
A Semantics for Advice and Dynamic Join Points in
Aspect-Oriented Programming

Mitchell Wand�
College of Computer Science

Northeastern University
360 Huntington Avenue, 161CN

Boston, MA 02115, USAwand�s.neu.edu Gregor Kiczales and Christopher Dutchyn
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4, Canadafgregor,duthyng�s.ub.a
ABSTRACT
A characteristic of aspect-oriented programming, as embodied in
AspectJ, is the use ofadviceto incrementally modify the behav-
ior of a program. An advice declaration specifies an action tobe
taken whenever some condition arises during the execution of the
program. The condition is specified by a formula called apointcut
designatoror pcd. The events during execution at which advice
may be triggered are calledjoin points. In this model of aspect-
oriented programming, join points are dynamic in that they refer to
events during the execution of the program.

We give a denotational semantics for a minilanguage that embodies
the key features of dynamic join points, pointcut designators, and
advice. This is the first semantics for aspect-oriented programming
that handles dynamic join points and recursive procedures.It is
intended as a baseline semantics against which future correctness
results may be measured.

1. INTRODUCTION
A characteristic of aspect-oriented programming, as embodied in
AspectJ [11], is the use ofadviceto incrementally modify the be-
havior of a program. An advice declaration specifies an action to be
taken whenever some condition arises during the execution of the
program. The events at which advice may be triggered are called
join points. In this model of aspect-oriented programming (AOP),
join points aredynamicin that they refer to events during execu-
tion. The process of executing the relevant advice at each join point
is calledweaving.

The condition is specified by a formula called apointcut designator
or pcd. A typical pcd might look like�Work supported by the National Science Foundation under grant
number CCR-9804115. An earlier version of this paper was pre-
sented at the 9th International Workshop on Foundations of Object-
Oriented Languages, January 19, 2002.

(and (palls f) (pwithin g) (flow (palls h)))
This indicates that the piece of advice to which this pcd is attached
is to be executed at every call to proceduref from within the text
of procedureg, but only when that call occurs dynamically within
a call to procedureh.

This paper presents a model of dynamic join points, pointcutdesig-
nators, and advice. It introduces a tractable minilanguageembody-
ing these features and gives it a denotational semantics.

This is the first semantics for aspect-oriented programmingthat
handles dynamic join points and recursive procedures. It isin-
tended as a baseline against which future correctness results may
be measured.

This work is part of the Aspect Sandbox (ASB) project. The goal is
of ASB to produce an experimental workbench for aspect-oriented
programming of various flavors. ASB includes a small base lan-
guage and is intended to include a set of exemplars of different
approaches to AOP. The work reported here is a model of one of
those exemplars, namely dynamic join points and advice withdy-
namic weaving. We hope to extend this work to other AOP models,
including static join points, Demeter [14], and Hyper/J [16], and to
both interpreter-like and compiler-like implementation models.

For more motivation for AOP, see [12] or the articles in [4]. For
more on AspectJ, see [11].

2. A MODEL
We begin by presenting a conceptual model of aspect-oriented pro-
gramming with dynamic join points as found in AspectJ.

In this model, a program consists of a base program and some
pieces ofadvice. The program is executed by an interpreter. When
the interpreter reaches certain points, calledjoin points, in its ex-
ecution, it invokes aweaver, passing to it an abstraction of its in-
ternal state (thecurrent join point). Each advice contains a predi-
cate, called apointcut designator(pcd), describing the join points
in which it is interested, and a body representing the actionto take
at those points. It is the job of the weaver to demultiplex thejoin
points from the interpreter, invoking each piece of advice that is
interested in the current join point and executing its body with the
same interpreter.

So far, this sounds like an instance of the Observer pattern [8]. But
there are several differences:

1. First, when a piece of advice is run, its body may be evalu-
ated before, after or instead of the expression that triggered
it; this specification is part of the advice. In the last case,
called anaroundadvice, the advice body may call the prim-
itive proeed to invoke the running of any other applicable
pieces of advice and the base expression.

2. Second, the language of predicates is a temporal logic, with
temporal operators such asflow illustrated above. Hence
the current join point may in general be an abstraction of the
control stack.

3. Each advice body is also interpreted by the same interpreter,
so its execution may give rise to additional events and advice
executions.

4. Last, in the language of this paper, as in the current imple-
mentation of AspectJ, the set of advice in each program is
a global constant. This is in contrast with the Observer pat-
tern, in which listeners register and de-register themselves
dynamically.

This is of course a conceptual model and is intended only to moti-
vate the semantics, not the implementation. However, this analysis
highlights the major design decisions in any such language:

1. The join-point model: when does the interpreter call the weaver,
and what data does it expose?

2. The pcd language: what is the language of predicates over
join points? How is data from the join point communicated
to the advice?

3. The advice model: how does advice modify the execution of
the program?

In this paper, we explore one set of answers to these questions.
Section 3 gives brief description of the language and some exam-
ples. Section 4 presents the semantics. In section 5 we describe
some related work, and in section 6 we discuss our current research
directions.

3. EXAMPLES
Our base language consists of a set of mutually-recursive first-order
procedures with a call-by-value interpretation. The language is
first-order: procedures are not expressed values. The language in-
cludes assignment in the usual call-by-value fashion: new storage
is allocated for every binding of a formal parameter, and identifiers
in expressions are automatically dereferenced.

Figure 1 shows a simple program in this language, using the syntax
of ASB. We have two pieces ofaround advice that are triggered
by a call tofat.1 At each advice execution,x will be bound to
the argument offat. The program begins by callingmain, which

1As shown in these examples, the executable version of ASB in-
cludes types for arguments and results. The portion of ASB cap-
tured by our semantics is untyped.

(run'((proedure void main ()(write (fat 3)))(proedure int fat ((int n))(if (< n 1) 1(* n (fat (- n 1)))))(around(and(palls int fat (int))(args (int x)))(let (((int y) 0))(write 'before1:)(write x) (newline)(set! y (proeed x))(write 'after1:)(write x) (write y) (newline)y))(around(and(palls int fat (int))(args (int x)))(let (((int y) 0))(write 'before2:) (write x)(newline)(set! y (proeed x))(write 'after2:)(write x) (write y) (newline)y))))
prints:before1: 3before2: 3before1: 2before2: 2before1: 1before2: 1before1: 0before2: 0after2: 0 1after1: 0 1after2: 1 1after1: 1 1after2: 2 2after1: 2 2after2: 3 6after1: 3 66

Figure 1: Example of around advice

in turn callsfat. The first advice body is triggered. Its body
prints thebefore1 message and then evaluates theproeed ex-
pression, which proceeds with the rest of the execution. Theexecu-
tion continues by invoking the second advice, which behavessimi-
larly, printing thebefore2 message; its evaluation of theproeed
expression executes the actual procedurefat, which callsfat
recursively, which invokes the advice again. Eventuallyfat re-
turns 1, which is returned as the value of theproeed expression.
As eachproeed expression returns, the remainder of each advice
body is evaluated, printing the variousafter messages.

Eacharound advice has complete control of the computation; fur-
ther computation, including any other applicable advice, is under-
taken only if the advice body callsproeed. For example, if the

(run'((proedure void main ()(write (+ (fat 6) (foo 4))))(proedure int fat ((int n))(if (= n 0) 1(* n (fat (- n 1)))))(proedure int foo ((int n))(fat n))(before (and(palls int fat (int))(args (int y))(flow(and(palls int foo (int))(args (int x)))))(write x) (write y) (newline))))
prints:4 44 34 24 14 0744

Figure 2: Binding variables with flowproeed in the first advice were omitted, the output would be justbefore1: 3after1: 3 00
The value ofx must be passed to theproeed. If the call toproeed in the second advice were changed to(proeed (- x1)), thenfat would be called with “wrong” recursive argument.
This design choice is intentional: changing the argument toproeed
is a standard idiom in AspectJ.

Our language also includesbefore andafter advice, which are
evaluated on entry to and on exit from the join point that trig-
gers them; these forms of advice do not require an explicit call
to proeed and are always executed for effect, not value.

The language of pointcut designators includes temporal operators
as well. Figure 2 shows an advice that is triggered by a call offat
that occurs within the dynamic scope of a call tofoo. This program
prints 720+24 = 744, but only the last four calls tofat (the ones
during the call offoo) cause the advice to execute. The pointcut
argument toflow bindsx to the argument offoo. Our language of
pcd’s includes several temporal operators. For example,flowtop
finds the oldest contained join point that satisfies its argument. Our
semantics includes a formal model that explains this behavior.

The examples shown here are from the Aspect Sandbox (ASB).
ASB consists of a base language, called BASE, and a separate lan-
guage of advice and weaving, called AJD. The language BASE is
a simple language of procedures, classes, and objects. Our inten-
tion is that the same base language be used with different weavers,
representing different models of AOP; AJD is intended to capture

the AspectJ dynamic join point style of AOP. The relation between
AJD and BASE is intended to model the relationship between As-
pectJ and Java. We implemented the base language and AJD using
an interpreter in Scheme in the style of [7].

For the semantics, we have simplified BASE and AJD still further
by removing types, classes, and objects from the language and by
slightly simplifying the join point model; the details are listed in
the appendix. While much has been left out, the language of the
semantics still models essential characteristics of AspectJ, includ-
ing dynamic join points; pointcut designators; andbefore, after,
andaround advice.

4. SEMANTICS
We use a monadic semantics, using partial-function semantics when-
ever possible. In general, we use lower-case Roman letters to range
over sets, and Greek letters to range over elements of partial orders.

Typical sets:

Sets

v 2 Val Expressed Values
l 2 Loc Locations
s 2 Sto Stores

id 2 Id Identifiers (program variables)
pname; wname 2 Pname procedure names

4.1 Join Points
We begin with the definition of join points. We use the termjoin
point to refer both to the events during the execution of the program
at which advice may run and to the portion of the program statethat
may be visible to the advice. The portion of the program statemade
visible to the advice consists of the following data:

Join points

jp 2 JP Join Points
jp ::= hi j hk; pname; wname; v�; jpi
k ::= pall j pexeution j aexeution

Join Point Kinds

A join point is an abstraction of the control stack. It is either empty
or consists of a kind, some data, and a previous join point. The join
point hpall; f ; g; v�; jpi represents a call to proceduref from
procedureg, with argumentsv�, and with previous join pointjp.pexeution andaexeution join points represent execution of a
procedure or advice body; in these join points the three datafields
contain empty values.

4.2 Pointcut Designators
A pointcut designator is a formula that specifies the set of join
points to which a piece of advice is applicable. When appliedto a

join point, a pointcut designator either succeeds with a setof bind-
ings, or fails.

The grammar of pcd’s is given by:

Pointcut designators

pcd::= (palls pname) j (pwithin pname)
::= (args id1 : : : idn)
::= (and pcd pcd) j (or pcd pcd) j (not pcd)
::= (flow pcd)
::= (flowbelow pcd) j (flowtop pcd)

The semantics of pcd’s is given by a functionmatch-pcdthat takes
a pcd and a join point and produces either a set of bindings (a finite
partial map from identifiers to expressed values), or the singleton
Fail.

Before definingmatch-pcd, we must define the operations on bind-
ings and pcd results. We write[℄ for the empty set of bindings and+ for concatenation of bindings. The behavior of repeated bindings
under+ is unspecified. The operations_, ^, and: on the result of
match-pcdare defined by

Algebra of pcd results

b 2 Bnd= [Id! Val℄ Bindings
r 2 Optional (Bnd)= Bnd+fFailg

b_ r = b
Fail_r = r

Fail^r = Fail
b^Fail = Fail

b^b0 = b+b0 :Fail = [℄:b= Fail

Note that botĥ and_ are short-cutting, so that_ prefers its first
argument.

We can now give the definition ofmatch-pcd. match-pcdproceeds
by structural induction on its first argument. The pcd’s fallinto
three groups. The first group does pattern matching on the toppor-
tion of the join point:(palls pname) and(pwithin pname)
check the target and within fields of the join point.(args id1 : : : idn)
succeeds if the argument list in the join point contains exactly n el-
ements, and bindsid1, . . . , idn to those values. In full AJD, theargs pcd includes dynamic type checks as well.

match-pcd: basic operations

match-pcd(palls pname) hk; pname0; wname; v�; jpi= � [℄ if k= pall ^ pname= pname0
Fail otherwise

match-pcd(pwithin wname) hk; pname; wname0; v�; jpi= � [℄ if k= pall ^ wname= wname0
Fail otherwise

match-pcd(args id1 : : : idn) hk; pname; wname(v1; : : : ;vm); jpi= � [id1 = v1; : : : ; idn = vn℄ if k= pall andn= m
Fail otherwise

The second group,(and pcd pcd), (or pcd pcd), and(not pcd),
perform boolean combinations on the results of their arguments,
using the functionŝ , _, and: defined above.

match-pcd: boolean operators

match-pcd(and pcd1 pcd2) jp = match-pcd pcd1 jp^match-pcd pcd2 jp
match-pcd(or pcd1 pcd2) jp = match-pcd pcd1 jp_match-pcd pcd2 jp
match-pcd(not pcd) jp = :(match-pcd pcd jp)

Last, we have the temporal operators(flow pcd), (flowbelow pcd),
and(flowtop pcd). The pcd(flow pcd) finds the latest (most
recent) join point that satisfiespcd. (flowbelow pcd) is just
like (flow pcd), but it skips the current join point, beginning its
search at the first preceding join point;(flowtop pcd) is like(flow pcd), but it finds the earliest matching join point. These
searches can be thought of local loops within the overall structural
induction.

match-pcd: temporal operators

match-pcd(flow pcd)hi= Fail
match-pcd(flow pcd)hk; pname; wname; v�; jpi= match-pcd pcdhk; pname; wname; v�; jpi_match-pcd(flow pcd) jp

match-pcd(flowbelow pcd)hi= Fail
match-pcd(flowbelow pcd)hk; pname; wname; v�; jpi= match-pcd(flow pcd) jp

match-pcd(flowtop pcd) hi= Fail
match-pcd(flowtop pcd) hk; pname; wname; v�; jpi= match-pcd(flowtop pcd) jp_match-pcd pcdhk; pname; wname; v�; jpi

4.3 The Execution Monad
To package the execution, we introduce a monad:

T(A) = JP! Sto! (A�Sto)?
This is a monad with three effects: a dynamically-scoped quantity
of typeJP, a store of typeSto, and non-termination. It says that a
computation runs given a join point and a store, and either produces
a value and a store, or else fails to terminate. The monad operations
ensure thatJPhas dynamic scope and thatStois global:

Monad operations

return v= λ jp s: lift(v;s)
let v(E1 in E2= λ jp s:case (E1 jp s) of?)?

lift (v;s0)) ((λv:E2) v jp s0)
We write

let v1 (µ1; : : : ;vn (µn in E

for the evident nestedlet.

We will have the usual monadic operations on the store; for join
points we will have a single monadic operatorsetjp. setjp takes
a function f from join points to join points and a mapg from join
points to computations. It returns a computation that applies f to
the current join point, passes the new join point tog, and runs the
resulting computation in the new join point and current store:

setjp

setjp : (JP! JP)! (JP! T(A))! T(A)= λ f g:λ jp s:(g (f jp)) (f jp) s

The lift operation induces an order onT(A) for anyA. We will use
the following domains based on this order:

Domains

χ 2 T(Val) Computations
π 2 Proc= Val� ! T(Val) Procedures
α 2 Adv= JP! Proc! Proc Advice
φ 2 PE= Pname! Proc Procedure Environments
γ 2 AE= Adv� Advice Environments
ρ 2 Env= [Id! Loc℄�WName�Proceed

Environments
WName= Optional(Pname) Within Info
Proceed= Optional(Proc) proeed Info

A procedure takes a sequence of arguments and produces a compu-
tation. An advice takes a join point and a procedure, and produces
a new procedure that is either the original procedure wrapped in
the advice (if the advice is applicable at this join point) orelse is
the original procedure unchanged (if the advice is inapplicable).
Procedures and advice do not require any environment arguments
because they are always defined globally and are closed (mutually
recursively) in the global procedure- and advice- environments.

The distinguishedWNamecomponent of the environment will be
used for tracking the name of the procedure (if any) in which the
current program text resides. Similarly, the distinguished Proceed
component will be used for theproeed operation, if it is de-
fined. We writeρ(%within), ρ[%within= : : : ℄, ρ(%proeed), and
ρ[%proeed = : : : ℄ to manipulate these components.

4.4 Expressions
We can now give the semantics of expressions. We give here only
a fragment:

Semantics of expressions

E [[e℄℄2 Env! PE! AE! T(Val)
E [[(pname e1 : : : en)℄℄ρφγ= let v1 (E [[e1℄℄ρφγ ; : : : ; vn (E [[en℄℄ρφγ

in (enter-join-pointγ(new-pcall-jp pname(ρ %within) (v1; : : : ;vn))(φ(pname))(v1; : : : ;vn))
E [[(proeed e1 : : : en)℄℄ρφγ= let v1 (E [[e1℄℄ρφγ ; : : : ; vn (E [[en℄℄ρφγ

in ρ(%proeed)(v1; : : : ;vn)
In a procedure call, first the arguments are evaluated in the usual
call-by-value monadic way. Then, instead of directly calling the
procedure, we useenter-join-pointto create a new join point and
enter it, invoking the weaver to apply any relevant advice. Contrast
this with theproeed expression, which is like a procedure call,
except that the special procedure%proeed is called, and no addi-
tional weaving takes place. The functionnew-pcall-jp: Pname!
WName! Val� ! JP! JPbuilds a new procedure-call join point
following the grammar in section 4.1.

4.5 The Weaver and Advice
enter-join-pointis the standard entry to a new join point. It takes
a list of adviceγ, a join-point builderf , a procedureπ, and a list
of argumentsv�. It produces a computation that builds a new join
point using functionf , calls the weaver to wrap all the advice inγ
around procedureπ, and then applies the resulting procedure tov�.

enter-join-point

enter-join-point: AE! (JP! JP)! Proc! Proc= λγ f π:λ v� : setjp f (λ jp0 : weaveγ jp0 π v�)
The weaver is the heart of the system. It takes a list of advice, a
join point, and a procedure. It returns a new procedure that con-
sists of the original procedure wrapped in all of the advice that is
applicable at the join point. To do this, the weaver attemptsto ap-
ply each piece of advice in turn. If there is no advice left, then the
effective procedure is just the original procedureπ. Otherwise, it
calls the first advice in the list, asking it to wrap its advice(if ap-
plicable) around the procedure that results from weaving the rest of
the advice around the original procedure.

So we want(weavehα1; : : : ;αni jp π) = (α1 jp (α2 jp : : : (αn jp π) : : :))
This becomes a straightforward bit of functional programming:

The weaver

weave: AE! JP! Proc! Proc= λ γ jp π :case γ ofhi) π
α :: γ0) α jp(weaveγ0 jp π)

This brings us to the semantics of advice. A piece of advice, like an
expression, should take a procedure environment and an advice en-
vironment, and its meaning should be a procedure transformer. Our
fundamental model isaround advice. If the advice does not apply
in the current join point, then the procedure should be unchanged.
If the advice does apply, then the advice body should be executed
with the bindings derived from the pcd, and with%proeed set to
the original procedure (which may be either the starting procedure
or a procedure containing the rest of the woven advice). However,
there are two subtleties: first, the body of the advice is to beexe-
cuted in a newaexeution join point, so we useenter-join-point
to build the new join point and invoke the weaver. This is poten-
tially an infinite regress, so most advice pcd’s will includean ex-
plicit palls conjunct to avoid this problem. Second, in this case,
the innerv� is not used; the advice body can retrieve it using anargs pcd.before andafter advice are similar;%proeed is not bound, and
we use the monad operations to perform the sequencing.

Semantics of advice

A [[(around pcd e)℄℄φγ : JP! Proc! Proc= λ jp π v� :
PCD[[pcd℄℄ jp(λρ:enter-join-pointγ

new-aexecution-jp(λv� :E [[e℄℄(ρ[%within= None;%proeed= π℄φγ))hi)(π v�)
A [[((before pcd) e)℄℄φγ : JP! Proc! Proc= λ jp π v� :

PCD[[pcd℄℄ jp(λρ:enter-join-pointγ
new-aexecution-jp(λv� : let

v1 (E [[e℄℄(ρ[%within= None;%proeed= None℄)φγ;
v2 ((π v�)

in v2)hi)(π v�)
A [[((after pcd) e)℄℄φγ : JP! Proc! Proc= λ jp π v� :

PCD[[pcd℄℄ jp(λρ:enter-join-pointγ
new-aexecution-jp(λv� : let

v1 ((π v�);
v2 (E [[e℄℄(ρ[%within= None;%proeed= None℄)φγ

in v1)hi)(π v�)
The functionPCD[[�℄℄ takes four arguments: a pcd, a join point,
a functionk from environments to computations (the “success con-
tinuation”), and a computationχ (the “failure computation”), and
it produces a computation. It callsmatch-pcdto match the pcd
against the join point. Ifmatch-pcdsucceeds with a set of bind-
ings,PCD creates an environment containing a fresh location for
each binding, and invokes the success continuation on this envi-
ronment, producing a new computation. Otherwise, it returns the
failure computation.

Semantics of pcd’s

PCD[[pcd℄℄ : JP! (Env! T(Val))! T(Val)! T(Val)= λ jp kχ:case (match-pcd pcd jp)of
Fail) χ[x1 = v1; : : : ;xn = vn℄)

let l1 (alloc(v1); : : : ; ln (alloc(vn)
in k([x1 = l1; : : : ;xn = ln℄)

4.6 Procedures and Programs
Finally, we give the semantics of procedures and whole programs.
The meaning of a procedure in a procedure and advice environ-
ment is a small procedure environment. In this environment,the
name of the procedure is bound to a procedure that accepts some
arguments and enters apexeution join point, possibly weaving
some advice. When the advice is accounted for, the argumentsare
stored in new locations, and the procedure body is executed in an
environment in which the formal parameters are bound to the new
locations.

Semantics of procedure declarations

P [[(proedure pname(x1 ... xn) e)℄℄ : PE! AE! PE= λφγ :[pname=
λv� :(enter-join-pointγ(new-pexecution-jp pname)(λw: let l1 (alloc(w#1) ;

...
ln (alloc(w#n)

in(E [[e℄℄[x1 = l1; : : : ; xn = ln;%within= pname;%proeed = None℄ φ γ))
v�)℄

We have formulated the semantics of procedures and advice asbe-
ing closed in a given procedure environment and advice environ-
ment. A program is a mutually recursive set of procedures and
advice, so its semantics is given by the fixed point over thesefunc-
tions. We take the fixed point and then apply the proceduremain
to no arguments.

Semantics of programs

PGM [[(proc1 : : : procn adv1 : : : advm)℄℄ : T(Val)= run(fix(λ(φ;γ):(∑n
i=1(P [[proci ℄℄φγ);hA[[advj ℄℄φγimj=1)))

run(φ;γ) = E [[(main)℄℄[℄φγ

Here the notationh: : :imj=1 denotes a sequence of lengthm, and
the notation∑n

i=1 denotes the concatenation operator on bindings,

discussed on page .

This completes the semantics of the core language.

5. RELATED WORK
Aspect-oriented programming is presented in [12], which shows
how several elements of prior work, including reflection [17], metaob-
ject protocols [10], subject-oriented programming [9], adaptive pro-
gramming [14], and composition filters [1] all enable bettercontrol
over modularization of crosscutting concerns. A variety ofmodels
of AOP are presented in [4]. AspectJ [11] is an effort to develop a
Java-based language explicitly driven by the principles ofAOP.

Flavors [19, 5], New Flavors [15], CommonLoops [3] and CLOS
[18] all supportbefore, after, andaround methods.

Andrews [2] presents a semantics for AOP programs based on a
CSP formalism, using CSP synchronization sets as join points. His
language is an imperative language with first-order procedures, like
ours, but it does not allow procedures to be recursive. His language
includesbefore, after, andaround advice, but his pcd’s contain
neither boolean nor temporal operators.

Lämmel [13] presents static and dynamic operational semantics for
a small OO language with a method-call interception facility some-
what different from ours. His system allows dynamic registration
of advice, but does not treataround advice.

Douence, Motelet, and Sudholt [6] present an event-based theory of
AOP. They present a domain-specific language for defining “cross-
cuts” (equivalent to our pointcuts). Their language is verypow-
erful, but its semantics is given by a rewriting semantics, which
makes the meaning of its programs obscure. We believe that our
definition ofmatch-pcdrepresents a significant improvement.

6. FUTURE WORK
We are currently developing a translator from AJD(BASE) to BASE
that removes all advice by internalizing the weaving process. We
hope to do this in a way that will facilitate a correctness proof.

We plan to extend the ASB suite by adding implementations of the
core concepts of other models of AOP and weaving, including static
join points, Demeter [14], and Hyper/J [16]. We hope to develop a
theory of AOP that accounts for all of these.

7. REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting Object Interactions Using
Composition Filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors,Proceedings of the ECOOP’93 Workshop
on Object-Based Distributed Programming, LNCS 791,
pages 152–184. Springer-Verlag, 1994.

[2] J. H. Andrews. Process-algebraic foundations of
aspect-oriented programming. InProceedings of the Third
International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection 2001),
volume 2192 ofLecture Notes in Computer Science, pages
187–209, Berlin, Heidelberg, and New York, Sept. 2001.
Springer-Verlag.

[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,
and F. Zdybel. CommonLoops: merging Common Lisp and
object-oriented programming. InProceedings ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 17–29, Oct. 1986.

[4] Communications of the ACM, volume 44:10. ACM, Oct.
2001. special issue on Aspect-Oriented Programming.

[5] H. I. Cannon.Flavors: A non-hierarchical approach to
object-oriented programming. Symbolics, Inc., 1982.

[6] R. Douence, O. Motelet, and M. Sudholt. A formal definition
of crosscuts. InProceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection 2001), volume 2192 of
Lecture Notes in Computer Science, pages 170–186, Berlin,
Heidelberg, and New York, Sept. 2001. Springer-Verlag.

[7] D. P. Friedman, M. Wand, and C. T. Haynes.Essentials of
Programming Languages. MIT Press, Cambridge, MA,
second edition, 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1995.

[9] W. Harrison and H. Ossher. Subject-oriented programming
(A critique of pure objects). In A. Paepcke, editor,
Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
411–428. ACM Press, Oct. 1993.

[10] G. Kiczales and J. des Rivieres.The art of the metaobject
protocol. MIT Press, Cambridge, MA, USA, 1991.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and
W. G. Griswold. An overview of AspectJ. InProceedings
European Conference on Object-Oriented Programming,
volume 2072 ofLecture Notes in Computer Science, pages
327–353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,
Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[13] R. Lämmel. A semantical approach to method-call
interception. In G. Kiczales, editor,1st International
Conference on Aspect-Oriented Software Development, Apr.
2002.

[14] K. J. Lieberherr.Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Company, 1996.

[15] D. A. Moon. Object-oriented programming with Flavors.In
N. Meyrowitz, editor,Proceedings ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 1–8, New York, NY, Nov. 1986. ACM
Press.

[16] H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation
of concerns for Java. InProceedings of the 22nd
International Conference on Software Engineering, June
4-11, 2000, Limerick, Ireland, pages 734–737, 2000.

[17] B. C. Smith. Reflection and semantics in Lisp. InConf. Rec.
11th ACM Symposium on Principles of Programming
Languages, pages 23–35, 1984.

[18] G. L. Steele.Common Lisp: the Language. Digital Press,
Burlington MA, second edition, 1990.

[19] D. Weinreb and D. A. Moon. Flavors: Message passing in
the LISP machine. A. I. Memo 602, Massachusetts Institute
of Technology, A.I. Lab., Cambridge, Massachusetts, 1981.

APPENDIX A. LANGUAGE COMPARISON
Full AJD contains the following features not in the core language
captured by the semantics of this paper. None represent difficult
extensions for the semantics.� classes, methods, and objects.� declared types for bound variables (as illustrated in the exam-

ples of section 3).� static type checking (anargs pcd includes types for its argu-
ments, as in our examples; at present these must be checked
dynamically).� additional join points at: method calls, method executions,
object constructions, field references and field assignments.� The pcd operatorsand and or take an arbitrary number of
arguments.

AspectJ provides a sophisticated advice ordering mechanism, where
advice is first ordered from most general to most specific, andwithin
classes with equal specificity, orders the advice by qualifier (before,after, or around). AJD is working toward this capability, but
the current stable implementation only provides the qualifier-based
ordering, wherearound advice is executed around any relevantbefore andafter advice. In the semantics, advice is ordered by
its appearance in the program text.

The examples of section 3 were in written and executed in fullAJD
except for the following:� the output was edited to improve formatting� in the implementation of ASB at the time this work was done,

eligiblearound advice was executed in reverse order from its
appearance in the program text. The example in figure 1 was
edited, reversing the order of advice declarations, to be con-
sistent with the left-to-right semantics of the core language.

