomata to de�ne temporal connectives gives rise to an extended temporal logic thatwe call ETLr.In addition to the notion of repeating acceptance, we also consider two other notionsof acceptance. The �rst notion is �nite acceptance: an automaton accepts an in�niteword if it accepts some pre�x of the word by the standard notion of acceptance for �nitewords. The second notion is looping acceptance: an automaton accepts an in�nite word ifit has some in�nite run over the word (this is the notion used in [Wo83]). Using automatawith �nite and looping acceptance conditions to de�ne temporal connectives gives riseto extended temporal logics that we call ETLf and ETLl, respectively. We should notethat our interest in �nite and looping acceptance is not due to their automata-theoretic1To be precise, the formalismused in [Wo83] is that of right-linear context-free grammars over in�nitewords.2Note that here the use of automata is conceptually di�erent from the use of automata in dynamiclogic (cf. [Ha84, HS84, Pr81]). In dynamic logic automata are used to describe owchart programs,while here automata are used to describe temporal sequences. Thus, dynamic logic automata describeregular sequences of program statements, while temporal logic automata describe regular properties ofstate sequences. 2

signi�cance,3 but due to their signi�cance as speci�cation constructs. Finite acceptancecan be viewed as describing a liveness property, i.e., \something good will eventuallyhappen", while looping acceptance can be viewed as a safety condition, i.e., \somethingbad will never happen".4 Thus, �nite and looping acceptance can be viewed as extensionsof the \Eventually " and \Always" constructs of PTL.The notions of �nite and looping acceptance are incomparable and are strictly weakerthan the notion of repeating acceptance. For example, the sequence (ab?)! can be de�nedby repeating acceptance but not by �nite or looping acceptance. Thus, we could expectthe logics ETLr, ETLf , and ETLl to have di�erent expressive powers. One of the mainresults of this paper is that all these logics are expressively equivalent. They all havethe expressive power of !-regular expressions, which by [Bu62] is the same as that ofthe monadic second-order theory of (N ; <), usually denoted S1S. We also consider thecomplexity of the decision problem for ETLf and ETLl. It turns out that both logicshave the same complexity as PTL: polynomial space (cf. [HR83, SC85]). In contrast,the decision problem for S1S is nonelementary [Me75], as is the emptiness problem forregular expressions with complement [MS73].5An important contribution of this paper is to show that temporal logic formulas canbe directly compiled into equivalent B�uchi automata. To make the construction andits proof of correctness easier and more systematic, we �rst de�ne variants of B�uchiautomata that are geared towards recognizing models of temporal formulas and provethat these variants can be converted to B�uchi automata. We then use our constructionto obtain decision procedures. Our approach is, starting with a formula, to build anequivalent B�uchi automaton and then to check that this automaton is nonempty.6 Notethat the construction of B�uchi automata from temporal logic formulas is not only usefulfor obtaining decision procedures for the logic but is also the cornerstone of synthesisand veri�cation methods based on temporal logic [MW84, PR89, VW86b, Wo89]. Thisconstruction is also the cornerstone for applications of temporal logic to the veri�cationof probabilistic and real-time programs (cf. [AH90, Va85b].Finally, to explore the full power of our technique, we introduce alternating �niteautomata connectives. These can be exponentially more succinct than nondeterministic3For an extensive study of acceptance conditions for !-automata see [Ch74, Ka85, Lan69, MY88,Sta87, Tho90, Wa79]. Our three conditions corresponds to the �rst three conditions in [Lan69]. Itis known that these three conditions exhaust all the possibilities in the Landweber classi�cation (cf.[Wa79]).4The notions of safety and liveness are due to Lamport [Lam77]. Our notion of liveness here corre-sponds to the notion of guarantee in [MP89].5In [SVW87] it is shown that the decision problem for ETLr is also PSPACE-complete. This resultrequires signi�cantly more complicated automata-theoretic techniques that are beyond the scope of thispaper. For other comments on the complexity of ETLr see Section 3.6The automata-theoretic approach described here can be viewed as a specialization of the automata-theoretic approach to decision problems of dynamic logic described in [VW86a] (see also [ES84, St82]).Note, however, that while the tree automata constructed in [ES84, St82, VW86a] accept only somemodels of the given formulas, the automata constructed here accept all models of the given formulas.3

automata connectives, and one may expect their introduction to push the complexity ofthe logic up. We investigate both ATLf and ATLl, which are the alternating analoguesof ETLf and RTLl. Surprisingly, we show that the decision problems for these logicsare still PSPACE-complete.2 Finite Automata on In�nite WordsIn this section we de�ne several classes of �nite automata on in�nite words and examinetheir nonemptiness problem. The framework developed here is a specialization of the tree-automata framework developed in [VW86a]. In view of the wide range of applicationsof temporal logic (cf. [BBP89]), we describe the word-automata framework in detail, inorder to make the paper self-contained.2.1 De�nitionsWe start by making our notation for in�nite words precise. We denote by ! the set ofnatural numbers f0; 1; 2; : : :g. We use the notation [i; j] for the interval fi; i+ 1; : : : ; jgof !. An in�nite word over an alphabet � is a function w : ! ! �. The ith letter in anin�nite word w is thus w(i). We will often denote it by wi and write w = w0w1 : : :.A nondeterministic �nite automaton (abbr. NFA) on in�nite words is a tuple A =(�; S; �; S0; F) where:� � is a �nite alphabet of letters,� S is a �nite set of states,� � : S ��! 2S is the transition function, mapping each state and letter to a set ofpossible successor states,� S0 is a set of initial states, and� F � S is a set of accepting states.The automaton is deterministic if j S0 j= 1 and j �(s; a) j� 1 for all s 2 S and a 2 �.A �nite run of A over an in�nite word w = w0w1 : : :, is a �nite sequence � =s0s1 : : : sn�1, where s0 2 S0, si+1 2 �(si; wi), for all 0 � i < n � 1. A run of A overan in�nite word w = w0w1 : : :, is an in�nite sequence � = s0s1 : : :, where s0 2 S0,si+1 2 �(si; wi), for all i � 0.Depending on the acceptance condition we impose, we get di�erent types of automata.In �nite acceptance automata, a �nite run � = s0s1 : : : sn�1 is accepting if sn�1 2 F . Inlooping acceptance automata, any run � = s0s1 : : : is accepting, i.e., no condition isimposed by the set F . In repeating acceptance automata (B�uchi automata [Bu62]), a run4

� = s0s1 : : : is accepting if there is some accepting state that repeats in�nitely often, i.e.,for some s 2 F there are in�nitely many i's such that si = s.In all three types of automata, an in�nite word w is accepted if there is some acceptingrun over w. The set of in�nite words accepted by an automaton A is denoted L(A).The three di�erent types of automata recognize di�erent classes of languages. Itturns out that the class of languages accepted by repeating acceptance automata (Lrepeat)strictly contains the class of languages accepted by looping (Lloop) and �nite acceptance(Lfinite) automata. These last two classes are incomparable. The languages acceptedby B�uchi (repeating acceptance) automata are often called the !-regular languages. Byresults of B�uchi [Bu62] (see also McNaughton [McN66]), this class of languages is closedunder union, intersection and complementation and is equivalent to the class of languagesdescribable in the monadic second-order theory of one successor (S1S) and by !-regularexpressions. The monadic second-order theory of successor is the interpreted formalismwhich has individual variables ranging over the natural numbers, monadic predicatevariables ranging over arbitrary sets of natural numbers, the constant 0, the successorfunction, boolean connectives and quanti�cation over both types of variables. !-regularexpressions are expressions of the form [i�i(�i)! where the union is �nite, � and � areclassical regular expressions, and ! denotes countable repetition.To establish the relations between Lrepeat, Lloop and Lfinite, we state the followingwell-known facts (cf. [Ch74, Ka85, Lan69, MY88, Sta87, Tho90, Wa79]).Lemma 2.1:1. The language a! over the alphabet � = fa; bg is in Lloop but not in Lfinite.2. The language a?b(a [b)! over the alphabet � = fa; bg is in Lfinite but not in Lloop.3. The language (a?b)! over the alphabet � = fa; bg is in Lrepeat, but not in Lfinite orin Lloop.Corollary 2.2:1. Lrepeat strictly contains Lfinite and Lloop.2. Lfinite and Lloop are incomparable.For the rest of this section, we will only deal with B�uchi automata.2.2 The Nonemptiness Problem for B�uchi AutomataAn important problem we will have to solve for B�uchi automata is the nonemptinessproblem, which is, given a B�uchi automaton, to determine whether it accepts at leastone word. We are interested in the complexity of this problem as a function in the size5

of the given automaton. (We assume some standard encoding of automata, so the sizeof an automaton is the length of its encoding.)Let A = (�; S; �; S0; F) be an automaton. We say that a state t is reachable from astate s if there are a �nite word w = w1 : : : wk in �? and a �nite sequence s0; : : : ; sk ofstates in S such that s0 = s, sk = t, and si+1 2 �(si; wi+1) for 0 � i � k � 1.Lemma 2.3: [TB73] A B�uchi automaton accepts some word i� there is an acceptingstate of the automaton that is reachable from some initial state and is reachable fromitself.We can now prove the following:Theorem 2.4: The nonemptiness problem for B�uchi automata is logspace-complete forNLOGSPACE.Proof: We �rst prove that the problem is in NLOGSPACE. Given Lemma 2.3, to de-termine if a B�uchi automaton accepts some word, we only need to check if there is someaccepting state reachable from some initial state and reachable from itself. To do this,we nondeterministically guess an initial state s and an accepting state r; we then nonde-terministically attempt to construct a path from s to r and from r to itself. To constructa path from any state x to any other state y, we proceed as follows:1. Make x the current state.2. Choose a transition from the current state and replace the current state by thetarget of this transition.3. If the current state is y, stop. Otherwise repeat from step (2).At each point only three states are remembered. Thus the algorithm requires only loga-rithmic space.To show NLOGSPACE hardness, given Lemma 2.3, it is straightforward to constructa reduction from the graph accessibility problem, proved to be NLOGSPACE completein [Jo75].To solve the satis�ability problem for extended temporal logic, we will proceed asfollows: build a B�uchi automaton accepting the models of the formula and determine ifthat automaton is nonempty. The automata we will build are exponential in the size ofthe formula. However, as the fact that the nonemptiness problem is in NLOGSPACE in-dicates, it is possible to solve the satis�ability problem using only polynomial space. Theargument is that it is not necessary to �rst build the whole automaton before applyingthe algorithm for nonemptiness. (A similar argument, though in a somewhat di�erentframework, is used in [HR83, SC85, Wo83].) We now make this argument more precise.Let � be some �xed �nite alphabet. A problem P is a subset of �?. An instance is anelement x of �? for which we want to determine membership in P . Assume that we alsouse � to encode B�uchi automata and their constituent elements (alphabet,states,: : :).6

Lemma 2.5: Let P be a problem, let f be a polynomial, let �; �; ; �; � be algorithmsthat associate with any instance x the encoding of a B�uchi automatonAx = (�x; Sx; �x; Sx0 ; Fx)in the following manner:1. if y 2 �x or y 2 Sx, then j y j� f(j x j),2. given y 2 �?, � determines whether y 2 �x using at most f(j x j) space,3. given y 2 �?, � determines whether y 2 Sx using at most f(j x j) space,4. given y 2 �?, determines whether y 2 Sx0 using at most f(j x j) space,5. given y 2 �?, � determines whether y 2 Fx using at most f(j x j) space,6. given u; v; w 2 �?, � determines whether u 2 �x(v;w), using at most f(j x j) space,and7. x 2 P i� Ax accepts some word.Then there is a polynomial space algorithm for determining membership in P .Proof: We use the algorithm described in the proof of Theorem 2.4 to check if Ax isnonempty. Given the assumptions we have made, each of the steps in the algorithm canbe executed in polynomial space. Moreover, the two states being remembered are also ofsize polynomial in the size of the problem. So, the whole algorithm requires polynomialspace. This establishes that the problem is in NPSPACE and hence PSPACE.When constructing B�uchi automata from temporal logic formulas, we will often haveto take the intersection of several B�uchi automata. The following lemma is a special caseof Theorem A.1 in [VW86a] and extends a construction of [Ch74] (see also [ES84]).Theorem 2.6: Let A0; : : : ; Ak�1 be B�uchi automata. There is a B�uchi automaton Awith k ��k�1i=0 jAij states such that L(A) = L(A0) \ : : : \ L(Ak�1).Proof: Let Ai = (�; Si; �i; Si0; F i). De�ne A = (�; S; �; S0; F) as follows: S = S0� : : :�Sk�1 � f0; : : : ; k � 1g, S0 = S00 � : : :� Sk�10 �f0g, F = F 0� S1 � : : :� Sk�1 � f0g, and(s01; : : : ; sk�11 ; j) 2 �((s0; : : : ; sk�1; i); a) i� sl1 2 �(sl; a), for 0 � l � k�1, and eithersi 62 F i and i = j or si 2 F i and j = (i+ 1) mod k.The automaton A consists of k copies of the cross product of the automata Ai. In-tuitively, one starts by running the �rst copy of this cross product. One then jumpsfrom the copy i to the copy (i+ 1) mod k when a �nal state of Ai is encountered. Theacceptance condition imposes that one goes in�nitely often through a �nal state of A0 inthe copy 0. This forces all the components of A to visit their accepting states in a cyclicorder. We leave it to the reader to formally prove that L(A) = L(A0) \ : : : \ L(Ak�1).7

2.3 Subword AutomataTo make the construction of B�uchi automata from extended temporal logic formulaseasier, we de�ne more specialized classes of automata: subword automata and set-subwordautomata. They are the specialization to words of subtree automata and set-subtreeautomata de�ned in [VW86b]. For completeness sake, we give a detailed treatment ofthis specialization.Intuitively, a subword automaton checks that, starting at every position in an in�niteword, there is a �nite word accepted by some automaton. The automata accepting�nite words at the various positions di�er only by their initial state. The initial statecorresponding to a position is determined by the symbol appearing at that position inthe in�nite word. Formally, a subword automaton A is a tuple (�; S; �; �; F), where� � is the alphabet,� S is the state set,� � : S � �! 2S is the transition function,� � : �! S is the labeling function, and� F � S is the nonempty set of accepting states.An in�nite word w 2 �! is accepted by A if the following two conditions hold:� labeling condition: �(wi+1) 2 �(�(wi); wi) for every i 2 !� subword condition: for every i 2 !, there exists some j � i and a mapping ' :[i; j]! S such that '(i) = �(wi), '(j) 2 F , and for all k, i � k < j, '(k + 1) 2�('(k); wk).The labeling condition requires the labeling � of the word to be compatible with thetransition function of A. The subword condition, requires that from each position i inthe word, there be a subword accepted by A viewed as an automaton on �nite wordswith initial state �(wi).Using a construction similar to the ag construction of Choueka [Ch74], a subwordautomaton, even without the labeling condition, can be converted to a B�uchi automatonwith at most an exponential increase in size. We show now that because of the labelingcondition we can do this conversion with only a quadratic increase in size. Before provingthis we need a technical lemma.Lemma 2.7: Let A = (�; S; �; �; F) be a subword automaton. Then A accepts a wordw : ! ! � i�� �(wi+1) 2 �(�(wi); wi) for every i 2 !, and8

� for every i 2 !, there exists some j > i and a mapping ' : [i; j] ! S such that'(i) = �(wi), '(j) 2 F , and for all k, i � k < j, '(k + 1) 2 �('(k); wk).Proof: The only di�erence between the condition in the lemma and the standard con-dition of acceptance is the requirement that the interval [i; j] contain at least two pointsand hence that the accepted subword wi : : :wj�1 be nonempty. Thus the \if" directionis trivial. For the \only if" direction assume that A accepts w. The labeling conditionclearly holds, so it remains to show the existence of the \right" subword.Let i 2 !. Then, there exists some j � i and a mapping 'i : [i; j]! S that satis�esthe subword condition at i. If i > j, then we are done. So, let us assume i = j. We knowthat there exists some k � i + 1 and a mapping 'i+1 : [i + 1; k] ! S that satis�es thesubword condition at point i+ 1. We claim that the interval [i; k] satis�es the subwordcondition at i. Indeed, because of the labeling condition, the mapping ' = 'i ['i+1satis�es the required conditionsTheorem 2.8: Every subword automaton with m states is equivalent to a B�uchi automa-ton with O(m2) states.Proof: Let A = (S;�; �; �; F) be a subword automaton. We now de�ne two new transi-tion functions �1; �2 : S � �! 2S :� �1(s; a) = �(s; a) if s = �(a), and �1(s; a) = ; otherwise.� �2(s; a) = �(�(a); a) if s 2 F , and �2(s; a) = �(s; a) otherwise.These transition functions let us de�ne two B�uchi automata B1 = (�; S; �1; S; S) andB2 = (�; S; �2; S; F). Basically, B1 will take care of checking the labeling condition andB2 of checking the subword condition.Let us show that a word w : ! ! � is accepted by A i� it is accepted by both B1 andB2.Suppose �rst that w is accepted by B1 and B2. This means there are accepting runs�1 = s10; s11; : : : and �2 = s20; s21; : : : of B1 and B2 (resp.) on w. We verify �rst thatthe labeling property holds. Clearly, �1(s1i; wi) 6= ; for every i 2 !. Thus, s1i = �(wi).Consequently, for every i 2 !,�(wi+1) = s1;i+1 2 �1(s1i; wi) = �(�(wi); wi):It remains to verify the subword condition.Let i � 0. As the run �2 is accepting, there is some j � i such that s2j 2 F . Forthe same reason, there is a k > j such that s2k 2 F . Assume without loss of generalitythat s2l 62 F for all j < l < k. Consider the interval [i; k]. We claim that it satis�es thesubword condition at i. 9

Indeed, a suitable mapping ' : [i; k]! S can be de�ned in the following way: '(l) =�(wl) for l 2 [i; j] and '(l) = s2l for l 2 [j + 1; k]. Clearly '(k) 2 F . For i � l < j wehave '(l + 1) = �(wl+1) 2 �(�(wl); wl) = �('(l); wl):For l = j we have'(l + 1) = s2l+1 2 �2(s2l; wl) = �(�(wl); wl) = �('(l); wl)as s2j 2 F . Finally, for j + 1 � l < k'(l+ 1) = s2l+1 2 �2(s2l; wl) = �(s2l; wl) = �('(l); wl)as s2l 62 F for j + 1 � l < k.We now have to show that if w is accepted by A then it is accepted by both B1 andB2. Consider the run �1 = s10; s11; s12; : : : where s1i = �(wi). By the labeling condition,�1 is an accepting run of B1 on w.We now de�ne a computation �2 = s20; s21; s22; : : : of B2 by de�ning it on a sequenceof increasing intervals [0; j1]; [0; j2]; : : : such that for each ji, s2ji 2 F . The �rst interval is[0; 0] and we de�ne s20 = s, where s is an arbitrary member of F . Suppose now that �2is de�ned on the interval [0; jn]. By induction, s2jn 2 F . By Lemma 2.7, there exists aninterval [jn; jn+1], jn+1 > jn and a mapping ' : [jn; jn+1]! S such that '(jn) = �(wjn),'(jn+1) 2 F , and for all k, jn � k < jn+1, '(k + 1) 2 �('(k); wk). Without loss ofgenerality, we can assume that '(k) 62 F for jn < k < jn+1. For jn < k � jn+1, we de�nes2k = '(k). We show now that for every jn � k < jn+1, s2;k+1 2 �2(s2k; wk). Indeed, ifk = jn, then s2k = �(wjn) and s2k 2 F . Consequently,s2;k+1 = '(k + 1) 2 �(�(wk); wk) = �2(s2k; wk):If jn < k < jn+1, then s2k = '(k) 62 F . Consequently,s2;k+1 = '(k + 1) 2 �('(k); wk) = �2(s2k; w(k)):Clearly, S1n=1[0; jn] = !. Hence we have de�ned a run �2 of B2. Moreover, as for eachjn, s2jn 2 F , the run is accepting.We have shown that w is accepted by both B1 and B2. Finally, by Theorem 2.6, wecan construct an automaton B such that a word w is accepted by B i� it is accepted byboth B1 and B2. It follows that the subword automaton A is equivalent to the B�uchiautomaton B.Subword automata are more adequate than B�uchi automata for the purpose of re-ducing satis�ability of formulas to nonemptiness of automata. Nevertheless, to facilitateour task in the rest of the paper, we now specialize the notion of subword automataeven further. The words that we shall deal with are going to consists of sets of formulas,10

and the states of the automata that will accept these words are also going to be sets offormulas. Thus, we consider automata where the alphabet and the set of states are thesame set and have the structure of a power set. We will call these automata set-subwordautomata.Formally, a set-subword automaton A is a pair (; �), where� 	 is a �nite set of basic symbols (in fact these symbols will be just formulas ofthe logic). The power set 2	 serves both as the alphabet � and as the state set S.The empty set serves as a single accepting state. We will denote elements of 2	 bya;b; : : : when viewed as letters from the alphabet �, and by s; s1; : : : when viewedas elements of the state set S. Intuitively, a letter is a set of formulas that are\alleged" to be true and a state is a set of formulas that for which the automatontries to verify the \allegation".� � : S ��! 2S is a transition function such that1. �(s;a) 6= ; i� s � a,2. ; 2 �(;;a),3. if s � s0, s1 � s01 and s1 2 �(s0;a), then s01 2 �(s;a),4. if s01 2 �(s1;a) and s02 2 �(s2;a), then s01 [s02 2 �(s1 [s2;a).A word w : ! ! � is accepted by A if for every i 2 ! and every f 2 wi there existsa �nite interval [i; j] and a mapping ' : [i; j]! S such that� '(i) = ffg,� '(j) = ;, and� for all i � k < j, '(k + 1) 2 �('(k); wk).The acceptance condition requires that for each position i in the word and for eachformula f in wi, the \right" formulas appear in the letters wi+1; wi+2; : : :. Intuitively,the transition of the automaton are meant to capture the fact that if a certain formulaappears in wi, then certain formulas must appear in wi+1. The four conditions imposedon the transition relation � can be explained as follows:1. The formulas in the state of the automaton are formulas that the automaton is tryingto verify. A minimal requirement is that these formulas appear in the letter ofthe scanned position of the word. As we will see, this condition is related to thelabeling condition de�ned for subword automata.2-3. These are what we call monotonicity conditions. A transition of the automatonis a minimum requirement on the formulas in wi+1 given the formulas that theautomaton is trying to verify at i. Clearly if there is nothing to verify at i, thennothing is required at i+ 1 (condition (2)). Also, the transition is still legal if wetry to verify fewer formulas at i or more formulas at i+ 1.11

4. This is an additivity condition. It says that there is no interaction between di�erentformulas that the automaton is trying to verify at position i. Thus the union oftwo transitions is a legal transition.The acceptance condition requires that for each position in the word, if we start theautomaton in each of the singleton sets corresponding to the members of the letter ofthat position, it accepts a �nite subword. We will now prove that, given conditions (2),(3) and (4), it is equivalent to require that the automaton accept when started in thestate identical to the letter of the node.Theorem 2.9: Let A = (; �) be a set-subword automaton, let w : ! ! 2	 be a word,and let i 2 !. The following are equivalent:1. There exists some j � i and a mapping ' : [i; j]! S such that '(i) = wi, '(j) = ;,and for all i � k < j, '(k + 1) 2 �('(k); wk).2. For every f 2 wi, there exists some jf � i and a mapping 'f : [i; jf]! S such that'f (i) = ffg, 'f (j) = ;, and for all i � k < jf , 'f (k + 1) 2 �('f (k); wk).Proof:(1)) (2). Let f 2 wi. We take jf = j, and de�ne 'f as follows: 'f (i) = ffg and'f (k) = '(k) for i < k � jf . We only have to show that 'f (k + 1) 2 �('f (k); wk)for i � k < jf . But this follows, by the monotonicity condition (3) in the de�nition ofset-subword automata, since 'f (i) � '(i).(2)) (1). If wi = ; take j = i, otherwise take j = maxf2wifjfg. For every f 2 wi, extend 'fto [i; j] by de�ning 'f(k) = ; for jf < k � j. If wi = ; we de�ne '(i) = ;, otherwise wede�ne '(k) = Sf2wi 'f (y) for each k 2 [i; j]. Because j � jf for each f 2 wi, '(j) = ;.Furthermore, by condition (4) in the de�nition of set-subword automata, if i � k < j,then '(k + 1) 2 �('(k); wk).We can now prove that set-subword automata can be converted to subword automatawithout any increase in size. Thus, by Theorem 2.8, a set-subword automaton can beconverted to an equivalent B�uchi automaton with only a quadratic increase in size.Theorem 2.10: The set-subword automaton A = (; �) is equivalent to the subwordautomaton A0 = (2	; 2	; �; �; f;g) , where � is the identity function.Proof: By Lemma 2.9, it is immediate that if a word w is accepted by the automatonA0, then it is also accepted by A. Also by Lemma 2.9, if the word w is accepted bythe set-subword automaton A, the subword condition of the subword automaton A0 issatis�ed. It remains to show that � satis�es the labeling condition. In other words, since� is the identity mapping, we have to show that for every i 2 !, wi+1 2 �(wi; wi). SinceA accepts w, there exists some j � i and a mapping ' : [i; j]! S such that '(i) = wi,12

'(j) = ; and for all i � k < j, '(k + 1) 2 �('(k); wk). If j = i, then wi = ;, andby the monotonicity conditions we have wi+1 2 �(wi; wi). Otherwise, i + 1 2 [i; j], so'(i+ 1) 2 �(wi; wi). Consider now i + 1. If '(i + 1) = ;, then clearly '(i+ 1) � wi+1.Otherwise, �('(i + 1); wi+1) 6= ;, so, by condition (1) in the de�nition of set-subwordautomata, '(i+ 1) � wi+1. Thus by the monotonicity condition wi+1 2 �(wi; wi).3 Temporal Logic with Automata Connectives3.1 De�nitionWe consider propositional temporal logic where the temporal operators are de�ned by�nite automata, similarly to the extended temporal logic (ETL) of [Wo83]. More pre-cisely, we consider formulas built from a set Prop of atomic propositions. The set offormulas is de�ned inductively as follows:� Every proposition p 2 Prop is a formula.� If f1 and f2 are formulas, then :f1 and f1 ^ f2 are formulas.� For every nondeterministic �nite automaton A = (�; S; �; S0; F), where � is theinput alphabet fa1; : : : ; ang, S is the set of states, � : �� S ! 2S is the transitionrelation, S0 � S is the set of initial states, and F � S is a set of accepting states,if f1; : : : ; fn are formulas (n = j�j) then A(f1; : : : ; fn) is a formula. We call A anautomaton connective.We assume some standard encoding for formulas. The length of a formula is the lengthof its encoding. This of course includes also the encoding of the automata connectives.A structure for our logic is an in�nite sequence of truth assignments, i.e., a function� : ! ! 2Prop that assigns truth values to the atomic propositions in each state. Notethat such a function � is an in�nite word over the alphabet 2Prop. We will thus usethe terms word and sequence interchangeably. We now de�ne satisfaction of formulasand runs of formulas A(f1; : : : ; fn) over sequences by mutual induction. Satisfaction of aformula f at a position i in a structure � is denoted �; i j= f . We say that a sequence �satis�es f (denoted � j= f) if �; 0 j= f .� �; i j= p i� p 2 �(i), for an atomic proposition p.� �; i j= f1 ^ f2 i� �; i j= f1 and �; i j= f2.� �; i j= :f i� not �; i j= f .� �; i j= A(f1; : : : ; fn), where A = (�; S; �; S0; F), i� there is an accepting run � =s0; s1; : : : of A(f1; : : : ; fn) over �, starting at i.13

� A run of a formula A(f1; : : : ; fn), where A = (�; S; �; S0; F), over a structure �,starting at a point i, is a �nite or in�nite sequence � = s0; s1; : : : of states from S,where s0 2 S0 and for all k, 0 � k < j�j, there is some aj 2 � such that �; i+k j= fjand sk+1 2 �(sk; aj).Depending on how we de�ne accepting runs, we get three di�erent versions of thelogic:� ETLf : A run � is accepting i� some state s 2 F occurs in � (�nite acceptance)� ETLl : A run � is accepting i� it is in�nite (looping acceptance)� ETLr : A run � is accepting i� some state s 2 F occurs in�nitely often in �(repeating or B�uchi acceptance).Every formula de�nes a set of sequences, namely, the set of sequences that satisfy it.We will say that a formula is satis�able if this set is nonempty. The satis�ability problemis to determine, given a formula f , whether f is satis�able. We are also interested in theexpressive power of the logics we have de�ned. Our yardstick for measuring this poweris the ability of the logics to de�ne sets of sequences. Note that, by Corollary 2.2, ETLris at least as expressive as ETLf and ETLl. We can not, however, use Corollary 2.2, toinfer that ETLr is more expressive than ETLf and ETLl. Similarly, Corollary 2.2 doesnot give any information about the relative expressive power of ETLf and ETLl.Example 3.1: Consider the automaton A = (�; S; �; S0; F), where � = fa; bg, S =fs0; s1g, �(s0; a) = fs0g, �(s0; b) = fs1g, �(s1; a) = �(s1; b) = ;, S0 = fs0g and F = fs1g.If we consider �nite acceptance, it accepts the language a?b. It thus de�nes an ETLfconnective such that A(f1; f2) is true of a sequence i� f1 is true until f2 is true. Thus A1is equivalent to \Until" connective of [GPSS80]. It is indeed not hard to see that all theextended temporal logics (ETLf , ETLl, and ETLr) are at least as expressive as PTL.Example 3.2: Consider the automaton A = (�; S; �; S0; F), where � = fa; bg, S =fs0; s1g, �(s0; a) = fs1g, �(s0; b) = ;, �(s1; a) = ;, �(s1; b) = fs0g, S0 = fs0g and F = ;.If we consider looping acceptance, it only accepts one word: w = ababababab : : :. It thusde�nes an ETLl connective such that A1(f1; f2) is true of a sequence i� f1 is true in everyeven state and f2 is true in every odd state of that sequence. It is shown in [Wo83] thatthis property is not expressible in PTL.3.2 Translations to Automata and Decision ProcedureAs we have pointed out, the structures over which ETL is interpreted can be viewedas in�nite words over the alphabet 2Prop. It is not hard to show that our logics aretranslatable into S1S, and hence, by [Bu62] and [McN66], they de�ne ! -regular sets of14

words. That is, given a formula in one of the logics ETLf , ETLl, or ETLr, one can builda B�uchi automaton that accepts exactly the words satisfying the formula. Nevertheless,since negation in front of automata connectives causes an exponential blow-up, we mighthave expected the complexity of the translation to be nonelementary, as is the translationfrom S1S to B�uchi automata [Bu62]. Not so; for each of the logics we have de�ned,there is an exponential translation to B�uchi automata. This translation also yields aPSPACE decision procedure for the satis�ability problem. In this section, we will givethe translation for ETLf and ETLl. The translation for ETLr is given in [SVW87]. Westart with the translations for ETLf and then outline the di�erences that occur whendealing with ETLl.We �rst need to de�ne the notion of the closure of an ETLf formula g, denoted cl(g).It is similar in nature to the closure de�ned for PDL in [FL79]. From now on we identifya formula ::g0 with g0. Given an automaton A = (�; S; �; S0; F), for each s 2 S wede�ne As to be the automaton (�; S; �; fsg; F). The closure cl(g) of an ETLf formula gis then de�ned as follows:� g 2 cl(g).� g1 ^ g2 2 cl(g)! g1; g2 2 cl(g).� :g1 2 cl(g)! g1 2 cl(g).� g1 2 cl(g)! :g1 2 cl(g).� A(g1; : : : ; gn) 2 cl(g)! g1; : : : ; gn 2 cl(g).� A(g1; : : : ; gn) 2 cl(g)! As(g1; : : : ; gn) 2 cl(g), for all s 2 S.Intuitively, the closure of g consists of all subformulas of g and their negations, as-suming that As(g1; : : : ; gn) is considered to be a subformula of A(g1; : : : ; gn). Note thatthe cardinality of cl(g) can easily be seen to be at most 2l, where l is the length of g.A structure � : ! ! 2Prop for an ETLf formula g can be extended to a sequence� : ! ! 2cl(g) in a natural way. With each point i 2 !, we associate the formulas in cl(f)that are satis�ed at that point. Sequences on 2cl(g) corresponding to models of a formulasatisfy some special properties.A Hintikka sequence for an ETLf formula g is a sequence � : ! ! 2cl(g) that satis�esconditions 1{5 below. To state these conditions, we use a mapping that, for an automatonconnective A, associates states of A to elements of 2cl(g). Precisely, given A(g1; : : : ; gn) 2cl(g) with A = (�; S; �; S0; F), we de�ne a mapping �A : 2cl(g) ! 2S such that�A(a) = fs 2 �(s0; al) : s0 2 S0; al 2 �; and gl 2 ag:In the following conditions, whenever A(g1; : : : ; gn) 2 cl(g) is mentioned, we assume thatA = (�; S; �; S0; F). The conditions are then:15

1. g 2 �0,and for all i 2 !2. h 2 �i i� :h 62 �i,3. h ^ h0 2 �i i� h 2 �i and h0 2 �i,4. if A(g1; : : : ; gn) 2 �i, then either S0 \ F 6= ; or there exists some j > i and amapping ' : [i; j]! 2cl(f) such that:� '(k) � �k for i � k � j,� As0(g1; : : : ; gn) 2 '(i) for some s0 2 S0,� '(j) = ;,� for all k, i � k < j, if As(g1; : : : ; gn) 2 '(k), then either{ s 2 F , or{ there is some t 2 �As(�k) such that At(g1; : : : ; gn) 2 '(k + 1),5. if A(g1; : : : ; gn) 62 �i, then:� S0 \ F = ; and� As(g1; : : : ; gn) 62 �i+1 for all s 2 �A(�i).Hintikka conditions 2 and 3 are intended to capture the semantics of propositionalconnectives, while Hintikka conditions 4 and 5 are intended to capture the semantics ofautomata connectives. Note that for each propositional connective we need one conditionusing a double implication (\i�"), while we need two conditions for automata connectivesdue to the use of a single implication (\if : : : then"). The reason for doing this is thatHintikka condition 5 is weaker than the converse of Hintikka condition 4. This makes iteasier to construct an automaton that checks these conditions.Proposition 3.3: An ETLf formula g has a model i� it has a Hintikka sequence.Proof: Only if: Let g be an ETLf formula and let � be a model of g. We de�ne aHintikka sequence � for g as follows: for all i � 0, �i = fh 2 cl(g) : �; i j= hg. Wenow have to show that � is indeed a Hintikka sequence. By the de�nition of a model,�; 0 j= g ; this implies Hintikka condition 1. That Hintikka conditions 2, 3, 4, and 5 holdfollows immediately from the semantic de�nition of ETLf .If: Let g be an ETLf formula and let � be a Hintikka sequence for g. Consider thestructure � such that �(i) = fp 2 Prop : p 2 �ig. We now show that �; 0 j= g. Forthis, we show by induction that for all g0 2 cl(g) and i 2 !, we have that g0 2 �i i��; i j= g0. For the base case (g0 2 Prop), this is immediate by construction. The inductivestep for formulas of the form :h and h^ h0 follows directly from the Hintikka conditions16

2 and 3, respectively. It remains to prove the inductive step for formulas of the formA(g1; : : : ; gn).Suppose �rst that A(g1; : : : ; gn) 2 �i. By Hintikka condition 4 and the inductive hy-pothesis, there is a �nitely accepting run of A over � starting at i, so �; i j= A(g1; : : : ; gn).Suppose now that A(g1; : : : ; gn) 62 �i but �; i j= A(g1; : : : ; gn). Then there is a �nitelyaccepting run of A over � starting at i. That is, there are �nite sequences s0; : : : ; sk,and j0; : : : ; jk, k � 0, such that s0 2 S0, sk 2 F , and if 0 � l < k, then �; i + l j= gjland sl+1 2 �(sl; ajl). By Hintikka condition 5 and by induction on k it follows thatAsl(g1; : : : ; gn) 62 �i+l for 0 � l � k. In particular, Ask(g1; : : : ; gn) 62 �i+k. But sk 2 F ,so Hintikka condition 5 is violated.We now build a B�uchi automaton over the alphabet 2cl(g) that accepts precisely theHintikka sequences for g. We do that by building two automata, AL and AE, such thatL(AL) \ L(AE) is the set of Hintikka sequences for g. The �rst automaton AL, calledthe local automaton, checks the sequence locally, i.e., it checks Hintikka conditions 1-3and 5. This automaton is a B�uchi automaton. The second automaton AE, called theeventuality automaton, is a set-subword automaton that checks Hintikka condition 4.This automaton ensures that for all eventualities (i.e., formulas of the form A(g1; : : : ; gn)), there is some �nite word for which condition Hintikka 4 is satis�ed. Finally, weconvert the eventuality automaton to a B�uchi automaton and combine it with the localautomaton.The Local AutomatonThe local automaton is AL = (2cl(g); 2cl(g); �L; Ng; 2cl(g)). The state set is the collectionof all sets of formulas in cl(g).For the transition relation �L, we have that s0 2 �L(s;a) i� a = s and:� h 2 s i� :h 62 s,� h ^ h0 2 s i� h 2 s and h0 2 s,� if :A(g1; : : : ; gn) 2 s, the S0 \ F = ;, and for all s 2 �A(a) we have that:As(g1; : : : ; gn) 2 s0.The set of starting states Ng consists of all sets s such that g 2 s. Clearly, AL acceptsprecisely the sequences that satisfy Hintikka conditions 1-3 and 5.The Eventuality AutomatonThe eventuality automaton is a set-subword automaton AE = (cl(g); �E). For thetransition relation �E, we have that s0 2 �E(s;a) i�:� s � a, and� If A(g1; : : : ; gn) 2 s, then, either S0 \ F 6= ; or there is a state s 2 �A(a) such thatAs(g1; : : : ; gn) 2 s0. 17

It is immediate to check that conditions (1-4) of the de�nition of set-subword au-tomata are satis�ed for AE. Furthermore,AE accepts precisely the sequences that satisfyHintikka condition 4.We now have:Proposition 3.4: Let g be an ETLf formula and � : ! ! 2cl(g) be a sequence, then �is a Hintikka sequence for f i� � 2 L(AL) \ L(AE).By Theorems 2.8 and 2.10, we can build a B�uchi automaton that accepts L(AE). Thisautomaton will have 22cl(g) states. Then by using Theorem 2.6, we can build a B�uchiautomaton accepting L(AL) \ L(AE). This automaton will have 23cl(g)+1 states.7The automaton we have constructed, accepts words over 2cl(g). However, the modelsof f are de�ned by words over 2Prop. So, the last step of our construction is to take theprojection of our automaton on 2Prop. This is done by mapping each element b 2 2cl(g)into the element a 2 2Prop such that b\Prop = a. Equivalently, the automaton runs overa word over 2Prop, guesses a corresponding word over 2cl(g), and verify that the latter isa Hintikka sequence for g. To summarize, we have the following:Theorem 3.5: Given an ETLf formula g built from a set of atomic propositions Prop,one can construct a B�uchi automaton Ag (over the alphabet 2Prop), whose size is 2O(jgj),that accepts exactly the sequences satisfying g.We can now give an algorithm and complexity bounds for the satis�ability problemfor ETLf . To test satis�ability of an ETLf formula g, it is su�cient to test if L(Ag) 6= ;.By Theorem 2.4, this can be done in nondeterministic logarithmic space in the size ofAg. Moreover, it is not hard to see that the construction of Ag satis�es the conditions ofLemma 2.5. Combining this with the fact that satis�ability for propositional temporallogic (a restriction of ETLf) is PSPACE-hard [SC85], we have:Theorem 3.6: The satis�ability problem for ETLf is logspace complete for PSPACE.Let us now consider ETLl. The construction proceeds similarly to the one for ETLf .The �rst di�erence is that Hintikka conditions 4 and 5 are replaced by the following:40) if A(g1; : : : ; gn) 2 �i, then there is some s 2 �A(�i) such that As(g1; : : : ; gn) 2 �i+1.50) if :A(g1; : : : ; gn) 2 �i, then there exists some j � i and a mapping ' : [i; j]! 2cl(g)such that:� '(k) � �k for i � k � j,7This construction contains some redundancy, since the work done by the component that checksfor the labeling condition (from the proof of Theorem 2.7) is subsumed by the work done by the localautomaton. By eliminating this redundancy we can build an equivalent automaton with 22cl(g) states.18

� :As0(g1; : : : ; gn) 2 '(i) for all s0 2 S0,� '(j) = ;,� for all k, i � k < j, if :As(g1; : : : ; gn) 2 '(k), then :At(g1; : : : ; gn) 2 '(k+1)for all t 2 �As(�k).The analogue of Proposition 3.3 holds:Theorem 3.7: An ETLl formula g has a model i� it has a Hintikka sequence.Proof: As in Proposition 3.3, one direction is immediate.Let g be an ETLl formula and let � be a Hintikka sequence for g. Consider thestructure � such that �(i) = fp 2 Prop : p 2 �ig. We show by induction that for allg0 2 cl(g) and i 2 !, we have that g0 2 �i i� �; i j= g0. We show the inductive step thatcorresponds to automata connectives.Suppose �rst that A(g1; : : : ; gn) 2 �i. By Hintikka condition 40, there are in�nitesequences s0; s1; : : : and j0; j1; : : : such that s0 2 S0 and if l � 0 then sl+1 2 �(sl; ajl) andgjl 2 �i+l. By the induction hypothesis �; i+ l j= gjl for all l � 0, so �; i j= A(g1; : : : ; gn).Suppose now that A(g1; : : : ; gn) 62 �i. Then, by Hintikka condition 2, we have that:A(g1; : : : ; gn) 2 �i. If �; i j= A(g1; : : : ; gn), there is an in�nite run � = s0; s1; : : : ofA(g1; : : : ; gn) over � starting at i. More explicitly, we have that s0 2 S0 and for all k � 0there is some aj 2 � such that �; i + k j= gj and sk+1 2 �(aj; sk). By the inductionhypothesis, if �; i+ k j= gj, then gj 2 �i+k. But then, Hintikka condition 50 cannot hold.We again construct an automaton to recognize Hintikka sequences in two parts: thelocal automaton and the eventuality automaton. This time the local automaton dealswith Hintikka conditions 1{4 and the eventuality automaton deals with condition 5.The local and eventuality automata only di�er from those for ETLf by their transitionfunctions. They are the following:The Local AutomatonWe have that s0 2 �L(s;a) i� a = s and:� h 2 s i� :h 62 s,� h ^ h0 2 s i� h 2 s and h0 2 s,� if A(g1; : : : ; gn) 2 s, the for some s 2 �A(s) we have that As(g1; : : : ; gn) 2 s0.The Eventuality AutomatonWe have that s0 2 �E(s;a) i�:� s � a, and 19

� If :A(g1; : : : ; gn) 2 s, then for all s 2 �A(a) we have that :As(g1; : : : ; gn) 2 s0.We now have the analogues of Proposition 3.4 and Theorems 3.5 and 3.6:Proposition 3.8: Let g be an ETLl formula and � : ! ! 2cl(g) be a sequence, then �is a Hintikka sequence for g i� � 2 L(AL) \ L(AE).Theorem 3.9: Given an ETLl formula g built from a set of atomic propositions Prop,one can construct a B�uchi automaton Ag (over the alphabet 2Prop), whose size is 2O(jgj),that accepts exactly the sequences satisfying f .Theorem 3.10: The satis�ability problem for ETLl is logspace complete for PSPACE.The construction described above simultaneously takes care of running automata inparallel, when we have an automata connective nested within another automata con-nective, and complementing automata, when we have a negated automata connective.Thus, the construction can be viewed as combining the classical subset construction of[RS59] and Choueka's \ag construction" in [Ch74]. This should be contrasted with thetreatment of ETLr in [SVW87], where a special construction is needed to complementB�uchi automata. As a result, the size of the automaton Ag constructed in [SVW87] foran ETLr formula g is 2O(jgj2). Using results by Safra [Sa88], this can be improved to2O(jgj log jgj), which is provably optimal. Thus, while the construction given here for ETLfand ETLl as well as the construction given in [SVW87] for ETLr are exponential, theexponent for ETLf and ETLl is linear, while it is nonlinear for ETLr.It is interesting the compare our technique here to Pratt's model construction tech-nique [Pr79]. There one starts by building a maximal model, and then one eliminatesstates whose eventualities are not satis�ed. Our local automata correspond to thosemaximal models. However, instead of eliminating states, we combine the local automatawith the eventuality automata checking the satisfaction of eventualities. This construc-tion always yields automata whose size is exponential in the size of the formula. Wecould also construct our automata using the tableau technique of [Pr80]. This techniquecan sometimes be more e�cient than the maximal model technique.A major feature of our framework here is the use of set-subword automata to checkfor eventualities. A direct construction of a B�uchi automaton to check for eventualitieswould have to essentially use the constructions of Theorems 2.8 and 2.9. To appreciatethe simplicity of our construction using set-subword automata, the reader is encouragedto try to directly construct a B�uchi automaton that checks Hintikka condition 4 forETLf or checks Hintikka condition 5' for ETLl. There are, however, other possibleapproaches to the translation of formulas to automata. Streett [St90] suggested usingso-called formula-checking automata. His approach eliminates the need for distinctionbetween the local automaton and the eventuality automaton. Another approach, usingweak alternating automata is described in [MSS88]. In that approach not only there20

is no distinction between the local automaton and the eventuality automaton, but theautomaton is constructed by a simple induction on the structure of the formula. Webelieve, however, that the distinction between the local automaton, which checks localproperties, and the eventuality automaton that checks global properties is fundamental,even if it is avoidable for ETLf and ETLl. For example, for ETLr or the temporal�-calculus, the construction of the local automaton is straightforward, and the maindi�culty lies in the construction of the \global" automaton [SVW87, Va88]. Unlike ourapproach, the \unitary" approaches of [MSS88, St90] do not generalize to these logics.4 Translations Among the LogicsThe results of the previous section show that the set of sequences describable by ETLf ,ETLl or ETLr formulas are expressible by B�uchi automata. In the case of ETLr, theconverse is also clearly true. Thus, ETLr has exactly the same expressive power as B�uchiautomata. Since, by Lemma 2.1, the notions of �nite and looping acceptance are weakerthan the notions of repeating acceptance, it would be conceivable for ETLf and ETLl tobe less expressive than ETLr and hence B�uchi automata. We show that this is not thecase as there is a translation of ETLr formulas to ETLf and ETLl. As we will see, thesetranslations involves an exponential increase in the length of the formula. Before givingthese constructions, which are based on nontrivial automata-theoretic results from [Sa88],we show that there are straightforward translations between ETLf and ETLl (which alsoinvolves a single exponential increase in the length of the formulas).We start by going from ETLf to ETLl.Theorem 4.1: Given an ETLf formula g of length m, one can construct an ETLlformula g0 of length 2O(m), that is satis�ed by exactly the same sequences as g.Proof: To prove our theorem, we need to show how an ETLf formula A(f1; : : : ; fn),where A is de�ned by a nondeterministic �nite acceptance automaton can be translatedinto ETLl. The idea of this translation is that the sequences accepted by a �nite accep-tance automaton are those rejected by a closely related looping acceptance automaton, ifthe automaton is deterministic. To determinize �nite acceptance automata, we can usethe classical subset construction of [RS59].The subset construction alone, however, does not assure su�cient determinism. Whatwe want is that, given a structure, there is only one run of the deterministic automa-ton over that structure. Now, even though the automaton A is deterministic, a for-mula A(f1; : : : ; fn) could be nondeterministic because states in a structure might sat-isfy more than one formula fi. To overcome this type of nondeterminism, we replaceA = (�; S; �; S0; F) by an automaton over 2�. The automaton is A0 = (2�; S; �0; S0; F),where the transition relation �0 is de�ned as follows: si 2 �0(sj;X) i� si 2 �(sj; a) forsome a 2 X. Now, A(f1; : : : ; fn) is equivalent to A0(g1; : : : ; g2n), where the formula gicorresponding to a set Xi � � is (Vaj2Xi fj) ^ (Vaj 62Xi :fj). Clearly, in a given stateexactly one gi is satis�ed. 21

Our next step, is to apply the subset construction to the automaton A0. This yieldsan automaton A00 = (2�; 2S; �00; fS0g; F 00) where� s0 2 �00(a; s) i� s0 = fs0 2 S j 9s 2 s such that s0 2 �(a; s)g.� F 00 = fs 2 2S js \ F 6= ;g.Now, for a given structure, there is a unique computation of A00(g1; : : : ; g2n) on thatstructure and that computation is accepting i� it reaches a state in F 00. In other words,the computation is nonaccepting if it is a looping computation of the automaton A000 =(2�; 2S � F 00; �00; fS0g;�)8. Hence our translation of A(f1; : : : ; fn) into ETLl is:A000(g1; : : : ; g2n) (1)The size of (1) is clearly exponential in the size of A(f1; : : : ; fn) and hence the translationof a formula of length m will be of length 2O(m).We now turn to the translation from ETLl to ETLf .Theorem 4.2: Given an ETLl formula g of length m, one can construct an ETLfformula g0 of length 2O(m), that is satis�ed by exactly the same sequences as g.Proof: The proof is identical to that of Theorem 4.1 except that this time the automatonA000 is the �nite acceptance automaton de�ned by A000 = (2�; 2S ; �00; fS0g; ;).To translate from ETLr to ETLf and ETLl, we will also use the determinization ofthe automaton de�ning a connective. However, here the automata are B�uchi automataand they cannot be determinized by the subset construction. It is possible to builda deterministic �nite-state automaton corresponding to a B�uchi automaton, but thisautomaton will have to use a more general type of accepting condition than the in�niterepetition of some state in a set F [McN66, Ch74]. Rather than using this more generaltype of automaton, we will rely on a construction that partially determinizes B�uchiautomata.Lemma 4.3: [Sa88]: Given a B�uchi automaton A = (�; S; �; S0; F), where jSj = m, onecan construct k � m nondeterministic automata on �nite words Ai each of size at mostO(m) and k deterministic B�uchi automata Bi, each of size at most 2O(m), such that thelanguage L(A) accepted by A satis�es L(A) = S1�i�k L(Ai)L(Bi).We can now give our translations. We �rst deal with ETLf .Theorem 4.4: Given an ETLr formula g of length m, one can construct an ETLfformula g0 of length 2O(m), that is satis�ed by exactly the same sequences as f .8Remember that for looping automata the set of designated states is irrelevant.22

Proof: For convenience in the proof, we temporarily use the following de�nition. Givena set of ETLr formulas ff1; : : : ; fng, a set of in�nite words L over an alphabet � =fa1; : : : ; ang is satis�ed by a sequence � i� there is a word w1w2 : : : in L such that�; i j= fj if wi = aj. Note that this de�nition coincides with the de�nition of automataconnectives when the language L is the language accepted by an automaton.To prove our theorem, we need to show how an ETLr formula A(f1; : : : ; fn), whereA is de�ned by a nondeterministic B�uchi automaton can be translated into ETLf . Themain di�culty is to express in ETLf the condition imposed by the repetition set of thenondeterministic B�uchi automaton. By using Lemma 4.3, we will replace the nondeter-ministic B�uchi automaton A by the deterministic automata Bi. We will then show howrepetition for deterministic B�uchi automata can be expressed in ETLf .However, similarly to the proof of Theorem 4.1, we will want the deterministic au-tomata Bi to be deterministic over the structure. This implies that we have to ensurethat only one argument of the automaton connective is true in each state of the structure.Thus, we �rst use the same construction as in Theorem 4.1 and replace the automatonA = (�; S; �; S0; F) by the automaton A0 = (2�; S; �0; S0; F). The formula A(f1; : : : ; fn)is then equivalent to A0(g1; : : : ; g2n).Now, we will use Lemma 4.3 on the automaton A0. Lemma 4.3 enables us to expressthe language accepted by A0 asL(A0) = [1�i�k L(A0i)L(B 0i)Each of the terms of the union de�nes a language on in�nite strings. Similarly to au-tomata connectives, each of these languages is satis�ed by a given set of sequences.Clearly, a sequence satis�es A0(g1; : : : ; g2n) i� it satis�es one of the languages L(A0i)L(B 0i).Hence, if we build an ETLf formula fi corresponding to each of the terms of the union,the ETLf formula corresponding to A0(g1; : : : ; g2n) will be_1�i�k fi:We now give the translation for each of the terms of the union. We start with the in�niteparts of the term, B 0i.Given a deterministic B�uchi automaton B 0i = (2�; S 0i; �0i; S 00i ; F 0i), we want to constructan ETLf formula f 0i such that a sequence satis�es f 0i i� it satis�es B 0i(g1; : : : ; g2n). Weuse the fact that given a in�nite sequence, there is exactly one run of B 0i(g1; : : : ; g2n) overthat sequence. That run is accepting if it goes through some state in F 0i in�nitely often.Similarly, it is nonaccepting if after some point, it never goes through a state in F 0i . Wewill express the latter condition and then negate it.To do this, we express that B 0i eventually reaches a state s after which it nevergoes through a state in F 0i . The sequences that cause B 0i never to go through a statein F 0i from the state s are those rejected by the �nite-acceptance automaton B 0i;s =23

(2�; S 0i; �0i; fsg; F 0i). They are hence also those satisfying the formula's = :B 0i;s(g1; : : : ; g2n).To express that B 0i eventually reaches s and satis�es 's, we use the �nite-acceptance au-tomaton B 00i;s = (2� [fag; S 0i [feg; �00i;s; S 00i ; feg), where a is a new letter and e a newstate. The transition relation �00i;s is �0i extended with �00i;s(s; a) = feg. The formulaf 00i;s = B00i;s(g1; : : : ; g2n; 's) then expresses that the automaton B 0i eventually reaches states and from then on never goes through any state in F 0i . Thus, to state that the computa-tion of the automaton B 0i is accepting, we need to state for all states s 2 S 0i, the formulaf 00i;s does not hold. In other words, f 0i = ^s2S0i :f 00i;s:Now, to construct fi, we need to express that there is some computation of A0i afterwhich f 0i holds. Le A0i be the automaton (2�; T 0i ; �0i; T 00i ; G0i). We build the automatonA00i = (2� [fag; T 0i [feg; �00i ; T 00i ; feg) where a is a new letter, e is a new state and thetransition relation �00i is �0i augmented with �00i (a; s) = feg for s 2 G0i. We then �nallyhave that fi = A00i (g1; : : : ; g2n; f 0i):The size of each B 0i is exponential in the size of the original automaton A whereasthe size of each A0i is linear. The formula fi contains at most one copy of A0i and 2� jB 0ijcopies of B 0i. It is thus exponential in the size of A. Hence the formula W1�i�k fi isalso exponential in the size of A(f1; : : : ; fn). Thus when translating an ETLr formula oflength l to ETLf , the result will be of length 2O(m).We now consider the translation to ETLl. The result is similar to the one for ETLf .Theorem 4.5: Given an ETLr formula g of length m, one can construct an ETLlformula f 0 of length O(2O(m)), that is satis�ed by exactly the same sequences as g.Proof: The proof is along the same lines as that of Theorem 4.4 However, we have touse looping acceptance automata instead of �nite acceptance automata. We outline howthis is done for each of the �nite acceptance automata appearing in the proof of Theorem4.4 The �rst such automaton is B 0i;s. We use instead the looping automatonB0i;s;loop = (2�; S 0i � F 0i ; �0i; fsg;�):That is, the automaton B 0i;s;loop is the automaton B 0i;s with the set of designated statesremoved and the transition relation updated accordingly. The formula 's then becomes's = B 0i;s;loop(g1; : : : ; g2n).The second �nite acceptance automaton used is B 00i;s We replace it byB00i;s;loop = (2� � f0; 1g; S 0i; �00i;s;loop; S 00i ;�);where the transition relation �00i;s;loop is de�ned as follows:24

� if � 6= s, then for all letters � 2 2�, �00i;s;loop((�; 0); �) = �00i;s;loop((�; 1); �) = �0i(�; �).� if � = s, then for all letters � 2 2�, �00i;s;loop((�; 0); �) = �0i(�; �) and�00i;s;loop((�; 1); �) = ;We then havef 00i;s = :B 00i;s;loop(g1 ^ :'s; : : : ; g2n ^ :'s; g1 ^ 's; : : : ; g2n ^ 's)Intuitively, we have constructed the operator B 00i;s;loop so that it is strictly deterministicand is true only if the formula 's is false each time B 0i goes through the state s. Thusits negation will be satis�ed if at some point B 0i goes through the state s with 's true.The last �nite acceptance operator appearing in the proof of Theorem 4.4 is A001. Aswe have shown in Theorem 4.1, it is always possible to replace an ETLf operator by anETLl operator at the cost of an exponential increase in size. This is what we do here.It does not a�ect the exponential overall complexity of our translation as the automatonA00i is of size linear in the length of the original formula.5 Alternating Temporal LogicThe results of the preceding sections show that our technique is applicable to automataconnectives and to the negation of automata connectives. This suggests that this tech-nique can also deal with alternation.Given a set S of states, let us denote by BS the set of all Boolean formulas that usethe states in S as variables. Members of BS can be viewed as Boolean-valued functionson 2S . Let ' 2 BS and S 0 � S. Then '(S 0) is the Boolean value of ' when the states inS0 are assigned 1 and the states in S � S 0 are assigned 0. Formulas of the form s or :s,where s 2 S, are called atomic formulas.An alternating �nite automaton [BL80, CKS81] (abbr. AFA) A is a tuple A =(�; S; �; '0; F), where � is the input alphabet, S is the set of states fs1; : : : ; smg, � :S � � ! BS is the transition function that associates with each state and letter aBoolean formula in BS, '0 2 BS is the start formula, and F � S is the set of acceptingstates. We can extend � to BS � � : �('; a) is obtained by substituting �(sj; a) in 'for each sj, 1 � j � m. For example, if �(s1; a) = s3 _ s4 and �(s2; a) = s3 ^ :s4, then�(:s1 _ s2; a) = (:s3 ^ :s4) _ (s3 ^ :s4). We de�ne an auxiliary mapping � : 2S ! 2BSby �(T) = fs : s 2 Tg [f:s : s 2 S � Tg:We �rst consider acceptance of �nite words by AFA. The run of A on a word w =a1; : : : ; al is the sequence '0; : : : ; 'l of formulas from BS, where 'i = �('i�1; ai). Aaccepts w if 'l(F) = 1. An equivalent way of de�ning acceptance of �nite words by AFAis in terms of �nite run forests. A �nite run forest of A on w is a collection of �nite treeslabeled by atomic formulas satisfying the following conditions:25

� The length of all branches is l.� There is a set S 0 � S such that '0(S0) = 1 and for all ' 2 �(S 0) there is a tree inthe forest whose root is labeled by '.� Let x be an internal node of depth j, 0 � j < l, labeled by 'x. Then there is a setS00 � S such that �('x; aj)(S 00) = 1 and for all ' 2 �(S 00) there is a child y of xlabeled by '.A node x labeled by 'x is accepting if 'x(F) = 1. The run forest is accepting if x isaccepting whenever x is a leaf. A accepts w if it has an accepting run forest on w.Afa's de�ne regular languages. Nevertheless, it follows from the results in [Le81],[CKS81] that they can be exponentially more succinct than NFA's. That is, given anyn-state AFA, one can construct an 2n-state NFA that accepts the same language. Fur-thermore, for each n there is an n-states AFA A, such that the language de�ned by A isnot de�nable by any NFA with less than 2n states.The notion of alternation can also be extended to automata on in�nite words [MH84].Finite acceptance is de�ned by means of �nite acceptance forests. A �nite run forest of Aon an in�nite word w = a1a2 : : : is a collection of �nite trees labeled by atomic formulassatisfying the following conditions:� There is a set S 0 � S such that '0(S0) = 1 and for all ' 2 �(S 0) there is a tree inthe forest whose root is labeled by '.� Let x be an internal node of depth j labeled by 'x. Then there is a set S 00 � S suchthat �('x; aj)(S00) = 1 and for all ' 2 �(S 00) there is a child y of x labeled by '.Again, the run forest is accepting if x is accepting whenever x is a leaf. A accepts w if ithas an accepting run forest on w. Note that, as opposed to the de�nition used in the caseof �nite words, all branches of the run forest are not required to have the same length.Looping acceptance is de�ned by means of in�nite run forests. An in�nite run forestof A on an in�nite word w = a1a2 : : : is a collection of in�nite trees labeled by atomicformulas satisfying the following conditions:� All branches are in�nite.� There is a set S 0 � S such that '0(S0) = 1 and for all ' 2 �(S 0) there is a tree inthe forest whose root is labeled by '.� Let x be an internal node of depth j labeled by 'x. Then there is a set S 00 � S suchthat �('x; aj)(S00) = 1 and for all ' 2 �(S 00) there is a child y of x labeled by '.A accepts w if it has a run forest on w.Repeating acceptance is also de�ned by means of in�nite run forests. The conditionis that along any branch of the run forest there are in�nitely many accepting nodes.26

As is the case with �nite words, alternation does not add any expressive power beyondnondeterminism. More precisely, �nite acceptance (resp., looping acceptance, repeatingacceptance) AFA has the same expressive power as �nite acceptance (resp., looping ac-ceptance, repeating acceptance) NFA [MH84]. Thus the only gain in using alternation isin succinctness.We �rst deal with the alternating analog of ETLf . ATLf is de�ned analogously toETLf , with AFA connectives replacing NFA connectives. For an AFAA = (�; S; �; '0; F)and a formula ' 2 BS , we de�ne A' to be the AFA (�; S; �; '; F). The semantics ofATLf are de�ned as follows:� �; i j= p i� p 2 �(i), for an atomic proposition p.� �; i j= f1 ^ f2 i� �; i j= f1 and �; i j= f2.� �; i j= :f i� not �; i j= f .To de�ne the semantics of automata connectives we �rst adapt the de�nition of �nite runforests. A �nite run forest of A(f1; : : : ; fn), where A = (�; S; �; '0; F), on a structure� starting at i is a collection of �nite trees labeled by atomic formulas satisfying thefollowing conditions:� There is a set S 0 � S such that '0(S0) = 1 and for all ' 2 �(S 0) there is a tree inthe forest whose root is labeled by '.� Let x be an internal node of depth j labeled by 'x. Then there are an al 2 � anda set S 00 � S such that �; i+ j j= fl, �('x; al)(S00) = 1 and for all ' 2 �(S 00) thereis a child y of x labeled by '.The run forest is accepting if x is accepting whenever x is a leaf. A accepts w if it hasan accepting run forest on w.Notice the di�erence between the de�nitions of run forests for AFA and AFA formulas.In a run forest of an AFA all \spawned" automata read the same input. This is not thecase in run forests of AFA formulas, since it is possible that more than one argumentof the AFA connective holds at a point i of the structure �. Essentially, AFA readcomplete description of states (i.e., the input letter), while AFA formulas only readpartial description of states (i.e., the input formula). We believe that this de�nition is theappropriate one in our context. Furthermore, as is shown in [HRV90], using the standardde�nition of run forests for AFA causes an exponential increase in the complexity of thelogic.We can now de�ne satisfaction for automata connectives:� �; i j= A(f1; : : : ; fn) if and only if A(f1; : : : ; fn) has an accepting run forest on �starting at i. 27

Clearly, ATLf is at least as expressive as ETLf . Indeed, if we restrict the formulas inBS to be positive disjunctions then ATLf reduces to ETLf . Also, there is an exponentialtranslation from ATLf to ETLf . The interest in this logic is twofold. First, since thetranslation fromATLf to ETLf causes a one exponential blow-up, one may expectATLfto be of higher complexity then ETLf . Surprisingly, it has the same complexity. Alsothe study of AFA connectives reveals the full power of our techniques.Theorem 5.1:1. Given an ATLf formula g built from a set of atomic propositions Prop, one canconstruct a B�uchi automaton Ag (over the alphabet 2Prop), whose size is 2O(jgj), thataccepts exactly the sequences satisfying g.2. The satis�ability problem for ATLf is complete in PSPACE.Proof: We prove here the �rst claim, and the second claim follows as in Section 3. Theproof parallels those given in Section 3. We are given a formula g, and we constructan automaton, which is the cross product of the local automaton and the eventualityautomaton. The notion of closure is similar to that in Section 3. For an ATLf formulag, cl(g) is de�ned as follows:� g 2 cl(g)� g1 ^ g2 2 cl(g)! g1; g2 2 cl(g)� :g1 2 cl(g)! g1 2 cl(g)� g1 2 cl(g)! :g1 2 cl(g)� A(g1; : : : ; gn) 2 cl(g)! g1; : : : ; gn 2 cl(g)� A(g1; : : : ; gn) 2 cl(g)! As(g1; : : : ; gn) 2 cl(g), for all s 2 S.� A(g1; : : : ; gn) 2 cl(g)! A:s(g1; : : : ; gn) 2 cl(g), for all s 2 S.Hintikka sequences for ATLf formulas are de�ned similarly to those used in Section3, except for conditions 4 and 5. We again need a technical de�nition to state theseconditions. Given A(g1; : : : ; gn) 2 cl(g) with A = (�; S; �; '0; F), we de�ne a mapping�A : 2cl(g) ! 22S such that�A(a) = fT : al 2 �; gl 2 a; and �('0; al)(T) = 1g:In the following conditions, whenever A(g1; : : : ; gn) 2 cl(g) is mentioned, we assume thatA = (�; S; �; '0; F). The new conditions 4 and 5 are then:400) If A(g1; : : : ; gn) 2 �i, then there exists some j � i and a mapping : [i; j]! 2cl(g)such that: 28

� (j) = ;,� there is a set S 0 � S such that '0(S 0) = 1, and for all � 2 �(S 0) we haveA�(g1; : : : ; gn) 2 (i),� for all k, i � k < j, if A'(g1; : : : ; gn) 2 (k), then either{ '(F) = 1, or{ there is some S 00 2 �A(�k) such that for all � 2 S 00 we haveA�(g1; : : : ; gn) 2 (k + 1).500) if :A(g1; : : : ; gn) 2 �i, then '0(F) = 0 and for all S 0 2 �A(�i) there exists some� 2 �(S 0) such that :A�(g1; : : : ; gn) 2 �i+1.The Local AutomatonThe local automaton is L = (2cl(g); 2cl(g); �L; Ng; 2cl(g)). For the transition relation �L,we have that s0 2 �L(s;a) i� a = s and:� g 2 s i� :g 62 s,� g1 ^ g2 2 s i� g1 2 s and g2 2 s,� if A(g1; : : : ; gn) 2 s, then there is S 0 � S such that '0(S 0) = 1 and for all � 2 S 0 wehave A�(g1; : : : ; gn) 2 s.� if :A(g1; : : : ; gn) 2 s, then '0(F) = 0 and for all S 0 2 �A(a) there exists some� 2 �(S 0) such that :As0(g1; : : : ; gn) 2 s0.Finally, the set of starting states Ng consists of all sets s such that g 2 s.The Eventuality AutomatonThe eventuality automaton is a set-subword automaton AE = (cl(g); �E). For thetransition relation �E, we have that s0 2 �E(s;a) i�:� s � a, and� If A(g1; : : : ; gn) 2 s, where '0 is atomic, then either '0(F) = 1 or there is someS0 2 �A(a) such that for all � 2 �(S 0) we have A�(g1; : : : ; gn) 2 s0.We now deal with the alternating analog of ETLl. ATLl is de�ned analogously toETLl, with AFA connectives replacing NFA connectives. We now de�ne the semanticsof automata connectives in ATLl. We �rst need the following de�nition: An in�niterun forest of A(f1; : : : ; fn), where A = (�; S; �; '0; F), on a structure � starting at i is acollection of in�nite trees labeled by states of S or negation of states of S satisfying thefollowing conditions: 29

� All branches are in�nite.� There is a set S 0 � S such that '0(S0) = 1 and for all ' 2 �(S 0) there is a tree inthe forest whose root is labeled by '.� Let x be a node of depth j labeled by 'x. Then there are an al 2 � and a setS00 � S such that �; i+ j j= fl, �('x; al)(S00) = 1 and for all ' 2 �(S 00) there is achild y of x labeled by '.We can now de�ne satisfaction for automata connectives in ATLl.� �; i j= A(f1; : : : ; fn) if and only if A(f1; : : : ; fn) has an in�nite run forest on �starting at i.Clearly, ATLl is at least as expressive as ETLl. Indeed, if we restrict the formulas inBS to be positive disjunctions, then ATLl reduces to ETLl. Also, there is an exponentialtranslation from ATLf to ETLf . The proof of the following theorem is similar to theproof of Theorem 5.1 and is left to the reader.Theorem 5.2:1. Given an ATLl formula g built from a set of atomic propositions Prop, one canconstruct a B�uchi automaton Ag (over the alphabet) 2Prop, whose size is 2O(jgj), thataccepts exactly the sequences satisfying g.2. The satis�ability problem for ATLl is complete in PSPACE.Finally, we describe the alternating analog of ETLr. Recall that an accepting nodein a run forest is a node x labeled by 'x such that 'x(F) = 1. In ATLr, an in�nite runforest is accepting if every branch has in�nitely many accepting nodes. Satisfaction forautomata connectives in ATLr is de�ned by:� �; i j= A(f1; : : : ; fn) if and only if A(f1; : : : ; fn) has an accepting in�nite run foreston � starting at i.In [MH84] it is shown that alternation can be eliminated from repeating acceptanceautomata by an exponential construction. We conjecture that this construction can becombined with the techniques of [SVW87] to prove the analogue of Theorems 5.1 and 5.2(though with a nonlinear exponent in the exponential bound) for ATLr.30

6 Concluding RemarksThere are other approaches to extending PTL. In [HP85] the language is extended byregular operators corresponding to concatenation and the Kleene star. This, however,pushes the decision problem for their language to nonelementary complexity. Further-more, it does not show the �ne interplay between the di�erent acceptance conditions thatwe have considered. In [Si83, SVW87], PTL is extended with quanti�ers over proposi-tions. For this extension, the complexity of the decision procedure is again nonelementary.The extension of PTL closest to the one discussed in this paper is probably that of thetemporal �-calculus, in which PTL is extended with �xpoint operators. It was introducedin [EC80]; see also [BKP85, BKP86]. It has the same expressive power as ETL and, asis shown in [Va88], also has a PSPACE-complete decision problem (see also [BB89]). Itis interesting to note however that this last result was obtained using an extension of theautomata-theoretic techniques presented in this paper.The relation between the various types of acceptance criteria for �nite automata canalso be presented within the framework of propositional dynamic logic (PDL) [FL79].Since we are reasoning here about computation paths, we consider PDL with one deter-ministic atomic program (1DPDL), where the structures are in�nite sequences. In thisframework, the �nite acceptance condition corresponds to the diamond construct [FL79],the looping acceptance condition corresponds to the loop construct [HP79], and the re-peating acceptance condition corresponds the repeat construct [HP79]. It follows thatadding to 1DPDL looping, repeating, �xpoint, and even quanti�cation over propositionsdoes not change the expressive power of the language and does not render it undecidable.This in sharp contrast with what happens for propositional dynamic logic in general. Itis known that PDL is less expressive than PDL+ loop (Pratt, see [HS82]), which is lessexpressive than PDL + repeat [HS82], which is less expressive than PDL + fixpoint[Ko83], which can be shown to be less expressive than PDL+ quantification. Also, thelast language can even be shown to be highly undecidable (�11� complete).It should be noted that the automata-theoretic techniques developed here are alsoapplicable to propositional dynamic logic; see [Va85a, VW86a]. Also, the temporal logicsdiscussed here can be combined with dynamic logic to yield expressive process logicswhich are also amenable to automata-theoretic methods [VW83].In conclusion, we note that our results have an interesting interpretation from apurely automata-theoretic point of view. The ability to have an automaton operatornested within another automaton operator is essentially equivalent to the ability of anautomaton to consult an oracle. That is, when the automaton reaches certain states itasks the oracle whether it accepts the rest of the word, and its next move depends on theanswer. Consider now the following hierarchy. Let A0 be the class of nondeterministic�nite automata, let Ai be the class of nondeterministic �nite automata with oracles fromAi�1, and let A be [i�0Ai. If C is a class of automata, then C denotes the class oflanguages de�ned by automata in C.Now we have three hierarchies Af , Al, and Ar, depending whether we use �nite,31

looping, or repeating acceptance, respectively. Our results show that not only do thesehierarchies collapse but that they are also equivalent: Af = Al = Ar = Af1 = Al2 = Ar0.However, since each complementation causes at least an exponential blow-up, we mighthave expected the complexity of the emptiness problem for automata in Af , Al, and Ar tobe nonelementary. Our results show that the problem is logspace complete for PSPACEfor the three types of automata. This should be contrasted with the nonelementarinessof the emptiness problem for regular expressions with complement [MS73]).Acknowledgements.We wish to thank R. Fagin, J. Halpern, R. Rosner, and L. Stockmeyer for helpful com-ments. We are also grateful to R. Streett and an anonymous referees for their carefulreviews of the paper.References[AH90] R. Alur and T. Henzinger, \Real-time logics: complexity and expressiveness",Proc. 5th IEEE Symp. on Logic in Computer Science, 1990, pp. 390{401.[BB89] B. Banieqbal and H. Barringer, \Temporal Logic with Fixed Points", in Proc.Temporal Logic in Speci�cation, B. Banieqbal, H. Barringer, and A. Pnueli,eds., Lecture Notes in Computer Science 398, Springer-Verlag, 1989, pages62{74.[BKP85] H. Barringer, R. Kuiper, and A. Pnueli, \A Compositional Temporal Approachto a CSP-like Language", in Formal Methods of Programming, E. J. Neuholdand G. Chroust, eds., North Holland, 1985, pp. 207{227.[BKP86] H. Barringer, R. Kuiper, and A. Pnueli, \A Really Abstract Concurrent Modeland its Temporal Logic", Proc. 13th ACM Symp. on Principles of Program-ming Languages, St. Petersburgh, 1986, pp. 173{183.[BBP89] B. Banieqbal, H. Barringer, and A. Pnueli, eds., \Temporal Logic in Speci�ca-tion", Lecture Notes in Computer Science 398, Springer-Verlag, 1989.[BL80] J.A. Brzozowski and E. Leiss, \On Equations for Regular Languages, Fi-nite Automata, and Sequential Networks", Theoretical Computer Science10(1980), pp. 19{35.[Bu62] J. R. B�uchi, \On a Decision Method in Restricted Second Order Arithmetic",Proc. Internat. Congr. Logic, Method. and Philos. Sci. 1960, Stanford Uni-versity Press, 1962, pp. 1{12. 32

[Ch74] Y. Choueka, \Theories of Automata on !-Tapes: A Simpli�ed Approach", J.Computer and System Sciences 8(1974), pp. 117{141.[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer, \Alternation", J. ACM28(1981), pp. 114{133.[EC80] E. A. Emerson and E. M. Clarke, \Characterizing Correctness Properties ofParallel Programs as Fixpoints", Proc. 7th Int. Colloquium on Automata, Lan-guages and Programming, Lecture Notes in Computer Science 85, Springer-Verlag, 1981, pp. 169{181.[ES84] E. A. Emerson and A. P. Sistla, \Deciding Full Branching Time Logic", In-formation and Control 61(1984), pp. 175{201.[FL79] M. Fischer and R. Ladner, \Propositional Dynamic Logic of Regular Pro-grams", J. Computer and System Sciences 18(2), 1979, pp. 194{211.[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, \The Temporal Analysis ofFairness", Proc. 7th ACM Symp. on Principles of Programming Languages,Las Vegas, 1980, pp. 163{173.[Ha79] D. Harel, First Order Dynamic Logic, Lecture Notes in Computer Science 68,Springer-Verlag, 1979[Ha84] D. Harel, \Dynamic Logic", in Handbook of Philosophical Logic, vol. 2, (D.Gabbay and F. Guenther, eds.), 1984, pp. 497{604.[HP79] D. Harel and V. Pratt, \Nondeterminism in Logics of Programs", Proc. 5thACM Symp. on Principles of Programming Languages, Tuscon, 1978, pp.203{213.[HKP80] D. Harel, D. Kozen, and R. Parikh, \Process Logic: Expressiveness, Decid-ability, Completeness", J. Computer and System Science 25(2), 1982, pp.144{170[HP85] D. Harel and D. Peleg, \Process logic with Regular Formulas", TheoreticalComputer Science 38(1985), pp. 307{322.[HRV90] D. Harel, R. Rosner, and M.Y. Vardi, \On the Power of Bounded ConcurrencyIII: Reasoning about Programs", Proc. 5th IEEE Symp. on Logic in ComputerScience, 1990, pp. 478-488.[HR83] J. Y. Halpern and J. H. Reif, \The Propositional Dynamic Logic of Determin-istic, Well-Structured Programs", Theoretical Computer Science 27(1983), pp.127{165. 33

[HS82] D. Harel and R. Sherman, \Looping vs. Repeating in Dynamic Logic", Infor-mation and Control 55(1982), pp. 175{192.[HS84] D. Harel and R. Sherman, \Propositional Dynamic Logic of Flowcharts", In-formation and Control 64(1985), pp. 119{135.[Jo75] N. D. Jones, \Space-bounded Reducibility among Combinatorial Problems",J. Computer and System Science, 11 (1975), pp. 68{75.[Ka85] M. Kaminski, \A Classi�cation of !-Regular Languages", Theoretical Com-puter Science 36(1985), pp. 217{229.[Ko83] D. Kozen, \Results on the Propositional �-Calculus", Theoretical ComputerScience 27(1983), pp. 333{354.[Lad77] R. E. Ladner, "Application of Model-Theoretic Games to Discrete Linear Or-ders and Finite Automata", Information and Control, 33(1977), pp. 281{303.[Lam77] L. Lamport, \Proving the Correctness of Multiprocess Programs", IEEETrans. on Soft. Eng. SE-7(1977).[Lan69] L. H. Landweber, \Decision Problems for !-Automata",Math. Systems Theory4(1969), pp. 376-384.[Le81] E. Leiss, \Succinct Representation of Regular Languages by Boolean Au-tomata", Theoretical Computer Science 13(1981), pp. 323{330.[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck, \The Glory of the Past", Proc. Work-shop on Logics of Programs, Brooklyn, Springer-Verlag, Lecture Notes in Com-puter Science 193, 1985 pp. 196{218.[McN66] R. McNaughton, \Testing and Generating In�nite Sequences by a Finite Au-tomaton", Information and Control 9(1966), pp. 521{530[Me75] A. R. Meyer, \Weak Monadic Second Order Theory of Successor is not Ele-mentary Recursive", Proc. Logic Colloquium, Lecture Notes in Mathematics453, Springer-Verlag, 1975, pp. 132{154.[MH84] S. Miyano and T. Hayashi, \Alternating Automata on !-Words", TheoreticalComputer Science 32(1984), pp. 321-330.[Mi80] R. Milner, \A Calculus of Communicating Systems", Lecture Notes in Com-puter Science 92, Springer-Verlag, 1980.[MSS88] D.E. Muller, A. Saoudi, and P.E. Schupp, \Weak Alternating Automata Give aSimple Explanation of Why Most Temporal and Dynamic Logic are Decidablein Exponential Time", Proc. 3rd IEEE Symp. on Logic in Computer Science,1988, pp. 422{427. 34

[MS73] A.R. Meyer and L.J. Stockmeyer, \Non-elementary Word Problems in Au-tomata and Logic", Proc. AMS Symp. on Complexity of Computation, April1973.[MP89] Z. Manna and A. Pnueli, \The Anchored Version of the Temporal Framework",in Linear Time, Branching Time, and Partial Order in Logics and Models forConcurrency (J.W. de Bakker, W. P. de Roever, and G. Rozenberg, eds.),Lecture Notes in Computer Science 354, Springer-Verlag, 1989, pp. 201-284.[MW84] Z. Manna and P. Wolper, \Synthesis of Communicating Processes from Tem-poral Logic speci�cation", ACM Trans. on Programming Languages and Sys-tems 6(1984), pp. 68{93.[Mu63] D.E. Muller, \In�nite Sequences and Finite Machines", Proc. 4th IEEE Symp.on Switching Circuit Theory and Logical Design, New York, 1963, pp. 3{16.[MY88] T. Moriya and H. Yamusaki, \Accepting Conditions for Automata on !-Languages", Theoretical Computer Science 61(1988) pp. 137{147.[Ni80] H. Nishimura, \Descriptively Complete Process Logic", Acta Informatica14(1980), pp. 359{369.[Pn77] A. Pnueli, \The Temporal Logic of Programs", Proc. 8th IEEE Symp. onFoundations of Computer Science, Providence, 1977, pp. 46{57.[Pr76] V.R. Pratt, \Semantical Considerations on Floyd-Hoare Logic", Proceedings17th IEEE Symposium on Foundations of Computer Science, October 1976,pp. 109-121.[Pr79] V.R. Pratt, \Models of program logics", Proc. 20th IEEE Symp. on Foundationof Computer Science, San Juan, 1979, pp. 115{122.[Pr80] V.R. Pratt, \A Near-Optimal Method for Reasoning about Action", J. Com-puter and System Sciences 20(1980), pp. 231{254.[Pr81] V.R. Pratt, \Using Graphs to Understand PDL", Proc. Workshop on Logicsof Programs, (D. Kozen, ed.), Yorktown-Heights, Lecture Notes in ComputerScience 131, Springer-Verlag, 1982, pp. 387-396.[PR89] A. Pnueli and R. Rosner, \On the Synthesis of a Reactive Module", Proc.16th ACM Symp. on Principles of Programming Languages, Austin, 1989, pp.179{190.[RS59] M. O. Rabin and D. Scott, \Finite Automata and their Decision Problems",IBM Journal of Research and Development 3(1959), pp. 114{125.35

[Sa88] S. Safra, \On the Complexity of !-Automata", Proc. 29th IEEE Symp. onFoundation of Computer Science, 1988, pp. 319{327.[SC85] A. P. Sistla and E. M. Clarke, \The Complexity of Propositional Linear Tem-poral Logic", J. ACM 32(1985), pp. 733{749.[Sh79] A.C. Shaw, \Software Speci�cation Languages Based on Regular Expressions",Technical Report, ETH Zurich, June 1979.[Si83] A. P. Sistla, \Theoretical Issues in The Design and Analysis of DistributedSystems", PhD Thesis, Harvard University, 1983.[St82] R. Streett, \Propositional Dynamic Logic of Looping and Converse is Elemen-tarily Decidable", Information and Control, 54(1982), pp. 121{141.[St90] R. Streett, personal communication.[Sta87] L. Staiger, \Research in the Theory of !-Languages", Electron. Inf. Verarbeit.Kybernetic 23(1987), pp. 415{439.[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper, \The Complementation Problem forB�uchi Automata with Applications to Temporal Logic", Theoretical ComputerScience 49(1987), pp. 217{237.[TB73] B. A. Trakhtenbrot and Y. M. Barzdin, \Finite Automata: Behavior andSynthesis", North-Holland, 1973.[Tho79] W. Thomas, \Star-Free Regular Sets of !-Sequences", Information and Con-trol 42(1979), pp. 148{156.[Tho81] W. Thomas, \A Combinatorial Approach to the Theory of !-Automata", In-formation and Control 48(1981), pp. 261{283.[Tho90] W. Thomas, \Automata on In�nite Objects", in Handbook of Theoretical Com-puter Science, Vol. B. (J. v. Leeuwen, ed.), Elsevier, 1990, pp. 135{191.[VW86a] M.Y. Vardi and P. Wolper. \Automata-Theoretic Techniques for Modal Logicof Programs", J. Computer and System Sciences, 32(1986), pp. 183{221.[VW86b] M.Y. Vardi and P. Wolper, \An Automata-Theoretic Approach to AutomaticProgram Veri�cation", Proc. 1st IEEE Symp. on Logic in Computer Science,Boston, 1986, pp. 332{334.[Va85a] M.Y. Vardi, \The Taming of the Converse: Reasoning about 2-way Compu-tations", Proc. Workshop on Logics of Programs, Brooklyn, Springer-VerlagLecture Notes in Computer Science 193, 1985, pp. 413{424.36

[Va85b] M.Y. Vardi, \Automatic veri�cation of probabilistic concurrent �nite-stateprograms", Proc. 26th IEEE Symp. on Foundations of Computer Science,Portland, Oct. 1985, pp. 327-338.[Va88] M. Y. Vardi, \A Temporal Fixpoint Calculus", Proc. 15th ACM Symp. onPrinciples of Programming Languages, San Diego, 1988, pp. 250{259.[VW83] M. Y. Vardi and P. Wolper, \Yet Another Process Logic", Proc. WorkshopLogic of Programs, Lecture Notes in Computer Science 164, Springer-Verlag,1983, pp. 501{512.[Wa79] K. Wagner, \On !-Regular Sets", Information and Control 43(1979), pp. 123{177.[Wo83] P. Wolper, \Temporal Logic Can Be More Expressive", Information and Con-trol 56(1983), pp. 72{99.[Wo82] P. Wolper, \Synthesis of Communicating Processes from Temporal Logic Spec-i�cations", Ph. D. Thesis, Stanford University, 1982.[Wo89] P. Wolper, \On the relation of programs and computations to models of tempo-ral logic", in Proc. Temporal Logic in Speci�cation, B. Banieqbal, H. Barringer,and A. Pnueli, eds., Lecture Notes in Computer Science 398, Springer-Verlag,1989, pages 75{123.

37

