A Semantics for Advice and Dynamic Join Points in
Aspect-Oriented Programming

Mitchell Wand*
College of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA

wand@Qccs.neu.edu

ABSTRACT

A characteristic of aspect-oriented programming, as ernuabih
Aspect], is the use afdviceto incrementally modify the behav-
ior of a program. An advice declaration specifies an actiobeto
taken whenever some condition arises during the execufioimeo
program. The condition is specified by a formula callgubantcut
designatoror pcd The events during execution at which advice
may be triggered are callgdin points In this model of aspect-
oriented programming, join points are dynamic in that theferto
events during the execution of the program.

We give a denotational semantics for a minilanguage thabelieb
the key features of dynamic join points, pointcut desigretand
advice. This is the first semantics for aspect-oriented ramgning
that handles dynamic join points and recursive procedutess

intended as a baseline semantics against which futureatoess
results may be measured.

1. INTRODUCTION

A characteristic of aspect-oriented programming, as enugbih
Aspect] [11], is the use @fdviceto incrementally modify the be-
havior of a program. An advice declaration specifies an at¢tide
taken whenever some condition arises during the execufioimeo
program. The events at which advice may be triggered aredtall
join points In this model of aspect-oriented programming (AOP),
join points aredynamicin that they refer to events during execu-
tion. The process of executing the relevant advice at eaclpgnt

is calledweaving

The condition is specified by a formula calleg@intcut designator
or pcd A typical pcd might look like

*Work supported by the National Science Foundation undertgra
number CCR-9804115. An earlier version of this paper was pre
sented at the 9th International Workshop on Foundationdjcd-
Oriented Languages, January 19, 2002.

Gregor Kiczales and Christopher Dutchyn

Department of Computer Science
University of British Columbia
201-2366 Main Mall
Vancouver, BC V6T 1Z4, Canada

{gregor, cdutchyn}@cs.ubc.ca

(and (pcalls f) (pwithin g) (cflow (pcalls h)))

This indicates that the piece of advice to which this pcdtiacited
is to be executed at every call to proceddirrom within the text
of procedureg, but only when that call occurs dynamically within
a call to procedura.

This paper presents a model of dynamic join points, poirdestg-
nators, and advice. It introduces a tractable minilangusgbody-
ing these features and gives it a denotational semantics.

This is the first semantics for aspect-oriented programntivay

handles dynamic join points and recursive procedures. in-is
tended as a baseline against which future correctnessgesaly

be measured.

This work is part of the Aspect Sandbox (ASB) project. Thelgoa

of ASB to produce an experimental workbench for aspectroeie
programming of various flavors. ASB includes a small base lan
guage and is intended to include a set of exemplars of differe
approaches to AOP. The work reported here is a model of one of
those exemplars, namely dynamic join points and advice dyjth
namic weaving. We hope to extend this work to other AOP models
including static join points, Demeter [14], and Hyper/J][J&hd to
both interpreter-like and compiler-like implementationdels.

For more motivation for AOP, see [12] or the articles in [4]orF
more on AspectJ, see [11].

2. AMODEL

We begin by presenting a conceptual model of aspect-odgnta
gramming with dynamic join points as found in AspectJ.

In this model, a program consists of a base program and some
pieces ofadvice The program is executed by an interpreter. When
the interpreter reaches certain points, cail@d points in its ex-
ecution, it invokes aveaver passing to it an abstraction of its in-
ternal state (theurrent join poin). Each advice contains a predi-
cate, called gointcut designatofpcd), describing the join points
in which it is interested, and a body representing the adtidake

at those points. It is the job of the weaver to demultiplexjtie
points from the interpreter, invoking each piece of advicat tis
interested in the current join point and executing its bodiythe
same interpreter.



So far, this sounds like an instance of the Observer pat&rriBut
there are several differences:

(run
’((procedure void main ()
1. First, when a piece of advice is run, its body may be evalu- (write (fact 3)))
ated before, after or instead of the expression that triggyer (procedure int fact ((int n))
it; this specification is part of the advice. In the last case, (1§*(: I(lfiztl(_ 2 DY)
called anaroundadvice, the advice body may call the prim- (around
itive proceed to invoke the running of any other applicable (and
pieces of advice and the base expression. (pcalls int fact (int))
(args (int x)))
2. Second, the language of predicates is a temporal logth, wi (let (((int y) 0))
temporal operators such a$low illustrated above. Hence (vrite ’beforel:)

(write x) (newline)

(set! y (proceed x))

(write ’afterl:)

(write x) (write y) (newline)

the current join point may in general be an abstraction of the
control stack.

3. Each advice body is also interpreted by the same intenpret

so its execution may give rise to additional events and &dvic (arozr)m)l
executions. (and
. . . . (pcalls int fact (int))
4. Last, in the language of this paper, as in the current imple (args (int x)))
mentation of Aspect]J, the set of advice in each program is (let (((int y) 0))
a global constant. This is in contrast with the Observer pat- (write ’before2:) (write x)
tern, in which listeners register and de-register theneselv Ene‘t’}mei 4 0)
: set! y (proceed x
dynamically. (write ’after2:)
(write x) (write y) (newline)
o . . ¥y
This is of course a conceptual model and is intended only tt-mo prints:
vate the semantics, not the implementation. However, thasyais
highlights the major design decisions in any such language: beforel: 3
before2: 3
beforel: 2
. . i . before2: 2
1. The join-point modell. when does the interpreter call tleaver, beforel: 1
and what data does it expose? before2: 1
. . beforel: 0
2. The pcd language: what is the language of predicates over before2: 0
join points? How is data from the join point communicated after2: 0 1
to the advice? afterl: 0 1
after2: 1 1
3. The advice model: how does advice modify the execution of afterl: 1 1
the program? after2: 2 2
afterl: 2 2
after2: 3 6
In this paper, we explore one set of answers to these qusstion therl: 36
Section 3 gives brief description of the language and soraenex
ples. Section 4 presents the semantics. In section 5 weildescr Figure 1: Example of around advice
some related work, and in section 6 we discuss our curreaarel
directions. ' !
3. EXAMPLES
Our base language consists of a set of mutually-recursisiedider in turn callsfact. The first advice body is triggered. Its body
procedures with a call-by-value interpretation. The laamg! is prints thebefore1 message and then evaluates préceed ex-
first-order: procedures are not expressed values. The ayegin- pression, which proceeds with the rest of the execution.ekieeu-
cludes assignment in the usual call-by-value fashion: rievage ~ tion continues by invoking the second advice, which behaires
is allocated for every binding of a formal parameter, andifiers larly, printing thebefore2 message; its evaluation of theoceed
in expressions are automatically dereferenced. expression executes the actual procedizret, which callsfact

recursively, which invokes the advice again. Eventughyt re-
Figure 1 shows a simple program in this language, using thi&gy turns 1, which is returned as the value of thﬁ)ceed expression.
of ASB. We have two pieces afround advice that are triggered ~ AS €achproceed expression returns, the remainder of each advice
by a call tofact.! At each advice executior, will be bound to body is evaluated, printing the variouster messages.
the argument ofact. The program begins by callingain, which

1 - ) . Eacharound advice has complete control of the computation; fur-
As shown in these examples, the executable version of ASB in- iper computation, including any other applicable advisajrider-

cludes types for arguments and results. The portion of ASB ca : : .
tured by our semantics is untyped. taken only if the advice body callsroceed. For example, if the



(run
’((procedure void main ()
(write (+ (fact 6) (foo 4))))
(procedure int fact ((int n))
(if (=n0) 1
(* n (fact (- n 1)))))
(procedure int foo ((int n))
(fact n))
(before (and
(pcalls int fact (int))
(args (int y))
(cflow
(and
(pcalls int foo (int))
(args (int x)))))
(write x) (write y) (newline))))
prints:

N OB DD DD
DO RPN WD

Figure2: Binding variableswith cflow

proceed in the first advice were omitted, the output would be just

beforel: 3
afterl: 3 0
0

The value ofx must be passed to theroceed. If the call to
proceed in the second advice were changed(froceed (- x
1)), thenfact would be called with “wrong” recursive argument.
This design choice is intentional: changing the argumeptt@eed
is a standard idiom in AspectJ.

Our language also includegfore andafter advice, which are
evaluated on entry to and on exit from the join point that-trig
gers them; these forms of advice do not require an explidit ca
to proceed and are always executed for effect, not value.

The language of pointcut designators includes temporalabpes

as well. Figure 2 shows an advice that is triggered by a calhot
that occurs within the dynamic scope of a calft@. This program
prints 720+24 = 744, but only the last four callsftact (the ones
during the call offoo) cause the advice to execute. The pointcut
argument ta:f1low bindsx to the argument af oo. Our language of
pcd’s includes several temporal operators. For examiiBowtop
finds the oldest contained join point that satisfies its agumOur
semantics includes a formal model that explains this behavi

The examples shown here are from the Aspect Sandbox (ASB).

ASB consists of a base language, called BASE, and a separate |

guage of advice and weaving, called AJD. The language BASE is

a simple language of procedures, classes, and objects.nur i
tion is that the same base language be used with differenterga
representing different models of AOP; AJD is intended totasp

the AspectJ dynamic join point style of AOP. The relationnsstn

AJD and BASE is intended to model the relationship between As
pectd and Java. We implemented the base language and AP usin
an interpreter in Scheme in the style of [7].

For the semantics, we have simplified BASE and AJD still ferth
by removing types, classes, and objects from the languadiéwyn
slightly simplifying the join point model; the details arsted in
the appendix. While much has been left out, the languageeof th
semantics still models essential characteristics of ASpétclud-
ing dynamic join points; pointcut designators; ardore, after,
andaround advice.

4. SEMANTICS

We use a monadic semantics, using partial-function secgwntien-
ever possible. In general, we use lower-case Roman letteange
over sets, and Greek letters to range over elements of paudiers.

Typical sets:
Sets
[
v € Val Expressed Values
I € Loc Locations
s € Sto Stores
id € Id Identifiers (program variables)
pnamewname € Pname procedure names

4.1 Join Points

We begin with the definition of join points. We use the tgoim
pointto refer both to the events during the execution of the progra
at which advice may run and to the portion of the program stete
may be visible to the advice. The portion of the program stade
visible to the advice consists of the following data:

Join points

|
ip € JP Join Points
i 1= 0| (k pnamewnamev-.ip)
k = pcall | pexecution | aexecution

Join Point Kinds

A join point is an abstraction of the control stack. It is eitempty
or consists of a kind, some data, and a previous join poing. jdim
point (pcall, f, g, Vv, jp) represents a call to procedufefrom
procedureg, with arguments/*, and with previous join poinjp.
pexecution andaexecution join points represent execution of a
procedure or advice body; in these join points the three filelds
contain empty values.

4.2 Pointcut Designators

A pointcut designator is a formula that specifies the set of jo
points to which a piece of advice is applicable. When apptiea



join point, a pointcut designator either succeeds with atbind-
ings, or fails.

The grammar of pcd’s is given by:

Pointcut designators
[

pcd::= (pcalls pname | (pwithin pname
= (args idy ... idp)
= (and pcd pcd | (or pcd pcd | (not pcd)
= (cflow pcd)
= (cflowbelow pcd) | (cflowtop pcd)

The semantics of pcd’s is given by a functioratch-pcdathat takes
a pcd and a join point and produces either a set of bindingsia fi
partial map from identifiers to expressed values), or thglsion
Fail.

Before definingnatch-pcdwe must define the operations on bind-
ings and pcd results. We writefor the empty set of bindings and
+ for concatenation of bindings. The behavior of repeatedibigs
under+ is unspecified. The operations A, and— on the result of
match-pcdare defined by

Algebra of pcd results
[

b e Bnd=(ld— Val Bindings
r € Optional (Bnd)= Bnd-+{Fail}
bvr=b FailAr=Fail —Fail =]
Failvr =r bAFail = Fail —b = Fail
bAb =b+b

Note that bothh andV are short-cutting, so that prefers its first
argument.

We can now give the definition ehatch-pcd match-pcdproceeds
by structural induction on its first argument. The pcd's falio
three groups. The first group does pattern matching on thpdop
tion of the join point: (pcalls pname and (pwithin pname
check the target and within fields of the join poifargs id; ... idn)
succeeds if the argument list in the join point contains gyacel-
ements, and bindsly, ..., id, to those values. In full AJD, the
args pcd includes dynamic type checks as well.

match-pcd basic operations
[

match-pcdpcalls pname (k, pnamé wnamev*, jp)
_ { i if k=pcall A pname= pnamé
| Fail

otherwise
match-pcdpwithin wnamé (k, pnamewnamé, v*, jp)
(1 if k=pcall A wname=wnamé
~ ] Fall

otherwise
match-pcdargs id; ... idn) (k, pnamewname

(V17 e 7Vm)a Jp>
_ | [idy=wvy,...,idn=Vvpn] if k=pcall andn=m
] Fail otherwise

The second grougiand pcd pcd, (or pcd pcd, and(not pcd),
perform boolean combinations on the results of their argume
using the functiong,, v, and— defined above.

match-pcd boolean operators

match-pcdland pcd; pcdy) jp = match-ped pegdjp
Amatch-pcd pcgljp
match-pcdor pcd; pcd,) jp = match-ped pedjp
Vv match-pcd pcgljp
match-pcdnot pcd) jp = —(match-pcd pcd jp

Last, we have the temporal operatéeg1ow pcd), (cflowbelow pcd),
and(cflowtop pcd). The pcd(cflow pcd) finds the latest (most
recent) join point that satisfigscd. (cflowbelow pcd) is just

like (cflow pcd), but it skips the current join point, beginning its
search at the first preceding join point¢flowtop pcd) is like
(cflow pcd), but it finds the earliest matching join point. These
searches can be thought of local loops within the overalcstral
induction.

match-pcd temporal operators

match-pcdcflow pcd) () = Fail
match-pcdcflow pcd) (k, pnamewnamev*, jp)
= match-pcd pcdk, pnamewnamev®, jp)
V match-pcdcflow pcd) jp

match-pcd(cflowbelow pcd) () = Fail
match-pcd(cflowbelow pcd) (k, pnamewnamev®, jp)
= match-pcdcflow pcd) jp

match-pcd(cflowtop pcd) () = Fall
match-pcdcflowtop pcd) (K, pnamewnamev*, jp)
= match-pcdcflowtop pcd jp
Vv match-pcd pcdk, pname wnamev®, jp)




4.3 The Execution Monad

To package the execution, we introduce a monad:

T(A) = JP— Sto— (Ax Sto) |

This is a monad with three effects: a dynamically-scopedtitya
of type JP, a store of typeStg and non-termination. It says that a
computation runs given a join point and a store, and eithedyces
avalue and a store, or else fails to terminate. The monactpes
ensure thafP has dynamic scope and tiativis global:

M onad oper ations
[

returnv=Ajp s.lift(v,s)
letv<E;inEp
=Ajps.case(Epjps) of
1l=1
lift(v,s) = ((AV.E2) vijps)

A procedure takes a sequence of arguments and produces a-comp
tation. An advice takes a join point and a procedure, andymresl

a new procedure that is either the original procedure wrdppe
the advice (if the advice is applicable at this join point)etse is

the original procedure unchanged (if the advice is inapiblie).
Procedures and advice do not require any environment angisme
because they are always defined globally and are closed &thutu
recursively) in the global procedure- and advice- envirents.

The distinguishedWNamecomponent of the environment will be
used for tracking the name of the procedure (if any) in whioh t
current program text resides. Similarly, the distingusReoceed
component will be used for thgproceed operation, if it is de-
fined. We writep(%within), p[within=...], p(%proceed), and
p[/proceed = ...] to manipulate these components.

4.4 Expressions

We can now give the semantics of expressions. We give heye onl
a fragment:

Semantics of expressions
[

We write

letvi < W ;Vvn< MW inE

for the evident nesteldt.

We will have the usual monadic operations on the store; for jo
points we will have a single monadic operasatjp. setjp takes
a functionf from join points to join points and a mapfrom join
points to computations. It returns a computation that asgdlito
the current join point, passes the new join poingt@nd runs the
resulting computation in the new join point and currentetor

tjp

setjp: (IP— JIP) — (JP— T(A)) — T(A)
=Afg.Ajps.(9(fjp)) (fip) s

Thelift operation induces an order di{A) for any A. We will use
the following domains based on this order:

lDomains
X € T(Val Computations
m € Proc=Val' — T(Val) Procedures
o € Adv=JP— Proc— Proc  Advice
@ € PE=Pname— Proc Procedure Environments
y € AE=Adv Advice Environments
p € Env=[ld— Loc x WNamex Proceed

Environments
WName= Optional(Pname) Within Info
Proceed= Optional(Proc)  proceed Info

E[€e] € Env— PE— AE— T(Val)

Z[(pname ¢ ... en)]pgy
= letvy < Z[eflpgy; ..
in (enter-join-pointy
(new-pcall-jp pnamép %within) (Vq,...,Vn))
(¢(pname)
(V1,...,Vn))

- Vn <= Eflen]lpgy

E[[(proceed €1 ... &) ]pyy
=letvy < Z[eallpgy; ..: v <= E[en] pgy
in p(%proceed) (V1,...,Vn)

In a procedure call, first the arguments are evaluated in si@lu
call-by-value monadic way. Then, instead of directly cajlithe
procedure, we usenter-join-pointto create a new join point and
enter it, invoking the weaver to apply any relevant advicentast
this with theproceed expression, which is like a procedure call,
except that the special proceddigroceed is called, and no addi-
tional weaving takes place. The functioew-pcall-jp: Pname—
WName- Val* — JP — JP builds a new procedure-call join point
following the grammar in section 4.1.

45 TheWeaver and Advice

enter-join-pointis the standard entry to a new join point. It takes
a list of advicey, a join-point builderf, a procedurat, and a list
of arguments/*. It produces a computation that builds a new join
point using functiorf, calls the weaver to wrap all the adviceyin
around procedurg, and then applies the resulting procedure’'to



enter-join-point
[

Semantics of advice
[

enter-join-point AE — (JP — JP) — Proc— Proc
=Ayf AV setjp f (Ajp’. weavey jp’ TTV¥)

The weaver is the heart of the system. It takes a list of aghdace
join point, and a procedure. It returns a new procedure tbat ¢
sists of the original procedure wrapped in all of the advitat is
applicable at the join point. To do this, the weaver attenpip-
ply each piece of advice in turn. If there is no advice leféertlihe
effective procedure is just the original procedute Otherwise, it
calls the first advice in the list, asking it to wrap its adv{deap-
plicable) around the procedure that results from weavieg#st of
the advice around the original procedure.

So we want

(weave(ay, ..., 0n) jp 1) = (a1 jp (az jp ... (An jp 1)...))

This becomes a straightforward bit of functional programgni

The weaver
[

weave AE — JP — Proc— Proc
=Ayjp m.casey of
H=m
a:y = ajp(weavey jp m)

This brings us to the semantics of advice. A piece of advike dn
expression, should take a procedure environment and aneaeit
vironment, and its meaning should be a procedure transfoithe
fundamental model iaround advice. If the advice does not apply
in the current join point, then the procedure should be unghé.

If the advice does apply, then the advice body should be ¢sxdcu
with the bindings derived from the pcd, and witproceed set to
the original procedure (which may be either the startingpdure

or a procedure containing the rest of the woven advice). Hewe
there are two subtleties: first, the body of the advice is t@xe
cuted in a newaexecution join point, SO we usenter-join-point

to build the new join point and invoke the weaver. This is pete
tially an infinite regress, so most advice pcd’s will incluale ex-
plicit pcalls conjunct to avoid this problem. Second, in this case,
the innerv* is not used; the advice body can retrieve it using an
args pcd.

before andafter advice are similarjproceed is not bound, and
we use the monad operations to perform the sequencing.

A4[ (around pcd &]gy: IP— Proc— Proc
=AjpTIVE.
2CD{ped)jp
(Ap. enter-join-pointy

new-aexecution-jp

(AV* . E[€](p[4within = None

Jiproceed = T{@y))

0)

(V)

A[((before pcd) €] gy: IP— Proc— Proc
=AjpTvt.
PCD[ped]jp
(Ap.enter-join-pointy
new-aexecution-jp
(Av*. let
vy < £[€](p|%within = None
%proceed = Nong)gy;
Vo < (TTVY)
in vp)
0)
(V)

4| ((after pcd) e)]gy:IP— Proc— Proc
=AjpTIV*.
PCD[pcd]jp
(Ap. enter-join-pointy

new-aexecution-jp

(AV*. let
vy < (TTVY);
Vo < E[€](p|4within = None

%proceed = Nong)gy
in V]_)

The function? CD[[—] takes four arguments: a pcd, a join point,
a functionk from environments to computations (the “success con-
tinuation”), and a computatiop (the “failure computation”), and

it produces a computation. It calleatch-pcdto match the pcd
against the join point. Ifmatch-pcdsucceeds with a set of bind-
ings, PCD creates an environment containing a fresh location for
each binding, and invokes the success continuation on tivis e
ronment, producing a new computation. Otherwise, it refuhe
failure computation.



Semanticsof pcd’s
[

PCD[ped] : IP— (Env— T(Val)) — T(Val) — T(Val)
= A jp kx. case(match-pcd pcd jpof

Fail = x
[xl:vlv--wxn:Vn} =
let I1 < alloc(vy);...;lh < aloc(vn)

ink(xg =l1,...,% = In])

4.6 Proceduresand Programs

Finally, we give the semantics of procedures and whole prmogr

The meaning of a procedure in a procedure and advice environ-
ment is a small procedure environment. In this environmtg,
name of the procedure is bound to a procedure that accep&s som
arguments and enterspaxecution join point, possibly weaving
some advice. When the advice is accounted for, the arguraeats
stored in new locations, and the procedure body is executegh i
environment in which the formal parameters are bound to #ve n
locations.

Semantics of procedure declarations
[

P[(procedure pname (x; ...
= A@y.[pname=
AV* . (enter-join-pointy
(new-pexecution-jp pname
(Aw. letly < alloc(wll) ;

X») €] :PE— AE— PE

in <« alloc(w/n)

in(Z[ex = 1. -.
%within = pname

%proceed = Noné @y))

~7Xn:|n,

We have formulated the semantics of procedures and advise-as
ing closed in a given procedure environment and advice envir
ment. A program is a mutually recursive set of procedures and
advice, so its semantics is given by the fixed point over tfiese
tions. We take the fixed point and then apply the procedise

to no arguments.

Semantics of programs
[

PGM[(proc, ... proc, adw ... adwy) ] : T(Val)
= run(fix(A(@,y). (311 (2llprog ] gy), (aadviJev)iL,)))

run(@,y) = £[[(main) ][]y

Here the notatior‘(...)’j“:1 denotes a sequence of length and
the notationy ! ; denotes the concatenation operator on bindings,

discussed on page .

This completes the semantics of the core language.

5. RELATED WORK

Aspect-oriented programming is presented in [12], whicbhveh
how several elements of prior work, including reflection]jiiietaob-
ject protocols [10], subject-oriented programming [9]aptive pro-
gramming [14], and composition filters [1] all enable bettentrol
over modularization of crosscutting concerns. A varietyrafdels
of AOP are presented in [4]. AspectJ [11] is an effort to deped
Java-based language explicitly driven by the principleA©P.

Flavors [19, 5], New Flavors [15], CommonLoops [3] and CLOS
[18] all supportbefore, after, andaround methods.

Andrews [2] presents a semantics for AOP programs based on a
CSP formalism, using CSP synchronization sets as join poktis
language is an imperative language with first-order procesjuike

ours, but it does not allow procedures to be recursive. Higlage
includesbefore, after, andaround advice, but his pcd’s contain
neither boolean nor temporal operators.

Lammel [13] presents static and dynamic operational sénsfor
a small OO language with a method-call interception fac#iime-
what different from ours. His system allows dynamic registm
of advice, but does not treatound advice.

Douence, Motelet, and Sudholt [6] present an event-basehtiof
AOP. They present a domain-specific language for definings&r
cuts” (equivalent to our pointcuts). Their language is vpow-
erful, but its semantics is given by a rewriting semanticjch
makes the meaning of its programs obscure. We believe that ou
definition ofmatch-pcdrepresents a significant improvement.

6. FUTURE WORK

We are currently developing a translator from AJD(BASE) ASE
that removes all advice by internalizing the weaving preceéle
hope to do this in a way that will facilitate a correctnessgbro

We plan to extend the ASB suite by adding implementationbef t
core concepts of other models of AOP and weaving, includiatics
join points, Demeter [14], and Hyper/J [16]. We hope to depal
theory of AOP that accounts for all of these.

7. REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting Object Interactions Using
Composition Filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors,Proceedings of the ECOOP’93 Workshop
on Object-Based Distributed ProgrammijigNCS 791,
pages 152-184. Springer-Verlag, 1994.

[2] J. H. Andrews. Process-algebraic foundations of
aspect-oriented programming. Broceedings of the Third
International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection 2001)
volume 2192 oL ecture Notes in Computer Scienpages
187-209, Berlin, Heidelberg, and New York, Sept. 2001.
Springer-Verlag.



[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,
and F. Zdybel. CommonLoops: merging Common Lisp and
object-oriented programming. Proceedings ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applicationpages 17-29, Oct. 1986.

[4] Communications of the ACMolume 44:10. ACM, Oct.
2001. special issue on Aspect-Oriented Programming.

[5] H.I. Cannon.Flavors: A non-hierarchical approach to
object-oriented programmingymbolics, Inc., 1982.

[6] R. Douence, O. Motelet, and M. Sudholt. A formal definitio
of crosscuts. IProceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection 200d9lume 2192 of
Lecture Notes in Computer Scienpages 170-186, Berlin,
Heidelberg, and New York, Sept. 2001. Springer-Verlag.

[7] D. P. Friedman, M. Wand, and C. T. Hayn&ssentials of
Programming LanguageMIT Press, Cambridge, MA,
second edition, 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissid®ssign
Patterns: Elements of Reusable Object-Oriented Software
Addison Wesley, Massachusetts, 1995.

[9] W. Harrison and H. Ossher. Subject-oriented prograngmin
(A critique of pure objects). In A. Paepcke, editor,
Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicatipages
411-428. ACM Press, Oct. 1993.

[10] G. Kiczales and J. des Rivieréghe art of the metaobject
protocol MIT Press, Cambridge, MA, USA, 1991.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Rand
W. G. Griswold. An overview of AspectJ. IRroceedings
European Conference on Object-Oriented Programming
volume 2072 oL ecture Notes in Computer Sciengages
327-353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
Proceedings European Conference on Object-Oriented
Programming volume 1241, pages 220-242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[13] R. Lammel. A semantical approach to method-call
interception. In G. Kiczales, editatst International
Conference on Aspect-Oriented Software Developignt
2002.

[14] K. J. LieberherrAdaptive Object-Oriented Software: The
Demeter Method with Propagation Patterf®8NS
Publishing Company, 1996.

[15] D. A. Moon. Object-oriented programming with Flavohs.
N. Meyrowitz, editor,Proceedings ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 1-8, New York, NY, Nov. 1986. ACM
Press.

[16] H. Ossher and P. Tarr. Hyper/J: multi-dimensional safian
of concerns for Java. IRroceedings of the 22nd
International Conference on Software Engineering, June
4-11, 2000, Limerick, Irelanchages 734—737, 2000.

APPENDIX A.

[17] B. C. Smith. Reflection and semantics in LispQonf. Rec.
11th ACM Symposium on Principles of Programming
Languagespages 23-35, 1984.

[18] G. L. SteeleCommon Lisp: the LanguagPBigital Press,
Burlington MA, second edition, 1990.

[19] D. Weinreb and D. A. Moon. Flavors: Message passing in
the LISP machine. A. |. Memo 602, Massachusetts Institute
of Technology, A.l. Lab., Cambridge, Massachusetts, 1981.

LANGUAGE COMPARISON

Full AJD contains the following features not in the core laage

captured by the semantics of this paper. None representudiffi
extensions for the semantics.

e classes, methods, and objects.

e declared types for bound variables (as illustrated in tiarex
ples of section 3).

e static type checking (asrgs pcd includes types for its argu-
ments, as in our examples; at present these must be checked
dynamically).

e additional join points at: method calls, method executjions
object constructions, field references and field assignsnent

e The pcd operatorand andor take an arbitrary number of
arguments.

AspectJ provides a sophisticated advice ordering mechmamitere
advice is first ordered from most general to most specific véttun
classes with equal specificity, orders the advice by que(ifief ore,
after, or around). AJD is working toward this capability, but
the current stable implementation only provides the quatifiased
ordering, wherearound advice is executed around any relevant
before andafter advice. In the semantics, advice is ordered by
its appearance in the program text.

The examples of section 3 were in written and executed A
except for the following:

e the output was edited to improve formatting

¢ in the implementation of ASB at the time this work was done,
eligible around advice was executed in reverse order from its
appearance in the program text. The example in figure 1 was
edited, reversing the order of advice declarations, to lve co
sistent with the left-to-right semantics of the core larggia



