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Offline and Online Identification of Hidden
Semi-Markov Models

Mehran Azimi, Panos Nasiopoulos, and Rabab Kreidieh Ward, Fellow, IEEE

Abstract—We present a new signal model for hidden
semi-Markov models (HSMMs). Instead of constant transition
probabilities used in existing models, we use state-duration-de-
pendant transition probabilities. We show that our modeling
approach leads to easy and efficient implementation of parameter
identification algorithms. Then, we present a variant of the EM
algorithm and an adaptive algorithm for parameter identification
of HSMMs in the offline and online cases, respectively.

Index Terms—Expectation maximization (EM) algorithm, re-
cursive maximum likelihood (RML), recursive prediction error
(RPE), semi-Markov models.

I. INTRODUCTION

MARKOVIAN signal models have proven to be a pow-
erful tool in signal modeling. Hidden Markov models

(HMMs) are the most popular class of Markovian signal models
[1], [2]. Hidden semi-Markov models (HSMMs) are a general-
ization of HMMs and are useful in many engineering applica-
tions, such as speech processing, signal estimation, queuing net-
works, and many others [3], [4]. Generally speaking, HSMMs
are more powerful than HMMs in modeling physical signals;
however, HSMMs lead to more complex parameter identifica-
tion methods. This paper addresses the parameter identification
of HSMMs in the offline and online cases.

The HSMM offline identification approaches are mainly a
generalization of the Baum–Welch algorithm for parameter
identification of HMMs [2]–[6], except that they require much
higher computational load [7].

In [8], an HSMM with states is reformulated as an HMM
with states, where is the maximum state duration for
all states, and then the Baum–Welch algorithm is used to es-
timate the model parameters. In other approaches, which are
based on the state-duration-dependant transition probabilities
[9], the state transition matrix is replaced with an
tensor. The drawback of the methods in [8] and [9] is the addi-
tion of a large number of extra parameters to the model, which
must also be estimated in addition to the usual HMM parame-
ters.

Online identification of HMMs has been studied in [1] and
[10]–[14]. These approaches are based on either the recursive
maximum likelihood (RML) or the recursive prediction error
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(RPE) [15] techniques. However, for HSMMs, there is no online
identification method reported.

In [16] and [17], a parameter estimation method is presented
for a more general semi-Markovian signal model. In this model,
the hidden state process is a discrete semi-Markov chain with
Poisson-distributed transition times, and the signal observations
are assumed to be filtered by a linear and casual system, mixed
with white Gaussian noise. In this case, a Viterbi algorithm
cannot be used for maximizing the likelihood function. The ap-
proach taken in [16] and [17] is to formulate this estimation
problem as a constraint optimization problem and use a combi-
nation of a maximum a posteriori and the maximum likelihood
estimation procedures. Because it is difficult to solve this op-
timization problem theoretically, a numerical procedure called
integer most likely search (IMLS) is used. However, this method
requires exponentially increasing memory. There are methods
that aim to avoid this memory problem by using suboptimal al-
gorithms such as pseudo-Baysian algorithm or interacting mul-
tiple-model (IMM) algorithm [18].

In this paper, we present a novel signal model for HSMMs,
which leads to easier and more computationally efficient
parameter identification algorithms than existing ones. We
use state-duration-dependent transition probabilities, where
the state-duration densities are modeled with parameterized
probability mass functions. Our modeling scenario can be
encapsulated as a time homogeneous first-order infinite state
Markov model. Although our approach is similar to [8] in this
regard, it differs in three ways. First, the state durations in
[8] are assumed to be bounded, and hence, the encapsulated
Markov model is finite state. Second, in [8], the state durations
are not modeled with parameterized probability mass functions,
and third, constant transition probabilities are used in [8]. This
method has the disadvantage of overparameterizing the model.
Our approach, however, does not overparameterize the model.

We then present a novel version of the Baum–Welch algo-
rithm for offline identification of HSMMs in Section III. In
Section IV, we present a method for online identification of
HSMMs. Numerical results from implementations of our algo-
rithms for offline and online identification of HSMMs are pre-
sented in Section V.

II. SIGNAL MODELING

We consider a signal model where the state of the signal
at time , , , is determined by a finite-state discrete-
time semi-Markov chain with distinct states. We assume the
initial state is given or its distribution is known. Without
loss of generality, we assume takes its values from the set

, where is a vector with unity as the
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th element and zeros elsewhere. Suppose , and let
denote the duration spent in the th state prior to time . Then,
we define the state-duration vector of size , where
all elements of are equal to unity, except the th element,
which is equal to . is easily constructed from as

, where denotes the element-by-element
product, and is a vector with all unity elements.

We model the state-duration densities with a parametric prob-
ability mass function (pmf) . That is, the probability that
stays exactly for time units in state is given by .
should be selected such that it adequately captures the properties
of the signal under study. Hence, the selection of should
be justified by some evidence from samples of the signal. Even
though state durations in a semi-Markov chain are inherently
discrete, it is noted in many studies that continuous parametric
density functions are also suitable for modeling state durations
in many applications, including speech processing [4], [5]. In
this approach, state durations are modeled with the best fitting
parametric probability density function (pdf), and then the dis-
crete counterpart of this density function is taken as the best pmf.
That is, if is the continuous pdf for state duration of the
th state, then the probability that the signal stays in state for

exactly time units is given by . Since negative
state durations are not physically meaningful, it is usually more
appropriate to select from the family of exponential dis-
tributions [5]. Specifically, the family of Gamma distributions
are considered in [4] for speech processing applications. In this
paper, we assume that is a Gamma distribution function
with shape parameter and scale parameter , that is,

(1)

The mean and variance of are and , respectively
[19]. Note that our signal model is applicable with minor
changes to HSMM signals whose state-duration densities
are modeled with a pdf other than Gamma. Also, let
denote the cumulative distribution function of , i.e.,

.
We construct our model for HSMMs using state-duration-de-

pendant transition probabilities. We define the state transition
matrix as , where

. Clearly, ’s are not constants and do
change with time; however, we will denote with for
notational simplicity. It can be easily shown that for the diag-
onal elements of , ’s, we have

(2)

The probability that the state process stays in the th state
for exactly time units is given by .
By substituting from (2), it is easily shown that the pdf
of the state-space durations is actually equal to the selected
model . For , , where

. We write the matrix as
, where is a constant

matrix representing the nonrecurrent state transition probabili-
ties, and is a diagonal matrix representing the
recurrent state transition probabilities. ’s are given as

(3)

Note that are constrained to . Since
is a diagonal matrix and all the diagonal elements of are
zero, one can show that for all . One can
also easily show that our model reduces to an HMM if the state
transition probabilities, ’s, do not depend on state durations

. Hence, the hidden state process evolves in time as

(4)

where is a vector with all unity elements, and is
a martingale increment.

We observe the observation process , where the proba-
bilistic distribution of is determined by . In this paper, we
assume that for each state , has a normal distribution. That
is, , where and are the
mean and standard deviation of the observation process for
state . We denote the probability of observing in state with

, that is,

(5)

Therefore, may be written as , where
, , denotes

inner product, and is Gaussian white noise with zero mean
and variance 1.

We define as a vector of size containing all the
model parameters

(6)

III. OFFLINE IDENTIFICATION OF HSMMS

Given a set of observations from an HSMM signal
, we wish to estimate , the parameters of the

HSMM model. The algorithm we use is a variant of the ex-
pectation maximization (EM) algorithm [20] and, in essence, is
very similar to the Baum–Welch algorithm for identifications
of HMMs presented in [2] and [8]. We define the “forward”
and “backward” variables and as in [2] and [8]. Let

, where
is our estimate of the state-duration variable

for state at time . is initialized to for . We
reconstruct iteratively as

(7)
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The state transition matrix is updated for each as

(8)

Our algorithm starts by initializing to an initial guess. Each
iteration of the algorithm consists of two steps. In the step
(see [20]), we use the readily calculated recursive formulae pre-
sented in [2], in conjunction with (7) and (8), to calculate the
forward and backward variables ’s and ’s. Note that ’s
in recursion equations in [2] should be replaced with ,
as calculated in (8). In the step, the model parameters are
updated to the maximum-likelihood estimate of the model pa-
rameters computed from the forward–backward variables in the

step. The update equations for parameters , , and are
similar to the equations presented in [2]. Let and be the
mean and variance of the state duration for state , respectively.
It can be easily shown that and are estimated as

(9)

where and , are given in terms of and as
and .

The algorithm stops when converges to a constant vector.
The forward–backward algorithm has the computational com-
plexity of per pass and can be shown to require a
memory of .

IV. ONLINE IDENTIFICATION OF HSMMS

In this section, we use the state-space signal model presented
in Section II and set up the problem of online identifica-
tion of HSMMs such that the general recursive prediction
method can be applied. Let denote the estimate of the
model parameters at . We define the objective function

as the log-likelihood of the
observations up to time given . can be rewritten as

(10)

where is the log-likelihood
increment. We use the recursive prediction error (RPE) method,
where the parameters are updated in the Newton–Raphson di-
rection [15]. Starting with an initial guess for at , is
updated using

(11)

where is an estimate of the Hessian matrix,
and is the gradient of with respect to and determines
the search direction [15]. is a step size.

In summary, our online algorithm consists of four steps for
each time instance : 1) estimate the hidden layer variables
and , 2) update the gradient vector , 3) update our estimate
of the Hessian matrix , and 4) update the parameter estimate

using (11). To facilitate the development of the update equa-
tions, instead of using as in (6), we use

(12)

where are simply defined as (see [1]). For
simplicity, we use instead of in our notations. We now de-
scribe the details of each step of our online algorithm.

Let ; then, the forward fil-
tering recursion equation is given by

(13)

where , is a diagonal matrix,
, and is the transpose of the state transition

matrix (4). Let be the conditional
estimate of the state at time . It can be easily shown that

. Given the observations up to time , the next state
and next observation of the signal are estimated as

(14)

(15)

The estimate of the state duration variable is updated similarly
to the offline case (7) as

(16)

The log-likelihood increment (10) is given by

(17)

We update the gradient vector in each
iteration using our estimates of the filtration parameters (i.e.,

and ). The detailed equations for this are presented in Ap-
pendix. After finding , the parameter vector and are
updated recursively using (11) and

(18)

A discussion on choices for can be found in [12] and
[21]–[23].

It can be shown that our online algorithm has computational
complexity of , where is the number of parameters
employed in signal model [according to (12), ].

V. NUMERICAL RESULTS

Here, we present the numerical results of implementing our
offline and online algorithms for identifications of HSMMs.

In the first experiment, the parameters of an HSMM signal
with distinct states were estimated using the offline al-
gorithm of Section III. The number of observations was

. The actual and initial values of the parameters are given
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TABLE I
ACTUAL AND INITIAL VALUES OF THE PARAMETERS OF HSMM MODELS USED IN OUR SIMULATIONS

Fig. 1. Parameter estimates versus the iteration number of the offline algorithm. The dotted lines show the actual value of the parameters.

Fig. 2. Online estimation of a three-state HSMM, where the actual parameter changes at t = 5000. (a) State transition probability a . (b) Observation mean for
state 1, � . The dotted lines show the actual value of the parameter. The parameter estimates follow the temporal changes in the actual value of the parameter.

in Table I. Fig. 1 illustrates that the parameter estimates con-
verge to their actual values after few iterations. We also observed
that the log-likelihood of the total observation given the param-
eters estimate [i.e., ] increases in each iteration,
demonstrating that the algorithm finds the maximum-likelihood
estimate of the model parameters.

In the next experiment, we applied our online identification
method to an HSMM signal with the parameters shown in
Table I. As shown, the actual parameters of the model change

at . Fig. 2 illustrates that the parameter estimates
converge to their actual values as becomes large. Furthermore,
the algorithm successfully tracks the temporal changes in the
model parameters.

VI. CONCLUSION

We presented a novel signal model for HSMMs. This model
results in easier parameter identification methods than the cur-
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diag (24)

(25)

(31)

rent signal models. We employed parameterized pdfs to model
the time that a signal spends in each state.

Based on our model, we developed methods for estimating
the model parameters of an HSMM signal for both the offline
and online cases. Our offline method uses a version of the EM
algorithm and takes advantage of our novel signal model to find
the maximum-likelihood estimate of the parameters in a timely
manner. Our online method adaptively updates the model pa-
rameters using a version of the RPE method, such that the like-
lihood of our estimate is maximized. We discussed the practical
issues involved in the implementation of our methods and pre-
sented techniques to address these issues.

APPENDIX

In this Appendix, we present equations for updating
the gradient vector in our online algorithm. Let

denote the derivative operator with respect to
variable . The gradient vector is written as

.
We assume that the probabilities of nonrecurrent transitions
(i.e., ’s), and the parameters of the state-duration pdfs (i.e.,

and ) do not depend on each other. Update equations for
are given as

(19)

(20)

(21)

diag (22)

(23)

where we have (24) and (25) shown at the top of the page. Up-
date equations for are identical to the update equa-
tions for (19)–(25), except for , which is given
by diag . For

, we have

(26)

(27)

(28)

(29)
if
if
if

(30)

Update equations for are similar to (26)–(28), except
for , which is given by .

is a matrix with all zero elements, except the element
in row and column , which is given by (31), shown at the
top of the page. is obtained by differentiating

as defined in (1)

(32)

Update equations for are identical to the update equa-
tions for . However, differentiating with re-
spect to does not result in a simple form, as in (32). Fortu-
nately, we can easily find the numerical value of .
We have

(33)

where is the digamma function [24], [25]. The numerical
value of the digamma function at any point can be easily com-
puted using the method presented in [4] and [24].
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