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A Cache-Based Natural Language Model for Speech
Recognition

ROLAND KUHN anp RENATO DE MORI

Abstract—Speech recognition systems must often decide between
competing ways of breaking up the acoustic input into strings of words.
Since the possible strings may be acoustically similar, a language model
is required; given a word string, the model returns its linguistic prob-
ability. This paper discusses several Markov language models. Subse-
quently, we present a new kind of language model which reflects short-
term patterns of word use by means of a ‘‘cache component,’’ analo-
gous to ‘‘cache memory’’ in hardware terminology. The model also
contains a ‘‘3g-gram component’’ of the traditional type. The com-
bined model and a pure 3g-gram model were tested on samples drawn
from the LOB (Lancaster-Oslo/Bergen) corpus of English text. We dis-
cuss the relative performance of the two models, and make suggestions
for future improvements.

Index Terms—Cache-based lang model, la models for
speech recognition, Markov language models, natural language, per-
plexity, probabilistic language model, 3g-gram language model.

1. INTRODUCTION

TYPE of system popular today for automatic speech

recognition (ASR) consists of two components. An
acoustic component matches the acoustic input to words
in its vocabulary, producing a set of the most plausible
word candidates together with a probability for each. The
second component, which incorporates a language model,
estimates for each word in the vocabulary the probability
that it will occur, given a list of previously hypothesized
words. Each word candidate originally selected by the
acoustic component is thus associated with two probabil-
ities, the first based on its resemblance to the observed
signal and the second based on the linguistic plausibility
of that word occurring immediately after the previously
recognized words. Multiplication of these two probabili-
ties produces an overall probability for each word candi-
date.

Our work focuses on the language model incorporated
in the second component. The language model we use is
based on a class of Markov models identified by Jelinek,
the ‘‘n-gram’’ and ‘‘Mg-gram’’ models. These models,
whose parameters are calculated from a large training text,
produce a reasonable nonzero probability for every word
in the vocabulary during the speech recognition task. Our
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combined model incorporates both a Markov 3g-gram
component and an added ‘‘cache’ component which
tracks short-term fluctuations in word frequency. The ad-
dition of the cache component and the evaluation of its
effects are the original contributions of this paper. In ad-
dition, we provide an overview of several probabilistic
language models currently used in the field of speech rec-
ognition.

We adopted the hypothesis that a word used in the re-
cent past is much more likely to be used soon than either
its overall frequency in the language or a 3g-gram model
would suggest. The cache component of our combined
model estimates the probability of a word from its recent
frequency of use. The model uses a weighted average of
the 3g-gram and cache components in calculating word
probabilities, where the relative weights assigned to each
component depend on the part of speech (POS). The 153
POS’s used are defined in Johansson et al. [6]. For pur-
poses of comparison, we also created a pure 3g-gram
model, consisting of only the 3g-gram component of the
combined model.

For each POS, the combined model may therefore place
more reliance on the cache component than on the 3g-
gram component, or vice versa; the relative weights were
obtained experimentally for each POS from a training text,
using the deleted interpolation method [5]. The cache-
based probabilities C;(W, i) were calculated as follows.
For each POS, a ‘‘cache’’ (just a buffer) with room for
200 words was maintained. Each new word was assigned
to a single POS g; and pushed into the corresponding
buffer. As soon as there were five words in a cache, it
began to output probabilities which corresponded to the
relative proportions of words it contained. The lower limit
of 5 on the size of the cache before it starts producing
probabilities, and the upper size limit of 200, are arbi-
trary—there are many possible heuristics for producing
cache-based probabilities.

The dependence on POS in the combined model arose
from the hypothesis that a content word, such as a partic-
ular noun or verb, will occur in bursts. Function words,
on the other hand, would be spread more evenly across a
text or conversation; their short-term frequencies of use
would vary less dramatically from their long-term fre-
quencies. One of the aims of our research was to assess
this hypothesis experimentally. We believed that if it was
correct, the relative weight calculated from the training
text for the cache component for most content POS’s
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would be higher than the cache weighting for most func-
tion POS’s.

Our research was greatly facilitated by the availability
of a large and varied collection of modern texts, in which
each word is labeled with an appropriate POS. This is the
Lancaster-Oslo/Bergen (LOB) Corpus of modemn En-
glish, consisting of 500 samples (drawn from 15 different
categories) of texts published in the United Kingdom in
1961. This corpus is described by Johansson and others
in [6]-[8]; it is available to academic researchers (but not,
unfortunately, to their colleagues in industry) from the
Norwegian Computing Centre for the Humanities. We
chose to employ the same 153 POS’s found in the LOB
Corpus in our model, in the belief that it was more ra-
tional to rely on the syntactical judgments of a large team
of trained grammarians and lexicographers than to devise
our own idiosyncratic POS’s. Part of this corpus (391 ,658
words) was utilized as a training text which determined
the parameters of both models: the standard 3g-gram
model, and our combined model consisting of the same
3g-gram model along with a cache component.

We required a yardstick with which to compare the per-
formance of the two models. The measure chosen is called
“‘perplexity’’; it was devised by F. Jelinek, R. L. Mercer,
and L. R. Bahl [4]. The perplexity of a model can be
estimated by the success with which it predicts a sample
text (which should NOT be the one used to train the
model). The better the model, the higher the probability
it will assign to the sequence of words that actually occurs
in the sample text. To compare two models, one employs
each to calculate the word-by-word probability of the same
sample text. One can then calculate the average probabil-
ity per word of sample text given by each of the two
models; the model for which this average probability is
higher is better than the other. The perplexity is simply
the reciprocal of this average probability. In principle, low
perplexity implies good performance, although it does not
take into account the varying degrees of acoustic difficulty
among words. It is possible that a language model that
accurately distinguished between easily confused words
(such as short words) might be more useful in practice
than another model of slightly lower perplexity. On the
other hand, perplexity provides a straightforward way of
comparing language models independently of the other
components of an ASR system.

Once the parameters of the two models, the pure 3g-
gram and the combined, had been calculated from part of
the LOB Corpus, we could have used any sample text from
any source whatsoever to compare the perplexity of the
models. We chose to use part of the remaining portion of
the LOB Corpus because of the wide range of different
types of text represented therein. The sample text we con-
structed (like the training text) includes such diverse types
of written English as press reports, religious literature,
love stories, and government documents. This sample text
posed a difficult challenge to the two models: if a model
performs well on such a variety of written material, it is
likely to perform well on most types of written English.
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The results of the comparison between the two models
exceeded our expectations. The pure 3g-gram model, as
expected, had a high estimated perplexity: 332. The es-
timated perplexity of the combined model, on the other
hand, was 107. This more than threefold improvement in-
dicates that addition of a cache component to a 3g-gram
language model can lead to dramatic improvement in the
performance of the model, as measured by its perplexity.
The cache component reflects short-term fluctuations in
the frequency of word use, on the premise that different
writers or speakers have idiosyncratic word frequencies.
Furthermore, a given subject or context may demand a
particular set of word frequencies. The cache component
of our combined model represents a cheap, easily imple-
mented technique for permitting automatic speech recog-
nition systems to track these short-term fluctuations in fre-
quency of word use, whatever their cause. It is interesting
to speculate whether the addition of a cache component
to other probabilistic language models in the literature,
such as Jelinek’s trigram model, would also improve the
performance of these models.

One of the hypotheses we tested in the course of this
research was disproved. We thought it likely that the use-
fulness of the cache component would depend on the POS,
with content words such as nouns and verbs being more
affected by context than function words such as articles
and prepositions, which would not vary much from their
overall frequency in the English language. Hence, we ex-
pected higher best-fit weights for the cache component of
content POS’s than for the cache component of function
POS’s. This turned out to be false. When the best-fit val-
ues for the weightings assigned to the cache component
for each POS were determined experimentally by means
of the deleted interpolation method, they did vary consid-
erably from POS to POS. But there was no consistent trend
of high values for content POS’s and lower ones for func-
tion POS’s. If anything, the pattern was the reverse. This
and other aspects of the results are discussed in the con-
clusion.

II. MARKOV MODELS FOR NATURAL LANGUAGE

A. Mathematical Background

An automatic speech recognition (ASR) system takes
an acoustic input 4 and derives from it a string of words
W,, W,, - - -, W, taken from the system’s vocabulary V.
In the course of this process, the system considers a set
of plausible word strings, assigns each a probability, and
outputs the candidate with the highest probability. If V'is
large, the candidates may all be equally plausible on
acoustic grounds. Thus, the system requires a purely lin-
guistic component which assigns probabilities to word
strings.

Formally, let WS = (W, W,, - - -, W,) denote one
of these possible word strings and P(WS|4) the proba-
bility that it was uttered, given the acoustic evidence A.
Then the speech recognizer will pick the word string WS



572 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL.. 12. NO. 6. JUNE 1990

satisfying

P(WS|A) = max P(WS|4), (1)
WS

i.e., the most likely word string given the evidence. Since
by the Bayes formula we have

P(WS) - P(A|WS)

PWS|A) = =5 )
it follows that
P(WS'A) = max W (3)

ws P(A)
Since A is fixed, it follows that

WS = {WS such that P(WS)

- P(A|WS)isa maximum}. (4)

In this paper, we will not discuss P(A4| WS ), the prob-
ability of the actual acoustic input being observed if the
string WS = (W,, - - - | W,) is uttered. The calculation
of P(A|WS) is the responsibility of the acoustic model-
ing part of the speech recognition system. We are con-
cerned instead with the model that estimates P( WS ), the
probability of a given word string independent of the
acoustic input.

From elementary probability theory, we decompose
P(WS) as

P(WS) = P(Wl) : I:Iz P(Wi'<Wl’ T, Wiﬂ))-

(5)

Thus, the probability that a word W, is spoken depends
on the past history of the dictation. As Jelinek ef al., from
whom the above account is derived [3]-[5] point out, the
probabilities P(W;[{W,, -+ , W, |)) are in practice
impossible to estimate, since each history ( W,, - -+ |
W, _1) has occurred at most only a few times in the his-
tory of the English language. For a vocabulary of size V,
there are V'~ different possible histories; since P(W, =
W|<{W,, -+, W,_,>) must be found for each possible
W, that is for each word in V, there are V' different prob-
abilities to be estimated. V' is an astronomically large
number for reasonable values of V and i—thus, another
approach must be found.

Whatever solution we adopt will consist of mapping the
set of possible histories ( W, - -+ |, W,_,) into a more
manageable number of equivalence classes. Let us denote
this many to one mapping by M. Thus, M({ W,, - - - ,
W;_ ) denotes the equivalence class of the string ( W,

T W -1 >
The probability P(W; = W) is approximated by

P(W,= W) =P(W, = WMIW,, --- . W,_))).
(6)

Any language model for speech recognition to be used
for maximum likelihood estimation will consist of such a
mapping M of word strings into equivalence classes.

B. Justification of Jelinek’s Markov Approach

Whenever we design a system intended to achieve hu-
man performance levels in the accomplishment of a cer-
tain task, there are two strategies we could follow. These
might be termed the ‘*anthropomorphic’’ strategy and the
‘‘abstract’’ strategy. The first requires that we learn as
much as possible about how human beings perform the
given task, and then incorporate this knowledge in the
system’s model. The second demands that we consider
the task in the abstract as a problem to be solved and find
the algorithm for solving it that will run most efficiently
on our machines. Thus, the details of the procedure we
come up with might converge on human strategies in the
task domain as we learn more about these strategies, or
diverge from them as our approach to the task becomes
increasingly abstract and as we exploit our hardware more
effectively.

Language models held by humans undoubtedly incor-
porate knowledge about syntax, semantics and the prag-
matics of discourse, as well as knowledge about the world
and often about the psychology of an individual speaker.
Of these knowledge sources, only syntax can claim to
have been successfully formalized—or so linguists would
have us believe. There is as yet no complete formal gram-
mar for the English language. Furthermore, few of the
innumerable parsers in the literature are equipped to make
probability estimates; most would assign a probability of
0 to ungrammatical sentences, though these occur with
high frequency in spoken English.

Thus, the case for an “‘abstract’’ strategy in natural lan-
guage modeling for speech recognition is very strong. The
exceptions occur in specialized domains where the vocab-
ulary, syntax, or semantics are so constrained that the
mechanisms underlying speech recognition by human
beings within the domain can be guessed at and incorpo-
rated into a parser. Where unconstrained human speech is
concerned, Jelinek and his colleagues believe that parsers
should act only as final filters for word strings chosen by
means of a more appropriate language model [3]-[5].

The Markov models employed by Jelinek and his group,
therefore, are not intended to reflect natural language
models possessed by humans. Instead, they are designed
to produce a mapping M of word strings to equivalence
classes that facilitate estimation of P(W; = W|M({ W,,

*, Wi_1))). This involves a compromise between the
need for a refined classification that loses little relevant
information about the history ( Wy, - -+, W;_,) and the
need for a small number of classes so that enough data
can be gathered for each one.

The novelty of Jelinek’s approach is that it considers it
more important to keep the information contained by the
last few words than to concentrate on syntax, which by
definition involves the entire sentence. A high percentage
of English speech and writing consists of stock phrases
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that reappear again and again; if someone is halfway
through one of them, we know with near-certainty what
his next few words will be. Jelinek’s trigram model au-
tomatically picks up this kind of information from a train-
ing text; a parser does not. The 3g-gram model addresses
one of the tasks parsers are designed to achieve—the pre-
diction of the part of speech of the next word—but its
structure owes everything to Jelinek’s approach and noth-
ing to traditional parsers. Like the trigram model, the 3g-
gram model uses only the context provided by the two
preceding words.

The advantages of the Jelinek approach are the assign-
ment of a probability to every possible word string and
the automatic calculation of parameters from a training
text, permitting the model to incorporate valuable infor-
mation that is not described by any existing linguistic the-
ory. An important disadvantage is the loss of information
that goes more than a few words back. In the next section,
we will discuss our combined model, which tries to over-
come this disadvantage by using information about the
lexical preferences of the speaker gathered during the rec-
ognition task and extending hundreds of words into the
past. The Markov component of this model is based on
the 3g-gram model, which is an adaptation by Derouault
and Merialdo of Jelinek’s original trigram model.

C. The Trigram Model

The trigram model is based on the mapping of a history
(W, -+, W;_) onto the state formed by the two most
recent words:

MW, o W) =AW, Wiy (T7)

Thus, it is a Markov model, approximating P(W; =
W\<W17 T, VV[—I))byP(VVI = Wl VVI"Zﬂ VV!‘—I)~’The
latter, in turn, is estimated from the training text as the
ratio of the number of times the word sequences { W, _,,
W;_ 1, W) occurred to the number of times the sequence
(W;_,, W;_,) occurred:

P(W, = W|W,_,, W,_,)

N(W, ,, W_\, W
=f(W|”/iv2, Wi—1)=“—( b D )
N(I/yi-Zv Wi-l)

(8)

In practice many trigrams that do not occur in the train-
ing text show up during the recognition task, and should
therefore not have the zero probability assigned them by
this formula. One way of dealing with this problem is to
use a weighted average of trigram, bigram, and individual
word frequencies:

P(W, = W‘VVi—Z’ W)
= qf(W,= W|W,_o, W_\) + quif (W, = W|W,_,)
+ qof (Wi = W), (9)
where gy + ¢, + ¢, = 1 and
f(Wz = W|Wi—2’ Wi—l)
=N(Wi_y, Wi\, W)/N(W, o, W),
f(w; = W|Wi—1) =N(Wi_\, W)/N(W,_,),
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and

f(Wi = W) = N(W, = W)/NT,

where NT = total number of words in training text.

If g, # 0, this smoothed trigram model guarantees that
any word W that occurs at least once in the training text
is assigned a nonzero probability, so it avoids the problem
with the pure trigram model mentioned above. The values
for qo, q,, and g, are chosen in order to meet the maxi-
mum likehood criterion—that is, the probability of a new
text calculated by means of the smoothed trigram formula
is maximized. Note that these ¢;’s depend on the size of
the training text, since as it gets larger more of the pos-
sible trigrams are encountered, f (W, = W|W,_,, W,_)
becomes a more reliable estimator, and the value of ¢,
can be increased.

There are other ways of using bigram and singlet fre-
quencies to smooth trigram estimates. Katz’s method
“‘backs off”’ from a trigram to a bigram to a singlet esti-
mate ([9]; described in [3]):

P(W, = W|W,_5, Wi_y) = i N(W, 5, Wi_, W) >0

then r, f(W, = W|W,_,, W,_);
else if N(W, |, W) >0
then r f(W, = W|W,_,);
else rof (W, = W). (10)

The weightings r,, r|, and ry ensure that the probability
summed over all words W adds up to 1; as with the g;’s
in the previous model, they are chosen to maximize the
probability of a new text, and depend on the size of the
training text.

D. The 3g-gram Model

The 3g-gram model (terminology of A. Martelli and of
Derouault and Merialdo [1], [2]) is analogous to the tri-
gram model; this model is also Markov, but not com-
pletely divorced from grammatical theory. It employs
grammatical parts of speech—henceforth abbreviated
“POS’’. Let g(W,) = g; denote the POS of the word that
appears at time i. Note that we might have W, = W = W,
fori + k, but g(W;) # g(W,). This is because a word
W in the vocabulary can belong to different POS’s at dif-
ferent times; for instance, ‘‘light’’ can be a noun, verb,
or adjective. By definition, each occurrence of a word only
has one POS; in practice, it may be difficult to single out
that POS among the set of POS’s associated with the word.

The 3g-gram model has two levels. At time i, it assigns
a probability to each POS on the basis of the information
provided by g; _, and g;_,. This part of the model func-
tions exactly like the trigram model, except that the vo-
cabulary consists of POS’s and not words. Thus, the
model gives a nonzero probability that g; is a noun or a
verb or an article, etc. Next, probabilities of individual
words are calculated on the basis of their frequency within
POS’s. Suppose that the model gave a probability of 0.99
to the occurrence of a noun at time i. Then the estimated
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probability that W, = ‘‘desk’” would be almost exactly
equal to the frequency of the word ‘‘desk’” among the
nouns in the training text.

Let G be the set of POS’s recognized by our model,
and let g; be a particular POS whose probability of occur-
ring we wish to predict. The model will give us an esti-
mate P(g; = g;|gi—2, &) of the probability based on
the identity of the two preceding POS’s. For a word W
that only has one possible POS, g(W), the probability
P(W, = W) is estimated by the product of the estimated
probability that g(W) will occur at time i by the esti-
mated probability that if g(W) occurs the word will be
W:

P(W, = W‘gi—% gi-1)
= IS(WIg(W)) ’ IS(&' = 8(W)lgi—2y 8,'—1)

=f(W‘g(W)) : P(gl = g(W)l 8i-2> gl‘l)
(11)
where the frequencies f are calculated from the training
text as before.

Generally things are not as simple as this, since many
words belong to more than one POS category. The prob-
ability that *‘light’” will occur is the probability that it will
occur as a noun plus the probability that it will occur as a
verb plus the probability that it will occur as an adjective.
Thus, the general 3g-gram formula is:

P(W, = W Wi, Wi_y))
= 2 P(W|g) P& =glg- 8-1)
8€G

ggcf(W\gj) : ﬁ(gi = 8/‘81—2, 8i-1)- (12)

Given a sufficiently large training text, P(g = gl gi-a
gi-1) could be estimated for every POS g; in G as f(g;
= gj|g,»,2, gi_1). In practice, existing training texts are
too small—many POS triplets will never appear in the
training text but will appear during a recognition task. If
we do not modify the procedure to prevent zero probabil-
ities, a particular g; that actually occurs may have zero
estimated probability.

Recall that an analogous problem occurred with the tri-
gram model. The two solutions we described were the
“‘weighted average’’ approach and the ‘‘back-off”’ ap-
proach, both using bigram and singlet frequencies to
smooth out the trigram frequencies. These two solutions
are also applicable to the 3g-gram model.

Derouault and Merialdo [1], [2] employed a variant of
the weighted average 3g-gram approach. Their work will
be described in some detail, as the 3g-gram component of
our model was based on it. It must be emphasized that not
all of their conclusions are relevant to our work, as they
were dealing with French rather than English. However,
their methods are applicable to English.

Their corpus consisted of 1.2 million words of French
text tagged with 92 POS’s. Only 5% of the possible trip-
lets occurred. Thus, the doublets were tabulated as well;
this time half of the possible pairs occurred. Instead of

I

using individual POS frequencies as the third component
of a weighted average, these researchers chose to add an
arbitrary small value e = 107 to the overall probability
estimate of each word in order to prevent zero estimates
for the probability of occurrence of any given word. Thus,
they approximated the probability of occurrence of a word
W at time i, given that W has part of speech g;, the two
preceding parts of speech are g;_, and g;_,, and vocab-
ulary size is n, as

P(Wi W‘g(W):gj’ gi—bgr‘—l))
(1 = ne)f(W|g) x [1f(& = 8l8i-2 8i-1)
+Lf(g=gle-1)] +e
e=10"%1 +5L =1 (13)

They experimented with two different ways of calcu-
lating /, and /,. Intuitively, it makes sense that if there are
many triplets beginning { g;_,, & -1, * "), the fre-
quency f( g = &;| & -2, & 1) gives reliable information;
[, should therefore be high. If there are few such triplets,
I, should be given more weight. Following this reasoning,
Derouault and Merialdo first let /; and /, be a function of
the count of occurrences of { g;_,, g;_ . Each possible
history { g; 2, & 1 » was assigned to one of ten groups,
depending on how often it had occurred in the training
text. Each of the groups had different values of /; and /,,
with the highest value of [, occurring in the group for his-
tories { g;_», & -1 that never occurred in the training
text.

Another way of looking at the problem is to argue that
I, and [, should depend on g; _ ;, the POS of the last word
recognized. If it is an article, for instance, we can be al-
most certain that the next word W; is a noun or an adjec-
tive. In other cases, we may have to look at g; _, as well.
Thus, the other way in which these researchers calculated
1, and [, was to allow them to depend on g; _;.

Let £({ g2, g —1 ) denote the parameter on which /,
and /, depend. For Derouault and Merialdo’s first ap-
proach, h = N({ g -2, 8 -1>) = the number of occur-
rences of { g;_», & » in the training text; for the second
approach, h = g, _, = the POS of the preceding word.
They calculated /() and /,(h) by the same algorithm in
both cases, called the deleted interpolation method [5].
Having split the training text into two portions in the ratio
3:1, they used the larger portion to calculate f( g;|8i -2,
g —y) and f( g;| g_1). They then set [;(h) and L,(h) to
arbitrary values such that [;(h) + L(h) = 1, and itera-
tively reset them from the remaining portion of the cor-
pus. Summing over all triplets ¢ g; >, gi—, &> in this
portion, they defined

Sl(h) =2 ll(h)f(gi 8i-2 gi—l)/[ll(h)
'f(gi\ng, gi-1) t lz(h)f(gilgi—l)]s (14)

Sy(h) = % l2(h)f(gi|gi—l)/[ll(h)
'f(gf‘gf—z» gi-1) + lz(h)f(gi‘givl)]'

i

I

(15)
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They then redefined
(k) = $i(h)/(Si(h) + Sy(h)),
L(h) = Sy(h) [(Si(h) + Sy(h)).

Then the first two formulas were calculated again on the
same portion of the corpus. Iteration continued until /,(h)
and L,(h) converged to fixed values. This procedure is
guaranteed to produce the /; and /, that maximize the es-
timated probability of the smaller portion of the corpus,
based on the frequencies obtained from the larger portion.

Derouault and Merialdo found only a small difference
between theyperformance of the model in which [, [, de-
pend on the count N({ g;_,, g&-,>) and that in which
they depend on the POS g; _,. Both models were superior
to one in which the coefficients were arbitrarily set to /,
= 0.99, [, = 0.01 for all POS. As expected, when train-
ing text size was varied, the algorithm described above
gave larger values of /| for larger text size.

The first level of both our combined model and our 3g-
gram model—the level that predicts the POS—works in
almost exactly the way we have described for Derouault
and Merialdo’s 3g-gram model. The other level to be con-
sidered is the lexical level, which estimates the probabil-
ity of a word given its POS. At this level, our 3g-gram
model is again almost identical to Derouault and Merial-
do’s model. In both cases, the probability of a word given
its POS is estimated by its frequency among the words
found in that POS category in the training text. Thus the
only substantial difference between our 3g-gram model
and Derouault and Merialdo’s model is the choice of
POS’s; they define 92 POS’s, we use the 153 POS’s in
the LOB Corpus. In the next chapter, we will see how the
combined model differs from 3g-gram model at the level
of lexical prediction.

(16)

E. Perplexity: A Measure of the Performance of a
Language Model

We can view a language as a source of information
whose output symbols are words w;. Unfortunately, we
cannot know the probabilities P (w, w,, *+*+ , w,) for
strings of a language. However, each language model
provides an estimate P(w,, wa, +++ , w,) for such
strings.

The difficulty of recognition of a sample text using a
given language model is given by

LP = —(1/n)[log, P(w;, wy, -+, w)]. (17)
Jelinek et al. [4] suggest that it is intuitively more satis-

fying to measure the difficulty of the speech recognition
task by the value of the perplexity given by
PP =2 = B(w, -+, w,) " (18)
Roughly speaking, if the perplexity is PP, the speech rec-
ognition task is as difficult as it would be if the language
had PP equiprobable words.
There is another way of looking at the perplexity. When
we employ language models to calculate the probability
of a sample text, the better models will assign a higher
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probability to it (since they are better at prediction than
the others). Thus, the better the model, the higher the av-
erage probability per word. How could one estimate this
average for a text of n words? The logical answer is to
take the nth root of the sample’s overall probability as
estimated by a given model, since the individual proba-
bilities are multiplicative. But this nth root is simply the
reciprocal of Jelinek’s perplexity measure. Thus, low per-
plexity corresponds to high probability per word of sam-
ple text; both are signs that the model in question is a
good predictor for the sample.

1II. THE COMBINED MODEL

A. Argument for the Cache Component

The central idea underlying the work presented in this
paper concerns a crucial limitation of all the Markov
models described earlier. Fortunately, this limitation can
easily be overcome by means of a mechanism which does
not compromise the robust simplicity of the Markov ap-
proach.

The main limitation of the Markov models is their in-
ability to reflect short-term patterns in word use. Suppose
the word sequence ‘‘the old ...’ has just been recog-
nized, and that the word ‘‘man’’ followed these two words
10% of the time in the training text, while the word
“‘band’’ followed them 1% of the time. The trigram model
will assign ‘‘man’’ a probability of 0.1 and ‘‘band’’ a
probability of 0.01. If the acoustic component assigns
these words roughly equal probability, ‘‘man’’ will be
chosen. For an isolated sentence, this would be the rea-
sonable choice to make. But now suppose that several
previous sentences contained the word ‘‘band,”” while
none contained the word ‘‘man.’’ We contend that a hu-
man would then assign overwhelmingly higher probabil-
ity to the word ‘‘band.”’ A word used in the immediate
past—say the last 2000 words or so—is much more likely
to be used soon than either its overall frequency in the
English language or any of the popular Markov models
would predict.

There is strong empirical evidence for this. Studies on
three corpora of English and American texts [7], [8] by
S. Johansson show that ‘‘word frequencies vary greatly
depending upon the type of text, both among content
words and function words’’ [8, p. 34]. The idea under-
lying our research was that a language model that ex-
ploited short-term shifts in word-use frequencies might
perform significantly better than the pure Markov models
described in the previous chapter. A similar problem was
faced by computer hardware designers some years ago
[12]. It was known that computers often accessed a par-
ticular memory location with high frequency within a se-
quence of accesses. The designers took advantage of these
short-term patterns in memory reference by building a
small, high-speed, expensive ‘‘cache memory’’ next to
the CPU. ‘“When a memory access is made, the contents
of the accessed location, plus its neighbors, is copied to
the cache’’ [12, p. 230]. When space must be made in the
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cache to insert new information, the least recently used
(‘“‘LRU”’) data is overwritten.

Following this analogy, we decided to design a lan-
guage model that had both a cache and a Markov com-
ponent. Our linguistic intuition suggested that these short-
term word frequency fluctuations depend on the POS. For
example, a given noun will appear in bursts whenever a
topic that evokes it is being discussed; a given preposition
would be likely to appear at a steady rate throughout. This
consideration led us to employ a model with a component
that predicts the POS, so that the model would be able to
weight the short-term cache component heavily when, for
example, a noun was expected, while virtually ignoring
the cache component when a preposition was expected.
Any Markov model that predicts the POS would have
suited as—we chose the 3g-gram model because it has
been thoroughly studied and well described in the litera-
ture. Just as was described for the l-values in Section II-D,
the relative weights assigned to the cache and 3g-gram
components within each POS category were determined
experimentally by means of the deleted interpolation
method.

Thus, the combined model assigns a probability to each
POS in the same way as the 3g-gram model. For a fixed
POS, the probability of any word which belongs to it is a
weighted average of the word’s frequency in the POS cat-
egory in the training text—the 3g-gram component—and
its frequency in the cache belonging to the POS cate-
gory—the cache component. At a given time during the
speech recognition task, the cache for a POS will contain
the last N words which were guessed to have that POS
(we arbitrarily set N to 200). If a word has occurred often
in the recent past, it will occur many times in the cache
for its POS (supposing for the purposes of argument that
the word only has one possible POS). Thus the word will
be assigned a higher probability than when its recent fre-
quency of occurrence is low. In this way, the inclusion of
a cache component satisfies our goal of dynamically
tracking changing patterns of word use.

B. Mathematical Treatment of the Combined Model

The combined model is now introduced mathemati-
cally. Recall that the pure 3g-gram model is

P(W: = W|gi—2’ gi—l)
=2 P(W, = ngi = 8j) P(g = 8;‘8:42» gi-1)-

&€G
(19)

The combined model leaves the POS component P( g; =
gj| 8i-2, & -1) of the 3g-gram model unchanged. Our
modification affects only the component that predicts the
probability of a word given the POS, P(W, = W|g, =
g;). In the 3g-gram model this is estimated by f(W; =
W| g; = g;), calculated from the training text. This is cer-
tainly a good estimate of the mean around which the value
P(W,=W|g = g;) fluctuates; however, it does not take
account of the variance around that mean.

We believe that the recent past is a good guide to the
direction of the variance. Thus, let C;(W, i) denote the
cache-based probability estimate for word W at time i for
POS g;. This is calculated from the frequency of W among
the N most recent words belonging to POS g; (in our im-
plementation, N = 200). Our combined model estimates
P(W, = W|g =g)by

P(W, = W‘gi =gj)
=k X f(Wi = W|gi = g) + ke; X G(W, i),
(20)
where
kyj + ke =1,

instead of by f(W; = W| g; = g;) alone. This should al-
low the estimate of P(W; = W|g; = g;) to deviate from
its average value to reflect temporary high or low values.
The relative weights of k, ; and k¢ ; are found by the de-
leted interpolation method mentioned in Section II-D; the
values thus obtained maximize the probability of the
training text. Note that the 3g-gram model is simply the
special case of the combined model obtained by setting all
ky.jto 1.0 and all k¢ ; to 0.0.

We must also specify how we estimated the POS com-
ponent P( g, = g;|&_2, g —1) of both the 3g-gram and
the combined models. This was done in almost the same
way as was done by Derouault and Merialdo, as described
in Section II-D. We chose to use the variant of their model
in which the 1-values (giving the relative weights of the
POS triplet and POS doublet probability estimates) de-
pend on the previous POS g; _ . To ensure that no POS g;
is ever assigned a probability of zero, we added an arbi-
trary small number 0.0001. We thus made the approxi-
mation

P(gi = gj‘ 8i-2, 8i-1)
=I(g )fle= gj'gi—zs 8i-1)

+ L(gi-1)flg = 8,"8,‘—1) + 0.0001, (21)

where [,( g.) + L,(g,) = 0.9847 for all x (where 0.9847
= 1 — (no. of POS’s) X 0.0001).

The above description ignores the possibility that a word
will be encountered in the sample text that is not in the
system’s vocabulary V. There are different ways of cal-
culating the probability that such a word will occur at time
i [9]; we estimated this probability by Turing’s formula,
which uses the frequency of unique words among all
words in the training text. There were 13,610 unique
words among 391,658 words in the training text, so the
probability of encountering a word not in the vocabulary
was estimated as about 0.035. All such unknown words
are treated as if they were a single word whose probability
of occurrence is always 0.035 no matter what the preced-
ing POS’s were. They are discarded instead of being
placed in a cache. As is described in Section IV-D, the
system guesses the POS g; of the discarded word on the
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basis of the two preceding POS’s by assigning it the value
of g; that maximizes the value of the previous equation.
We can now give the overall formula that we used:

P(Wi = W|8i—2, gi—l) =
ifWinV,
(1 - d)g‘gG[[kM.j X f(W; = ngi

Il

gj)
+ ke x G(W, l)] x [Lf(g = gjigi—b gi-1)

+ Lf(g = glg-1) + 0.0001]],
else d,

where d = 0.035, ky ; + k¢, = 1,1, + , = 0.9847.
(22)

Only one major modification to this model proved to be
necessary in practice. We were faced with severe memory
limitations, which required that we economize on the
amount of data stored. For this reason, we decided to re-
strict the number of POS’s for which 200-word caches
were maintained. To be given a cache, a POS had to meet
two criteria. It had to

1) comprise more than 1% of the total LOB Corpus.

2) consist of more than one word (for instance, the LOB
category BEDZ was excluded because it consists of the
single word ‘‘was’’). Only 19 POS’s met these two cri-
teria; however, these 19 together make up roughly 65%
of the LOB Corpus. They are introduced in Section IV.
Thus, for POS’s other than these 19, there is no cache
component in the combined model; the estimated proba-
bility is identical to that of the pure 3g-gram model.

Another problem was what to do when the recognition
task is beginning and the cache for g;, containing the pre-
vious words that belong to POS g;, is nearly empty, i.e.,
the number of words on which our estimate is based is far
less than N. One could argue that k¢ ; should not be fixed
but should increase with the number of words in the cache
corresponding to POS g;, attaining its maximum when that
cache is full. However, we decided to keep things simple.
Arbitrarily, we set k¢ ; = 0 until the corresponding cache
has five words in it; at that moment k¢ ; attains its maxi-
mum value. In future work, we may permit k¢ ; to in-
crease with the number of elements in the corresponding
cache.

In order to test our hypothesis that each POS should be
given a different best-fit pair of weights for its cache and
3g-gram components, we experimented briefly with a
model in which all POS’s had the same pair of weights.
Recall that the two weights must add up to 1.0. We ex-
perimented with (k¢, ki) = (0.0, 1.0); (0.1, 0.9); (0.2,
0.8); - -+ ;(0.9,0.1). We did not try to find a best-fit
pair of relative weights for this simpler version of the
combined model.

A final point must be made. Although the use of a cache
component implies the existence of a POS predictor (since
short-term word frequencies differ so dramatically from
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POS to POS), there is no reason not to merge our com-

bined model with the trigram model. The resulting cache-

trigram model would estimate P(W, = W|(W,, - -+ ,
W;_ ) as follows:

P(W1= W|<W[, ,Wi—|>)
=a; X P(W, = W\W,_o, W)

+a X [ 2 Is(gj|gi—2a 8i-1)
4€G

X [kM.jf(W‘gj) + ke ;CG(W, i)]},

ap+a=1,ky; +kc; =1 (23)
This model would incorporate features from each of the
three main approaches we have discussed so far, and
might lead to substantially improved predictive power
over any single one of them.

IV. IMPLEMENTATION AND TESTING OF THE COMBINED
MoODEL

A. The LOB Corpus and Texts Extracted from It

The Lancaster-Oslo/Bergen Corpus of British English
consists of 500 samples of about 2000 words each. The
average length per sample is slightly over 2000, as each
sample is extended past the 2000-word mark in order to
complete the final sentence. Each word in the corpus is
tagged with exactly one of 153 POS’s. The samples were
extracted from texts published in Britain in 1961, and have
been grouped by the LOB researchers into 15 categories
spanning a wide range of English prose [6]-[8]. These
categories are shown in Table I.

The table shows the 15 text categories. The column la-
beled “*Corpus’’ gives the number of samples in each cat-
egory in the original LOB Corpus. We extracted three dif-
ferent, nonoverlapping collections of samples from the
tagged LOB Corpus, and used each for a different pur-
pose. All three were designed to reflect the overall com-
position of the LOB Corpus as closely as possible. The
column labeled ‘‘Training Text’” shows the number of
samples in each category for the first of these collections;
the last column applies to both remaining collections.

The training text for our models was used to obtain
counts for triplets, doublets, and singlets of POS’s. It also
gave rise to the vocabulary for the models, and to the
counts for the number of occurrences of a word within
each POS. It contained 169 samples altogether, for a total
of 391,658 words.

The second collection of samples was used for further
parameter setting, including calculation of the /-values in
the Derouault-Meriaido formula (Section II-D), which
give the relative weights to be placed on triplet and doub-
let probability estimates for the POS-prediction portion of
both models. It was also used to calculate the k-values,
which give the relative weights to be placed on the cache
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TABLE 1
DISTRIBUTION OF LOB CATEGORIES

Training Para Setting &

Symbol Description Corpus Text Testing Texts
A Press reportage 44 15 9
B Editorials 27 9 5
C Press reviews 17 6 3
D Religion 17 6 3
E Skills and hobbies 38 13 8
F Popular lore 44 15 9
G Biography and essays 77 25 15
H Miscellaneous 30 10 6
J Learned writings 80 27 16
K General fiction 29 10 6
L Mystery fiction 24 8 5
M Science fiction 6 2 1
N Adventures and westerns 29 10 6
P Love stories 29 10 6
R Humor 9 3 2

component and the 3g-gram component in the combined
model. It contained 100 samples altogether.

The third collection of samples formed the testing text.
It was used to compare the combined model with the
3g-gram model. It contained 100 samples distributed
among the LOB categories in exactly the same way as in
the parameter setting text. Note, however, that only the
categories and not the samples themselves are the same.

We required labeled texts for training and parameter
setting. By contrast, as pointed out in the Introduction,
any text from any source whatsoever could have been used
as the testing text. The diversity of the testing text poses
a difficult challenge to both models we tested. It is true
that the composition of the two texts used for model-
building resembles that of the testing text, but that has
always been the case in this type of research. It seems to
us that the difficulty of prediction here, when all three
texts are derived from a variety of sources, is greater than
when all three are derived from business correspondence
alone, as in Jelinek’s work. In one way only could we be
accused of making the task of the combined model easier.
We kept samples of the same LOB category contiguous
in the testing text, following the order given above. Thus,
the testing text consists of the 9 4 samples followed by
the 5 B samples, and so on. Note that the cache compo-
nent of our combined model will contain many words from
samples previous to the current one. If, as we hypothe-
size, discourse of a certain type has a characteristic vo-
cabulary and pattern of word frequencies, our combined
model will work much better on our testing text than on
one constructed from the same samples in random order.
In other words, the final perplexity result for the com-
bined model gives an idea of its performance when the
domain of discourse changes slowly. This seems a rea-
sonable restriction.

The comprehensiveness of the LOB Corpus made it an
ideal training text and a tough test of the robustness of the
language model. Furthermore, the fact that it has been
tagged by an expert team of grammarians and lexicog-

raphers freed us from having to devise our own tagging
procedure.

B. Parameter Calculation

All parameters for both the 3g-gram model and the
combined model were calculated from the training text
and the parameter setting text. The two models share a
POS prediction component which is estimated by the Der-
ouault-Merialdo method. Triplet and doublet POS fre-
quencies were obtained from the 169-sample training text;
this text also supplied the vocabulary and the count for
each word, subdivided by POS. The vocabulary size can
be given in two different ways. If we ignore the POS of a
word, there were 24,279 different words in the training
text and hence in the vocabulary of our models. On the
other hand, if words with the same spelling but different
POS’s are counted separately, the vocabulary size is
30,718. The 100-sample parameter setting text gave the
weights, [|( g;_,) and ,,( g;_ ), needed for smoothing be-
tween the triplet and doublet POS frequencies. These were
computed iteratively using interpolated deletion as de-
scribed in Section II-D above.

Now the portion of both models that calculates POS
probabilities is complete—it remains to find &y, ; and k¢ ;
for the combined model. This was calculated by means of
interpolated deletion from the parameter setting text in
exactly the same way.

C. Implementing the Combined Model

Because of memory limitations, it proved impossible to
implement a cache for every one of the 153 POS’s in the
LOB Corpus. As was mentioned in Section III-B, two cri-
teria were used to select the POS’s which would be as-
signed a cache:

1) the POS had to constitute more than 1% of the LOB
Corpus.

2) the POS had to contain more than one word or sym-
bol.

The second criterion is obvious—if only one vocabulary
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TABLE I1
PARTS OF SPEECH FOR WHICH CACHES ARE DEFINED

Cache POS
Number Name Description
1 AT singular article (a, an, every)
2 ATI singular or plural article (the, no)
3 BEZ (is, 's)
4 CcC coordinating conjunction (and, and/or, but, nor, only, or, yet)
5 CD cardinal (2, 3, etc; hundred, thousand, etc; dozen, zero)
6 CS subordinating conjunction (after, although, etc)
7 IN preposition (about, above. etc)
8 1 adjective
9 MD modal auxiliary (’ll, can, could, etc)
10 NN singular common noun
11 NNS plural common noun
12 NP singular proper noun
13 PPS possessive determiner
14 PP3A personal pronoun, 3rd pers plur nom (he, she)
15 RB adverb
16 VB base form of verb (uninflected present tense, imperative, infinitive)
17 VBD past tense of verb
18 VBG present participle, gerund
19 VBN past participle

item has a given POS, the cache component yields no ex-
tra information. The first criterion is based on the premise
that rare POS’s will be more spread out in time, so that
the predictive power of the cache component will be
weakened.

The 19 POS’s that survived this selection process are
listed in Table II.

D. Testing the Combined Model

As described in Section IV-B, two parts of the LOB
Corpus were used to find the best-fit parameters for the
pure 3g-gram model and the combined model, made up of
the 3g-gram model plus a cache component. These two
models were then tested on 20% of the LOB Corpus (100
samples) as follows. Each was given this portion of the
LOB Corpus word by word, calculating the probability of
each word as it went along. The probability of this se-
quence of 230,598 words as estimated by either model is
simply the product of the individual word probabilities as
estimated by that model. The higher this overall proba-
bility, the better the model. However, it is more conve-
nient to calculate the logarithm of this estimated overall
probability, equal to the sum of the logs of the individual
word estimated probabilities:

LO = log, ﬁ(W], Wy, * 0, Wn) = log, ﬁ(wl)

+ logy P(w,) + -+ - + log, P(w,).

The perplexity is then calculated as

pp =270/,

where n is the number of words (230,598 in this case).
Recall that we also tested a simpler version of the com-
bined model, in which the cache component has the same
weight for all POS’s. The weights tried were 0.0, 0.1,
0.2, - - -, 0.9; the 3g-gram component is always 1.0 mi-

nus the cache component. The perplexity was also esti-
mated from the testing text for these 10 variants of the
simpler model.

Note that in order to calculate word probabilities, both
models must have guessed the POS’s of the two preceding
words. Thus every word encountered must be assigned a
POS. There are three cases:

1) the word did not occur in the tagged training text
and therefore is not in the vocabulary;

2) the word was in the training text, and had the same
tag whenever it occurred;

3) the word was in the training text, and had more than
one tag (e.g., the word ‘‘light’’ might have been tagged
as a noun, verb, and adjective).

The heuristics employed to assign tags were as follows:

1) in this case, the two previous POS’s are substituted
in the Derouault-Merialdo weighted average formula and
the program tries all 153 possible tags to find the one that
maximizes the probability given by the formula.

2) in this case, there is no choice; the tag chosen is the
unique tag associated with the word in the training text.

3) when the word has two or more possible tags, the
tag chosen from them is the one which makes the largest
contribution to the word’s probability.

Thus, although the portion of the LOB Corpus used for
testing is tagged, these tags were not employed in the im-
plementation of either model; in both cases the heuristics
given above guessed POS’s. A separate part of the pro-
gram compared actual tags with guessed ones in order to
collect statistics on the performance of these heuristics.

As one of the referees of this paper pointed out, the
assignment of a tag to an unknown word would benefit
from the use of information about one or more of the
words that succeed it. In fact, an even simpler improve-
ment could have been made. We did not take into account
the fact that rare words are more likely to occur in some
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POS classes than in others. For instance, a word we do
not recognize is unlikely to be a connective or a preposi-
tion. Recall that we counted the unique words in the train-
ing text; it would have been possible to record their dis-
tribution among POS categories, and modify heuristic 1)
above so as to take this information into account. Either
approach would probably have reduced the number of
misassigned unknown words.

V. RESuLTS
A. Calculation of the L-Values

The first results of our calculations are the values
1,(gi-)and L,( g;_ ), obtained iteratively to optimize the
weighting between the POS triplet frequency f( g;| & -2,
gi_1) and the POS doublet frequency f( g;|g;_) in the
estimation of P(g; = g;|g;-2, & _1). As one might ex-
pect, L;,( g ) tends to be high relative to I,( g;_ ) when
g; 1 occurs often, because the triplet frequency is quite
reliable in this case. For instance, the most frequent tag
in the LOB Corpus is NN, singular common noun; we
have [;{(NN) = 0.57. The tag HVG, attached only to the
word ‘‘having,”’ is fairly rare; we have [,(HVG ) = 0.17.

However, there are other factors to consider. Derouault
and Merialdo [1] state that when g; _, was an article, /|
was relatively low because we need not know the POS
gi_» to predict that g; is a noun or adjective. Thus doublet
frequencies alone were quite reliable in this case. On the
other hand, when g; _, is a negation, knowing g; _, was
very important in making a prediction of g;, because of
French phrases like ‘il ne veut’’ and “‘je ne veux,”” so [,
was high.

Our results from English texts show somewhat similar
patterns. The tag ‘AT’ for singular articles had an /, that
was neither high nor low, 0.46. The tag ““XNOT’’, in-
cluding only ‘‘not’” and ‘‘n’t’’, had a high /; value, 0.84.
Adjectives (JJ) and adverbs (RB) had [/, values even
higher than one would expect on the basis of their high
frequencies of occurrence: 0.85 and 0.80, respectively.

B. Calculation of the K-Values

For each part of speech g;, we calculated the weight
kc ; given to the cache component of the combined model
and the weight k), ; given to its 3g-gram component. Re-
call that we originally created a different cache for each
POS because we had hypothesized that the cache com-
ponent would be more useful for prediction of content
words than for function words.

The optimal weights, calculated by means of the de-
leted interpolation method in Table III, decisively refute
this hypothesis.

The pattern in Table III is just the opposite of what we
had expected, with function POS’s having significantly
higher optimal weights for the cache component of the
combined model than content POS’s. This intriguing re-
sult is discussed in the conclusion.

C. Performance of Both Models on the Testing Text

We calculated the performance of the various models
on the testing text of 100 samples from the LOB Corpus
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TABLE 111
OPTIMAL WEIGHTS BY POS

Cache 3g-gram
POS Description Component Component
AT singular article 0.999 0.001
ATI sing. or pl. art. 0.998 0.002
BEZ is, ’s 0.999 0.001
CcC coord. conjunction 0.997 0.003
CD cardinal 0.783 0.217
CS subord. conjunction 0.973 0.027
IN preposition 0.919 0.081
1] adjective 0.402 0.598
MD modal auxiliary 0.989 0.011
NN sing. noun 0.403 0.597
NNS pl. noun 0.498 0.502
NP sing. proper noun 0.592 0.408
PPS possessive det. 0.997 0.003
PP3A pers. pron. 3rd pers. nom. 1.000 0.000
RB adverb 0.660 0.340
VB verb base form 0.456 0.544
VBD verb past tense 0.519 0.481
VBG present part., gerund 0.518 0.482
VBN past part. 0.326 0.673

(230,598 words ); the most important results will be given
first. The pure 3g-gram model gives perplexity equal to
332 (average probability per word is 0.003008). On the
other hand, the combined model gives perplexity equal to
107 (average probability per word is 0.009341). This
dramatic, more than threefold, improvement can only be
attributed to the inclusion of a cache component in the
combined model.

Would such a dramatic improvement have been ob-
tained if all caches had had the same weight? Recall that
we experimented with a simpler version of the combined
version in which all 19 caches had the same weight. The
results are shown in Table IV.

Thus the lowest perplexity, 118, was obtained when the
cache component weight was 0.7 and 3g-gram component
weight was 0.3. It is difficult to be sure without using
deleted interpolation to obtain the optimal weights, but
these figures seem to indicate a minimum for the perplex-
ity of this simpler version of the combined model of about
116—still a vast improvement over the 3g-gram model.

We collected statistics on the success rate of the POS
component of both models in guessing the POS of the
latest word (using the tag actually assigned the word in
the LOB Corpus as the criterion). This rate has a powerful
impact on the performance of both models, especially the
combined model; each incorrectly guessed POS leads to
looking in the wrong cache and thus to a cache-based
probability of zero (unless the same incorrect guess has
been made in the recent past). We are particularly inter-
ested in forming an idea of how fast this success rate will
increase as we increase the size of the training text.

There were 230,598 words in the testing text. Of these,
14,436 (6.2% ) had never been encountered in the train-
ing text and were thus assumed not to be in the vocabulary
(not recognized). Of the remaining 216,162 words that
had occurred at least once in the training text, 202,882
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TABLE IV
RESULTS FOR MODEL WITH EQUALLY WEIGHTED CACHES

Cache 3g-gram Average

Weight Weight Perplexity Probability
0.1 0.9 180 0.005551
0.2 0.8 152 0.006570
0.3 0.7 137 0.007277
0.4 0.6 128 0.007790
0.5 0.5 122 0.008150
0.6 0.4 119 0.008363
0.7 0.3 118 0.008411
0.8 0.2 121 0.008232
0.9 0.1 131 0.007620

(93.8% ) had tags that were guessed correctly (6.2% in-
correctly ). The 14,436 words that never occurred in the
training text were assigned the correct tag only 3676 times
(25.4% correct; 74.6% incorrect). Recall that a word that
was encountered in the training text is always assigned
one of the POS tags that it had there. Apparently the in-
formation contained in the counts of POS triplets, dou-
blets, and singlets is a good POS predictor when com-
bined with some knowledge of the possible tags a word
may have, but not nearly as good on its own. Overall, of
the 230,598 words in the training text, 206,558 (89.5% )
were assigned the correct POS.

Among the 216,162 words that appeared at least once
in the training text, a surprisingly high number—111,319
(51.4% )—had more than one possible POS. Of these,
99,242 (89.1% ) had POS’s that were guessed correctly.
Of the 12,077 faulty guesses that occurred for words with
more than one possible POS, only 294 (2.4% ) occurred
because the POS for the word in the testing text had not
been encountered in the training text.

VI. CONCLUSIONS

The results listed in the previous chapter seem to
strongly confirm our hypothesis that recently used words
have a higher probability of occurrence than the 3g-gram
model would predict. When a 3g-gram model and a com-
bined model resembling it but containing in addition a
cache component (whose effect is to assign a higher prob-
ability to recently encountered words) were used to cal-
culate the perplexity of a testing text, the perplexity of the
combined model was lower by a factor of more than 3.
How representative are our results?

We suspect that if we had employed a training text from
one source (for instance, business correspondence) and a
testing text drawn from another source (for instance,
sports journalism) the advantages of including a cache
component in the language model would have been even
more apparent, since the 3g-gram component would not
be as good a predictor in this case. By the same logic, if
both the training text and the testing text came from the
same narrowly defined area of discourse, the cache com-
ponent would probably not bring about such a dramatic
improvement as was observed by us, because the 3g-gram
component would be a better predictor than it was with
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the highly diverse training and testing texts we employed.
Similarly, an increase in the size of the training text wouild
make the 3g-gram component of the model more reliable,
and hence decrease the relative amount of improvement
in perplexity contributed by the cache component.

Thus, the importance of our results is in the trend they
show, not in the precise values we obtained; these depend
on the size and origin of both the training text and the
testing text. Nevertheless, the sheer magnitude of the im-
provement in perplexity over the pure 3g-gram model we
achieved by incorporating a cache component—a factor
of 3—indicates that we are not being misled by some ran-
dom fluctuation in word frequencies. A time locality ef-
fect exists, and it is important.

Would the performance of the trigram model also be
improved if a cache component were incorporated with
it? Strictly speaking, the data presented here do not an-
swer the question one way or the other. It is probably true
that the two words preceding a given word often indicate
the nature of the topic being discussed or the verbal habits
of the speaker, so that the trigram model would perform
better than the 3g-gram model on a diverse testing text
such as the one we used. On the other hand, we think that
a great deal of information about the lexical choices likely
to be made by the speaker depends on what happened
hundreds of words ago and will thus be lost by the trigram
model, yet is easily obtained by means of a cache com-
ponent. The only way to find out is to test a pure trigram
model against a trigram plus cache model—we hope that
those of our readers with sufficient resources to try the
experiment will do so!

It came as a surprise to us that, in general, the best-fit
weight of the cache component for function POS’s was
higher than the best-fit weight for the cache component
for content POS’s. We had naively assumed that the best-
fit weight for the cache component would reflect the
“‘burstiness’’ of the POS in question, and hence be larger
for content POS’s. Actually, another factor seems to be
more powerful in determining the weighting for the cache
component of a given POS: the less diverse a category is,
the larger its best-fit cache component weight. For in-
stance, the POS category PP3A contains only the words
““he’” and *‘she’’; the corresponding cache of 200 words,
containing these two words in different proportions, will
contain a precise estimate of their probability distribution
within the category. In this case, the best-fit cache weight
was 1.000. On the other hand, consider a POS category
like NN, containing singular nouns. By definition, all the
singular nouns that were not among the last 200 singular
nouns will be assigned a probability of zero, which is un-
realistic; furthermore, even probability estimates for
nouns within the cache are based on a very small sample.
Thus diverse categories like this one need the information
in the 3g-gram component to smooth out the probability
estimates (for NN, the best-fit cache component weight is
only 0.403).

If there is a moral to this, it is a point often made by
Jelinek: whenever possible, do not make intuitive judg-
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ments about the parameters of your language model but
train them from actual data. We might easily have decided
in advance that building cache components for function
POS’s was pointless, thus impairing the performance of
the combined model.

An interesting point is that the way we implemented our
model was actually rather unfavorable to the cache com-
ponent for content POS’s. Recall that for training and
testing purposes, we created two ‘‘texts’’ which were
concatenations of 2000-word actual texts taken from the
LOB Corpus. As there are 19 caches containing 200 words
each, the caches at any time during training and testing
(except the beginning) contain many words from previous
actual texts. Even though actual texts drawn from the same
general category were placed together, content words may
differ so much in frequency from actual text to actual text
that this implementation reduces the efficiency of the
cache component. Perhaps all caches should be emptied
at the‘end of each actual text, even though this would
mean that there are often less than 200 words in each
cache. In this case, we almost certainly would want the
weighting of the cache component to depend on the num-
ber of words in the cache, in a more sophisticated way
than our current step-function heuristic (which sets the
cache contribution to 0 until the cache has 5 words in it,
then leaves it constant).

Several other ideas for improvements have occurred to
us. One might explore the possibility of building a mor-
phological component so that the occurrence of a word
would increase the estimated probability of related words.
Thus the occurrence of the singular form of a noun would
raise the probability of its plural (and vice versa). Differ-
ent tenses and persons of a verb could be related in the
same way.

Another promising idea would be to extend the idea of
a model that dynamically tracks the linguistic behavior of
the speaker or writer from the lexical to the syntactic com-
ponent of the model. In other words, perhaps the rela-
tively recent past (before the preceding two POS’s) is a
good guide to the POS’s that will be employed, as well
as to the words that will be uttered. Recently employed
POS’s would be assigned higher probabilities.

One might also consider combining the model consid-
ered here with the trigram model. There are several dif-
ferent ways of doing this, one of which was presented at
the end of Section III (a weighted average of the trigram
model and our combined model). Alternatively, one could
use our combined model only when a bigram is not
found—or rarely found—in the training text. Trigram pur-
ists who dislike the use of POS’s might prefer to construct
a more dynamic version of the original trigram model, in
which trigrams and bigrams encountered during the rec-
ognition task would be assigned higher probabilities than
if they only occurred in the training text. It seems obvious
that this model would, at a minimum, handle noun phrases
better than any existing model—one has only to glance at
a newspaper story to see the same (often very idiosyn-
cratic) noun phrases appearing again and again.

The line of research described in this paper has more
general implications. The results above suggest that at a
given time, a human being works with only a small frac-
tion of his vocabulary. Perhaps if we followed an individ-
ual’s written or spoken use of language through the course
of a day, it would consist largely of time spent in language
““islands”’ or sublanguages, with brief periods of time
during which he is in transition between islands. One
might attempt to chart these ‘‘islands’” by identifying
groups of words which often occur together in the lan-
guage. If this work is ever carried out on a large scale, it
could lead to pseudosemantic language models for speech
recognition, since the occurrence of several words char-
acteristic of an ‘‘island’’ makes the appearance of all
words in that island more probable.
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